\documentclass{article} \usepackage{amssymb, amsmath, amsfonts, amsthm, graphics, enumerate, mathrsfs, mathtools, tikz-cd} \usepackage{geometry, soul, hyperref} \usetikzlibrary{positioning,arrows,scopes} \usepackage{fancyhdr} \pagestyle{fancy} % \setlength{\headheight}{26pt} % \setlength{\oddsidemargin}{-0.2in} % \setlength{\evensidemargin}{-0.2in} % \setlength{\topmargin}{0in} % \setlength{\textwidth}{6.5in} %\setlength{\headwidth}{6.5in} \setlength{\textheight}{8.5in} \theoremstyle{definition} \newtheorem*{thm}{Theorem} \newtheorem*{pthm}{Pre-Theorem} \newtheorem{prob}{Problem} \newtheorem{ex}{Exercise} \newtheorem*{dfn}{Definition} \newtheorem{eg}{Example} \newtheorem*{prop}{Proposition} \newtheorem*{rmk}{Remark} \newtheorem*{conj}{Conjecture} \newcommand{\CC}{\mathbb{C}} \newcommand{\FF}{\mathbb{F}} \newcommand{\RR}{\mathbb{R}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\PP}{\mathbb{P}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cM}{\mathcal{M}} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\Div}{Div} \DeclareMathOperator{\Supp}{Supp} \DeclareMathOperator{\indeg}{indeg} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\im}{im} \newcommand{\dsp}{\displaystyle} \newcommand{\floor}[1]{\lfloor{{#1}}\rfloor} \newcommand{\ceil}[1]{\lceil{{#1}}\rceil} \title{log(m) meeting 7} %\date{\today} \lhead{ Log(M): Origami on lattices \\} \rhead{ Meeting 7 \\ 1 March 2019} \begin{document} \section{Logistics} \ul{Next meeting}: Friday March 15, 9:30 - 11am \medskip \bigskip {Expectations} for next meeting: \begin{itemize} \item Problem 9: mountain / valley labellings for hexagon crease pattern \item Problem 10: using the formula for spherical triangles relating external angles to (spherical) area, prove the generalization to spherical $n$-gons. \item \textbf{[Writing]} Continue writing up relevant discussion from this week in draft of final report \end{itemize} \section{Hexagon configuration space} % \subsection{Changing coordinates} % \setcounter{prob}{6} % \begin{prob} % Given three nonzero vectors $v_0,\,v_1,\,v_2 \in \RR^3$, % what is a formula to express the dihedral angle between % the planes $p_{01} = \RR v_0+\RR v_1$ and $p_{12} = \RR v_1 + \RR v_2$? % \noindent (Possible hint: \url{https://en.wikipedia.org/wiki/Dihedral_angle#Mathematical_background}) % \end{prob} % Our goal will be to use this expression for the angles to express the {\em energy} % \[ E(\Phi) = \left( \sum_i |\theta_i - \pi|^2 \right)^{1/2}\] % of a given fold configuration in terms of the crease vectors, % and to study configurations of constant energy. \subsection{Mountain / valley diagrams} To understand a topological space it often helps to cut it up into smaller, more manageable pieces. For a fold configuration which is ``near flat,'' we say a crease is a {\em mountain fold} if it is higher than a secant line between its two adjacent flat regions, and a {\em valley fold} if it is lower. (We take the nearby flat configuration as reference for what ``higher'' and ``lower'' mean.) Suppose we label each crease in a configuration with ``mountain'' or ``valley'' or neither. Visually we can indicate these respectively by a solid line, a dotted line, or no line. \begin{eg} For two perpendicular creases (so there are $4$ total crease vectors), the following shows possible mountain/valley labellings: \begin{center} \includegraphics[scale=0.3]{mv_diagram_small} \end{center} The following mountain/valley labelling is not possible: %\begin{center} \qquad \includegraphics[scale=0.1]{mv_impossible} %\end{center} \end{eg} \setcounter{prob}{7} \begin{prob} In the following diagrams with $5$ creases coming from a central vertex, which mountain/valley labellings are possible? How do these fit together in configuration space near the unfolded state? \begin{enumerate}[(a)] \item creases with equal spacings \qquad %\begin{center} \includegraphics[scale=0.15]{5fold_equal} %\end{center} \item creases perpendicular plus one at $45^\circ$ angle \qquad %\begin{center} \includegraphics[scale=0.15]{5fold_square} %\end{center} \end{enumerate} \end{prob} \ul{Discussion}: \begin{enumerate}[(a)] \item In this crease configuration, the unit null cone near the unfolded state is two disjoint circles. If we split up this space according to mountain/valley labellings, there are $10$ one-dimensional regions and $10$ zero-dimensional regions. \begin{center} [INSERT DIAGRAM] \end{center} \item If we split up this space according to mountain/valley labellings, there are $4$ one-dimensional regions and $4$ zero-dimensional regions. \begin{center} [INSERT DIAGRAM] \end{center} \end{enumerate} \begin{prob} In a diagram with $6$ creases coming together at a vertex at equal angles, the unit null cone near the flat space is two disjoint spheres. We consider cutting up these spheres into regions according to mountain/valley labellings. \begin{enumerate}[(a)] \item How many zero-dimensional, one-dimensional, and two-dimensional regions are there on each sphere? \item What shapes are the two-dimensional regions? How do they fit together? (i.e. draw out a diagram) \end{enumerate} \end{prob} \end{document}