Equidistribution of Weierstrass points on tropical curves

Harry Richman

University of Michigan

hrichman@umich.edu

Georgia Tech Algebra Seminar
October 8, 2018
Overview

1. Weierstrass points
 - complex case
 - non-Archimedean case

2. Tropical curves
 - what is it?
 - divisors
 - tropical Weierstrass points

3. Electrical networks
 - voltage
 - canonical measure

4. Proof
Problem

How are Weierstrass points distributed on a curve?

Definition: X a curve, D_N a divisor of degree N

\rightsquigarrow projective embedding $\phi : X \to \mathbb{P}^r$.
Weierstrass points

Problem

How are Weierstrass points distributed on a curve?

Definition: X a curve, D_N a divisor of degree N

\leadsto projective embedding $\phi : X \to \mathbb{P}^r$.

$W(D_N) = \{x \in X : \exists H \subset \mathbb{P}^r \text{ s.t. } m_x(H \cap X) \geq r + 1\}$

$= \{x \in X : \text{“higher-than-expected” tangency with } H \text{ at } x\}$
Weierstrass points

Problem

How are Weierstrass points distributed on a curve?

Example: \(X = \{xyz + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^2_C \)
Weierstrass points

Problem
How are Weierstrass points distributed on a curve?

Example: \(X = \{ xyz + x^3 + y^3 + z^3 = 0 \} \subset \mathbb{P}^2_{\mathbb{C}} \)

\(D = 3 \cdot \infty, \quad \# W(D) = 9 \)
Weierstrass points

Problem

How are Weierstrass points distributed on a curve?

Definition: X a curve, D_N a divisor of degree N

\rightsquigarrow projective embedding $\phi : X \rightarrow \mathbb{P}^r$

$W(D_N) = \{ x \in X : \text{“higher-than-expected” tangency with } H \text{ at } x \}$

Intuition (Mumford):

N-torsion points on an elliptic curve \leftrightarrow Weierstrass points of D_N on a higher-genus curve
Problem
How are Weierstrass points distributed on a curve?

Definition: X a curve, D_N a divisor of degree N

\leadsto projective embedding $\phi : X \to \mathbb{P}^r$.

$W(D_N) = \{x \in X : \text{“higher-than-expected” tangency with } H \text{ at } x\}$

Intuition (Mumford):

N-torsion points \leftrightarrow Weierstrass points of D_N on a higher-genus curve

Numerical “evidence”: as N grows,

$\#(\text{Weierstrass points of } D_N) = gN^2 + O(N)$
Weierstrass points: genus 1, complex case

Problem

How are Weierstrass points distributed on genus 1 curve X/\mathbb{C}?
Problem

How are Weierstrass points distributed on genus 1 curve X/\mathbb{C}?
Problem

How are Weierstrass points distributed on genus 1 curve X/\mathbb{C}?
Problem

How are Weierstrass points distributed on genus 1 curve X/\mathbb{C}?
Weierstrass points: genus 1, complex case

Problem

How are Weierstrass points distributed on genus 1 curve X/\mathbb{C}?

\leadsto Weierstrass points distribute **uniformly**, w.r.t. $\mathbb{C} \rightarrow \mathbb{C}/\Lambda$
Weierstrass points: genus ≥ 2, complex case

Problem

How are Weierstrass points distributed on higher genus curve X/C?

Theorem (Neeman, 1984)

Suppose X is a complex algebraic curve of genus $g \geq 2$. Then $W(D_\mathcal{N})$ distributes according to the Bergman measure as $N \to \infty$.

Harry Richman (U. Michigan) Tropical Weierstrass equidistribution October 8, 2018 5 / 20
Weierstrass points: genus ≥ 2, complex case

Problem
How are Weierstrass points distributed on higher genus curve X/\mathbb{C}?

Theorem (Neeman, 1984)
Suppose X is a complex algebraic curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Bergman measure as $N \to \infty$.
Weierstrass points: genus ≥ 2, complex case

Problem

How are Weierstrass points distributed on higher genus curve X/\mathbb{C}?

Theorem (Neeman, 1984)

Suppose X is a complex algebraic curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Bergman measure as $N \to \infty$.

Harry Richman (U. Michigan)
Weierstrass points: genus ≥ 2, complex case

Problem

How are Weierstrass points distributed on higher genus curve X/\mathbb{C}?

Theorem (Neeman, 1984)

Suppose X is a complex algebraic curve of genus $g \geq 2$. Then $W(D)$ distributes according to the Bergman measure as $N \to \infty$.

Harry Richman (U. Michigan)
Tropical Weierstrass equidistribution
October 8, 2018
Weierstrass points: genus ≥ 2, complex case

Problem
How are Weierstrass points distributed on higher genus curve X/\mathbb{C}?

Theorem (Neeman, 1984)
Suppose X is a complex algebraic curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Bergman measure as $N \to \infty$.
Weierstrass points: non-Archimedean case

Problem

How are Weierstrass points distributed on X/K, $val : K^\times \to \mathbb{R}$?

Source: Matt Baker’s math blog

Theorem (Amini, 2014)

Suppose X is an is a Berkovich curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Arakelov-Zhang measure as $N \to \infty$.

Source: Matt Baker’s math blog
Weierstrass points: non-Archimedean case

Problem

How are Weierstrass points distributed on X/K, $val : K^\times \to \mathbb{R}$?

Theorem (Amini, 2014)

Suppose X^{an} is a Berkovich curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Arakelov-Zhang measure as $N \to \infty$.

Source: Matt Baker’s math blog
Weierstrass points: non-Archimedean case

Problem

How are Weierstrass points distributed on X/K, $val : K^\times \to \mathbb{R}$?

Problem (Amini, 2014)

Does the distribution follow from considering only the skeleton $\Gamma \subset X^{an}$?
Problem
How are Weierstrass points distributed on X/K, $val : K^\times \to \mathbb{R}$?

Problem (Amini, 2014)
Does the distribution follow from considering only the skeleton $\Gamma \subset X^{\text{an}}$?
What is ... a tropical curve?

Tropical curve (= abstract tropical curve)
What is ... a tropical curve?

Tropical curve (= \textbf{abstract} tropical curve) = a skeleton of X^{an}
What is ... a tropical curve?

Tropical curve (= \textbf{abstract} tropical curve)
= a skeleton of X^{an}
\textit{(combinatorics)} = finite graph with edge lengths
What is ... a tropical curve?

Tropical curve (= \textbf{abstract} tropical curve)
 = a skeleton of X^an

\textbf{(combinatorics)} = finite graph with edge lengths
\textbf{(alg. geometry)} = model for a degenerating algebraic curve
What is ... a tropical curve?

Tropical curve (= abstract tropical curve)
= a skeleton of X^{an}

(combinatorics) = finite graph with edge lengths
(alg. geometry) = model for a degenerating algebraic curve

Example: $X_t = \{xyz - tx^3 + t^2y^3 + t^5z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$
What is ... a tropical curve?

Tropical curve (= **abstract** tropical curve)
= a skeleton of X^{an}

(combinatorics) = finite graph with edge lengths

(alg. geometry) = model for a degenerating algebraic curve

Example: $X_t = \{xyz - t^1x^3 + t^2y^3 + t^5z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$
What is ... a tropical curve?

Tropical curve (= **abstract** tropical curve)
= a skeleton of X^{an}

(Combinatorics) = metric graph
= finite graph with edge lengths

(algebraic geometry) = model for a degenerating algebraic curve

Example: $X_t = \{xyz - t^1 x^3 + t^2 y^3 + t^5 z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$

Harry Richman (U. Michigan)
Tropical Weierstrass equidistribution
October 8, 2018
7 / 20
Tropical curves: divisor theory

Tropical curve = metric graph

<table>
<thead>
<tr>
<th>alg. curve X</th>
<th>tropical curve Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>divisors $\text{Div}(X)$</td>
<td>\rightsquigarrow divisors $\text{Div}(\Gamma)$</td>
</tr>
<tr>
<td>meromorphic functions</td>
<td>\rightsquigarrow piecewise \mathbb{Z}-linear functions</td>
</tr>
<tr>
<td>linear system $</td>
<td>D</td>
</tr>
<tr>
<td>$= \mathbb{P}^r$</td>
<td>$= \text{polyhedral complex of dim} \geq r$</td>
</tr>
<tr>
<td>rank $r = \dim</td>
<td>D</td>
</tr>
<tr>
<td>$= h^0(D) - 1$</td>
<td></td>
</tr>
</tbody>
</table>

Intuition: linear equivalence on Γ = "discrete current flow" $|D| = \{ E \text{ lin. equiv. to } D, E \geq 0 \}$

q-reduced divisor $\text{red}_q[D] = \text{"energy-minimizing" divisor in } |D|$
Tropical curves: divisor theory

Tropical curve = metric graph

<table>
<thead>
<tr>
<th>alg. curve X</th>
<th>tropical curve Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>divisors $\text{Div}(X)$</td>
<td>\mapsto divisors $\text{Div}(\Gamma)$</td>
</tr>
<tr>
<td>meromorphic functions</td>
<td>\mapsto piecewise \mathbb{Z}-linear functions</td>
</tr>
<tr>
<td>linear system $</td>
<td>D</td>
</tr>
<tr>
<td>$= \mathbb{P}^r$</td>
<td>$= \text{polyhedral complex of dim } \geq r$</td>
</tr>
<tr>
<td>rank $r = \dim</td>
<td>D</td>
</tr>
<tr>
<td>$= h^0(D) - 1$</td>
<td></td>
</tr>
</tbody>
</table>

Intuition: linear equivalence on Γ = “discrete current flow”

$|D| = \{ E \text{ lin. equiv. to } D, \ E \geq 0 \}$
Tropical curves: divisor theory

Tropical curve = metric graph

<table>
<thead>
<tr>
<th>alg. curve X</th>
<th>tropical curve Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>divisors $\text{Div}(X)$</td>
<td>\rightsquigarrow divisors $\text{Div}(\Gamma)$</td>
</tr>
<tr>
<td>meromorphic functions</td>
<td>\rightsquigarrow piecewise \mathbb{Z}-linear functions</td>
</tr>
<tr>
<td>linear system $</td>
<td>D</td>
</tr>
<tr>
<td>$= \mathbb{P}^r$</td>
<td>$= \text{polyhedral complex of dim } \geq r$</td>
</tr>
<tr>
<td>rank $r = \dim</td>
<td>D</td>
</tr>
<tr>
<td>$= h^0(D) - 1$</td>
<td></td>
</tr>
</tbody>
</table>

Intuition: linear equivalence on Γ = “discrete current flow”

$|D| = \{ E \text{ lin. equiv. to } D, E \geq 0 \}$

q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor in } |D|$
Tropical curves: reduced divisors

Tropical curve = finite graph with edge lengths

Intuition: linear equivalence on Γ = “discrete current flow”

$|D| = \{ E \text{ lin. equiv. to } D, E \geq 0 \}$

q-reduced divisor $\text{red}_q[D] = “\text{energy-minimizing” divisor in } |D|$
Tropical curves: reduced divisors

Tropical curve = finite graph with edge lengths

Intuition: linear equivalence on $\Gamma = \text{“discrete current flow”}$

$|D| = \{ E \text{ lin. equiv. to } D, E \geq 0 \}$

q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor in } |D|$

Example:
Tropical curves: reduced divisors

Tropical curve = finite graph with edge lengths

Intuition: linear equivalence on Γ = “discrete current flow”

$|D| = \{ E \text{ lin. equiv. to } D, E \geq 0 \}$

q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor in } |D|$

Example:
Problem
How are Weierstrass points distributed on a curve?

Definition: $\Gamma = \text{metric graph}$, D_N divisor of degree N
\leadsto Baker–Norine rank $r = r(D_N)$

$$W(D_N) = \{x \in X : \text{red}_x[D_N] \geq (r + 1)x\}$$
Problem

How are Weierstrass points distributed on a curve?

Definition: $\Gamma =$ metric graph, D_N divisor of degree N

\leadsto Baker–Norine rank $r = r(D_N) = N - g$ when $N \gg 0$

$$W(D_N) = \{x \in X : \text{red}_x[D_N] \geq (r + 1)x\}$$
Problem
How are Weierstrass points distributed on a curve?

Definition: $\Gamma = \text{metric graph}$, D_N divisor of degree N

\rightsquigarrow Baker–Norine rank $r = r(D_N) = N - g$ when $N \gg 0$

$$W(D_N) = \{x \in X : \text{red}_x[D_N] \geq (r + 1)x\}$$

Observation: as N grows,

$$\#(\text{Weierstrass points of } D_N) = gN + O(1) \ldots$$
Problem

How are Weierstrass points distributed on a curve?

Definition: $\Gamma = \text{metric graph}$, D_N divisor of degree N

\rightsquigarrow Baker–Norine rank $r = r(D_N) = N - g$ when $N \gg 0$

$W(D_N) = \{x \in X : \text{red}_x[D_N] \geq (r + 1)x\}$

Observation: as N grows,

$\#(\text{Weierstrass points of } D_N) = gN + O(1) \ldots$

EXCEPT sometimes $\#(\text{Weierstrass points}) = \infty$
Example

Genus $g(\Gamma) = 1$:
Example

Genus $g(\Gamma) = 1$:

degree $D = 6$,

3
Example

Genus $g(\Gamma) = 1$:

Degree $D = 6$, \quad \#(W(D)) = 6
Example

Genus $g(\Gamma) = 3$:

[Diagram of a 3-genus graph with marked points]
Weierstrass points: tropical case

Example

Genus $g(\Gamma) = 3$:

degree $D = 4$.
Example

Genus $g(\Gamma) = 3$:

degree $D = 4$, \[\sim\] \[\#(W(D)) = 8\]
Example

Genus $g(\Gamma) = 3$:

Weierstrass points: tropical case
Example

Genus $g(\Gamma) = 3$:

degree $D = 4$,
Weierstrass points: tropical case

Example

Genus $g(\Gamma) = 3$:

degree $D = 4$, $\leadsto \#(W(D)) = \infty$!
Weierstrass points: tropical case

Example

Genus $g(\Gamma) = 3$:

![Diagram showing a graph with degree $D = 4$, and $\#(W(D)) = \infty$](image-url)
Example

Genus $g(\Gamma) = 3$:

Degree $D = 4$,
Weierstrass points: tropical case

Example

Genus $g(\Gamma) = 3$:

$\text{degree } D = 4, \quad \sim \quad \#(W(D)) = \infty!$
In general, this problem doesn’t happen!

Theorem (R)

For a generic divisor class \([D]\), the Weierstrass locus \(W(D)\) is finite.
Weierstrass points: tropical case

In general, this problem doesn’t happen!

Theorem (R)

For a generic divisor class \([D]\), the Weierstrass locus \(W(D)\) is finite.

So, we can still ask

Problem

How are Weierstrass points distributed supposing \(W(D)\) is finite?
In general, this problem doesn’t happen!

Theorem (R)

For a generic divisor class \([D]\), the Weierstrass locus \(W(D)\) is finite.

So, we can still ask

Problem

*How are Weierstrass points distributed supposing \(W(D)\) is finite for *generic* \([D]\)?
Weierstrass points: tropical case

In general, this problem doesn’t happen!

Theorem (R)

For a generic divisor class \([D]\), the Weierstrass locus \(W(D)\) is finite.

So, we can still ask

Problem

How are Weierstrass points distributed supposing \(W(D)\) is finite for **generic** \([D]\)?

Theorem (R)

For a sequence of generic divisor classes \([D_N]\) on \(\Gamma\), the Weierstrass locus \(W(D_N)\) distributes according to Zhang’s canonical measure \(\mu\).
\[\Gamma = \text{electrical network by replacing each edge } \sim \text{ resistor} \]
Electrical networks

Γ = electrical network by replacing each edge \(\leadsto \) resistor

Given \(y, z \in \Gamma \), send 1 unit of current from \(y \) to \(z \). Let

\[
j^y_z = \begin{pmatrix} \text{voltage on } \Gamma \text{ when 1 unit of} \\ \text{current is sent from } y \text{ to } z \end{pmatrix}
\]

where \(\Gamma \) is “grounded” at \(z \).
Electrical networks

\[\Gamma = \text{electrical network by replacing each edge } \sim \text{ resistor} \]

Given \(y, z \in \Gamma \), send 1 unit of current from \(y \) to \(z \). Let

\[j^y_z = \begin{pmatrix} \text{voltage on } \Gamma \text{ when 1 unit of} \\ \text{current is sent from } y \text{ to } z \end{pmatrix} \]

where \(\Gamma \) is “grounded” at \(z \). By Ohm’s law, \(\textbf{current} = \textbf{slope} \) of \(j^y_z \).
Electrical networks

$\Gamma = \text{electrical network by replacing each edge } \rightsquigarrow \text{resistor}$

Given $y, z \in \Gamma$, send 1 unit of current from y to z. Let

$$j_y^z = \begin{pmatrix} \text{voltage on } \Gamma \text{ when 1 unit of current is sent from } y \text{ to } z \end{pmatrix}$$

where Γ is “grounded” at z. By Ohm’s law, current $= \text{slope of } j_y^z$

Example:
Electrical networks: Canonical measure

\(\Gamma = \) electrical network by replacing each edge \(\sim \) resistor

Definition ("electrical" version, Chinburg–Rumely–Baker–Faber)

Zhang's **canonical measure** \(\mu \) on an edge is the "current defect"

\[
\mu(e) = \text{current bypassing } e \text{ when 1 unit sent from } e^- \text{ to } e^+
\]

\[
= 1 - (\text{current through } e \text{ when } \ldots)
\]
Γ = electrical network by replacing each edge ∼ resistor

Definition ("electrical" version, Chinburg–Rumely–Baker–Faber)

Zhang’s **canonical measure** \(\mu \) on an edge is the “current defect”

\[
\mu(e) = \text{current bypassing } e \text{ when 1 unit sent from } e^- \text{ to } e^+ \\
= 1 - (\text{current through } e \text{ when } \ldots) = 1 - (j_{e^+}^-)'e
\]
Electrical networks: Canonical measure

\[\Gamma = \text{electrical network by replacing each edge } \rightsquigarrow \text{resistor} \]

Definition ("electrical" version, Chinburg–Rumely–Baker–Faber)

Zhang’s **canonical measure** \(\mu \) on an edge is the “current defect”

\[
\mu(e) = \text{current bypassing } e \text{ when 1 unit sent from } e^- \text{ to } e^+
\]

\[= 1 - (\text{current through } e \text{ when ... }) = 1 - (j_{e^+})' \bigg|_e \]

Example:

\[
\mu(e) = \frac{1}{3} \quad \mu(e) = 0 \quad \mu(e) = \frac{7}{12} \quad \mu(e) = \frac{7}{12} \quad \mu(e) = \frac{7}{12} \quad \mu(e) = 1
\]
Electrical networks: Canonical measure

\[\Gamma = \text{electrical network by replacing each edge } \sim \text{ resistor} \]

Definition ("electrical" version, Chinburg–Rumely–Baker–Faber)

Zhang's **canonical measure** \(\mu \) on an edge is the "current defect"

\[
\mu(e) = \text{current bypassing } e \text{ when 1 unit sent from } e^- \text{ to } e^+ \\
= 1 - \left(\text{current through } e \text{ when ... } \right) = 1 - \left(j_{e^+}^e \right) \bigg|_e
\]

Generally:

- \(0 \leq \mu(e) \leq 1 \)
- \(\mu(e) = 0 \Leftrightarrow e \text{ a bridge} \)
- \(\mu(e) = 1 \Leftrightarrow e \text{ a loop} \)

Foster's Theorem: \(\mu(\Gamma) = \sum_{e \in E} \mu(e) = g \)
Theorem (R)

For a sequence of generic divisor classes $[D_N]$ on Γ, the Weierstrass locus $W(D_N)$ distributes according to Zhang’s canonical measure μ.

Namely, for any edge e

$$\frac{\#(W(D_N) \cap e)}{N} \to \mu(e) \quad \text{as} \quad N \to \infty.$$
Theorem (R)

For a sequence of generic divisor classes \([D_N]\) on \(\Gamma\), the Weierstrass locus \(W(D_N)\) distributes according to Zhang's canonical measure \(\mu\).

Namely, for any edge \(e\)

\[
\frac{\#(W(D_N) \cap e)}{N} \to \mu(e) \quad \text{as} \quad N \to \infty.
\]

Idea:

(discrete current flow) \(\xrightarrow{N \to \infty}\) (continuous current flow)
Theorem (R)

For a sequence of generic divisor classes \([D_N]\) on \(\Gamma\), the Weierstrass locus \(W(D_N)\) distributes according to Zhang's canonical measure \(\mu\).

Namely, for any edge \(e\)

\[
\frac{\#(W(D_N) \cap e)}{N} \to \mu(e) \quad \text{as} \quad N \to \infty.
\]

Idea:

(discrete current flow) \(\xrightarrow{N \to \infty}\) (continuous current flow)

\[
\uparrow \quad \text{canonical measure } \mu(e)
\]
Theorem (R)

For a sequence of generic divisor classes $[D_N]$ on Γ, the Weierstrass locus $W(D_N)$ distributes according to Zhang's canonical measure μ.

Namely, for any edge e

$$\frac{\#(W(D_N) \cap e)}{N} \to \mu(e) \quad \text{as} \quad N \to \infty.$$

Idea:

(discrete current flow) \quad \leftarrow \quad (\text{continuous current flow})

$$\#(\text{Weierstrass points on } e) \quad \overset{N \to \infty}{\longrightarrow} \quad \text{canonical measure } \mu(e)$$
References

David Mumford (1977)
Curves and their Jacobians
The University of Michigan Press, Ann Arbor, MI.

Amnon Neeman (1984)
The distribution of Weierstrass points on a compact Riemann surface

Shouwu Zhang (1993)
Admissible pairing on a curve

Matt Baker and Xander Faber (2006)
Metrized graphs, Laplacian operators, and electrical networks
Amer. Math. Soc., Providence, RI.

Omid Amini (2014)
Equidistribution of Weierstrass points on curves over non-Archimedean fields
Thank you!