Weierstrass points on tropical curves

Harry Richman

University of Michigan

hrichman@umich.edu

March 26, 2020
A **metric graph** is a network made of vertices and edges, where each edge has a fixed length.
A **metric graph** is a network made of vertices and edges, where each edge has a fixed length.

The **genus** of a metric graph is the number of “independent cycles”.
Problem
How to place \(N \) points on a metric graph in an “evenly spaced” way?
Problem

How to place N points on a metric graph in an “evenly spaced” way?

On a circle:
Problem

How to place N points on a metric graph in an “evenly spaced” way?

On a circle:
Problem

How to place N points on a metric graph in an "evenly spaced" way?

On a circle:
Problem

How to place N points on a metric graph in an “evenly spaced” way?

On a circle:
Problem

How to place \(N \) points on a metric graph in an “evenly spaced” way?

On a more complicated metric graph:
Introduction

Problem

How to place \(N \) points on a metric graph in an “evenly spaced” way?

On a more complicated metric graph:
Introduction

Problem

How to place N points on a metric graph in an “evenly spaced” way?

Objectives:
- capture global topological structure
- ignore “dead ends”
Introduction

Problem

How to place N points on a metric graph in an “evenly spaced” way?

Objectives:
- capture global topological structure
- ignore “dead ends”
Introduction: What is tropical geometry?

connection between algebraic geometry and combinatorics

<table>
<thead>
<tr>
<th>algebraic geometry</th>
<th>combinatorics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riemann surface</td>
<td>metric graph</td>
</tr>
<tr>
<td>polynomials</td>
<td>piecewise-linear functions</td>
</tr>
</tbody>
</table>
What is algebraic geometry?

Study polynomial equations and their solution sets.

Example: \[x^3 + y^3 + xy + 1 = 0, \quad x, y \in \mathbb{R} \]

Source: desmos.com
What is algebraic geometry?

Study polynomial equations and their solution sets.

Example: \[x^3 + y^3 + xy + 1 = 0, \quad x, y \in \mathbb{C} \]

The solution set in \(\mathbb{C} \) is a **Riemann surface**.
What is algebraic geometry?

Study polynomial equations and their solution sets.

Example: \(x^3 + y^3 + xy + 1 = 0, \quad x, y \in \mathbb{C}\)

(projectivized: \(x^3 + y^3 + xyz + z^3 = 0, \quad [x : y : z] \in \mathbb{P}^2_{\mathbb{C}}\))

The solution set in \(\mathbb{C}\) is a **Riemann surface**.
What is algebraic geometry?

Study polynomial equations and their solution sets.

Example: \[x^4 + y^4 + xy + 1 = 0, \quad x, y \in \mathbb{C} \]

The solution set in \(\mathbb{C} \) is a **Riemann surface**.
The **genus** is the number of “holes”.

Harry Richman (U. Michigan)
What is tropical geometry?

Study piecewise-linear functions ("tropical polynomials") and their break loci ("solution sets").

Example: \(\min \{ a + 2x, b + x + y, c + 2y, d + y, \ldots \} \)

Source: Richter-Gebert, Sturmfels, Theobald
What is tropical geometry?

Study piecewise-linear functions ("tropical polynomials") and their break loci ("solution sets").

Example: \(\min\{a + 2x, b + x + y, c + 2y, d + y, \ldots \} \)

Source: Richter-Gebert, Sturmfels, Theobald
What is tropical geometry?

Study piecewise-linear functions ("tropical polynomials") and their break loci ("solution sets").

Example: \(\min\{a + 2x, b + x + y, c + 2y, d + y, \ldots\} \)
What is tropical geometry?

Study piecewise-linear functions ("tropical polynomials") and their break loci ("solution sets").

Example: \[\min\{a + 2x, b + x + y, c + 2y, d + y, \ldots\} \]
What is tropical geometry?

Study piecewise-linear functions ("tropical polynomials") and their break loci ("solution sets").

Example: \(\min\{1 + 3x, 2 + 3y, x + y, 5\} \)
Turn a Riemann surface into a metric graph via a degenerating family.

Example: $X_t = \{ tx^3 + t^2y^3 + t^5z^3 + xyz = 0 \} \subset \mathbb{P}^2_{\mathbb{C}}$
Tropicalizing algebraic curves

Turn a Riemann surface into a metric graph via a degenerating family.

Example: \(X_t = \{ tx^3 + t^2y^3 + t^5z^3 + xyz = 0 \} \subseteq \mathbb{P}^2 \)

\[\begin{array}{c}
\text{t=1} \\
\text{t=\epsilon} \\
\text{t=0}
\end{array} \]

\[\begin{array}{c}
\text{dual graph} \\
\text{of } X_0
\end{array} \]

\[\begin{array}{c}
L=5 \\
L=1 \\
L=2
\end{array} \]

\{y=0\} \quad \{z=0\} \quad \{x=0\} \]
Tropicalizing algebraic curves

Turn a Riemann surface into a metric graph via a degenerating family.

Example: \(X_t = \{ t^1x^3 + t^2y^3 + t^5z^3 + xyz = 0 \} \subset \mathbb{P}^2 \)

\[\text{dual graph of } X_0 \]
Turn a Riemann surface into a metric graph via a degenerating family.

\[X_t = \{ tx^3 + t^2 y^3 + t^5 z^3 + xyz = 0 \}, \quad t, t^2, t^5 \in \mathbb{C}[t] \]
Turn a Riemann surface into a metric graph via a degenerating family.

\[X_t = \{ a(t)x^3 + b(t)y^3 + c(t)z^3 + xyz = 0 \}, \quad a(t) \in \mathbb{C}[t] \]
Tropicalizing algebraic curves

Turn a Riemann surface into a metric graph via a degenerating family.

\[X_t = \{ a(t)x^3 + b(t)y^3 + c(t)z^3 + xyz = 0 \}, \quad a(t) \in \mathbb{C}((t)) \]

\(\mathbb{C}((t)) = \) field of Laurent series, e.g. \(a(t) = t + 2t^2 + 6t^3 + \cdots \)
Tropicalizing algebraic curves

Turn a Riemann surface into a metric graph via a degenerating family.

\[X_t = \{ a(t)x^3 + b(t)y^3 + c(t)z^3 + xyz = 0 \}, \quad a(t) \in \mathbb{C}((t)) \]

<table>
<thead>
<tr>
<th>algebraic geometry</th>
<th>non-Archimedean geometry</th>
<th>combinatorics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riemann surface</td>
<td>Berkovich curve</td>
<td>metric graph</td>
</tr>
<tr>
<td>polyn. over (\mathbb{C})</td>
<td>polyn. over (\mathbb{C}((t)))</td>
<td>piecewise-linear func.</td>
</tr>
</tbody>
</table>
What is a Weierstrass point?

Idea: point whose tangent line has “higher-than-expected” tangency

Example: $X = \{x^3 + y^3 + xy + 1 = 0\}$
What is a Weierstrass point?

Idea: point whose tangent line has “higher-than-expected” tangency

Example: $X = \{x^3 + y^3 + xy + 1 = 0\}$
What is a Weierstrass point?

Idea: point whose tangent line has “higher-than-expected” tangency

Example: $X = \{x^3 + y^3 + xy + 1 = 0\}$
What is a Weierstrass point?

Idea: point whose tangent line has “higher-than-expected” tangency

Example: \(X = \{ x^3 + y^3 + xy + 1 = 0 \} \)
What is a Weierstrass point?

Idea: point whose tangent line has “higher-than-expected” tangency

Example: \(X = \{x^3 + y^3 + xy + 1 = 0\} \subset \mathbb{P}^2 \)

Generalize to high-dimensional embedding \(X \to \mathbb{P}^r \)

(projective embedding \(\phi : X \to \mathbb{P}^r \) \(\Leftrightarrow \) (linear equivalence class of \(D \)))
A **divisor** is a finite collection of points, $D = p_1 + \cdots + p_N$.

The **degree** is the number of points, N.
A **divisor** is a finite collection of points, \(D = p_1 + \cdots + p_N \).

The **degree** is the number of points, \(N \).

A rational function \(f(z) \) has **order of vanishing** \(m \) at \(z_i \) if

\[
 f(z) = c(z - z_i)^m + \text{(higher powers of } z - z_i) .
\]
A **divisor** is a finite collection of points, $D = p_1 + \cdots + p_N$.

The **degree** is the number of points, N.

A rational function $f(z)$ has **order of vanishing** m at z_i if

$$f(z) = c(z - z_i)^m + \text{(higher powers of } z - z_i).$$

Divisors D_1, D_2 are **linearly equivalent** if there is a rational function $f(z)$ and constants a_1, a_2 such that

$$D_1 = \sum_{f(z_i) = a_1} \text{ord}_{z_i}(f(z) - a_1) \cdot z_i, \quad D_2 = \sum_{f(z_i) = a_2} \text{ord}_{z_i}(f(z) - a_2) \cdot z_i$$

Idea: $D_1 \sim D_2$ are different “level sets” of the same function
A divisor is a finite collection of points, $D = p_1 + \cdots + p_N$.

Idea: $D_1 \sim D_2$ are different “level sets” of the same function

Example: $f(z) = z^3 + 3z^2$
A divisor is a finite collection of points, $D = p_1 + \cdots + p_N$.

Idea: $D_1 \sim D_2$ are different “level sets” of the same function

Example: $f(z) = z^3 + 3z^2$
A divisor is a finite collection of points, $D = p_1 + \cdots + p_N$.

Idea: $D_1 \sim D_2$ are different “level sets” of the same function

Example: $f(z) = z^3 + 3z^2$
A divisor is a finite collection of points, \(D = p_1 + \cdots + p_N \).

Idea: \(D_1 \sim D_2 \) are different “level sets” of the same function

Example: \(f(z) = z^3 + 3z^2 \)
What is a Weierstrass point?

X a smooth algebraic curve, $D = p_1 + \cdots + p_N$ a divisor

(linear equivalence class of D) \leftrightarrow (projective embedding $\phi : X \to \mathbb{P}^r$)

The rank of D is the dimension $r = r(D)$
What is a Weierstrass point?

X a smooth algebraic curve, $D = p_1 + \cdots + p_N$ a divisor

(linear equivalence class of $D) \leftrightarrow (\text{projective embedding } \phi : X \to \mathbb{P}^r)

The rank of D is the dimension $r = r(D) = N - g$ for high degree
What is a Weierstrass point?

X a smooth algebraic curve, $D = p_1 + \cdots + p_N$ a divisor

(linear equivalence class of D) \sim (projective embedding $\phi : X \to \mathbb{P}^r$)

The **rank** of D is the dimension $r = r(D) = N - g$ for high degree

Definition:

$$W(D) = \{p \in X : D \sim (r + 1)p + E \text{ for some } E\}$$
What is a Weierstrass point?

X a smooth algebraic curve, $D = p_1 + \cdots + p_N$ a divisor

\[
\text{The rank of } D \text{ is the dimension } r = r(D) = N - g \text{ for high degree}
\]

Definition:

\[
W(D) = \{ p \in X : D \sim (r + 1)p + E \text{ for some } E \}
\]

“higher-than-expected” tangency with some hyperplane at p
What is a Weierstrass point?

Example: $X =$ genus 1 curve over \mathbb{C}

$$\{x^3 + y^3 + xy + 1 = 0\}$$
What is a Weierstrass point?

Example: $X = \text{genus 1 curve over } \mathbb{C}$

\[\{ x^3 + y^3 + xy + 1 = 0 \} \]
What is a Weierstrass point?

Example: $X = \text{genus 1 curve over } \mathbb{C}$

\[
\{x^3 + y^3 + xy + 1 = 0\}
\]
What is a Weierstrass point?

Example: $X = \text{genus 1 curve over } \mathbb{C}$

$$\{x^3 + y^3 + xy + 1 = 0\}$$
What is a Weierstrass point?

Example: \(X = \text{genus 1 curve over } \mathbb{C} \)

\[\{ x^3 + y^3 + xy + 1 = 0 \} \]
What is a Weierstrass point?

Example: \(X = \text{genus 1 curve over } \mathbb{C} \)

\[\{x^3 + y^3 + xy + 1 = 0\} \]

\(\leadsto \)

Weierstrass points are \textbf{evenly spaced} \,(w.r.t. addition law)
What is a Weierstrass point?

Intuition (Mumford):

\[N \text{-torsion points } \leftrightarrow \text{ Weierstrass points of } D_N \]

on an elliptic curve on a higher-genus curve

Numerical “evidence”: as \(N \) grows,

\[
\#(\text{Weierstrass points of } D_N) = gN^2 + O(N) \\
= g(N - g + 1)^2
\]
What is a Weierstrass point?

Intuition (Mumford):

\[N \text{-torsion points} \iff \text{Weierstrass points of } D_N \]

on an elliptic curve on a higher-genus curve

Numerical “evidence”: as \(N \) grows,

\[
\#(\text{Weierstrass points of } D_N) = gN^2 + O(N) = g(N - g + 1)^2
\]

Problem

How are Weierstrass points distributed on an algebraic curve?
Problem

How are Weierstrass points distributed on higher genus curve X/\mathbb{C}?

Theorem (Neeman, 1984)

Suppose X is a complex algebraic curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Bergman measure as $N \to \infty$.
Problem

How are Weierstrass points distributed on higher genus curve X/\mathbb{C}?

Theorem (Neeman, 1984)

Suppose X is a complex algebraic curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Bergman measure as $N \to \infty$.
Problem
How are Weierstrass points distributed on higher genus curve X/\mathbb{C}?

Theorem (Neeman, 1984)
Suppose X is a complex algebraic curve of genus $g \geq 2$. Then $W(D,N)$ distributes according to the Bergman measure as $N \to \infty$.

Harry Richman (U. Michigan)
Tropical Weierstrass points
26 March 2020 15 / 29
Weierstrass points: complex case

Problem

How are Weierstrass points distributed on higher genus curve X/\mathbb{C}?

Theorem (Neeman, 1984)

Suppose X is a complex algebraic curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Bergman measure as $N \to \infty$.

Harry Richman (U. Michigan)
Weierstrass points: complex case

Problem
How are Weierstrass points distributed on higher genus curve X/\mathbb{C}?

Theorem (Neeman, 1984)

Suppose X is a complex algebraic curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Bergman measure as $N \to \infty$.
Problem

How are Weierstrass points distributed on $X^\text{an}/\mathbb{C}((t))$?

Source: Matt Baker
Problem

How are Weierstrass points distributed on $X^{\text{an}}/\mathbb{C}((t))$?

Theorem (Amini, 2014)

Suppose X^{an} is a Berkovich curve of genus $g \geq 2$. Then $W(D_N)$ distributes according to the Zhang measure as $N \to \infty$.

Source: Matt Baker
Problem

How are Weierstrass points distributed on $\mathcal{X}^{an}/\mathcal{C}((t))$?

Problem (Amini, 2014)

Does the distribution follow from considering only the skeleton $\Gamma \subset \mathcal{X}^{an}$?

Source: Matt Baker
Problem

How are Weierstrass points distributed on $X^{\text{an}}/\mathbb{C}((t))$?

Problem (Amini, 2014)

Does the distribution follow from considering only the skeleton $\Gamma \subset X^{\text{an}}$?
Tropical linear equivalence

Study piecewise-\mathbb{Z}-linear function and its break locus ("solution set")

Idea: $D_1 \sim D_2$ for level sets of the same piecewise-linear function

Example:

$$f(x) = \min \{0, x - 4, 2x - 7, 4x - 9\} - \min \{0, 2x - 7, 3x - 9, 4x - 9.5\}$$
Tropical linear equivalence

Study piecewise-\mathbb{Z}-linear function and its *break locus* ("solution set")

Idea: $D_1 \sim D_2$ for level sets* of the same piecewise-linear function

Example:

$$f(x) = \min\{0, x - 4, 2x - 7, 4x - 9\} - \min\{0, 2x - 7, 3x - 9, 4x - 9.5\}$$
Study piecewise-\mathbb{Z}-linear function and its *break locus* ("solution set")

Idea: $D_1 \sim D_2$ for level sets* of the same piecewise-linear function

Example:

$$f(x) = \min\{0, x - 4, 2x - 7, 4x - 9\} - \min\{0, 2x - 7, 3x - 9, 4x - 9.5\}$$
Study piecewise-\mathbb{Z}-linear function and its "break locus" ("solution set")

Idea: $D_1 \sim D_2$ for level sets* of the same piecewise-linear function

Example:
$$f(x) = \min\{0, x - 4, 2x - 7, 4x - 9\} - \min\{0, 2x - 7, 3x - 9, 4x - 9.5\}$$
Study piecewise-\mathbb{Z}-linear function and its *break locus* ("solution set")

Idea: $D_1 \sim D_2$ for level sets* of the same piecewise-linear function

Example:

$$f(x) = \min\{0, x - 4, 2x - 7, 4x - 9\} - \min\{0, 2x - 7, 3x - 9, 4x - 9.5\}$$
Tropical linear equivalence

Study piecewise-\mathbb{Z}-linear function and its *break locus ("solution set")

Idea: $D_1 \sim D_2$ for level sets* of the same piecewise-linear function

Example:
\[
f(x) = \min\{0, x - 4, 2x - 7, 4x - 9\} - \min\{0, 2x - 7, 3x - 9, 4x - 9.5\}
\]
Weierstrass points: tropical case

Problem

How are Weierstrass points distributed on a tropical curve?

Γ a metric graph, \(D = p_1 + \cdots + p_N \) a divisor

Definition:

\[
W(D) = \{ p \in \Gamma : D \sim (r + 1)p + E \text{ for some } E \}
\]

Here \(r \) is the Baker–Norine rank \(r = r(D) = N - g \) when \(N \gg 0 \)
Weierstrass points: tropical case

Problem

How are Weierstrass points distributed on a tropical curve?

Γ a metric graph, \(D = p_1 + \cdots + p_N \) a divisor

Definition:

\[
W(D) = \{ p \in \Gamma : D \sim (r + 1)p + E \text{ for some } E \}
\]

Here \(r \) is the Baker–Norine rank \(r = r(D) = N - g \) when \(N \gg 0 \)

Observation: as \(N \) grows,

\[
\#(\text{Weierstrass points of } D_N) = gN + O(1) \quad \ldots
\]
Weierstrass points: tropical case

Problem
How are Weierstrass points distributed on a tropical curve?

Γ a metric graph, \(D = p_1 + \cdots + p_N \) a divisor

Definition:

\[
W(D) = \{ p \in \Gamma : D \sim (r + 1)p + E \text{ for some } E \}
\]

Here \(r \) is the Baker–Norine rank \(r = r(D) = N - g \) when \(N \gg 0 \)

Observation: as \(N \) grows,

\[
\#(\text{Weierstrass points of } D_N) = gN + O(1) \ldots
\]

EXCEPT sometimes \(\#(\text{Weierstrass points}) = \infty \)
How to compute Weierstrass locus?

\[W(D) = \{ q \in \Gamma : D \sim (r + 1)q + E \text{ for some } E \} \]
How to compute Weierstrass locus?

\[W(D) = \{ q \in \Gamma : D \sim (r + 1)q + E \text{ for some } E \} \]
\[= \{ q \in \Gamma : \text{red}_q[D] \geq (r + 1)q \} \]

Intuition: linear equivalence on \(\Gamma \) = “discrete current flow”
\(q \)-reduced divisor \(\text{red}_q[D] \) = “energy-minimizing” divisor \(\sim D \)
Tropical curves: reduced divisors

Intuition: linear equivalence on $\Gamma = \text{“discrete current flow”}$

q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor } \sim D$

Example:
Tropical curves: reduced divisors

Intuition: linear equivalence on \(\Gamma \) = “discrete current flow”

\(q \)-reduced divisor \(\text{red}_q[D] \) = “energy-minimizing” divisor \(\sim D \)

Example:
Tropical curves: reduced divisors

Intuition: linear equivalence on Γ = “discrete current flow”

q-reduced divisor $\text{red}_q[D]$ = “energy-minimizing” divisor $\sim D$

Example:
Tropical curves: reduced divisors

Intuition: linear equivalence on $\Gamma = \text{“discrete current flow”}$

q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor} \sim D$

Example:
Tropical curves: reduced divisors

Intuition: linear equivalence on $\Gamma = \text{“discrete current flow”}$

q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor } \sim D$

Example:
Tropical curves: reduced divisors

Intuition: linear equivalence on $\Gamma = \text{“discrete current flow”}$
q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor} \sim D$

Example:
Tropical curves: reduced divisors

Intuition: linear equivalence on $\Gamma = \text{“discrete current flow”}$

q-reduced divisor $\text{red}_q[D] = \text{“energy-minimizing” divisor } \sim D$

Example:
Tropical curves: reduced divisors

Intuition: linear equivalence on Γ = “discrete current flow”

q-reduced divisor $\text{red}_q[D]$ = “energy-minimizing” divisor $\sim D$

Example:
Tropical curves: reduced divisors

Intuition: linear equivalence on Γ = “discrete current flow”

q-reduced divisor $\text{red}_q[D]$ = “energy-minimizing” divisor $\sim D$

Example:

What happens as q varies?
Example: Genus $g(\Gamma) = 1$, degree $D = 6$:

$\#(W(D)) = 6$
Example: Genus $g(\Gamma) = 3$, degree $D = 4$:

$\leadsto \#(W(D)) = 8$
Example: Genus $g(\Gamma) = 3$, degree $D = 4$:

$$\#(W(D)) = \infty!$$
Example: Genus $g(\Gamma) = 3$, degree $D = 4$:

$\#(W(D)) = \infty$!

In general, this problem doesn’t happen.

Theorem (R)

For a generic divisor class $[D]$, the Weierstrass locus $W(D)$ is finite.
Weierstrass points: tropical case

Theorem (R)

For a generic divisor class $[D]$, the Weierstrass locus $W(D)$ is finite.

Example:

So, we can still ask about distribution of $W(D)$ “generically”
Theorem (R)

For a generic divisor class $[D]$, the Weierstrass locus $W(D)$ is finite.

Example:

So, we can still ask about distribution of $W(D)$ “generically”
Weierstrass points: tropical case

Theorem (R)

For a generic divisor class \([D]\), the Weierstrass locus \(W(D)\) is finite.

Example:

So, we can still ask about distribution of \(W(D)\) “generically”

Theorem (R)

For a sequence of generic divisor classes \([D_N]\) on \(\Gamma\), the Weierstrass locus \(W(D_N)\) distributes according to Zhang’s canonical measure \(\mu\).
Electrical networks

\(\Gamma = \text{electrical network by replacing each edge } \sim \text{ resistor} \)

Given \(y, z \in \Gamma \), let

\[j_{yz} = \begin{pmatrix} \text{voltage on } \Gamma \text{ when 1 unit of } \\
\text{current is sent from } y \text{ to } z \end{pmatrix} \]

Observation: voltage function is piecewise-linear

By Ohm’s law, current = \(\frac{\text{voltage}}{\text{resistance}} = \text{slope of } j_{yz} \)
Electrical networks

Γ = electrical network by replacing each edge \(\sim \) resistor

Given \(y, z \in \Gamma \), let

\[
j^y_z = \begin{pmatrix}
\text{voltage on } \Gamma \text{ when 1 unit of } \\
\text{current is sent from } y \text{ to } z
\end{pmatrix}
\]

Observation: voltage function is piecewise-linear

By Ohm’s law, current = \(\frac{\text{voltage}}{\text{resistance}} = \text{slope of } j^y_z \)

Example: current = \((j^y_z)' \)
Electrical networks: canonical measure

\[\Gamma = \text{metric graph} \]

Definition ("electrical" version, Chinburg–Rumely–Baker–Faber)

Zhang’s **canonical measure** \(\mu \) on an edge is the “current defect”

\[
\mu(e) = \text{current bypassing } e \text{ when 1 unit sent from } e^- \text{ to } e^+
\]

\[= 1 - \text{(current through } e \text{ when ...)} \]

Example:
Electrical networks: canonical measure

\[\Gamma = \text{metric graph} \]

Definition ("electrical" version, Chinburg–Rumely–Baker–Faber)

Zhang’s **canonical measure** \(\mu \) on an edge is the “current defect”

\[\mu(e) = \text{current bypassing } e \text{ when 1 unit sent from } e^- \text{ to } e^+ \]
\[= 1 - \left(\text{current through } e \text{ when } \ldots \right) \]

Example:

\[\mu(e) = \frac{7}{12} \]
Electrical networks: canonical measure

Γ = metric graph

Definition (“electrical” version, Chinburg–Rumely–Baker–Faber)

Zhang’s **canonical measure** \(\mu \) on an edge is the “current defect”

\[
\mu(e) = \text{current bypassing } e \text{ when 1 unit sent from } e^- \text{ to } e^+ = 1 - (\text{current through } e \text{ when } ...)
\]

Example:

\[
\mu(e) = \frac{7}{12} \quad \mu(e) = \frac{1}{3} \quad \mu(e) = 0 \quad \mu(e) = 1
\]
Example:

\[
\begin{array}{c}
\frac{1}{3} \\
7\frac{1}{12} & 7\frac{1}{12}
\end{array}
\]

\[
\begin{array}{c}
\frac{1}{3}
\end{array}
\]
Example:

Electrical networks: canonical measure
Example:

Foster’s Theorem: \(\mu(\Gamma) = \sum_{e \in E} \mu(e) = g \)
Theorem (R)

For a sequence of generic divisor classes $[D_N]$ on Γ, the Weierstrass locus $W(D_N)$ distributes according to Zhang’s canonical measure μ.

Namely, for any edge e

$$\frac{\#(W(D_N) \cap e)}{N} \to \mu(e) \quad \text{as} \quad N \to \infty.$$
Theorem (R)

For a sequence of generic divisor classes \([D_N]\) on \(\Gamma\), the Weierstrass locus \(W(D_N)\) distributes according to Zhang’s canonical measure \(\mu\).

Namely, for any edge \(e\)

\[
\frac{\#(W(D_N) \cap e)}{N} \rightarrow \mu(e) \quad \text{as} \quad N \rightarrow \infty.
\]

Idea:

(continuous current flow)

\[\uparrow\]

canonical measure \(\mu(e)\)
Theorem (R)

For a sequence of generic divisor classes \([D_N]\) on \(\Gamma\), the Weierstrass locus \(W(D_N)\) distributes according to Zhang’s canonical measure \(\mu\).

Namely, for any edge \(e\)

\[
\frac{\#(W(D_N) \cap e)}{N} \to \mu(e) \quad \text{as} \quad N \to \infty.
\]

Idea:

(discr. current flow) \(\xrightarrow{N \to \infty}\) (cont. current flow)

\[\uparrow\]

canonical measure \(\mu(e)\)
Theorem (R)

For a sequence of generic divisor classes \([D_N] \) on \(\Gamma\), the Weierstrass locus \(W(D_N)\) distributes according to Zhang's canonical measure \(\mu\).

Namely, for any edge \(e\)

\[
\frac{\#(W(D_N) \cap e)}{N} \rightarrow \mu(e) \quad \text{as} \quad N \rightarrow \infty.
\]

Idea:

(discrete current flow) \[\xrightarrow[N\to\infty]{}\] (continuous current flow)

\[
\#(\text{Weierstrass points on } e) \quad \uparrow \quad \text{canonical measure } \mu(e)
\]
References

David Mumford (1977)
Curves and their Jacobians
The University of Michigan Press, Ann Arbor, MI.

Amnon Neeman (1984)
The distribution of Weierstrass points on a compact Riemann surface
Ann. of Math. 120 317–328.

Shouwu Zhang (1993)
Admissible pairing on a curve

Matt Baker and Xander Faber (2006)
Metrized graphs, Laplacian operators, and electrical networks
Amer. Math. Soc., Providence, RI.

Omid Amini (2014)
Equidistribution of Weierstrass points on curves over non-Archimedean fields
Weierstrass points on tropical curves

Thank you!