\documentclass{article} \usepackage{amssymb, amsmath, amsfonts, amsthm, graphics, enumerate, mathrsfs, mathtools, tikz-cd} \usepackage{geometry, soul, hyperref} \usetikzlibrary{positioning,arrows,scopes} \usepackage{fancyhdr} \pagestyle{fancy} % \setlength{\headheight}{26pt} % \setlength{\oddsidemargin}{-0.2in} % \setlength{\evensidemargin}{-0.2in} % \setlength{\topmargin}{0in} % \setlength{\textwidth}{6.5in} %\setlength{\headwidth}{6.5in} \setlength{\textheight}{8.5in} \theoremstyle{definition} \newtheorem*{thm}{Theorem} \newtheorem*{pthm}{Pre-Theorem} \newtheorem{prob}{Problem} \newtheorem{ex}{Exercise} \newtheorem*{dfn}{Definition} \newtheorem{eg}{Example} \newtheorem*{prop}{Proposition} \newtheorem*{rmk}{Remark} \newtheorem*{conj}{Conjecture} \newcommand{\CC}{\mathbb{C}} \newcommand{\FF}{\mathbb{F}} \newcommand{\RR}{\mathbb{R}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\PP}{\mathbb{P}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cM}{\mathcal{M}} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\Div}{Div} \DeclareMathOperator{\Supp}{Supp} \DeclareMathOperator{\indeg}{indeg} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\im}{im} \newcommand{\dsp}{\displaystyle} \newcommand{\floor}[1]{\lfloor{{#1}}\rfloor} \newcommand{\ceil}[1]{\lceil{{#1}}\rceil} \title{log(m) meeting 8} %\date{\today} \lhead{ Log(M): Origami on lattices \\} \rhead{ Meeting 8 \\ 15 March 2019} \begin{document} \section{Logistics} \ul{Next meeting}: Friday March 22, 9:30 - 11am \medskip \bigskip {Expectations} for next meeting: \begin{itemize} \item mountain / valley labellings for hexagon crease pattern \textbf{Problem 9}: In a diagram with $6$ creases coming together at a vertex at equal angles, the unit null cone near the flat space is two disjoint spheres. We consider cutting up these spheres into regions according to mountain/valley labellings. \begin{enumerate}[(a)] \item How many zero-dimensional, one-dimensional, and two-dimensional regions are there on each sphere? \item What shapes are the two-dimensional regions? How do they fit together? (i.e. draw out a diagram) \end{enumerate} \item area formula for spherical $n$-gons \textbf{Problem 10}: For a spherical $n$-gon with internal angles $\alpha_1,\ldots,\alpha_n$, show that \[ \text{Area} = \sum_{i=1}^n \alpha_i - (n-2)\pi \] where area is measured on the surface of a unit sphere. Equivalently, for an $n$-gon \[ \text{Area} = 2\pi - \sum_{i=1}^n (\pi - \alpha_i) .\] You may assume the triangle area formula $\text{Area} = (\alpha_1 + \alpha_2 + \alpha_3) - \pi$. \item angle constraints on hexagon crease patter \textbf{Problem 11}: Suppose we want to fix three consecutive creases on a hexagon at fold angles $\theta_1$, $\theta_2$, and $\theta_3$. (By ``fold angle'' we mean flat $\Leftrightarrow \, \theta_i=0$.) \begin{enumerate}[(a)] \item When is this possible, and when is this impossible? \item When this is possible, what are the values of angles $\theta_4,\, \theta_5,\, \theta_6$? Note: there may be more than one answer. How many answers are possible? \end{enumerate} For example, \begin{itemize} \item if $\theta_1 = \theta_2 = \theta_3=0$, then this is possible and we must have $\theta_4 = \theta_5 = \theta_6=0$. \item if $\theta_1 = \theta_2 = 0$ and $\theta_3 = \pi$, then this is possible and we must have $\theta_4 = \theta_5 = 0$ and $\theta_6 = \pi$. \end{itemize} \item \textbf{[Writing]} Write up notes for this meeting, and continue writing up relevant discussion from this week in draft of final report \end{itemize} \end{document}