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Modeling and Control of a Power-Split
Hybrid Vehicle

Jinming Liu and Huei Peng

Abstract—Toyota Hybrid System (THS) is used in the current
bestselling hybrid vehicle on the market�the Toyota Prius. This
hybrid system contains a power-split planetary gear system which
combines the bene�ts of series and parallel hybrid vehicles. In this
paper, we developed a dynamic model of the THS powertrain and
then apply it for model-based control development. Two control
algorithms are introduced: one based on the stochastic dynamic
programming method, and the other based on the equivalent con-
sumption minimization strategy. Both approaches determine the
engine power based on the overall vehicle ef�ciency and apply the
electrical machines to optimize the engine operation. The perfor-
mance of these two algorithms is assessed by comparing against
the dynamic programming results, which are non-causal but pro-
vide theoretical benchmarks for other implementable control algo-
rithms.

Index Terms—Dynamics, dynamic programming, hybrid vehi-
cles, modeling, nonlinear systems, power control, power manage-
ment, vehicle powertrain.

I. INTRODUCTION

T HE PURSUIT of improved fuel economy for ground
vehicles accelerated in recent years due to the increased

price of fossil fuel and the concerns of environmental impacts.
Hybrid electric vehicles (HEVs) seem to be the most promising
short-term solution and are under enthusiastic development by
many automotive companies. An HEV adds an electric power
path to the conventional powertrain, which helps to improve
fuel economy by engine right-sizing, load leveling, and regener-
ative braking. A right-sized engine has better fuel efficiency and
smaller heat loss. The reduced engine power is compensated by
an electrical machine (or machines). Compared with internal
combustion engines, electric machines provide torque more
quickly, especially at low vehicle speed. Therefore, launching
performance can be improved even with reduced overall rated
power. Load leveling can also be achieved by adding the elec-
trical path, which enables the engine to operate more efficiently,
independent from the road load. Regenerative braking allows
the electric machine to capture part of the vehicle kinetic energy
and recharge the battery when the vehicle is decelerating.
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Based on the mechanical architecture, HEVs can be divided
into three categories: parallel hybrids, series hybrids, and
power-split hybrids. The parallel configuration, as shown in
Fig. 1(A), includes two separate power paths: the mechanical
path and the electrical path. Each power path can drive the
vehicle individually or collaboratively. The main drawback of
the parallel configuration is that a single electric machine is
typically used both as a generator and as a motor. The electric
power assistance must be constrained to avoid draining the
battery and frequent role-reversal may be necessary. The series
configuration, as shown in Fig. 1(B), only applies a motor (or
motors) to drive the wheels. The motor power is supplied by
either a battery, or a generator transforming the engine power
into electrical power, or both. Since the engine operation is
independent of the vehicle speed and road load, it can operate
near its optimal condition almost all the time. A disadvantage of
such configuration, however, is that the efficiency of the electric
machine(s) will reduce the overall power-train efficiency [1].

The power-split hybrids combine the previous two configu-
rations with a power-split device, as shown in Fig. 1(C). It is
appealing because under proper control it can be designed to
take advantage of both parallel and series types and avoid their
disadvantages.

The power-split mechanisms were studied as early as the
1970s [2]. Earlier versions of such devices appeared in the
hydrostatic power-split transmission commonly used on lawn
tractors. Miller et al. [3] provided a historical perspective
of the power-split device development. The Toyota Hybrid
System (THS), the core of the first commercial power-split
HEV offered in 1997 in Japan, the Toyota Prius, was described
in [4]–[7]. The early model of the Prius was tested by the
Argonne National Lab [8] and the experiment data were used
for modeling the vehicle in PSAT [9] and ADVISOR [10]. A
comparative study between the THS and another hybrid design,
the Honda Insight, is done by Duoba et al. [11]. In 2004, Toyota
released an improved THS system (THS II). Studies [12]–[14]
showed that the main differences between the original and the
new THS power-trains mainly are the component sizing instead
of power-train architecture. The THS II power-split system was
adopted and improved for higher-load vehicles as the Toyota
Highlander and the Lexus RH400, as described by Hermance
et al. [15].

Few papers have been published in the literature on the mod-
eling and control of power-split hybrid vehicles. Rizoulis et
al. [16] presented a mathematical model of a vehicle with a
power-split device based on the steady-state transmission per-
formance. A power-split hybrid vehicle model was developed
by Zhang et al. [17] to study the optimal control algorithm. This
dynamic model is simplified without detailed component be-
havior. Miller [18] summarized the models of the current devel-
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Fig. 1. Hybrid vehicle configurations: (A) parallel; (B) series; and (C) power-split (parallel/series).

oping power-split HEV architectures. The power-management
control algorithm for the THS, or power-split hybrid systems in
general were not analyzed in depth, except the few papers dis-
cussing rule-based algorithms for THS.

A three-state dynamic vehicle model is presented in this
paper. It can be applied to describe either THS or THS II
by properly choosing the component parameters. Using this
dynamic vehicle model, two optimal control designs are intro-
duced and analyzed. The first design is based on the stochastic
dynamic programming (SDP) approach, introduced by Lin et
al. [19]. In this approach, the vehicle model is deterministic but
the driver power demand is stochastic, which reflects the fact
that the optimization is not for any specified driving cycle, but
rather for general driving conditions with known power demand
probabilities. In this paper, the SDP approach is modified and
applied to a power-split HEV. The second design studied in
this paper is the equivalent consumption minimization strategy
(ECMS) algorithm, which is proposed by Paganelli et al.
[20]. This algorithm is based on an instantaneous optimization
concept. The ECMS concept introduced in [20] was developed
for a parallel HEV. This algorithm needs to be modified before
it can be applied to power-split hybrids because the powertrain
dynamics is completely different and there are two electrical
machines rather than one. The modified ECMS for power-split
hybrids is another contribution of this paper.

To assess the performance of the SDP and ECMS algorithms,
the deterministic DP solutions for the driving cycles (EPA urban
and highway cycles) are used as benchmarks for comparisons.
The DP solutions are benchmarks rather than implemented con-
trol algorithms because they are non-causal in nature.

Fig. 2. Planetary gear and its level diagram analogy.

II. MODELING OF THE THS

THS uses a planetary gear as its power-split device [7]. As
shown in the left-hand side of Fig. 2, a planetary gear consists
of a ring gear, a sun gear, a carrier gear, and several pinion gears.
Due to the mechanical connections through gear teeth, the ro-
tational speeds of the ring gear , sun gear , and the carrier
gear satisfy the following relationship:

(1)

where and are the radii of the ring gear and sun gear, re-
spectively. A lever diagram [21] is commonly used to describe
this speed constraint, which simplifies the dynamic analysis for
the planetary gear set, as shown in the diagram in the right-hand
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Fig. 3. Free-body diagram of the mechanical path of THS.

side of Fig. 2. The length of the arrow represents the magnitude
of the rotational speed of each gear, while the direction reflects
the sign.

Fig. 3 shows the free-body diagram of the mechanical path
of the THS powertrain. The sun gear, carrier gear, and ring gear
are connected to one motor/generator (MG1), engine, and ve-
hicle, respectively. In addition, another electric motor/generator
(MG2) is also attached to the ring gear, which enables direct
motor propulsion and efficient regenerative braking. The power
generated by the engine is split into two paths: a mechanical path
and an electrical path. The mechanical path consists of power
transferred from the carrier gear directly to the ring gear, which
is connected to the vehicle drive axle. The electrical path takes
the rest of the engine power and transforms it into electricity
through the MG1. This power is then either charged into the
battery or supplied to the MG2.

The dynamic equations were described in [22] and are sum-
marized in the following. By assuming zero pinion gear inertia
and neglect all vehicle dynamics except along the longitudinal
direction, the governing equations are

(2)
(3)

(4)

where , and are the torques generated by the
MG1, MG2, and engine, respectively; , and are the in-
ertias of the ring gear, sun gear, and carrier gear. ,

and , are the inertias of the power sources. represents the
internal force on the pinion gears and is the vehicle mass.
is the brake torque applied by the friction brake system. is
the final drive ratio, is the tire radius, is the rolling re-
sistance coefficient, and represents the aerodynamic
drag resistance. Equations (1)–(4) can be presented in the ma-
trix form shown in (5) at the bottom of the page.

Although there are four equations, the number of mechan-
ical degrees of freedom of this system is two. Engine speed
and the ring gear speed , which is proportional to the vehicle
speed, are chosen as the two states for the mechanical motions.
The fact that the engine speed is independent from the vehicle
speed indicates this power-split device is a type of continuously
variable transmission (CVT). The speed ratio, however, is ma-
nipulated through controlling the speed of MG1. Therefore, it
is sometimes referred to as an electronic variable transmission
(EVT) to differentiate it from other CVTs.

One additional state variable, the battery state of charge
(SOC), needs to be defined to reflect battery energy status. It is
calculated from the following equation:

(6)

where is the battery current and is the battery ca-
pacity. For simplicity, the internal resistance battery model is
used, which results in

(7)

where is the battery open circuit voltage, is the bat-
tery resistance, and they both are functions of SOC. Note here
when is positive, the battery is discharging. When it is neg-
ative, the battery is charging. The battery power flows through
the inverter to supply power to the electrical machines, and the
relationship is governed by

(8)

where and are the efficiencies of the electric ma-
chines. and are the corresponding efficiencies of the in-
verters. The exponent when the battery is discharged

(5)
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TABLE I
MAIN PARAMETERS USED IN THE THS MODEL

Fig. 4. Engine simulation results compared with published experiment results
under the same driving cycle. (The experiment data is sampled at 2 Hz).

and when it is charged. From (6) to (8), we have (9),
shown at the bottom of the page.

This equation, together with the mechanical dynamics in (5),
describes the dynamics of the THS vehicle.

For the purpose of model validation, this model is put under
the command of a rule-based control strategy [7]. In the simu-
lation, vehicle parameters, engine maps and efficiency torque,
and fuel consumption tables are obtained from ADVISOR 2002
[10]. The key parameters are listed in Table I. Fig. 4 presents the
comparison between the simulation results and the experiment
results from [11]. Since we do not know the control gains pre-
cisely and considering all the simplifying assumptions we have
made, the behavior of this model was found to agree with the
actual system quite well. The rule-based control in this simula-
tion was explained in detail in our earlier publication [22].

Fig. 5. Two-step control of the THS power train showing system optimization
and engine optimization.

III. POWER-SPLIT AND ENGINE OPTIMIZATION

In a power-split device, the engine speed can be decoupled
from the vehicle load. Therefore, the engine can operate ef-
ficiently, similar to a series hybrid. This is beneficial for fuel
economy during city driving, where many stop-and-go’s occur.
For highway driving, similar to a parallel hybrid, power flow is
mostly through the mechanical path to improve fuel economy.

To fully realize the benefits of a power-split hybrid, the en-
gine is controlled by manipulating the two electrical power ma-
chines. They both serve as either a motor or a generator, de-
pending on the driving conditions. The MG in a speed control
mode is controlled to manipulate the speed of the engine and
the MG in a torque control mode helps to satisfy the torque re-
quirement. In the THS, the MG1 is applied as the speeder and
the MG2 is applied as the torquer [5]. To do the regenerative
braking, MG2 is controlled to apply the braking torque up to
its torque capacity and the friction brake fulfills the rest of the
torque demand.

A divide-and-conquer architecture is suggested by Toyota in
[5] to decouple the multiple input control design into two steps:
system optimization and engine optimization (see Fig. 5). The
system optimization specifies the engine power demand. Then
the engine optimization controls the engine operation. The en-
gine optimal controller selects a precalculated optimal engine
speed based on the engine power command given by the system
optimal controller. This desired speed is then achieved by ma-
nipulating the electric machine MG1 by using the speed rela-
tionship imposed by the lever diagram. Depending on the torque
capacity and speed range of MG1, the desired engine speed may
not be achievable, or even if it is, may be achievable after a tran-
sient. The power surplus or deficit (difference between desired

(9)
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Fig. 6. SDP design process.

power and engine power) is then supplied by the other electric
machine MG2. This procedure can also be found in [6].

The engine optimization process explained above is engine-
centric. It maximizes engine efficiency for each required engine
power level. However, the system optimization, the process of
choosing a proper engine power level to increase the overall
vehicle efficiency, has not been explained. This control deci-
sion should be comprehensive and should fulfill the driving de-
mand, maintain proper battery SOC, and satisfy component im-
posed inequality constraints such as rotational speed and torque
limit of the electrical machines. Moreover, it is desirable that
the power management decision leads to certain optimality such
as maximizing fuel economy. Rule-based control can provide
guidance for improving fuel efficiency but cannot guarantee op-
timality in any rigorous sense.

In the following, two control algorithms are presented. The
first is an infinite horizon optimal policy, which minimizes fuel
consumption over an infinite horizon

(10)

The second approach is based on instantaneous optimization.
The control action is determined based on minimization of in-
stantaneous fuel consumption and the overall fuel consumption
becomes

(11)

IV. STOCHASTIC DYNAMIC PROGRAMMING

Lin et al. [19] proposed a SDP control approach for a parallel
hybrid vehicle. As shown in Fig. 6, this approach extracts an op-
timal control policy from a Markov chain driver model, based
on the power demand statistics of multiple driving cycles. This
approach is modified and applied to the power-split hybrid ve-
hicle as follows.

The objective of the SDP control algorithm is to find the op-
timal control policy that maps observed states SOC, vehicle
speed , and the instantaneous power demand to the control
decision , the engine power demand. Note only two deter-
ministic states, SOC and , are adopted here, which is different
from the three deterministic states explained in the modeling
section. This is to simplify the dimension of the model to reduce
the computation cost for the SDP. To do so, the engine speed is

Fig. 7. Example of power demand probability map.

mapped into the current engine power demand by assuming that
the engine operates on the predetermined curve, meaning, for
each engine power, the optimal engine speed can be calculated.
The third state, driving power demand is a random variable
with known probability density function. Determining proper
statistical characteristics of is not a science and depends on
engineering judgment and available information (e.g., updated
traffic and road condition ahead).

In this paper, the driving power demand is modeled to be gen-
erated from a stationary Markov chain. Four standard driving
cycles, WVUCITY, WVUSUB, WVUINTER, and UDDSHDV
(original data from ADVISOR 2002), were selected to represent
mixed city, suburban, and highway driving conditions. From
these driving cycles and vehicle parameters, the driving power

can be calculated as a function of vehicle speed . The ob-
served pair is further mapped onto a sequence of quan-
tized states . The transition probability could then be es-
timated by the maximum-likelihood estimator, which counts the
observation data as

if (12)

where is the number of times the transition from to
has occurred at vehicle speed state and
is the total event counts that has occurred at speed . If the
event count is zero (e.g., due to inadequate richness of the
driving cycles), the probabilities of those points are estimated
by the information from the points around them. Fig. 7 shows
an example probability map under a given speed.

Based on this stochastic Markov model, we formulated an
infinite horizon SDP. The optimal control policy is extracted by
minimizing the cost function , the expected cost under control
law , over an infinite horizon

(13)
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where

where the fuel consumption at each time step is to be min-
imized and battery is penalized with a penalty factor
when it is below the desired value . indicates the
resulting expected cost when the system starts at a given state
and follows the policy thereafter. is the discount
factor. It is determined to weight the expected cost. is the con-
trol signal obtained from the control policy . and are the
current states and the next states. is the transition prob-
ability between these two states. The optimization problem is
subject to a set of inequality constraints arising from compo-
nent speed, torque and SOC characteristics

(14)

These inequality constraints are implemented by assigning
large penalty to control decisions that violate these constraints.

The SDP problem is solved through a policy iteration algo-
rithm, which consists of a policy evaluation step and a policy
improvement step. This algorithm is solved iteratively until the
cost function converges. In the policy evaluation step, given
a desired power , starting with an initial policy , we calcu-
late the corresponding cost function . Then a new policy
is determined through the equation

(15)

After the new policy is obtained, we go back to the policy
evaluation step to update the cost function by using the new
policy. This process is repeated until converges within a se-
lected tolerance level. The control policy generated is time-in-
variant and causal and has the form of nonlinear full-state feed-
back laws. An example map is shown in Fig. 8, notice that the
accuracy is limited by the grid size on each state.

V. ECMS WITH KINEMATIC CONSTRAINS

The ECMS is an instantaneous optimization algorithm intro-
duced by Paganali [20]. The driving power demand is as-
sumed to be always fulfilled by the engine power and the
electrical machine power

(16)

When we are solving a power management problem for a hy-
brid vehicle, with the goal of minimizing fuel consumption, it is

Fig. 8. Example of optimized engine power map from SDP.

necessary to assign a cost for the electric machine power. Other-
wise, the optimization problem is not well posed. Given the fact
that the battery SOC needs to be maintained at a proper level,

is not “free” and can be assigned an equivalent fuel con-
sumption cost

(17)

where represents the fuel consumption of engine and
represents the equivalent fuel consumption of the elec-

tric machines, which can be calculated from

(18)

In (18), is the estimated engine fuel consumption con-
version factor. The average efficiency of battery, inverter, and
motor/generator are considered by: .
Using (17), an approximated equivalent fuel consumption is ob-
tained. The benefit of using this single conversion factor is that
the fuel consumption can be estimated regardless of the speed
and torque of the engine and the motor/generator. The draw-
back is that its accuracy is questionable when the driving cycle
changes.

Another major problem of (17) is that it does not include the
battery SOC and electric machine into consideration. To achieve
SOC regulation, a weighting factor (see Fig. 9) was sug-
gested in [20]. It sets the target SOC at around 0.6 and weighs
the SOC away from this target value such that the equilibrium
SOC is attractive.

The original ECMS algorithm proposed in [20] does not con-
sider kinematic constrains imposed by electric machines. Kine-
matic constraints are more important in power-split hybrids be-
cause of the CVT nature of the power-split device. For example,
from (5), by using parameters for the THS system, if the de-
sired engine power is 20 kW, then the optimal engine speed is

2333 r/min to achieve optimal efficiency. Due to the
MG1 speed limit of 6500 r/min, the vehicle speed must be higher
than 12.6 mi/h for the optimal engine speed to be realizable (as
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Fig. 9. SOC weighting factor f(soc) for the ECMS algorithm [18].

Fig. 10. Speed constraint calculation in THS.

shown in Fig. 10). At higher engine power demand, the optimal
engine speed can be even higher, and the unreachable set im-
posed by the kinematic constraint grows even larger.

Due to the kinematic constraint, the feasible engine power is a
function of power demand and vehicle speed [23]. In other
words, (17) is modified to

(19)

With this equivalent consumption cost function, given a
power demand , the optimal engine power can be searched
among all feasible values to achieve minimal weighted equiva-
lent fuel consumption. Fig. 11 shows the searching process for
the condition with 30 kW, , and 16 mi/h.
The fourth plot shows the combined equivalent fuel consump-
tion without considering the kinematic constraints. However,
with the kinematic constraints, the engine cannot operate in the
shadowed region shown in the fifth plot, the optimal solution is
hence on the boundary of the feasible region.

Repeat this process for all states, the calculated optimal en-
gine power map is determined offline for each vehicle speed,
one example is shown in Fig. 12.

VI. DYNAMIC PROGRAMMING ON THS
To evaluate the two control approaches introduced in the

previous sections, performance benchmarks will be obtained
from the dynamic programming (DP) [24] technique. DP is a
multi-stage decision-making process for dynamic systems. It
generates optimal solution backwards along a time horizon by
searching through all feasible discrete control actions for all the

Fig. 11. Optimal solution searching process for the ECMS algorithm.

Fig. 12. Example optimized engine power map from ECMS.

state grid points. This algorithm guarantees global optimality
up to the grid accuracy even under state and input constraints.

For the power-split hybrid vehicle studied in this paper, the
DP algorithm searches solutions for two inputs (engine torque
and MG1 torque), for two state variables: engine speed and bat-
tery SOC. The vehicle speed is not a free state variable to be
searched because it is specified by the driving cycle. Similarly,
if the cycle is to be followed by the power-train, only two input
torques need to be specified—the MG2 torque is no longer free
and can be calculated from

(20)
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TABLE II
SIMULATION TIME (EFFECT OF VECTORIZATION APPROACH)

The objective of the optimization problem is to minimize fuel
consumption while following the driving demand and to keep
the SOC within a reasonable range. The cost function is chosen
to be

(21)

The optimization is also subject to the inequality constraints
as shown in (14).

Because the DP search is exhaustive, it is computation inten-
sive. In this study, several techniques are applied to reduce the
computation load. First, the speed constraint can be examined
without running the simulation. For example, knowing the ve-
hicle speed and engine speed, MG1 speed can be calculated and
if it violates the constraint, it can be assessed a large penalty
and the simulation can be skipped. Second, SIMULINK allows
us to load the simulation once and run a group of cases together.
This is achieved through vectorizing the states and inputs. For
instance, if the simulation model is loaded with an SOC vector
[0.4:0.003:0.7], and an engine throttle vector [0:0.025:1], and
specified scalar value of other states and inputs, SIMULINK ac-
tually takes in a matrix of cases, and all scenarios specified by
the matrix can be simulated in one function call. Table II shows
the comparison of computation time requirement between the
two methods. It can be seen that the computation time is re-
duced by a factor of 300. Third, to further accelerate simula-
tions, the SIMULINK model can be converted into script (.m)
file. When all the simulations for calculating transition table are
made in an m-file, without loading the SIMULINK model from
the program, it further reduces the computation time by a factor
of 10. With the help of all these techniques, the transition table
computation for the UDDS driving cycle which took days was
generated in about three hours on a desktop PC.

VII. RESULT AND DISCUSSION

Simulations of the same vehicle model with SDP and ECMS
controllers are conducted under various driving cycles to eval-
uate the control performances. The effect of mismatched SOC
at the beginning and end of the cycle is compensated for by con-
ducting several simulations with different initial values of SOC.
As shown in Fig. 13, the fuel consumption changes monotoni-
cally and approximately linearly with the SOC difference. The
fuel efficiency with zero SOC variation can then be calculated
by interpolation.

Fig. 13. Relationship between fuel consumption and change in battery.

TABLE III
FUEL ECONOMY COMPARISON BETWEEN DIFFERENT CONTROL ALGORITHMS

The SOC-corrected fuel economy results of the three con-
trol algorithms are presented in Table III. The results using the
rule-based control algorithm, which is an approximation of the
control law used in the commercial THS vehicle, are also re-
ported for comparison. Both the SDP and ECMS algorithms
show significant fuel economy improvement and both are close
to the optimal results produced by DP. Results in Table III seem
to validate that the SDP approach and the ECMS approach are
near-optimal and are good candidates for developing control al-
gorithms for implementation.

Improved overall fuel efficiency can be obtained only with
improved engine efficiency. To examine the instantaneous en-
gine performance, the engine operating points for both SDP
and ECMS approaches are shown in the engine brake specific
fuel consumption (BSFC) maps in Fig. 14. The total numbers
of visitations are highlighted in different colors. The contours
of equi-BSFC lines show the relative fuel efficiency of the op-
erating points. In addition, the most efficient points for given
engine power are shown by the red dashed line. Close examina-
tion of this figure confirms the engine operates very close to the
theoretical optimum points, probably through utilization of the
electric machines.

In spite of the similarities, the distributions of the engine op-
erating points shown in Fig. 14 also have noticeable differences.
The engine power traces, commanded by DP, SDP, and ECMS
algorithms during a vehicle launch are plotted in Fig. 15. It can
be seen that the engine power commanded by the ECMS oscil-
lates continuously. This is partly due to the fact that the best
engine efficiency is obtained with relatively high engine power
(as shown in Fig. 14). When the power demand is low, the in-
stantaneous optimization algorithm tends to move the engine
toward a more efficient point, which generates more power than
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Fig. 14. Engine operating points densities for both SDP and ECMS approaches
in UDDS cycle. (Sampling: 1 Hz.)

demanded. The extra power delivered is balanced by the elec-
trical path and the excessive energy is stored in the battery. This
saved energy is then used to assist engine operation, allowing
the engine to generate less power than the vehicle load required.
This results in the widely varying engine power, which is also
responsible for the scattered engine power generation shown in
Fig. 14. The engine power generated by the SDP algorithm, in
comparison, is much smoother. Since the SDP strategy is ob-
tained based on infinite-horizon optimization, the future is taken
into consideration, albeit in a stochastic way. Due to the longer
optimization horizon, the SDP results do not react to instanta-
neous condition excessively.

The DP power flow presented in Fig. 15 is used to eval-
uate the power decisions made by the two control strategies. It
shows an attempt similar to ECMS during the vehicle launch
when the vehicle speed is low, but is much smoother for the
rest of the sample cycle. The SDP approach produces smoother

Fig. 15. Engine power by DP, SDP, and ECMS algorithms during a vehicle
launch.

power compared with ECMS which is desirable from the driv-
ability viewpoint. The fuel consumptions of these two algo-
rithms, shown in Table III, however, are very similar.

The three control strategies discussed in this paper can be ex-
tended to study more complicated configurations with extended
control design objectives. Emission, as an example, is another
important concern for hybrid vehicle control. To add the emis-
sion constraints in the control, in DP or SDP, the cost function
can be changed to have weighted emission associated terms. By
tuning the weighting factors, the compromise between fuel con-
sumption and emission can be achieved [25]. In the ECMS ap-
proach, equivalent fuel consumption cost regarding to the emis-
sion can be estimated to penalize the engine usage. Another pop-
ular power-split system under development is the dual-mode
Alison Hybrid System from GM [26]. It utilized clutches to
shift between different operating modes to achieve better effi-
ciency. As for its optimal control design, DP or SDP need to
add the operating gear mode as another input. The addition of
another search dimension may result of heavy computational
burden due to the “curse of dimension” from these approaches.
In ECMS, the equivalent fuel consumption calculated in dif-
ferent modes can be compared to command the engine power.
Frequent shifting should be prohibited by adding extra con-
straints between the gears.

VIII. CONCLUSION

A dynamic model for power-split hybrid vehicles is devel-
oped in this paper. This hybrid vehicle uses a single planetary
gear and has a configuration similar to the THS. This model
uses published mechanical and electric parameters from THS
and THS II and its behavior was verified to be qualitatively sim-
ilar to the experimental results based on Toyota Prius.
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