\documentclass{article} \usepackage{amssymb, amsmath, amsfonts, amsthm, graphics, enumerate, mathrsfs, mathtools, tikz-cd} \usepackage{geometry, soul, hyperref} \usetikzlibrary{positioning,arrows,scopes} \usepackage{fancyhdr} \pagestyle{fancy} % \setlength{\headheight}{26pt} % \setlength{\oddsidemargin}{-0.2in} % \setlength{\evensidemargin}{-0.2in} % \setlength{\topmargin}{0in} % \setlength{\textwidth}{6.5in} %\setlength{\headwidth}{6.5in} \setlength{\textheight}{8.5in} \theoremstyle{definition} \newtheorem*{thm}{Theorem} \newtheorem*{pthm}{Pre-Theorem} \newtheorem{prob}{Problem} \newtheorem{ex}{Exercise} \newtheorem*{dfn}{Definition} \newtheorem{eg}{Example} \newtheorem*{prop}{Proposition} \newtheorem*{rmk}{Remark} \newtheorem*{conj}{Conjecture} \newcommand{\CC}{\mathbb{C}} \newcommand{\FF}{\mathbb{F}} \newcommand{\RR}{\mathbb{R}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\PP}{\mathbb{P}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cM}{\mathcal{M}} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\Div}{Div} \DeclareMathOperator{\Supp}{Supp} \DeclareMathOperator{\indeg}{indeg} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\im}{im} \newcommand{\dsp}{\displaystyle} \newcommand{\floor}[1]{\lfloor{{#1}}\rfloor} \newcommand{\ceil}[1]{\lceil{{#1}}\rceil} \title{log(m) meeting 12} %\date{\today} \lhead{ Log(M): Origami on lattices \\} \rhead{ Meeting 12 \\ 12 April 2019} \begin{document} \section{Logistics} \ul{Next meeting}: Tuesday April 16, 11:30 - 1pm \medskip \bigskip {Expectations} for next meeting: \begin{itemize} \item \textbf{[Final poster]} Create draft of poster, using the template here: \url{https://sites.lsa.umich.edu/logm/resources/} (final poster due \textbf{Thursday, April 18}!) Send me a copy by \textbf{Monday evening}, so I have time to look over it before our meeting Tuesday. \item $3$-fold distance formula In a hexagon suppose we choose fold angles $\theta_1,\theta_2,\theta_3$, and let $\alpha_{4,6}$ denote the angle between crease vector $4$ and $6$ (where $0\leq \alpha_{4,6}\leq \pi$). Then \begin{align} \cos(\alpha_{4,6}) &= \frac1{16}( 1 - 3\cos \theta_1 - 3\cos\theta_2 - 3\cos\theta_3 -3\cos\theta_1\cos\theta_2 \nonumber \\ &\qquad \phantom{\frac1{16}} - 3\cos\theta_2\cos \theta_3 +9\cos\theta_1\cos\theta_3 -3\cos\theta_1\cos\theta_2\cos\theta_3 \nonumber \\ &\qquad \phantom{\frac1{16}} + 6\sin\theta_1\sin\theta_2 + 6\sin\theta_2\sin\theta_3 + 6\cos\theta_1\sin\theta_2\sin\theta_3 \nonumber \\ &\qquad \phantom{\frac1{16}} + 6\sin\theta_1\sin\theta_2\cos\theta_3 + 12\sin\theta_1\cos\theta_2\sin\theta_3) \end{align} \textbf{Problem 12}: \begin{enumerate}[(a)] \item What is the $2$nd-order approximation of (1) when fold angles $\theta_i$ are small? \item The answer to (a) is a constant plus a quadratic form in $\theta_1,\theta_2,\theta_3$. What is the signature of this quadratic form? \item If we impose the constraint \[ \cos(\alpha_{4,6}) = -\frac12 + \epsilon\] for small $\epsilon > 0$, then using the approximation (a) what is the minimum possible value of \[ E(\theta_1,\theta_2,\theta_3) = \theta_1^2 + \theta_2^2 + \theta_3^2 \] as a function of $\epsilon$? \end{enumerate} \item \textbf{[Writing]} Write up notes for this meeting, and continue writing up relevant discussion from this week in draft of final report \end{itemize} \section{Energy propagation} Using our understanding of a single hexagon we would like to know how energy ``propagates'' in a hexagon lattice. We can reduce this to the following concrete question \setcounter{prob}{12} \begin{prob} In a single hexagon, suppose we fix fold angle $6$ at some nonzero value $\theta_0 >0$. The rest of the hexagon cannot lie completely flat. We would like to quantify this as follows: can we find some constant $C$ such that \[ \max \{\theta_1,\theta_2,\ldots,\theta_5 \} \geq C\theta_0\] for any fold configuration? \end{prob} \end{document}