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INTRODUCTION

The augmented Lagrangian (AL) method [1] has drawn more where the x-update is just one complete OS iteration (with M 05-5Q5-41 (50) 1200
attention recently due to its scalability, simplicity, and fast subsets) of the inner CT problem, zU) = n'ly + (1-n- )uU is the
convergence. One variation of the AL method is to precondition updated sinogram, and P is the update period. Note that d does
the £, penalty term in the augmented Lagrangian by some not appear in (6) because of ndU*Y) =y - ut*Y from (5).
positive definite matrix. For example, when choosing a To summarize, the proposed AL-OS algorithm solves the CT T
diagonal matrix, we penalize each entry of the Spl]t variable prob[em in (1) by Solving a sequence of inner CT problems
differently, so we can have larger steps for those entries that inexactly with warm start. There are two tuning parameters:
are still far from the solution by decreasing the penalty. the AL penalty parameter n and split variable update period P.
In statistical X-ray CT image reconstruction, the image When n = 1, the proposed AL-OS algorithm reduces to the OS
reconstruction is usually formulated as a PWLS problem, and algorithm. When n < 1, the inner CT problems become more 1000
the ordered-subset (OS) algorithm [5] can be used to regularized, and the step size of u is larger due to the smaller
accelerate the gradient descent method about M times by penalty in (3). The value of P determines the number of OS
grouping the projections into M ordered subsets and updating iterations we used to solve the inner CT problems. Typically,
the image incrementally using the M subset gradients. larger P leads to lower overhead for computing extra forward
In this paper, we propose to combine the AL method with OS, projections and higher accuracy of the inner CT problems. o
where a diagonal preconditioner is used in the AL method so
that the inner minimization problem is another statistically
weighted CT problem, and we solve it using the standard OS
algorithm. Although the OS algorithm approaches some limit , , , ' 800
cycle eventually because of its incremental gradient descent We evaluate our proposed AL-O5 algorithm using a patient [HU]
structure, the M-time acceleration of solving a PWLS problem is helical CT scan and investigate t.he effects of the update period Figure 4. Cropped images from the central transaxial plane of the reconstructed
till very promising for the AL method with inexact updates. | | 21 the AL penalty parameter with different values of P-and 1. | | patirt et C scan. Nobers b parentheses show the pumber of teration
The test.smogra.m ]S, of 5iz€ XI£X W]F pitch 0.5 ’ approximately 100. The AL-0S-41-0.3-5 result after 45 iterations is very similar
anq the image size is .51 2X.51 2x109. .Lastly, slniels the test . to the converged image, whereas the other images exhibit residual streak
helical CT scan contains gain fluctuations [7], we include blind artifacts for the same computation time.
gain correction [8] in all of our reconstruction algorithms. With

We define the statistically weighted CT problem as follows: this correction, the statistical weighting matrix W and the _
_ 5 preconditioning matrix G are “diagonal-plus-rank-one” rather CONCLUSION
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S arfégln {2 Hy AX' w T R(X)} ’ (1) ;?ggops:f dc:';aggocnnaallpT:ctcr)lnfdeist,ig:;]ccj:I,lll_srses’c]rr:)%leﬁﬁetengs%oigggf the In this paper, we proposed to combine the AL method with
where y is the noisy sinogram, A is the system matrix of a CT conventions in our experiment are as follows: 0S-SQS-M 05 for solving X-ray CT image reconstruction problems. Inspired

& = @t Lt : e O . . by the convergence rate analysis of the AL method for
scanner, W is a diagonal weighting matrix accounting for denotes the standard OS algorithm [5] with M subsets, and . . :

: : i : : . . quadratic regularized CT problems, we focused on a diagonal

measurement variance, R is an edge-preserving regularizer, and AL-O5-M-n-P denotes the proposed AL-O5 algorithm with M reconditioning matrix G that is proportional to the statistical
() is the nonnegativity constraint on the solution. Instead of subsets, the AL penalty parameter n, and the update period P. P S Prop

weighting matrix W. Experimental results show that the

lving (1) directl ill sol ivalent trained
solving (1) directly, we will solve an equivalent constraine proposed AL-OS algorithm accelerates the standard OS

minimization problem:

? | " [—o—ossas4 "’° | "~ [——ossasa algorithm remarkably. As can be seen from the convergence
[ A o ’ l H . uH2 —I— R( ) . t u - AX (2) ] —o— AL-0S-41-0.5-1 | ] —o— AL-0S-41-0.5-1 |
(x,0) € argmin {2 Y \"% X))y 5L U= : ‘ e ALOS41058 ‘ I ALOS 41058 rate curves, smaller n leads to faster but non-monotone
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convergence. One possible future work is to consider using
continuation, e.g., a decreasing sequence of n from 1 to 0, in
the proposed AL-OS algorithm for further acceleration.

using the (alternating direction) AL method, which alternatingly
minimizes the augmented Lagrangian
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where (4 is the characteristic function of Q, d is the scaled dual Figure 1. RMS differences between the reconstructed image and the converged
variable of u, and G is a positive definite preconditioning reconstruction with different values of the update period P.
matrix. The conventional choice of G is G = nl with n > 0. The
general AL iterates are as follows:
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Figure 2. RMS differences between the reconstructed image and the converged
reconstruction with different values of the AL penalty parameter n.
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Figure 3. Cropped images from the central coronal plane of the reconstructed
patient helical CT scan. Numbers in parentheses show the number of iterations
of each algorithm so that the total number of forward/back-projections is
approximately 100. The results of our proposed AL-OS algorithm with different
values of n and P are less noisy and closer to the converged reconstruction.
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