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    The augmented Lagrangian (AL) method [1] has drawn more 

attention recently due to its scalability, simplicity, and fast 

convergence. One variation of the AL method is to precondition 

the ℓ2 penalty term in the augmented Lagrangian by some 

positive definite matrix. For example, when choosing a 

diagonal matrix, we penalize each entry of the split variable 

differently, so we can have larger steps for those entries that 

are still far from the solution by decreasing the penalty. 

    In statistical X-ray CT image reconstruction, the image 

reconstruction is usually formulated as a PWLS problem, and 

the ordered-subset (OS) algorithm [5] can be used to 

accelerate the gradient descent method about M times by 

grouping the projections into M ordered subsets and updating 

the image incrementally using the M subset gradients. 

    In this paper, we propose to combine the AL method with OS, 

where a diagonal preconditioner is used in the AL method so 

that the inner minimization problem is another statistically 

weighted CT problem, and we solve it using the standard OS 

algorithm. Although the OS algorithm approaches some limit 

cycle eventually because of its incremental gradient descent 

structure, the M-time acceleration of solving a PWLS problem is 

still very promising for the AL method with inexact updates. 

 

    We define the statistically weighted CT problem as follows: 

 

 

where y is the noisy sinogram, A is the system matrix of a CT 

scanner, W is a diagonal weighting matrix accounting for 

measurement variance, R is an edge-preserving regularizer, and 

Ω is the nonnegativity constraint on the solution. Instead of 

solving (1) directly, we will solve an equivalent constrained 

minimization problem: 

 

 

using the (alternating direction) AL method, which alternatingly 

minimizes the augmented Lagrangian 

 

 

with respect to x and u, followed by a gradient ascent of d, 

where ιΩ is the characteristic function of Ω, d is the scaled dual 

variable of u, and G is a positive definite preconditioning 

matrix. The conventional choice of G is G = ηI with η > 0. The 

general AL iterates are as follows: 

 

 

 

 

 

    To find a “good” preconditioner G, we analyze a simpler CT 

problem with a quadratic regularizer and no box constraint. We 

can show that no matter what regularization parameter is used, 

G = W leads to a quite fast, with rate ½ , convergence of the 

split variable u. Inspired by this, we focus on the diagonal 

preconditioner G = ηW with η > 0, and the AL iterates become 

 

 

 

 

 

As can be seen in (5), the inner minimization is another CT 

problem with an updated sinogram and a scaled regularizer, 

and it can be solved using OS algorithms, e.g., [5]. Finally, we 

have our proposed AL-OS algorithm: 
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Figure 3. Cropped images from the central coronal plane of the reconstructed 

patient helical CT scan. Numbers in parentheses show the number of iterations 

of each algorithm so that the total number of forward/back-projections is 

approximately 100. The results of our proposed AL-OS algorithm with different 

values of η and P are less noisy and closer to the converged reconstruction. 

Figure 2. RMS differences between the reconstructed image and the converged 

reconstruction with different values of the AL penalty parameter η. 

Figure 1. RMS differences between the reconstructed image and the converged 

reconstruction with different values of the update period P. 

    We evaluate our proposed AL-OS algorithm using a patient 

helical CT scan and investigate the effects of the update period 

and the AL penalty parameter with different values of P and η. 

The test sinogram is of size 888 x 32 x 7146 with pitch 0.5312, 

and the image size is 512 x 512 x 109. Lastly, since the test 

helical CT scan contains gain fluctuations [7], we include blind 

gain correction [8] in all of our reconstruction algorithms. With 

this correction, the statistical weighting matrix W and the 

preconditioning matrix G are “diagonal-plus-rank-one” rather 

than pure diagonal matrices, which is a simple extension of the 

proposed diagonal preconditioned AL method. The naming 

conventions in our experiment are as follows: OS-SQS-M 

denotes the standard OS algorithm [5] with M subsets, and 

AL-OS-M-η-P denotes the proposed AL-OS algorithm with M 

subsets, the AL penalty parameter η, and the update period P. 

 

where the x-update is just one complete OS iteration (with M 

subsets) of the inner CT problem, z(j) = η-1y + (1-η-1)u(j) is the 

updated sinogram, and P is the update period. Note that d does 

not appear in (6) because of ηd(j+1) = y − u(j+1) from (5). 

    To summarize, the proposed AL-OS algorithm solves the CT 

problem in (1) by solving a sequence of inner CT problems 

inexactly with warm start. There are two tuning parameters: 

the AL penalty parameter η and split variable update period P. 

When η = 1, the proposed AL-OS algorithm reduces to the OS 

algorithm. When η < 1, the inner CT problems become more 

regularized, and the step size of u is larger due to the smaller 

penalty in (3). The value of P determines the number of OS 

iterations we used to solve the inner CT problems. Typically, 

larger P leads to lower overhead for computing extra forward 

projections and higher accuracy of the inner CT problems. 
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Figure 4. Cropped images from the central transaxial plane of the reconstructed 

patient helical CT scan. Numbers in parentheses show the number of iterations 

of each algorithm so that the total number of forward/back-projections is 

approximately 100. The AL-OS-41-0.3-5 result after 45 iterations is very similar 

to the converged image, whereas the other images exhibit residual streak 

artifacts for the same computation time. 

 

    In this paper, we proposed to combine the AL method with 

OS for solving X-ray CT image reconstruction problems. Inspired 

by the convergence rate analysis of the AL method for 

quadratic regularized CT problems, we focused on a diagonal 

preconditioning matrix G that is proportional to the statistical 

weighting matrix W. Experimental results show that the 

proposed AL-OS algorithm accelerates the standard OS 

algorithm remarkably. As can be seen from the convergence 

rate curves, smaller η leads to faster but non-monotone 

convergence. One possible future work is to consider using 

continuation, e.g., a decreasing sequence of η from 1 to 0, in 

the proposed AL-OS algorithm for further acceleration. 
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