\documentclass{article} \usepackage{amssymb, amsmath, amsfonts, amsthm, graphics, enumerate, mathrsfs, mathtools, tikz-cd} \usepackage{geometry, soul, hyperref} \usetikzlibrary{positioning,arrows,scopes} \usepackage{fancyhdr} \pagestyle{fancy} % \setlength{\headheight}{26pt} % \setlength{\oddsidemargin}{-0.2in} % \setlength{\evensidemargin}{-0.2in} % \setlength{\topmargin}{0in} % \setlength{\textwidth}{6.5in} %\setlength{\headwidth}{6.5in} \setlength{\textheight}{8.5in} \theoremstyle{definition} \newtheorem*{thm}{Theorem} \newtheorem*{pthm}{Pre-Theorem} \newtheorem{prob}{Problem} \newtheorem{ex}{Exercise} \newtheorem*{dfn}{Definition} \newtheorem{eg}{Example} \newtheorem*{prop}{Proposition} \newtheorem*{rmk}{Remark} \newtheorem*{conj}{Conjecture} \newcommand{\CC}{\mathbb{C}} \newcommand{\FF}{\mathbb{F}} \newcommand{\RR}{\mathbb{R}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\PP}{\mathbb{P}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cM}{\mathcal{M}} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\Div}{Div} \DeclareMathOperator{\Supp}{Supp} \DeclareMathOperator{\indeg}{indeg} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\im}{im} \newcommand{\dsp}{\displaystyle} \newcommand{\floor}[1]{\lfloor{{#1}}\rfloor} \newcommand{\ceil}[1]{\lceil{{#1}}\rceil} \title{log(m) meeting 10} %\date{\today} \lhead{ Log(M): Origami on lattices \\} \rhead{ Meeting 10 \\ 29 March 2019} \begin{document} \section{Logistics} \ul{Next meeting}: Tuesday April 2, 11:30 - 1pm \medskip \bigskip {Expectations} for next meeting: \begin{itemize} \item mountain / valley labellings for hexagon crease pattern \textbf{Problem 9}: In a diagram with $6$ creases coming together at a vertex at equal angles, the unit null cone near the flat space is two disjoint spheres. We consider cutting up these spheres into regions according to mountain/valley labellings. \begin{enumerate}[(a)] % \item How many zero-dimensional, one-dimensional, and two-dimensional regions are there on each sphere? % (Answer: $9$, $24$, and $17$) \item[(b)] What shapes are the two-dimensional regions? How do they fit together? ($\rightarrow$ draw the diagrams we made in this meeting) \end{enumerate} \item angle constraints on hexagon crease pattern \textbf{Problem 11}: Suppose we want to fix three consecutive creases on a hexagon at fold angles $\theta_1$, $\theta_2$, and $\theta_3$. (By ``fold angle'' we mean flat $\Leftrightarrow \, \theta_i=0$.) \begin{enumerate}[(a)] \item What combinations of $\theta_1,\theta_2,\theta_3$ are possible for a hexagon? Find exact equations to characterize this. (Hint: it may help to use \url{https://en.wikipedia.org/wiki/Rodrigues\%27_rotation_formula}) For example, if $\theta_2 = 0$ and $\theta_1, \theta_3 > 0$ then this is possible (and we can compute $\theta_4,\theta_5,\theta_6)$, but if $\theta_2=0$, $\theta_1 >0$, $\theta_3<0$ then this is not possible for the hexagon. % \item When this is possible, what are the values of angles $\theta_4,\, \theta_5,\, \theta_6$? % Note: there may be more than one answer. How many answers are possible? \end{enumerate} Particular sub-problem: \textbf{Problem 11 (c)} Suppose $\theta_1 = \theta_3 = 0$ and $\theta_2$ is arbitrary. Then one possibility is that $\theta_4 = \theta_6 = 0$ and $\theta_5 = \theta_2$. A second possibility is that crease number $5$ is ``flipped inward'', so that $\theta_5 = -\theta_2$, and $\theta_4$ and $\theta_6$ are at some positive angle. What is the angle of $\theta_4= \theta_6$ as a function of $\theta_2$, in this case? Sub-sub-problem: \textbf{Problem 11 (d)} Consider a spherical rhombus, i.e. a quadrilateral on a unit sphere with all four side lengths $L$. Show that opposite pairs of angles are equal, say $\alpha$ and $\beta$. \begin{center} \includegraphics[scale=0.25]{rhombus} \end{center} Show that $\alpha$ and $\beta$ satisfy the relation \[ \tan \frac\alpha{2} \tan \frac\beta{2} = \frac1{\cos L} .\] Graph this relation on $\alpha$, $\beta$ for $L = \displaystyle\frac\pi{3}$ (i.e. the spherical length of a hexagon edge). (Check: As $L \to 0$, why does this agree with the relation $\alpha + \beta = \pi$ for flat geometry?) \item \textbf{[Writing]} Write up notes for this meeting, and continue writing up relevant discussion from this week in draft of final report \item \textbf{[Final project]} Think about whether you would rather create a final report in article form, or a hexagon visualization program as a final project, or both (in addition to the poster) \end{itemize} \end{document}