Weierstrass points on a tropical curve

Harry Richman
University of Michigan
hrichman@umich.edu

University of Kentucky Algebra Seminar
November 20, 2019
What is a Weierstrass point?

Definition: X a smooth algebraic curve, D_N a divisor of degree N

\leadsto projective embedding $\phi : X \to \mathbb{P}^r$.
What is a Weierstrass point?

Definition: \(X\) a smooth algebraic curve, \(D_N\) a divisor of degree \(N\)
\(\leadsto\) projective embedding \(\phi : X \to \mathbb{P}^r\).

\[W(D_N) = \{ x \in X : \exists H \subset \mathbb{P}^r \text{ s.t. } m_x(H \cap X) \geq r + 1 \}\]
\[= \left\{ x \in X : \text{“higher-than-expected” tangency with some hyperplane } H \text{ at } x \right\} \]
What is a Weierstrass point?

Definition:

\[W(D_N) = \left\{ x \in X : \text{“higher-than-expected” tangency with some hyperplane } H \text{ at } x \right\} \]

Example: \(X = \{xyz + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}_\mathbb{C}^2 \)

\(N = 3 \)
What is a Weierstrass point?

Definition:

\[W(D_N) = \left\{ x \in X : \text{"higher-than-expected" tangency with some hyperplane } H \text{ at } x \right\} \]

Example: \(X = \{xyz + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}} \)

\(N = 3 \)
What is a Weierstrass point?

Definition:

\[W(D_N) = \left\{ x \in X : \text{"higher-than-expected" tangency with some hyperplane } H \text{ at } x \right\} \]

Example: \(X = \{xyz + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}} \)
What is a Weierstrass point?

Definition:

\[W(D_N) = \left\{ x \in X : \text{"higher-than-expected" tangency with some hyperplane } H \text{ at } x \right\} \]

Example: \(X = \{xyz + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^2 \mathbb{C} \)

\[N = 3 , \quad \# W(D) = 9 \]
What is a Weierstrass point?

Intuition (Mumford):

\[N \text{-torsion points} \leftrightarrow \text{Weierstrass points of } D_N \]

on an elliptic curve on a higher-genus curve

Numerical "evidence": as \(N \) grows, \(\#(\text{Weierstrass points of } D_N) = gN^2 + O(N) \)

Problem

How are Weierstrass points distributed on an algebraic curve?
What is a Weierstrass point?

Intuition (Mumford):

\[N \text{-torsion points } \leftrightarrow \text{ Weierstrass points of } D_N \]

on an elliptic curve on a higher-genus curve

Numerical “evidence”: as \(N \) grows,

\[
\#(\text{Weierstrass points of } D_N) = gN^2 + O(N)
\]
What is a Weierstrass point?

Intuition (Mumford):

\[N \text{-torsion points} \leftrightarrow \text{Weierstrass points of } D_N \]

on an elliptic curve

on a higher-genus curve

Numerical “evidence”: as \(N \) grows,

\[\#(\text{Weierstrass points of } D_N) = gN^2 + O(N) \]

Problem

How are Weierstrass points distributed on an algebraic curve?
Weierstrass points: genus 1, complex case

Problem
How are Weierstrass points distributed on genus 1 curve X/\mathbb{C}?
Problem

How are Weierstrass points distributed on genus 1 curve X/\mathbb{C}?
Problem

How are Weierstrass points distributed on genus 1 curve X/\mathbb{C}?
Problem

How are Weierstrass points distributed on genus 1 curve X/\mathbb{C}?
Problem

How are Weierstrass points distributed on genus 1 curve X/\mathbb{C}?

\rightsquigarrow Weierstrass points distribute \textit{uniformly}, w.r.t. $\mathbb{C} \rightarrow \mathbb{C}/\Lambda$
Problem

How are Weierstrass points distributed on higher genus curve X/\mathbb{C}?
Weierstrass points: genus ≥ 2, complex case

Problem
How are Weierstrass points distributed on higher genus curve X/\mathbb{C}?

Theorem (Neeman, 1984)
Suppose X is a complex algebraic curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Bergman measure as $N \to \infty$.
Weierstrass points: genus ≥ 2, complex case

Problem

How are Weierstrass points distributed on higher genus curve X/\mathbb{C}?

- **Theorem (Neeman, 1984)**
 Suppose X is a complex algebraic curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Bergman measure as $N \to \infty$.

Harry Richman (U. Michigan)
Weierstrass points: genus ≥ 2, complex case

Problem

How are Weierstrass points distributed on higher genus curve X/\mathbb{C}?

Theorem (Neeman, 1984)

Suppose X is a complex algebraic curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Bergman measure as $N \to \infty$.

Harry Richman (U. Michigan)
Tropical Weierstrass points
20 November 2019
Weierstrass points: genus ≥ 2, complex case

Problem
How are Weierstrass points distributed on higher genus curve X/\mathbb{C}?

Theorem (Neeman, 1984)
Suppose X is a complex algebraic curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Bergman measure as $N \to \infty$.

Harry Richman (U. Michigan)
Weierstrass points: non-Archimedean case

Problem

How are Weierstrass points distributed on X/K, $\text{val} : K^\times \to \mathbb{R}$?

Source: Matt Baker’s math blog
Weierstrass points: non-Archimedean case

Problem

How are Weierstrass points distributed on X_K/K X^an?

Source: Matt Baker’s math blog
Weierstrass points: non-Archimedean case

Problem
How are Weierstrass points distributed on $\frac{X}{K}$ X^{an}?

Theorem (Amini, 2014)

Suppose X^{an} is a Berkovich curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Zhang measure as $N \rightarrow \infty$.

Source: Matt Baker’s math blog
Weierstrass points: non-Archimedean case

Problem
How are Weierstrass points distributed on X/K? X^{an}?

Source: Matt Baker’s math blog

Problem (Amini, 2014)
Does the distribution follow from considering only the skeleton $\Gamma \subset X^{an}$?
Problem

How are Weierstrass points distributed on $X/K / \mathcal{X}^{an}$?

Problem (Amini, 2014)

Does the distribution follow from considering only the skeleton $\Gamma \subset \mathcal{X}^{an}$?
What is a tropical curve?

Tropical curve (= a skeleton of X^{an})
What is a tropical curve?

Tropical curve (= a skeleton of X^{an}) (combinatorics) = finite graph with edge lengths
What is a tropical curve?

Tropical curve (= a skeleton of X^{an})

(combinatorics) = finite graph with edge lengths
(alg. geometry) = model for a degenerating algebraic curve
What is a tropical curve?

Tropical curve (= a skeleton of X^an)

(combinatorics) = finite graph with edge lengths
(alg. geometry) = model for a degenerating algebraic curve

Example: $X_t = \{xyz - tx^3 + t^2y^3 + t^5z^3 = 0\} \subset \mathbb{P}_\mathbb{C}^2$

$t=1$ $t=\varepsilon$ $t=0$
What is a tropical curve?

Tropical curve (= a skeleton of X^{an})

(combinatorics) = finite graph with edge lengths
(alg. geometry) = model for a degenerating algebraic curve

Example: $X_t = \{xyz - t^1 x^3 + t^2 y^3 + t^5 z^3 = 0\} \subset \mathbb{P}_\mathbb{C}^2$

\rightsquigarrow dual graph of X_0
What is a tropical curve?

Tropical curve (= a skeleton of \(X^{an}\))

(combinatorics) = finite graph with edge lengths metric graph
(alg. geometry) = model for a degenerating algebraic curve

Example: \(X_t = \{xyz - t^1x^3 + t^2y^3 + t^5z^3 = 0\} \subset \mathbb{P}^2_\mathbb{C}\)
Tropical curves: divisor theory

Tropical curve $= \text{metric graph}$

<table>
<thead>
<tr>
<th>alg. curve X</th>
<th>tropical curve Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>divisors $\text{Div}(X)$</td>
<td>\rightsquigarrow divisors $\text{Div}(\Gamma)$</td>
</tr>
<tr>
<td>meromorphic functions</td>
<td>\rightsquigarrow piecewise \mathbb{Z}-linear functions</td>
</tr>
<tr>
<td>linear system $</td>
<td>D</td>
</tr>
<tr>
<td>$= \mathbb{P}^r$</td>
<td>$= \text{polyhedral complex of dim } \geq r$</td>
</tr>
<tr>
<td>rank $r = \dim</td>
<td>D</td>
</tr>
</tbody>
</table>

Intuition: linear equivalence on $\Gamma = \text{"discrete current flow"}$

q-reduced divisor $\text{red } q[D] = \text{"energy-minimizing" divisor in } |D|$
Tropical curves: divisor theory

Tropical curve = metric graph

<table>
<thead>
<tr>
<th>alg. curve X</th>
<th>tropical curve Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>divisors $\text{Div}(X)$</td>
<td>\sim</td>
</tr>
<tr>
<td>meromorphic functions</td>
<td>\sim</td>
</tr>
<tr>
<td>linear system $</td>
<td>D</td>
</tr>
<tr>
<td>$= \mathbb{P}^r$</td>
<td>= polyhedral complex of dim $\geq r$</td>
</tr>
<tr>
<td>rank $r = \dim</td>
<td>D</td>
</tr>
</tbody>
</table>

Intuition: linear equivalence on Γ = “discrete current flow”

$|D| = \{E \text{ lin. equiv. to } D, E \geq 0\}$
Tropical curves: divisor theory

Tropical curve = metric graph

<table>
<thead>
<tr>
<th>alg. curve X</th>
<th>tropical curve Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>divisors $\text{Div}(X)$</td>
<td>\rightsquigarrow divisors $\text{Div}(\Gamma)$</td>
</tr>
<tr>
<td>meromorphic functions</td>
<td>\rightsquigarrow piecewise \mathbb{Z}-linear functions</td>
</tr>
<tr>
<td>linear system $</td>
<td>D</td>
</tr>
<tr>
<td>$= \mathbb{P}^r$</td>
<td>$= \text{polyhedral complex of dim } \geq r$</td>
</tr>
<tr>
<td>rank $r = \dim</td>
<td>D</td>
</tr>
</tbody>
</table>

Intuition: linear equivalence on Γ = “discrete current flow”

$|D| = \{ E \text{ lin. equiv. to } D, \ E \geq 0 \}$

q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor in } |D|$
Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor in } |D|$

Example:
Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor in } |D|$

Example:
Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor in } |D|$

Example:
Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: q-reduced divisor $\text{red}_q[D] =$ “energy-minimizing” divisor in $|D|$

Example:
Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor in } |D|$

Example:
Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: \(q \)-reduced divisor \(\text{red}_q[D] \) = “energy-minimizing” divisor in \(|D| \)

Example:
Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: q-reduced divisor $\text{red}_q[D] = “\text{energy-minimizing” divisor in } |D|$

Example:

What happens as q varies?
Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor in } |D|$

Example:
Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: q-reduced divisor $\text{red}_q[D] =$ “energy-minimizing” divisor in $|D|$

Example:
Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor in } |D|$
Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: \(q \)-reduced divisor \(\text{red}_q[D] \) = “energy-minimizing” divisor in \(|D| \)

Example:
Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: q-reduced divisor $\text{red}_q[D]$ = “energy-minimizing” divisor in $|D|$

Example:
Problem

How are Weierstrass points distributed on a tropical curve?

Definition: $\Gamma =$ metric graph, D_N divisor of degree N
\leadsto Baker–Norine rank $r = r(D_N)$

$$W(D_N) = \{ x \in X : \text{red}_x[D_N] \geq (r + 1)x \}$$
Problem

How are Weierstrass points distributed on a tropical curve?

Definition: $\Gamma = \text{metric graph}$, D_N divisor of degree N

\leadsto Baker–Norine rank $r = N - g$ when $N \gg 0$

$$W(D_N) = \{x \in X : \text{red}_x[D_N] \geq (r + 1)x\}$$
Problem

How are Weierstrass points distributed on a tropical curve?

Definition: \(\Gamma = \) metric graph, \(D_N \) divisor of degree \(N \)

\(\leadsto \) Baker–Norine rank \(r = N - g \) when \(N \gg 0 \)

\[W(D_N) = \{ x \in X : \text{red}_x[D_N] \geq (r + 1)x \} \]

Observation: as \(N \) grows,

\[\#(\text{Weierstrass points of } D_N) = gN + O(1) \quad \ldots \]
Tropical curves: Weierstrass points

Problem
How are Weierstrass points distributed on a tropical curve?

Definition: $\Gamma = \text{metric graph},$ D_N divisor of degree N

\leadsto Baker–Norine rank $r = N - g$ when $N \gg 0$

$W(D_N) = \{x \in X : \text{red}_x[D_N] \geq (r + 1)x\}$

Observation: as N grows,

$\#(\text{Weierstrass points of } D_N) = gN + O(1) \ldots$

EXCEPT sometimes $\#(\text{Weierstrass points}) = \infty$
Example: Genus $g(\Gamma) = 1$:

degree $D = 6$,
Example: Genus $g(\Gamma) = 1$:

degree $D = 6$, \sim $\#(W(D)) = 6$
Example: Genus $g(\Gamma) = 3$:

degree $D = 4$,
Example: Genus $g(\Gamma) = 3$:

degree $D = 4$, \leadsto $\#(W(D)) = 8$
Example: Genus $g(\Gamma) = 3$:

degree $D = 4$,
Example: Genus $g(\Gamma) = 3$:

\[\text{degree } D = 4, \quad \leadsto \quad \#(W(D)) = \infty! \]
Example: Genus $g(\Gamma) = 3$:

degree $D = 4$, \leadsto $\#(W(D)) = \infty$!
Weierstrass points: tropical case

In general, this problem doesn’t happen!

Theorem (R)

For a generic divisor class \([D]\), the Weierstrass locus \(W(D)\) is finite.
Weierstrass points: tropical case

In general, this problem doesn’t happen!

Theorem (R)

For a generic divisor class \([D]\), the Weierstrass locus \(W(D)\) is finite.

So, we can still ask

Problem

How are Weierstrass points distributed *supposing* \(W(D)\) is finite?
Weierstrass points: tropical case

In general, this problem doesn’t happen!

Theorem (R)

For a generic divisor class \([D]\), the Weierstrass locus \(W(D)\) is finite.

So, we can still ask

Problem

How are Weierstrass points distributed supposing \(W(D)\) is finite for **generic** \([D]\)?
Weierstrass points: tropical case

In general, this problem doesn’t happen!

Theorem (R)

For a generic divisor class $[D]$, the Weierstrass locus $W(D)$ is finite.

So, we can still ask

Problem

How are Weierstrass points distributed supposing $W(D)$ is finite for generic $[D]$?

Theorem (R)

For a sequence of generic divisor classes $[D_N]$ on Γ, the Weierstrass locus $W(D_N)$ distributes according to Zhang’s canonical measure μ.
\(\Gamma = \text{electrical network by replacing each edge } \sim \text{ resistor} \)
Electrical networks

\[\Gamma = \text{electrical network by replacing each edge } \rightsquigarrow \text{resistor} \]

Given \(y, z \in \Gamma \), let

\[j^y_z = \begin{pmatrix} \text{voltage on } \Gamma \text{ when 1 unit of} \\ \text{current is sent from } y \text{ to } z \end{pmatrix} \]

By Ohm's law, \(\text{current} = \frac{\text{voltage}}{\text{resistance}} = \text{slope of } j^y_z \)
Electrical networks

\[\Gamma = \text{electrical network by replacing each edge } \sim \text{ resistor} \]

Given \(y, z \in \Gamma \), let

\[j^y_z = \begin{pmatrix} \text{voltage on } \Gamma \text{ when 1 unit of} \\ \text{current is sent from } y \text{ to } z \end{pmatrix} \]

By Ohm’s law, current \(= \frac{\text{voltage}}{\text{resistance}} = \text{slope of } j^y_z \)

Example: current \(= (j^y_z)' \)
Electrical networks

Example: current $= (j^y_z)'$

![Diagram of electrical network with node labels and currents]

Satisfies Laplacian $\Delta(j^y_z) = z - y$

![Diagram of electrical network with node labels and currents]
Electrical networks: Canonical measure

\[\Gamma = \text{metric graph} \]

Definition ("electrical" version, Chinburg–Rumely–Baker–Faber)

Zhang’s **canonical measure** \(\mu \) on an edge is the “current defect”

\[
\mu(e) = \text{current bypassing } e \text{ when 1 unit sent from } e^- \text{ to } e^+ \\
= 1 - \text{(current through } e \text{ when ...)}
\]
Electrical networks: Canonical measure

Γ = metric graph

Definition (“electrical” version, Chinburg–Rumely–Baker–Faber)

Zhang’s **canonical measure** μ on an edge is the “current defect”

$$\mu(e) = \text{current bypassing } e \text{ when 1 unit sent from } e^- \text{ to } e^+$$

$$= 1 - \text{(current through } e \text{ when ...)}$$

Example:

![Diagram](image)

$\mu(e) = \frac{7}{12}$

$\mu(e) = \frac{1}{3}$

$\mu(e) = 0$

$\mu(e) = 1$
Gamma = metric graph

Definition ("electrical" version, Chinburg–Rumely–Baker–Faber)

Zhang’s **canonical measure** μ on an edge is the “current defect”

$$\mu(e) = \text{current bypassing } e \text{ when 1 unit sent from } e^- \text{ to } e^+$$

$$= 1 - (\text{current through } e \text{ when ... })$$

Generally:

- $0 \leq \mu(e) \leq 1$
- $\mu(e) = 0 \iff e \text{ a bridge}$
- $\mu(e) = 1 \iff e \text{ a loop}$

Foster’s Theorem: $\mu(\Gamma) = \sum_{e \in E} \mu(e) = g$
Theorem (R)

For a sequence of generic divisor classes \([D_N]\) on \(\Gamma\), the Weierstrass locus \(W(D_N)\) distributes according to Zhang’s canonical measure \(\mu\).

Namely, for any edge \(e\)

\[
\frac{\#(W(D_N) \cap e)}{N} \rightarrow \mu(e) \quad \text{as} \quad N \rightarrow \infty.
\]
Theorem (R)

For a sequence of generic divisor classes $[D_N]$ on Γ, the Weierstrass locus $W(D_N)$ distributes according to Zhang’s canonical measure μ.

Namely, for any edge e

$$\frac{\#(W(D_N) \cap e)}{N} \to \mu(e) \quad \text{as} \quad N \to \infty.$$

Idea:

(discrete current flow) $\xrightarrow{N \to \infty}$ (continuous current flow)
Theorem (R)

For a sequence of generic divisor classes $[D_N]$ on Γ, the Weierstrass locus $W(D_N)$ distributes according to Zhang's canonical measure μ.

Namely, for any edge e

$$\frac{\#(W(D_N) \cap e)}{N} \to \mu(e) \quad \text{as} \quad N \to \infty.$$

Idea:

(discrete current flow) $\xrightarrow{N \to \infty}$ (continuous current flow) \uparrow

canonical measure $\mu(e)$
Theorem (R)

For a sequence of generic divisor classes \([D_N] \) on \(\Gamma \), the Weierstrass locus \(W(D_N) \) distributes according to Zhang's canonical measure \(\mu \).

Namely, for any edge \(e \)

\[
\frac{\#(W(D_N) \cap e)}{N} \rightarrow \mu(e) \quad \text{as} \quad N \rightarrow \infty.
\]

Idea:

(discrete current flow) \(\xrightarrow{N \rightarrow \infty} \) (continuous current flow)

\#(Weierstrass points on \(e \)) \[\uparrow\] canonical measure \(\mu(e) \)
References

David Mumford (1977)
Curves and their Jacobians
The University of Michigan Press, Ann Arbor, MI.

Amnon Neeman (1984)
The distribution of Weierstrass points on a compact Riemann surface
Ann. of Math. 120 317–328.

Shouwu Zhang (1993)
Admissable pairing on a curve

Matt Baker and Xander Faber (2006)
Metrized graphs, Laplacian operators, and eletrical networks
Amer. Math. Soc., Providence, RI.

Omid Amini (2014)
Equidistribution of Weierstrass points on curves over non-Archimedean fields
Weierstrass points on a tropical curve

Thank you!