Morning session

1. Let $\mathbb{H} = \{ z \in \mathbb{C} : \text{Re}(z) > 0 \}$, and let $f : \overline{\mathbb{H}} \to \mathbb{C}$ be a bounded continuous function, which is analytic in \mathbb{H}. Prove that for any $z = x + iy \in \mathbb{H}$

$$f(z) = \frac{x}{\pi} \int_{-\infty}^{\infty} \frac{f(it)dt}{x^2 + (t - y)^2}.$$

Proof. Consider integrating the function

$$g(w) = \frac{f(w)}{(w + \bar{z})(w - z)}$$

over the semicircular contour indicated below:

This function is meromorphic inside the given region, and has a single pole at $w = z$ with residue

$$\text{Res}_h(z) = \lim_{w \to z} (w - z)g(z) = \frac{f(z)}{z + \bar{z}} = \frac{f(z)}{2x}.$$

Along γ_2, we have

$$\int_{\gamma_2} g(w)dw \leq |\gamma_2| \cdot \sup_{\gamma_2} |g(w)| \leq \pi R \cdot \frac{M}{(R - |z|)^2} \approx \frac{\pi M}{R} \to 0 \quad \text{as} \quad R \to \infty,$$

where M is a uniform bound on $|f(w)|$ in $\bar{\mathbb{H}}$. Along γ_1, we have

$$\lim_{\epsilon \to 0} \int_{\gamma_1} g(w)dw = \lim_{\epsilon \to 0} \int_{-R}^{R} \frac{f(\epsilon + it)}{(\epsilon + it + \bar{z})(\epsilon + it - z)}idt = -i \int_{-R}^{R} \frac{f(it)dt}{(x + i(t - y))(x + i(t - y))^2} = i \int_{-R}^{R} \frac{f(it)dt}{x^2 + (t - y)^2},$$

where passing the limit inside the integral is justified by dominated convergence under $\frac{M}{(x/2)^2 + (t - y)^2}$ (assuming $\epsilon < x/2$).

1
Thus Cauchy’s integral formula tells us that
\[
\frac{f(z)}{2x} = \sum \text{Res}_g = \lim_{R \to \infty} \frac{1}{2\pi i} \int_{\gamma_1 + \gamma_2} g(w)dw = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{f(it)dt}{x^2 + (t - y)^2},
\]
and multiplying the above equation by \(2x\) gives the desired result.

2. Let \(f: \mathbb{D} \to \mathbb{D}\), \(f(z) = \sum_{n=0}^{\infty} a_n z^n\), be a bounded analytic function.

(a) Prove that for any \(r < 1\)
\[
\sum_{n=0}^{\infty} |a_n|^2 r^{2n} = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^2 dt.
\]

(b) Show that the series \(\sum_{n=0}^{\infty} |a_n|^2\) converges.

Proof. (a) Let \(f_N = \sum_{n=0}^{N} a_n z^n\) denote the degree-\(N\) Taylor approximation of \(f\). Note that for any \(r < 1\), the convergence \(f_N \to f\) is uniform on the circle \(|z| = r\) since \(f\) is analytic in \(\mathbb{D}\). We have for any \(z = re^{it} \in \mathbb{D}\)
\[
|f_N(z)|^2 = \left(\sum_{n=0}^{N} a_n z^n\right) \left(\sum_{n=0}^{N} \bar{a}_n \bar{z}^n\right) = \sum_{n=0}^{N} |a_n|^2|z|^{2n} + \sum_{0 \leq n \neq m \leq N} a_n \bar{a}_m z^n \bar{z}^m
\]
\[
= \sum_{n=0}^{N} |a_n|^2 r^{2n} + \sum_{n \neq m} a_n \bar{a}_m r^{n+m} e^{(n-m)it}.
\]

It is straightforward to verify that integrating \(z^k\) or \(\bar{z}^k\) around a circle gives you zero:
\[
\int_0^{2\pi} (re^{it})^k dt = \int_0^{2\pi} (re^{-it})^k dt = 0 \quad \text{for} \quad k \neq 0,
\]
(by orthogonality of \(\cos(kt), \sin(kt)\)) while the other terms are constant. Thus
\[
\frac{1}{2\pi} \int_0^{2\pi} |f_N(re^{it})|^2 dt = \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{n \leq N} |a_n|^2 r^{2n}\right) dt + \sum_{n \neq m} \left(a_n \bar{a}_m r^{n+m} \frac{1}{2\pi} \int_0^{2\pi} e^{(n-m)it} dt\right)
\]
\[
= \sum_{n \leq N} |a_n|^2 r^{2n}
\]

Taking \(N \to \infty\) gives the desired equality.

(b) As \(r\) approaches 1, the uniform bound \(|f(z)| \leq 1\) ensures that
\[
\lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^2 dt \leq \frac{1}{2\pi} \int_0^{2\pi} dt = 1.
\]
Thus
\[\sum_{n \geq 0} |a_n|^2 = \lim_{r \to 1} \left(\sum_{n \geq 0} |a_n|^2 r^{2n} \right) \leq 1 \]
is finite by monotone convergence.

3. Let \(f \) be a function which is analytic on the wedge
\[W = \{ z \in \mathbb{C} : \text{Re } (z) > 0, -\frac{\pi}{6} < \text{Arg } (z) < \frac{\pi}{6} \}, \]
which is bounded on \(W \), and verifies for all \(r > 0 \)
\[\lim_{\theta \to \pm \frac{\pi}{6}} f(re^{i\theta}) := \varphi(r) \in \mathbb{R}. \]
Show that \(f \) must be real and constant.
\textbf{Hint:} Consider using Schwarz reflection.

\textbf{Proof.} Following the hint, we note that \(f \) may be extended to an entire function by reflecting its values on \(W \) six times around the origin. Since \(f \) is bounded on \(W \), this extension to \(\mathbb{C} \) will also be bounded. Thus \(f \) must be constant, and since it takes real values (in some limit) it must be a real constant.

4. Evaluate
\[\int_{0}^{\infty} \frac{\ln x}{(x-1)\sqrt{x}} \, dx. \]

\textbf{Proof.} Denote the given integral by \(I \). Substituting \(y = \ln(x) \)
\[I = \int_{-\infty}^{\infty} \frac{ye^y dy}{(ey-1)e^{y/2}} = \int_{-\infty}^{\infty} \frac{y dy}{e^{y/2} - e^{-y/2}}. \]
If we consider integrating \(f(z) = \frac{z}{e^{z/2} - e^{-z/2}} \) along the rectangular contour that encloses \(\{ z : 0 \leq \text{Im } z \leq \pi, -R \leq \text{Re } z \leq R \} \), which does not contain any poles of \(f \), we see that the integrals over the vertical segments go to 0 as \(R \to \infty \), so the integral along the lower boundary must equal the integral along the upper boundary (taking both integrals from left to right). Thus
\[I = \int_{-\infty}^{\infty} \frac{(y + \pi i) dy}{e^{(y+\pi i)/2} - e^{-(y+\pi i)/2}} = \int_{-\infty}^{\infty} \frac{y}{ie^{y/2} + ie^{-y/2}} \, dy + \int_{-\infty}^{\infty} \frac{\pi i}{ie^{y/2} + ie^{-y/2}} \, dy \]
\[= -i \int_{-\infty}^{\infty} \frac{y}{e^{y/2} + e^{-y/2}} \, dy + \pi \int_{-\infty}^{\infty} \frac{1}{e^{y/2} + e^{-y/2}} \, dy \]
\[= \pi \int_{-\infty}^{\infty} \frac{1}{e^{y/2} + e^{-y/2}} \, dy \]
since the integrand in the first term is an odd function.
Substituting back $w = e^{y/2}$,

$$
\int_{-\infty}^{\infty} \frac{1}{e^{y/2} + e^{-y/2}} dy = \int_{-\infty}^{\infty} e^{y/2} dy = \int_{0}^{\infty} \frac{2dw}{w^2 + 1} = 2 \arctan(w) \bigg|_0^\infty = \pi.
$$

Thus $I = \frac{\pi}{2}$.

5. Let $\Omega \subset \mathbb{C}$ be a bounded, simply connected domain in \mathbb{C}. Let z_0 and z_1 be two distinct points of Ω. If φ_1 and φ_2 are two one-to-one and onto analytic maps from Ω onto itself, and $\varphi_1(z_i) = \varphi_2(z_i)$, $i = 0, 1$, show that $\varphi_1 \equiv \varphi_2$ on Ω.

Proof. The given conditions of Ω imply that it is analytically isomorphic to the unit disk \mathbb{D} by the Riemann mapping theorem. Thus we may take some analytic isomorphism $\Phi: \Omega \rightarrow \mathbb{D}$, which we may assume sends $z_0 \mapsto 0$ without loss of generality. Then $\hat{\varphi}_1 := \Phi \circ \varphi_1 \circ \Phi^{-1}$ defines a bijective analytic map from \mathbb{D} to itself, as does $\hat{\varphi}_2 := \Phi \circ \varphi_2 \circ \Phi^{-1}$.

Now consider $\hat{\varphi}_2^{-1} \circ \hat{\varphi}_1: \mathbb{D} \rightarrow \mathbb{D}$ which is equal to $\Phi \circ (\varphi_2^{-1} \circ \varphi_1) \circ \Phi^{-1}$. This fixes the origin and the point $w_1 := \Phi(z_1)$. In particular, this means $|\hat{\varphi}_1(w_1)| = |w_1|$, so Schwarz’s lemma implies that $\hat{\varphi}_2^{-1} \circ \hat{\varphi}_1$ is the identity (i.e. the only rotation that fixes w_1). Then $\varphi_2^{-1} \circ \varphi_1 = \Phi^{-1} \circ (\hat{\varphi}_2^{-1} \circ \hat{\varphi}_1) \circ \Phi = \Phi^{-1} \circ \Phi$ must be the identity on Ω, so $\varphi_1 \equiv \varphi_2$. \qed
Afternoon session

1. Let \(f \in L^1((0,1)) \), and define \(g: (0,1) \to \mathbb{R} \) by
\[
g(x) = \int_x^1 \frac{f(t)}{t} \, dt.
\]
Prove that \(g \in L^1((0,1)) \).

Proof. We apply Tonelli’s theorem to exchange the order of integration:
\[
\int_0^1 |g(x)| \, dx \leq \int_0^1 \int_x^1 \frac{|f(t)|}{t} \, dtdx = \int_0^1 |f(t)| \, dxdt = \int_0^1 f(t) \, dt.
\]
Thus \(\|g\|_1 \leq \|f\|_1 < \infty \) by assumption \(f \in L^1 \), so \(g \in L^1 \) as well.

2. Let \((X, \mathcal{A}, \mu) \) be a finite measure space, and let \(F: \mathbb{R} \to \mathbb{R} \) be a \(C^2 \) function with second derivative \(F'' > 0 \). Let \(f \in L^1(\mu) \) be real-valued. Prove Jensen’s inequality:
\[
F\left(\frac{1}{\mu(X)} \int f \, d\mu \right) \leq \frac{1}{\mu(X)} \int F(f) \, d\mu.
\]

Proof. For any \(t_0, t \in \mathbb{R} \),
\[
F(t) = F(t_0) + \int_{t_0}^t F'(s) \, ds = F(t_0) + (t-t_0)F'(t_0) + \int_{t_0}^t \int_{t_0}^s F''(r) \, dr \, ds
\]
\[
\geq F(t_0) + (t-t_0)F'(t_0)
\]
since \(F'' > 0 \) and the two integrals are either both positively oriented, or both negatively oriented. (Moreover, the inequality is strict if \(t \neq t_0 \).)

Now take \(f_0 = \frac{1}{\mu(X)} \int f \, d\mu \in \mathbb{R} \), so that
\[
\int_X f \, d\mu = \mu(X)f_0 = \int_X f_0 \, d\mu \quad \Rightarrow \quad \int_X (f - f_0) \, d\mu = 0.
\]
We have \(F(f) \geq F(f_0) + (f - f_0)F'(f_0) \) for any \(f \in \mathbb{R} \), so integrating this inequality over \(X \) we have
\[
\int_X F(f) \, d\mu \geq F(f_0) \int_X d\mu + F'(f_0) \int_X (f - f_0) \, d\mu = \mu(X)F(f_0).
\]
Dividing by \(\mu(X) \) gives the desired result.
3. Let $f, g_1, g_2, \ldots \in L^1(\mathbb{R})$ be non-negative functions. Assume that $g_n \to f$ a.e. and

$$\int_{\mathbb{R}} g_n \, dm = \int_{\mathbb{R}} f \, dm.$$

Prove that for any measurable set $A \subseteq \mathbb{R}$

$$\int_{A} g_n \, dm \to \int_{A} f \, dm.$$

Proof. For any measurable A, Fatou’s lemma says that

$$\int_{A} f \, dm = \int_{A} \liminf_{n \to \infty} g_n \, dm \leq \liminf_{n \to \infty} \int_{A} g_n \, dm.$$

To prove $\lim_{n \to \infty} \int_{A} g_n = \int_{A} f$ it suffices to show that $\int_{A} f \geq \limsup_{n \to \infty} \int_{A} g_n$. For this, consider integrating these over the complement A^c:

$$\int_{A^c} f \, dm = \int_{A^c} \liminf_{n \to \infty} g_n \, dm \leq \liminf_{n \to \infty} \int_{A^c} g_n \, dm.$$

Expressing these in terms of the total integral over \mathbb{R} gives

$$\int_{\mathbb{R}} f \, dm - \int_{A} f \, dm \leq \liminf_{n \to \infty} \left(\int_{\mathbb{R}} g_n \, dm - \int_{A} g_n \, dm \right) = \int_{\mathbb{R}} f \, dm - \limsup_{n \to \infty} \int_{A} g_n \, dm$$

so we must have

$$\int_{A} f \, dm \geq \limsup_{n \to \infty} \int_{A} g_n \, dm.$$

This shows the desired convergence of integrals. \qed

4. Let (X, \mathcal{A}, μ) be a finite measure space. Let $\{f_n\}_{n=1}^{\infty} \subseteq L^2(\mu)$ be a sequence of functions such that $\|f_n\|_2 \leq 1$.

(a) Prove that if $f_n \to 0$ in measure, then $f_n \to 0$ in $L^1(\mu)$.

(b) If $f_n \to 0$ in measure, does it necessarily follow that $f_n \to 0$ in $L^2(\mu)$?

Proof. (a) Suppose $f_n \to 0$ in measure, meaning that for any $\epsilon > 0$

$$\lim_{n \to \infty} \mu(\{x : |f_n(x)| > \epsilon\}) = 0.$$

The Cauchy-Schwarz inequality implies that for any measurable $A \subseteq X$,

$$\int_{A} |f_n| \, d\mu \leq \left(\int_{A} |f_n|^2 \, d\mu \right)^{1/2} \left(\int_{A} d\mu \right)^{1/2} \leq (\mu(A))^{1/2}$$

since we are given that $\|f\|_2 \leq 1$.

Now consider the measurable sets $E_{n,\epsilon} = \{x : |f_n(x)| > \epsilon\}$. By convergence in measure

$$\limsup_{n \to \infty} \int_{E_{n,\epsilon}} |f_n| \, d\mu \leq \limsup_{n \to \infty} \mu(E_{n,\epsilon})^{1/2} = 0.$$
for any fixed $\epsilon > 0$, so

$$
\limsup_{n \to \infty} \int_X |f_n| d\mu = \limsup_{n \to \infty} \left(\int_{E_{n,\epsilon}} |f_n| d\mu + \int_{E_{n,\epsilon}} |f_n| d\mu \right)
\leq \limsup_{n \to \infty} \int_{E_{n,\epsilon}} \epsilon d\mu + \limsup_{n \to \infty} \int_{E_{n,\epsilon}} |f_n| d\mu \leq \epsilon \cdot m(X).
$$

As $\epsilon \to 0$, this bound goes to zero so $f_n \to 0$ in L^1 as desired.

(b) No; consider the sequence in $L^2([0, 1])$ with the Lebesgue measure defined by

$$
f_n(x) = \begin{cases}
\sqrt{n} & \text{if } 0 < x < \frac{1}{n}, \\
0 & \text{otherwise}.
\end{cases}
$$

It is straightforward to verify that $f_n \to 0$ in measure, but $\|f_n\|_2 = 1$ for all n so $f_n \not\to 0$ in L^2.

5. Let $F \subset \mathbb{R}$ be a closed set, and define the distance from $x \in \mathbb{R}$ to F by

$$
d(x, F) = \inf_{y \in F} |x - y|.
$$

Prove that

$$
\lim_{x \to y} \frac{d(x, F)}{|x - y|} = 0
$$

for a.e. $y \in F$.

Hint: Consider Lebesgue points of F.

Proof. Recall that $y \in F$ is a Lebesgue point of F if

$$
\lim_{m(B) \to 0} \frac{m(B \cap F)}{m(B)} = 1 \iff \lim_{m(B) \to 0} \frac{m(B) - m(B \cap F)}{m(B)} = 0
$$

where the limit is taken over balls (i.e. intervals) B in \mathbb{R} that contain y. Since Lebesgue points have full measure in F it suffices to prove the given equality for Lebesgue points.

Suppose y is a Lebesgue point of F, and $x \in \mathbb{R}$ arbitrary. Let $B_r(x)$ denote the ball of radius r centered at x, and let $B_r := B_r(x, y)$ denote the smallest open interval containing both $B_r(x)$ and $B_r(y)$. It is clear that $m(B_r) = |x - y| + 2r$. If we intersect this ball with F, then we must exclude an interval of length at least $d(x, F)$:

$$
m(B_r \cap F) \leq m(B_r) - d(x, F) \Rightarrow d(x, F) \leq m(B_r) - m(B_r \cap F).
$$

This implies

$$
\frac{d(x, F)}{|x - y|} \leq \liminf_{r \to 0} \frac{m(B_r) - m(B_r \cap F)}{|x - y|} = \liminf_{r \to 0} \frac{m(B_r) - m(B_r \cap F)}{m(B_r)}.
$$
Since \(y \) is a Lebesgue point, for any \(\epsilon > 0 \) there is an \(\delta > 0 \) such that

\[
m(B) < \delta, \ y \in B \quad \Rightarrow \quad \left| \frac{m(B) - m(B \cap F)}{m(B)} \right| < \epsilon.
\]

so taking \(B = B_{\epsilon}(x, y) \) for any \(x \) satisfying \(0 < |x - y| < \delta \), we have

\[
0 \leq \frac{d(x, F)}{|x - y|} \leq \liminf_{r \to 0} \frac{m(B_r) - m(B_r \cap F)}{m(B_r)} < \epsilon.
\]

In the limit as \(x \) approaches \(y \), we get \(\lim_{x \to y} \frac{d(x, F)}{|x - y|} < \epsilon \). But since \(\epsilon \) was arbitrary, this shows that the limit is in fact 0. \(\Box \)