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Abstract—The augmented Lagrangian (AL) method (and its
closely related cousin, the alternating direction method of mul-
tipliers, or in short, ADMM) is a powerful technique for solving
ill-posed inverse problems using variable splitting. In this paper,
inspired by the convergence analysis of a simplified CT prob-
lem with Tikhonov regularization, we focused on the diagonal
preconditioned AL method, where the step size of each entry
of the split variable is proportional to the statistical weighting
in the penalized weighted least squares (PWLS) formulation. To
solve the inner minimization problem efficiently, we used the
ordered-subsets (OS) algorithm due to its fast convergence rate in
early iterations. By combining AL method with OS, experimental
results show that the standard OS algorithm can be accelerated
remarkably.

I. INTRODUCTION

The augmented Lagrangian (AL) method [1] has drawn
more attention recently due to its scalability, simplicity, and
fast convergence property. In the field of total-variation (TV)
denoising and compressed sensing, the AL method is used to
split a nonsmooth term, such as the TV-norm and `1-norm,
in the variational formulation, yielding a subproblem that has
a closed-form solution or can be solved almost exactly [2].
In the field of statistical X-ray computed tomography (CT)
image reconstruction, the AL method is also used to separate
the statistical weighting matrix (which has huge dynamic
range) to make the inner least squares problem much easier
to precondition [3]. Aside from the standard AL method,
many extensions and variations have been proposed to further
accelerate convergence. A survey can be found in [4].

One variation of the AL method is to precondition the `2
penalty term in the augmented Lagrangian by some positive
definite matrix G. For example, when G is a diagonal matrix
with positive diagonal entries, we penalize each entry in the
split variable differently, which means we can have larger
steps for those entries that are still far from the solution by
decreasing the penalty. However, such a diagonal matrix is
seldom used in practice because the diagonal preconditioning
matrix sometimes can ruin the opportunity to exploit fast
computation such as FFT and PCG for the inner problem in
the AL method.

In statistical X-ray CT image reconstruction, the image
reconstruction is usually formulated as a PWLS problem,
and the ordered-subsets (OS) algorithm [5] can be used to
accelerate its convergence in early iterations by a factor of M ,
the number of subsets. This M -time acceleration comes from

the “subset balance condition” by grouping the projections into
M ordered subsets and updating the image incrementally using
the M subset gradients. Although the standard OS algorithm
approaches some limit cycle eventually because of its incre-
mental gradient descent structure, the M -time acceleration of
solving a PWLS problem is still very promising for the AL
method with inexact updates. In this paper, we first study the
convergence of a simple quadratic PWLS problem using a
general AL method to get intuition about how to choose the
diagonal preconditioning matrix. Then, we relax the choice
of preconditioned matrix by a scaling factor, apply it to the
statistical X-ray CT image reconstruction problem, and solve
the inner constrained PWLS problem by using the standard
OS algorithm.

II. METHOD

To describe our proposed algorithm more clearly, we first
define the statistically weighted CT reconstruction problem as
follows:

x̂ ∈ argmin
x∈Ω

{
1
2 ‖y −Ax‖2W + R(x)

}
, (1)

where y is the noisy post-logarithm sinogram, A is the
system matrix of a CT scan, W is a diagonal weighting
matrix accounting for measurement variance, R is an edge-
preserving regularizer, and Ω is some convex set such as a
box constraint on the solution. Instead of solving it directly
using, for example, projected gradient descent method, we will
focus on solving an equivalent constrained problem. That is,
we are going to solve:

(x̂, û) ∈ argmin
x∈Ω,u

{
1
2 ‖y − u‖2W + R(x)

}
s.t. u = Ax , (2)

or equivalently, we must find a saddle point of the correspond-
ing augmented Lagrangian of (2):

LA(x,u,d) ,
1
2 ‖y − u‖2W + R(x) + ιΩ(x) + 1

2 ‖Ax− u− d‖G , (3)

where ιΩ is the characteristic function of set Ω, d is the scaled
dual variable of u, and G is some positive definite matrix, e.g.,
G = ηI with η > 0. This problem can be solved by using the
alternating direction method. In other words, we will minimize
LA with respect to x and u alternatively followed by a gradient



ascent of d, and the iterates will be:
x(j+1) ∈ argmin

x∈Ω

{
1
2

∥∥(u(j) + d(j)
)
−Ax

∥∥2

G
+ R(x)

}
u(j+1) = (W + G)−1

(
Wy + G

(
Ax(j+1) − d(j)

))
d(j+1) = d(j) −Ax(j+1) + u(j+1) .

(4)

A. Analysis of CT problem with Tikhonov regularization

To simplify the convergence rate analysis of the proposed
algorithm, we first assume that R(x) = α

2 ‖Cx‖22, and Ω is
the entire space, where C is the finite difference matrix. Then,
the iterates in (4) have closed-from expressions, and by doing
some simple calculations, we can show that u(j) converges
to A (A′WA + αC′C)−1 A′Wy = Ax̂ unconditionally and
linearly with rate

ρ
(

(W + G)−1 (GAF + W)
)
, (5)

where ρ(K) denotes the spectral radius of matrix K, and

F , (A′GA + αC′C)−1 A′ (G−W) . (6)

Although there is no simple way to express the convergence
rate in (5) using G, one fairly good choice of G is G = W,
thus leading to spectral radius of 1/2, which is quite fast.
However, if we set G to be W, then the x subproblem is
the original weighted CT problem with a different sinogram.
In other words, the inner problem is as hard as the original
problem itself, and we would gain nothing from the AL
method.

B. Diagonal preconditioned AL method for CT problem

To gain something from the AL method, we must add
one more degree of freedom. In this paper, we consider the
preconditioning matrix G = ηW with η > 0, and the resulting
iterates become:

x(j+1) ∈ argmin
x∈Ω

{
1
2

∥∥(u(j) + d(j)
)
−Ax

∥∥2

W
+ η−1R(x)

}
u(j+1) = 1

1+η

(
y + η

(
Ax(j+1) − d(j)

))
d(j+1) = d(j) −Ax(j+1) + u(j+1) .

(7)
Intuitively, this approach penalizes the more important line
integrals that pass through the patient less, thus leading to
larger step sizes for those rays. By solving the last two
equations in (7), we can get the identity

ηd(j+1) = y − u(j+1) . (8)

Substituting (8) into (7), the final iterates are:x(j+1) ∈ argmin
x∈Ω

{
1
2

∥∥z(j) −Ax
∥∥2

W
+ η−1R(x)

}
u(j+1) = 1

1+η

(
u(j) + ηAx(j+1)

)
,

(9)

where z(j) , η−1y+
(
1− η−1

)
u(j). As can be seen from (9),

the x subproblem is a weighted CT problem with an updated
sinogram and a scaled regularizer.

To implement the proposed diagonal preconditioned AL
method, we need a method to solve the inner CT problem
in (9). The OS algorithm is a good candidate here because it
is usually fast in early iterations, and it is very easy to impose
box constraints on the inner problem. Note that, when η is
equal to one, the x subproblem is exactly the same as the
original problem, and the iterates reduce to the standard OS
algorithm. Intuitively, if we use a noisy FBP reconstruction as
the initial guess and if we expect that the converged image
should be less noisy, then we would like to choose a small η
so the x iterate is more regularized. In general, we choose η
to be between 0.3 and 1 so that we will not regularize x too
much (η < 0.3) or too little (η > 1).

C. Practical implementation and discussion

Although (9) outlines the proposed algorithm, we usually do
not implement the algorithm exactly in that way. According to
the convergence theorem of ADMM methods [6, Theorem 8],
it suffices for the errors of the inner minimization problems
to be absolutely summable. Therefore, to try to improve the
convergence behavior of our AL method, we run multiple OS
iterations to refine x before updating the split variable u. The
practical algorithm should be as follows:

x(j+1) = OS1
M

(
x(j); 1

2

∥∥z(j) −Ax
∥∥2

W
+ η−1R(x) ,Ω

)
u(j+1) =

{
u(j) , if mod(j + 1, P ) 6= 0

1
1+η

(
u(j) + ηAx(j+1)

)
, otherwise ,

(10)
where OSnM (x0; Ψ, C) denotes n iterations (M sub-iterations
per iteration) of the OS algorithm with initial guess x0 , cost
function Ψ, and constraint set C, and P is the period of the
split variable update. Furthermore, to minimize the error of
x subproblem (at least for early iterations), we have to take
advantage of the M -time acceleration of the OS algorithm,
so the number of subsets should be large enough. However,
using more subsets leads to a “larger” limit cycle, which will
accelerate the error accumulation.

One could also accelerate the standard OS algorithm by
starting from a larger regularization parameter (assuming the
initial guess is noisy) and decreasing it gradually to one as the
algorithm proceeds. The benefit of our proposed algorithm is
that, thanks to the AL method, we do not have to use such
continuation of the regularization parameter for convergence.
Note that since the OS algorithm itself does not converge,
instead of decreasing the regularization parameter (or η), we
would reduce the number of subsets and increase the period
of split variable update to achieve convergence in practice.

III. RESULT

In this section, we evaluate our proposed algorithm using
a patient helical CT scan. To investigate the effects of η (the
AL penalty parameter) and P (the update period), we consider
three different AL penalty parameters (0.3, 0.5, and 0.7) and
three different update periods (1, 5, and 10) in our experiment.
The number of subsets is set to be 41. The standard OS
algorithm is the baseline method. Note that each split variable
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Fig. 1: Cropped images from the central slice of the reconstructed patient helical CT scan, where FBP denotes the FBP
reconstruction, OS-SQS-M denotes the standard OS algorithm with M subsets, and AL-OS-M -η-P denotes the proposed
algorithm with M subsets, the AL penalty parameter η, and the update period P . Numbers in parentheses show the number of
iterations of each algorithm so that the total number of forward/back-projections is approximately 100. The AL-OS-41-0.3-5
result after 45 iterations is very similar to the converged image, whereas the other images exhibit residual streak artifacts for
the same computation time.

update requires one “extra” forward projection compared to
the standard OS algorithm. To have a fair comparison, we
plot the root mean square (RMS) difference between the
reconstructed image and the converged reconstruction as a
function of the number of iterations and the number of
forward/back-projections (assuming that Ax and A′y have the
same computational complexity). Lastly, since the test helical
scan contains gain fluctuations [7], we include blind gain
correction [8] in all of our reconstruction algorithms. With this
correction, the weighting matrix W and the preconditioning
matrix G are diagonal plus a rank-1 matrix rather than pure
diagonal, which is a simple extension of the proposed diagonal
preconditioned AL method.

Figure 1 shows the initial noisy FBP image, the recon-
structed images after about 100 forward/back-projections of
the standard OS algorithm and the proposed algorithm using
different values of η and P , and the converged image. As
can be seen in Figure 1, the shading artifacts due to gain
fluctuations are largely suppressed, and the proposed algorithm
with all configurations outperforms the standard OS algorithm
in image quality, especially for smaller η and larger P .

Figure 2 shows the convergence rate curves of the proposed
algorithm with different values of P for the case η = 0.5,
where OS-SQS-M denotes the standard OS algorithm with M
subsets, and AL-OS-M -η-P denotes the proposed algorithm
with M subsets, the AL penalty parameter η, and the update
period P . As can be seen in Figure 2, the proposed algorithm
with update period P = 10 converges much faster than the
standard OS algorithm. There are sharp drops in the RMS
difference when the split variable is updated, especially for
larger P and in earlier iterations. This kind of acceleration
diminishes as the algorithm proceeds because the speedup of
OS algorithm saturates. To have more acceleration, we would
need to either increase P or decrease M to solve the inner
minimization problem in (9) more accurately.

Figure 3 shows the convergence rate curves of the proposed
algorithm with different values of η for the case P = 5, where
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Fig. 2: RMS differences between the reconstructed image and
the converged reconstruction as a function of (a) the number
of iterations and (b) the number of forward/back-projections
with different values of the update period P .
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Fig. 3: RMS differences between the reconstructed image and
the converged reconstruction as a function of (a) the number
of iterations and (b) the number of forward/back-projections
with different values of the AL penalty parameter η.

the naming convention is the same as in Figure 2. Note that the
standard OS algorithm is just a special case of the proposed
algorithm when η = 1. In this case, the value of P does not
matter because z(j) in (10) is independent of u(j). As can
be seen in Figure 3, the convergence rate curve converges
to the curve of the standard OS algorithm as η approaches
to unity. Smaller η shows faster convergence rate because
the converged image is smooth and edge-preserved; however,
when η is too small, for example, when η = 0.3, we can
see the problem (sharp increase in RMS difference) of over-
regularization in early iterations since the inner minimization
problem is too different from the original problem. When the
inner minimization problem is solved properly, i.e., smaller
error due to larger P or M , this “misdirection” can be
corrected by split variable updates, for example, the purple
curves in Figure 3. Furthermore, although we consider only
the standard OS algorithm in this paper, any fast variation of
the OS algorithm, e.g., [9] and [10], can be applied to the
proposed diagonal preconditioned AL method.

IV. CONCLUSION

In this paper, we proposed to combine the AL method
with OS. Inspired by the convergence analysis of the AL
method for quadratic PWLS problems, we focused on a
diagonal preconditioning matrix G that is proportional to the
statistical weighting matrix W. Experimental results show that
the proposed algorithm accelerated the standard OS algorithm
remarkably and provides a degree of freedom to fine tune the
convergence rate. As possible future work, we will investigate
different splits in the proposed diagonal preconditioned AL
method. In addition, we are also interested in combining, for
example, the frequency analysis of the AL method with tuning
the AL penalty parameter η.
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