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Abstract

While health affects economic development and wellbeing through a variety of path-
ways, one commonly suggested mechanism is a “horizon” channel in which increased
longevity induces additional education. A recent literature devotes much attention to
how much education responds to increasing longevity, while this study asks instead
what impact this specific channel has on wellbeing (welfare). I note that death is
like a tax on human-capital investments, which suggests the use of a standard public-
economics tool: triangles. I construct estimates of the triangle gain if education adjusts
to lower adult mortality. Even for implausibly large responses of education to survival
differences, almost all of today’s low-human-development countries, if switched instan-
taneously to Japan’s survival curve, would place a value on this channel of less than
15% of income. Calibrating the model with well-identified micro- and cohort-level stud-
ies, I find that the horizon triangle for the typical low-income country is instead less
than a percent of lifetime income. Gains from increased survival in the 20th-century
are similarly sized.
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1 Introduction

In this world nothing can be said to be certain, except death and taxes.

(Benjamin Franklin, 1789)

In addition to their certainty, death and taxes have something else in common. Death acts

like a tax on educational investments. The costs of education—both the direct cost of tuition,

fees, et cetera, and the opportunity cost of foregone earnings—are incurred while one is in

school. In contrast, the benefits of education accrue in the future through higher earnings

after graduating. When deciding whether to continue in school, the student should take the

costs for granted, but the expected value of benefits is a function of future survival. This

argues for a “horizon mechanism” by which lower adult mortality can lead to more education,

which in turn can lead to higher income (Preston, 1980, Schultz, 1981, inter alia).

Indeed, life expectancy, education, and income per capita are strongly correlated both

across countries and within countries along their paths of development. A question arises

as to what are the various causal channels that give rise to these correlations, and indeed

whether health improvements might represent high-return investments. (See Strauss and

Thomas, 1998, Ashraf, Lester, and Weil, 2008, Behrman, 2009, and Bleakley, 2010a, for

reviews.) The horizon mechanism is potentially one such channel, but how large is its

contribution to welfare differences between rich and poor countries (or between unhealthy

and healthy time periods)?

Much of the existing work on the horizon mechanism has focused on how much (or indeed

if) longevity has affected education. One strand of this literature, summarized broadly, uses

cross-sectional and/or time-series evidence combined with models using specific production

technologies and preferences to estimate this magnitude; see Meltzer (1992), de la Croix and

Licandro (1999), Kalemli-Ozcan, Ryder, and Weil (2000), Chakraborty (2004), Cervellati and

Sunde (2005), Soares (2005), Hazan and Zoabi (2006), Lorensten, McMillan, and Wacziarg

(2008), Hazan (2009, 2012), and Hansen and Lønstrup (2012). Another strand uses natural

experiments—plausibly exogenous changes in mortality in this case—to estimate the response

of education. Studies by Jayachandran and Lleras-Muney (2009), Fortson (2011), Dorsey,
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Oster, and Shoulson (2013), Hansen (2013), Stoler and Meltzer (2013), and Baranov and

Kohler (2017) are noteworthy. To the extent that income gains are computed in these

studies, however, they are specific to the model or based on ad hoc extrapolations using

Mincer returns to schooling. Almost 20 studies are cited in this paragraph, with most of

them published in top general-interest and field journals. With such manifest interest from

the profession, one might surmise that the horizon mechanism, if true, would be associated

with significant gains in wellbeing. However, I use a standard and transparent economic

tool, combined with demographic and education data, to show that the horizon mechanism

plays at best a small role in differences in economic welfare.

The present study adds to this literature by first noting the similarity between death and

taxes. This suggests the use of a time-honored and transparent tool from public economics:

triangles. Such triangles, which are familiar concepts in introductory microeconomics, are a

second-order approximation to the efficiency loss caused by a tax that distorts behavior. An

advantage of the triangle-based method is that it assumes very little about technology and

preferences. Indeed, it only requires is that we evaluate the gains local to an interior solution

for the optimal choices (and even this assumption can be relaxed in this application).

We can construct triangles for the horizon mechanism, if we think of the Grim Reaper

as imposing a human-capital tax in the form of mortality. Consider a standard model of

schooling; the optimum is determined by the intersection of marginal benefits (MB) and

marginal costs (MC). Figure 1 illustrates such a model as well as the horizon mechanism. If

adult mortality is lower, the marginal benefits of school, as perceived from youth, are higher,

thus generating an upward shift of marginal benefits from MB0 to MB1, for example. This

moves along the MC curve and optimal schooling goes from s0 to s1. Notice that expected

lifetime income would rise even if we forced this person to choose s0. But, because the MB

at s0 rises from a to b, there is an additional gain from increasing schooling. Yet diminishing

marginal returns pinch off the gap between MB1 and MC, which intersect at s1. The gain

from this reoptimization is the triangle (labeled T$). The remainder of this study is an

attempt to gauge its size. (See Section 3 for description of the model and formal derivation
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Figure 1: Graphical model of schooling and the triangle
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Notes: this figure presents a simple graphical model of the schooling decision under high- and low-working-age mortality. The
y axis measures present discounted value (PDV) and the x axis measures total time spent in (i.e., years of) school. MC denotes
marginal costs of education. MB0 measures the present value of marginal benefits from obtaining more schooling in the high-
mortality scenario, while MB1 does so in the low-mortality scenario. As shown in the text, a decrease in working-age mortality
causes a shift up in the marginal-benefits curve; e.g., from a to b at s0. Thus MB1 intersects with MC at a higher time in
school than did MB0. The area between MB1 and MC between s0 and s1 is the triangle (T$) of gains from reallocating from
s0 to s1. While the curves shown are linear, the results in the study do not require this, although they do require that the
response of school to MB have a finite elasticity.

of the triangle.)

A thought experiment illustrates the methodology and shows that the gains from this

horizon mechanism are likely small. Imagine taking a particularly unhealthy country to the

global frontier in life expectancy. Suppose further that, by the horizon mechanism alone,

this change also causes the country to reach the global frontier in education. This rather

implausible scenario would result in an approximately 40% increase in life expectancy at age

15, and perhaps 10 additional years of schooling. (The data are presented in Section 2.) The

triangle would be the product of these two numbers, divided by two because it is a triangle,

and multiplied by the Mincer return to schooling (≈ 0.1) so as to be in units of lifetime

income (see Section 3). These numbers multiply out to a gain of 1
2
× 0.4× 0.1× 10, or 20%

of lifetime income. This triangle is a slack upper bound, for two reasons. First, the change

in marginal benefits is overstated because life expectancy omits interest-rate discounting

and includes mortality reductions well past working ages. Second, it is likely that many

factors impede education in developing economies besides just this horizon mechanism, and
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therefore the actual change in schooling would be less. Put another way, the elasticity of

school to longevity implied by this calculation would be quite high (≈ 5). In contrast,

the cross-country relationship implies an elasticity of around 2.25, which itself is likely an

overestimate. Indeed, recent, well-designed studies put this elasticity below one. The smaller

response of education to longevity coupled with discounting brings the triangle to below 2%.

A two-percent gain is, of course, better than nothing, but is dwarfed by the gap in income

per capita across countries or, for example, the increase in wages possible for many after a

two-hour flight from Port-au-Prince to Miami. (Upper bounds on the triangle are presented

in Section 5, and the triangles computed using calibrated elasticities are seen in Section 6.)

The essential small-ness of this triangle is not sensitive to various assumptions that went

into this calculation, as is shown in Section 7. There I present results for a variety of interest

rates, truncation horizons (e.g., retirement), reference cohorts, and ages at which to anchor

the survival curve. Note further that the triangle calculation is quite transparent. The

Mincer coefficient and schooling elasticity both enter linearly and the proportional change

in survival/discounting enters as a square. (The latter two features should be familiar;

Harberger triangles are linear in elasticity and squared in the tax rate.) I also show, in

Sections 7.3 and 7.4, that this triangle is small even allowing for misallocation, be it from

rationing (i.e., constraints), or from subsidies and externalities.

In Section 8, I also compute historical horizon triangles in a subset of countries with

early-20th-century life tables. The first example is the US, for which the upper bound gain

from the horizon mechanism is 1–3% of lifetime income (depending on discounting) and a

unit-elastic schooling response would have generated a triangle of less than 1%. In contrast,

the improved survival curve in India from 1933 to 2010 is associated with a triangle of no

more than 21%, and more likely below 3%. (I obtain similar results for Egypt, Japan, and

China.)

The triangles approximated in this study are dwarfed by two types of rectangles, as

shown in Section 9. The first is the proportional increase in discounted life expectancy. This

measures the potential increase in lifetime labor input, holding schooling fixed. (There may

5



nevertheless be other factors that cause labor input to decline along the path of development;

see Hazan, 2009, and Bloom, Canning, and Moore, 2014, for some historical evidence on this

point.) Secondly, the triangles are a factor of 5 to 20 times smaller than a naive calculation

that simply multiplies the change in schooling times the Mincer return. This arises because

the Mincer return is not an internal rate of return on the investment but rather a later-life

footprint of an earlier choice of time in school. At the point of deciding whether to continue

in school, later-life benefits should be compared with current costs. This is what makes the

triangle a more appropriate object than the ‘rectangular’ number of extra schooling times

the Mincer return.

I then offer conclusions in Section 10. This study is relevant on several dimensions. First,

this analysis adds to our understanding of how improvements in health can contribute to

economic wellbeing, with a focus on a channel that has received significant attention on the

quantity side, but little on the welfare dimension. Second, because this study demonstrates

how triangles (and rectangles) can measure the benefits of changes that work through educa-

tion, it can serve as a model for further applied welfare analysis of educational interventions,

to complement existing ad hoc approaches.

2 Data

The study combines data on educational attainment and mortality across countries. While

there is also heterogeneity in longevity and education within countries, this study focuses on

the differences across countries. Information on educational attainment by country and five-

year cohort is available from Barro and Lee (2013). These data are built from a combination

of survey microdata and published flows of school enrollment and/or attendance over time.

For a broad set of countries, cohorts born as early as the 1930s are available, but I focus on

those born somewhat later for reasons explained in a moment. Data on life expectancy as

well as full life tables are available for recent decades from the World Health Organization’s

(WHO) Global Health Observatory (2016). The main analysis is for males, but triangles are

also small for females (see Section 7, Table 1).
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Figure 2: Timeline for Measurement
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Notes: this figure describes the timeline for measurement of longevity and education. The reference cohort was born in 1976-80.
Health is measured with a period life table computed for circa 1990 (World Health Organization, 2016), and thus the reference
cohort would be 10-15 years old at that time. Years of schooling are from the Barro and Lee (2013) database and refer to the
year 2010. The reference cohort would be 30-35 years old at that time and thus very likely to have completed schooling.

For the main analysis, I align the education and life-table data based on several con-

siderations. The relevant timeline is seen in Figure 2. The latest wave of education data

refers to the year 2010. I focus on the cohort of ages 30-34 at that time to get the most

recent cohort that has completed its educational investments. This puts them as being born

in the late 1970s. (Below I show these results are not sensitive to using slightly older or

slightly younger cohorts.) Someone from a low-income country would be most likely making

the school-leaving decision in their teens, and the life table closest in time to such a deci-

sion comes from 1990. These data cover a nearly complete set of contemporary countries.

(For the analysis over the course of the 20th century in a subset of countries, I present the

additional data sources and the analysis in Section 8.)

A few other aspects of the life-table data bear mentioning. First, note that these are

period, not cohort, life tables.1 Life expectancies are generally on the rise, and therefore

the period life tables will tend to understate marginal benefits of schooling, especially in

unhealthy countries. Second, the demographic variable of interest is the survival curve,

typically denoted by demographers as `(t), which measures the fraction of the birth cohort

alive at age t. Below this is renormalized to a time closer to the school-leaving age (s).

Third, the WHO survival curves are specified at one year of age, and then at multiples of

1Cohort life tables will not be available for some time, as large fractions of those born in the late 1970s
remain alive in all of the studied countries.
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five years up to 100. I convert these to an annual frequency with a linear interpolation of

the natural logarithm of the survival curve.2

Figure 3 displays a scatterplot of life expectancy at age 15 and educational attainment

for the reference cohort. Observations are labeled with World Bank country codes. These

variables, denoted below as e15 and s, respectively, are strongly correlated. Note also the

large range on both axes. There is close to a factor of five difference in s across countries,

with some countries below three and others almost at 15. The measure of e15 ranges from

around 40 to above 60. Taking this number literally, we would expect the average 15-year-old

in an unhealthy country to be dead before an age at which a person in a rich country would

typically retire. In contrast, with an e15 of 60, an average 15-year-old in a healthy country

would expect to live well past typical working ages. The country with the highest e15 is

Japan (JPN), although a number of countries are close on its heels with expectations of an

additional 60+ years of life after age 15, even in a few countries with comparatively low

education such as Costa Rica and Qatar. The country with the highest level of education in

the Barro/Lee data is South Korea (KOR), with close to 15 years of schooling. Again, there

are a number of countries not too far behind.

The lowest outcomes for life expectancy merit discussion. Circa 1990, some of these

countries were in the grip of what we now know to be transitory shocks. For example,

Zambia (ZMB) and Uganda (UGA) were in the worst years of the HIV/AIDS epidemic.

Further, Liberia and Sierra Leone (LBR and SLE, respectively) were in the midst of civil

wars. The presence of transitory factors in measures of survival will tend to overstate the

differences in marginal benefits of schooling across countries insofar as it is the low-human-

development countries that are more afflicted by such transitory negative shocks.3 This will

artificially inflate the size of triangles computed below.

2The so-interpolated survival curves are plotted for each country in Appendix Figure F. A linear and a
bi-cubic interpolation of the log survival curve are highly correlated, with ρ > 0.998).

3Another point to note is that the 1990 life table actually draws on averages of mortality data from
surrounding years, which explains why the civil war in Sierra Leone, which started in approximately 1991,
would be influencing the 1990 period life table.
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Figure 3: Years of Schooling versus Life Expectancy at Age 15
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Notes: this figure contains a scatterplot of years of schooling (s) versus years of life expectancy at age 15 (e15) for males in
the sample of countries. Observations are labeled with World Bank country codes. Life expectancy is computed from a period
life table measured circa 1990 (World Health Organization, Global Health Observatory, 2016). Years of schooling are from the
Barro and Lee (2013) database and refer to the cohort born in 1976-80 and observed in 2010. (See Appendix Figure H for a
log-log scatterplot of these data.)

3 Model

3.1 Preliminaries

In this section, I present a stylized model of the education decision and use it to motivate

a triangle as an approximate measure of the efficiency gains from the horizon mechanism.

The model is a simplified version of Ben-Porath (1967) and Mincer (1958), but augmented

to allow for a general survival curve. It imagines an agent born at t = 0, in school until

period s, and working in the labor market thenceforth. The probability of his survival to
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period t is `(t). By definition, `(0) = 1, `′(t) ≤ 0, and limt→∞ `(t) = 0. The interest rate is

r and the growth rate of the economy is g.4 Let the flow of direct costs of the sth year of

school be c(s), and let the wage, if he is working, be f(s). For analytical convenience, I use

Jacob Mincer’s (1958) assumption/result of multiplicative separability of the wage from the

discount term. (I abstract here from retirement and from post-school learning, although the

latter might be proxied by g. These aspects are addressed in Section 7 below.)

Viewed from birth, the expected lifetime income, net of direct costs, is as follows:

Y ≡
∫ ∞
s

f(s)e−(r−g)t`(t)dt−
∫ s

0

c(t)e−(r−g)t`(t)dt (1)

The first term integrates income over the working lifetime and the second term integrates

direct costs up to the point of leaving school.5 The derivative of this object with respect to

time in school is

−f(s)e−(r−g)s`(s)− c(s)e−(r−g)s`(s) +

∫ ∞
s

f ′(s)e−(r−g)t`(t)dt

The first term arises from moving the lower limit of integration. That is, slightly more time

in school means slightly less time working. These foregone wages represent the opportunity

cost of school. The second term gives us the additional direct costs incurred from spending

slightly more time in school. Finally, the third term integrates the future discounted wage

increases from that extra bit of schooling. The first two terms are marginal costs, and the

second third term is the marginal benefit. If we re-evaluate the discounting (both financial

4These are treated as exogenous throughout the analysis. A fixed r can be justified by assuming the
the country is a price-taker in international capital markets. But might the interest rate on student loans
itself adjust to mortality risk? Theoretically, yes, however two factors mitigate this concern. First, typically
student debts have a maturity shorter than the horizon over which survival gains will appear in the analysis
below. Second, student loans (of any type) are still quite unusual in low-income countries. Spillovers from
human capital, which might influence the growth of the economy on a transition path to higher average
education, are discussed in Section 7.4. Finally, note the use of a constant interest rate. If instead the yield
curve sloped up (ṙ > 0), then future benefits of increased survival would be discounted more heavily and
both rectangles and triangles would be smaller than suggested below.

5While this exercise is cast as maximizing the monetary value (income net of costs), it would be simple
to include psychic benefits and/or costs in this framework. I do not require direct observation of c(s),
which might well include non-pecuniary costs. Similarly, f ′(s) could be construed to include non-pecuniary
benefits, although doing so would require increasing the calibrated β.
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and demographic) from a viewpoint date of s, marginal costs are MC = f(s) + c(s) and

marginal benefits are

MB =

∫ ∞
s

f ′(s)e−(r−g)(t−s) `(t)

`(s)
dt

Notice that, conditional on survival up to s, the discounting only affects marginal benefits.6

Further, for a fixed s, f ′(s) is a constant and can thus be factored out of the integral.

Thus, MB reduces to f ′(s)∆(s) in which ∆(s) ≡
∫∞
s
e−(r−g)(t−s) `(t)

`(s)
dt is a factor that inflates

f ′(s) to account for the integration of future discounted flows. For zero mortality, for exam-

ple, ∆(s) becomes 1/(r−g), the familiar factor that converts a constant flow over an infinite

horizon to present discounted value. For non-zero mortality, `(t)
`(s)

< 1, which pushes ∆ below

1/(r − g).

The model lends itself naturally to graphical analysis, such as seen in Figure 1. The

y-axis contains the present discounted value of money and the x-axis is time in school,

s. The model can be distilled into two curves: the marginal benefit and marginal cost of

time in school (MB and MC, respectively). Marginal direct costs typically increase with

s, although this is not required. Opportunity costs almost certainly increase with s, for

two reasons. First, even holding schooling fixed, children become more productive as they

mature. Second, if MB > 0, this means that the opportunity wage is rising with s. Marginal

benefits are positive if, as one would hope, time in school makes a student more productive

in the labor market. Yet the marginal benefits may decline (at least relative to marginal

costs) as students attend more school.7 At the optimal level of schooling, MB = MC, which

6The triangles below will be defined in period-s units, but one could also re-value them in period-zero
units. Two points are worth mentioning here. One, the triangles will have a lower value viewed from t = 0
because of financial discounting and because not all newborns will survive to period s. Two, while the
analysis below contemplates decreases in mortality in t > s, these are, in the cross-country comparison,
typically accompanied by decreases in mortality at younger ages as well. Lower mortality in t < s would
mean that a triangle viewed at period s would appear larger when viewed from t = 0. The triangle in
period-s units need not change because it is conditional on surviving to s. (It would be strange to consider
a period-s schooling decision if the person had died before period s.)

7Formally, declining marginal benefits are not required to obtain an interior solution. Rather, they must
rise less quickly than marginal costs; which is required to satisfy the Second-Order Condition (SOC) for
optimization. The graph in Figure 1 displays the case of declining MB, but the results of the study carry
through as long as the SOC holds.
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is the first-order condition or FOC.8 The FOC, cast in period-s units, can also be written as

f ′(s)∆(s) = f(s) + c(s). (2)

As survival rates increase, future benefits are less heavily discounted. This causes a shift

upwards in the marginal benefits curve, say from MB0 to MB1. Because the marginal costs

are in the present, this change in survival does not affect the MC curve, and so the new

optimal schooling moves along MC from s0 to s1.

3.2 Derivation of the triangle using the graph

The triangle is seen when comparing the curves and optima for high and low mortality. At

the old optimum (s0), the less-discounted marginal benefits are greater than marginal cost

by an amount (b−a) in Figure 1. This gap forms the left edge of the triangle. This gap also

is what induces greater investment in education. However, the gap closes as s increases, with

the two curves converging again at a new optimum, s1. The two curves coming together to

meet at s1 form the other two edges of this triangle.

The triangle of gains is thus seen in the graph between s0 and s1 on the horizontal axis

and a and b on the vertical. Let ∆0 and ∆1 be the discount/summation factors that hold

at s0 in the low- and high-survival environments, respectively. This means that, in Figure

1, a = f ′(s0)∆0 and b = f ′(s0)∆1. The triangle, being 1
2
× height × base, is therefore

T$ =
1

2
(∆1 −∆0) f ′(s0) (s1 − s0) ,

in dollars. I find it easier to think in proportions of lifetime income, which is ∆0 f(s0) in the

low-survival (high-mortality) scenario. The so-normalized triangle is

T =
1

2

(
∆1 −∆0

∆0

)
f ′(s0)

f(s0)
(s1 − s0) . (3)

8This rules out a corner solution at zero. Primary-school attendance rates have grown markedly in low-
income countries during the past half century, and the vast majority of school-aged children attend at least
some school.
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What are the components of this equation? The 1
2

is there because it is a triangle, not a

rectangle. The
(

∆1−∆0

∆0

)
term measures the proportional change in the discount/summation

factor for future income flows. This change is positive if there is lower working-age mortality

for the “1” than for the “0” case. In the sections that follow, I develop measures of this using

data on survival curves. The (s1 − s0) term reflects the increase in schooling caused by the

longer horizon. Below, I provide use bounds and estimates of this response (in Sections 5

and 6, respectively). Finally the, (f ′/f) term measures the proportional increase in wages

from a small change in schooling. Another way to write this would be the d ln f(s)
ds

, which

is what Mincer’s β is meant to measure in the oft-seen regression of log wages on years

of schooling. There is no shortage of cross-sectional estimates for this parameter, both in

developed and developing countries. Psacharopolous and Patrinos (2002) and Montenegro

and Patrinos (2014) provide accessible and thorough surveys of estimated Mincer βs for nu-

merous countries and time periods. Commonly, recent estimates for Mincer’s β are close to

10%. Although higher and lower estimates are found in the literature, they are generally not

much higher than 15% and not much lower than 5%. One challenge is that the derivative

represents a causal statement, while the typical coefficient comes from a conditional correla-

tion. I will use the 10% number as a default, and the sensitivity of the triangle to this choice

is discussed in Section 7 below.

The triangle measures the gains from the reallocation (from s0 to s1) in the lower-

mortality environment. Intuitively, the triangle is collecting all of the gaps between marginal

benefit and cost that accrue along the way to adjusting to the new s. Thus it provides a

measure of the gain in productive efficiency if reallocating from s0 to s1, when exposed to

∆1(s) instead of ∆0(s).

Triangles are a time-honored technique, promoted extensively by Arnold Harberger, for

computing the change in surplus associated with a distortion. (See Harberger, 1971, and

Hines, 1999, for detailed reviews.) The triangle computation provides a quick and trans-

parent method for approximating losses in surplus, yet its use has been displaced somewhat

in recent decades by methods for computing so-called exact surplus (such as work building
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on Hausman, 1981). Such methods are exact if the model itself is exactly right, otherwise

they should be viewed as approximations. An advantage of the triangles approach is that it

does not require specification of the global properties of production functions (in this case

the education production function, in addition to whatever technology firms use when they

employ workers of various skill levels), but rather relies on generic properties of the decision

problem at or near the optimum.9

3.3 The triangle as a second-order Taylor approximation

The triangle is derived formally as a second-order Taylor approximation to the objective

function. Let lifetime income, net of costs, be Y (s(∆),∆(s)), as in equation 1. I consider its

properties locally around s0 and ∆0(s0). Subscripts denote derivatives in this expression of

the second-order Taylor approximation for Y :

Ysds+ Y∆d∆ +
1

2

[
Yss(ds)

2 + 2Ys∆(ds)(d∆) + Y∆∆(d∆)2
]

(4)

The first term is zero, by the FOC. The second term is the rectangle of gains, call it R$,

from increasing survival but holding s fixed. The remaining terms comprise the triangle, as

measured in dollars. This can also be expressed as

T$ =
1

2

[
Yss

(
ds

d∆

)2

+ 2Ys∆

(
ds

d∆

)
+ Y∆∆

]
(d∆)2

The components of T$ are simple to derive. For the remainder of the problem, I take the

perspective of someone alive and in school at s0 (rather than at 0). I therefore recast ∆(s)

9A distinct issue in using triangles is how to deal with income effects on the consumer’s demand curve
(Hines, 1999). This issue is not relevant here because the choice of time in school is about productive
efficiency (maximizing lifetime income, net of costs, w.r.t. s). At the FOC for s, the consumer’s consumption
decision can be separated from the education decision. How? Consider a consumption problem with a
constrained decision for education. A shadow price for the education decision would appear in the FOC’s
for the consumption decisions. As the constrained value for years of education approaches the unconstrained
optimum, those shadow prices go to zero, and thus disappear from the FOC. (See Section 7.3 for discussion
of the problem if the FOC does not hold.)
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as

∆(s) =

∫ ∞
s

e−(r−g)(t−s0) `(t)

`(s0)
dt

When taking a derivative with respect to s, the lower limit of the integral moves, but not

the reference date. As such,

d∆

ds
= −e−(r−g)(s0−s0) `(s0)

`(s0)
+ 0

which equals -1. This reflects the assumption that the only mechanism by which time in

school affects time worked is through the opportunity cost of time while a student. (See

Appendix A for the derivation with d∆
ds
6= −1 and Section 7.2 for a quantitative evaluation.)

Lifetime income, net of costs, can be re-written as

Y (s,∆) = f(s)∆(s) +

∫ s

0

c(t)e−(r−g)(t−s0)dt.

The derivative of Y w.r.t. s is Ys = f ′∆− (f + c). The remaining derivatives are as follows:

Yss = f ′′∆− (2f ′+ c′) ; Ys∆ = f ′ ; Y∆∆ = 0. Finally, full differentiation of the FOC (Ys = 0)

yields
ds

d∆
= f ′/(2f ′ + c′ − f ′′∆) = −f ′/Yss. (5)

Substituting these expressions into T$ yields the following:

T$ =
1

2

[
(Yss)

(
f ′

−Yss

)2

+ 2(f ′)

(
f ′

−Yss

)
+ 0

]
(d∆)2 =

1

2
f ′
ds

d∆
(d∆)2. (6)

I then normalize by lifetime income, f(s0)∆0(s0), to obtain T , which can be written as

T =
1

2

(
d∆

∆

)
βds, (7)

which is the infinitesimal-change version of equation 3 above.
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Figure 4: Survival Curve (Probability), Conditional on Surviving to Age 15
(
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Notes: this figure displays survival curves for select countries. Data and computation are re-normalized to be conditional on
surviving to age 15. The survival curves are drawn from the World Health Organization’s Global Health Observatory (2016)
and use the circa-1990 life table.

4 Constructing ∆

∆(s) accumulates the flows of future discounted income, for each possible s. It requires two

additional inputs: an interest rate (net of wage growth) for financial discounting and a life

table for computing survival probabilities. I use a net interest rate, r− g, of 2% as a default,

although I explore the sensitivity of the calculations to different values in Section 7. The

survival curve is normalized to a base age, usually 15 years. Examples from four countries—

Mozambique, Mali, India, and Japan—are seen in Figure 4. The highest curve, both in the

graph and in the world, belongs to Japan, where a 15-year-old has an almost 50% probability

of reaching age 80. The middle curves belong to Mali and India, for whom survival to age 80

is below 20%, conditional on being alive at age 15. The lowest curve, the solid line, belongs

to Mozambique. According to this curve, a bare majority of 15-year-olds reach age 60 and

less than 15% reach 80 years. The largest gaps between the Japanese and the other curves

tend to occur at relatively older ages, in one’s 70s, for example. There are, nevertheless,

significant gaps that emerge at working ages.

It is instructive to compare the life expectancies and ∆’s. I use the extreme examples from

above: Mozambique versus Japan. According to the circa-1990 life table, Mozambique has
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an e15 of a bit more than 43 years, while Japan has a number closer to 62. (Life expectancies

are defined from the perspective of the starting age, which means the expected age of death is

15+e15.) For an r−g = 0, ∆ is the same as e15. However, even for a relatively small interest-

rate like 1%, the ∆’s drop by approximately one quarter. The discounted sum of life years

would be closer to 34 for Mozambique and 46 for Japan. For a 2% interest rate, the numbers

drop further to approximately 27 and 35 for Mozambique and Japan, respectively, and then

to 19 and 22 if the interest-rate is as high as 4%. That being said, the roughly similar shapes

of the survival curves mean that discounting principally compresses the differences between

countries rather than causing great reshuffling amongst countries. Consider, for example,

the regression of a ∆ using (r − g) = 2% on e15, for N = 143 countries.

∆i = .408 e15,i + 9.84 + εi

(.003) + (0.19)

Yet the R2 for this regression is 0.990. Even for a net interest rate of 20%, the R2 remains

higher than 75%, while the regression coefficient drops to less than .01.

5 Upper bound on the triangle

This section presents what is most likely an upper bound on the triangle associated with the

horizon mechanism. I construct this bound (call it T̄ ) using easily available numbers and a

bare minimum of computation.

I start with a simple thought experiment: imagine taking unhealthy countries to the

global frontier of health by giving them Japan’s survival curve. This is, of course, an extreme

exercise. (Consider the vast academic literature that puzzles over why a rich country like the

US does not have a more Japan-like life table.) Nevertheless, this assumption gives us the

height of a triangle. For starters, I use life expectancy at age 15 as a proxy. This generates an

overstatement of the true gain because it ignores the interest-rate discounting, which would

down-weight gains in later life. Alternatively, I use my computed ∆, evaluated at age 15 for
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a net interest rate of 2%.

Equation 3 above also uses the base of the triangle: (s1− s0), which measures the causal

response of schooling to increased ∆. Were it not for the causal nature of this term, it would

be easy to estimate with the observed differences in schooling over time and/or across space.

But such differences almost certainly arise because of additional factors. That is, differences

in the labor market, the school system, readiness to learn of the children, etc., would all

contribute to higher school attendance even in the absence of a better survival curve. While

this complicates obtaining a precise estimate of the model’s (s1 − s0), it does mean that

the observed differences are likely an upper bound for the causal contribution of this horizon

mechanism to the increase in schooling. For the reference cohort, in the Barro-Lee data, the

country with the highest schooling is South Korea, at 14.6 years. I assume that sKorea ≥ s1,

which implies that T̄ ≥ T .

Values of T̄ are shown in Figure 5. The length of each country’s vertical line denotes

the size of the triangle computed with e15. Because this exercise takes all countries to the

global frontier in s and ∆, the values of T̄ are strictly positive, with the exception of Japan

and Korea, who are already at one of the frontiers. Black diamonds indicate T̄ using ∆ for

r−g = 2%. (The two measures of T̄ have a correlation coefficient in excess of 0.99.) Country

names appear at the end of each line.

The vast majority of T̄ are quite small. The median upper bound using e15 is slightly

above three percent. (Countries with T̄e15 < 2.5% were excluded to make the figure legible.)

Over 90% of countries have a T̄e15 below 15%. The largest triangle is 0.26, that of Mozam-

bique. When using a modest, 2% discount rate, the upper bound on the triangle drops,

typically by 40% of the value computed with e15. Indeed, more than 9 out of 10 of countries

have T̄∆,r−g=.02 below 10%. Further, only three countries have values above 15%: Liberia,

Sierra Leone, and Mozambique, all countries for which ∆ was temporarily low circa 1990.
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6 Calibrate schooling response with elasticities

In this section, I use estimates of the response of schooling to ∆ and find much smaller

estimates of the triangle. The upper-bound exercise in the previous section, which imagined

taking countries to the global frontier in both health and education, implicitly used very

high elasticities for some countries, especially the poorest ones. (Appendix Figure G shows

a scatterplot of this implied elasticity versus years of schooling, with countries labeled.)

Most of the countries with less than eight years of schooling in the reference cohort have

implied elasticities above 5. Mozambique, the extreme example from above, had an implied

elasticity of more than 12. A comparable estimate from the cross-country data (from a

log/log regression of s on e15) is approximately 2.2, or 2.5 in the subsample below the

median e15, and even this estimated elasticity is presumably biased upwards.

The changes in schooling consistent with such elasticities seem implausible, but how much

lower should the elasticity be? To answer this question, I turn to several well-identified (and

well-published) studies of precisely this question at the micro and cohort levels. These studies

analyze large changes in mortality and are careful in constructing a comparison/control

group.

The first study is by Jayachandran and Lleras-Muney (2009), who examine the swift

decline of maternal mortality in Sri Lanka circa 1950. The authors argue that the shock was

induced by specific policy interventions combined with the rapid diffusion of new medication,

such as antibiotics. They use the different exposures across cohorts and regions within the

country to construct a difference in difference for women. They also use men as a further

comparison group, as women were more directly affected by the drop in maternal mortality.

They report an elasticity of 1.0, a far cry from the implied number for Mozambique in the

upper-bound exercise. Their calculation uses un-discounted years of life expectancy between

15 and 65, but there is enough information to compute the proportional change in ∆ for

other net interest rates.10 For r − g = 2%, I compute an elasticity of 0.7 in that episode.

10In Jayachandran and Lleras-Muney (2009), Table II reports mortality rates and their Appendix Table
2 reports effects of the shock on mortality, by five-year categories. I use their mortality data to compute
a 1946 survival curve for women and then use their regression estimates to construct a perturbed survival
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The next study is by Fortson (2011) who examines the expansion of the HIV/AIDS

epidemic through sub-Saharan Africa. She also uses a difference-in-difference design in which

areas that received a greater rise in infection also experience greater across-cohort differences

in the expected marginal benefits of schooling (through ∆). She finds statistically significant

declines in school attendance amongst the most affected cohorts, and that such a response

is consistent with an elasticity of school to marginal benefits of approximately 0.9.

Oster, Shoulson, and Dorsey (2014) examine a sample of people at risk to get Hunting-

ton’s disease, which would significantly curtail their lifespans. They find a substantial drop

in school attendance (in college, in this case) among the subsample that gets early confirma-

tion that they have the disease. They report elasticities between 0.7 and 1.3 for, respectively,

education w.r.t. life expectancy and w.r.t. “discounted lifetime return to investment” (page

1995, Table 6, first row). (There was no effect on high-school completion, consistent with

the late timing of revelation of the disease.)

A few additional studies can be also used to estimate this elasticity for undiscounted

life years.11 Baranov and Kohler (2017) find a significant increase in schooling associated

with increased regional exposure to anti-retro-viral therapy (used to combat HIV/AIDS)

in Malawi. They do not report an elasticity, but their estimates are consistent with an

elasticity of 0.9. Hansen (2013) examines within-country changes in life expectancy by using

a shift-share instrument for disease burden. Although he does not report an elasticity, I

can combine his point estimate for the effect of life expectancy at age 20 on schooling (0.3)

with average values of s and e20 to compute an elasticity of approximately 0.8.12 Cohen

and Leker (2014) perform an exercise similar to Hansen’s, but they did not report enough

information to construct an elasticity. Stoler and Meltzer (2013) relate education to the

timing of Huntington’s onset status in a different sample from that in Oster et al. They

report a slope similar to that in Jayachandran and Lleras-Muney’s study, which translates

curve. I then use these to compute a ∆1 and ∆0.
11I thank Victoria Baranov and Casper Worm Hansen for providing a few additional numbers that were

necessary to construct an elasticity with their estimates.
12It is noteworthy that his 0.3 coefficient is triple the slopes estimated in studies discussed above, yet the

elasticity is similar.
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into an elasticity of approximately 0.4 w.r.t. undiscounted working lifetime. Outside the

realm of health, Bleakley and Hong (2014) argue that the post-Civil-War declines in returns

to skill and in school attendance among white Southerners were consistent with an elasticity

of 0.6-1.3.

These studies examine episodes widely separated in space and in quite different contexts,

yet they obtain elasticities near or below unity. Conservatively, I take 1 as a point estimate

for the elasticity and use it to calibrate the triangle. Because unity is on the high side of

such estimates, the calculation remains something of an upper bound, albeit a tighter one

than in Section 5 above. It is also an upper bound in the sense that (a) longevity gains past

working ages are counted, (b) taking less developed countries to the Japanese life table might

be an unrealistic assumption, and (c) labor-supply responses might attenuate the effect on

lifetime hours (see Hazan, 2009, Hansen and Lønstrup, 2012, and Bloom, Canning, and

Moore, 2014).

The use of an elasticity requires a small modification to the triangle formula. First,

note that s1 ≈ s0 + (∆1 −∆0)ds
∗

d∆
, by a first-order Taylor approximation. The triangle from

equation 3 is therefore

T =
1

2

(
∆1 −∆0

∆0

)2
f ′(s0)

f(s0)
∆0

ds∗

d∆
(8)

=
1

2

(
∆1 −∆0

∆0

)2

βs0ε (9)

in which ε ≡ ds∗

d∆
∆
s∗

, the elasticity of optimal schooling w.r.t. ∆. Notice that T now has a

form more familiar to those who use Harberger triangles. The elasticity appears linearly,

and the distortion (a survival difference rather than a tax) appears in squared form.

Figure 6 displays a scatterplot of ∆ versus s0 in the sample of countries. Overlain on

the scatter are a series of curves that trace out sets of points for which the triangle has

a constant value (iso-triangle curves, if you will). Notice that these curves are associated

with higher triangle values as one moves in a south-easterly direction on the graph. This is

because such locations have both less healthy countries and a larger initial stock of schooling
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to be multiplied by the (constant) elasticity. The former means the height of the triangle is

greater and the latter means that the base is greater. The vast majority of countries have

triangles that are less than half a percent (to the northwest of the [T = 0.5%] line). Perhaps

this is not altogether surprising in that many of these are developed countries, but many of

them are not. Egypt and Colombia, for example, appear in the graph with approximately

10 years of school and 32 years of discounted lifetime (from age 15). This position in the

graph gets them a horizon triangle of less than half a percent of income. Only five countries

have triangles above 2%, and these are for countries whose life tables looked especially bad

for transitory reasons. These exceptional countries notwithstanding, the average triangle for

countries in the lowest quintile of e15 or s0 is is only 1.5% or 1.0%, respectively.

Note finally that using an assumption of constant slope rather than constant elasticity

does not present a more favorable case for large welfare gains. (Appendix Figure I presents

the same results for a constant-slope assumption instead, as in equation 8.) Jayachandran

and Lleras-Muney (2009) estimated this slope (ds
∗

d∆
) to be approximately 0.11, and the other

within-country studies cited above obtain similar numbers. The largest triangle in the sample

is almost a factor of 3 smaller, and a regression of ‘slope’ triangles on ‘elasticity’ triangles

has a coefficient of 0.44. By equation 8, triangles get larger only for Mali, Mozambique, and

Niger, but only by a bit. If we instead use Hansen’s slope of 0.3, approximately half of the

triangles get bigger than the constant-elasticity version, with a regression coefficient of 1.21.

Nevertheless, none exceed 6.25%, and only 6 of 141 are greater than 3%.

7 Sensitivity analysis

In this section, I check the sensitivity of the estimated triangles to alternate assumptions.

The transparency of the triangle calculation permits a degree of “do it yourself” sensitiv-

ity analysis. Consider equation 9 above. The triangle rises like the square of the proportional

change in ∆. Thus, if the reader judges it more realistic to take the poorest countries only

halfway to the Japanese survival curve, then the resulting triangle of gains would be smaller

by a factor of 4.
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The triangle is also linear in the Mincer β. As mentioned above, 10% is a common

number in the recent literature, although there are reasons to believe this number might

be somewhat higher or lower. On the one hand, some readers might believe that estimates

of this coefficient are biased upward if those who get more school are also more able along

other dimensions. A lower true β would simply reduce the triangle proportionately. There

do exist studies using instrumental variables that claim the true β might be higher than

implied by cross-sectional estimates, but not massively higher. Readers are invited to plug

in their preferred value for β.

The final parameter, also easy for the reader to change, is the elasticity of school with

respect to ∆. Estimates above suggest this number is close to unity, perhaps a bit below.

But perhaps this elasticity is 2, or perhaps it is 1/2. In either case, the triangle would change

by the same factor. How far can tweaking this parameter inflate the triangle? Presumably

the calculation becomes more implausible as we increase to an elasticity that would imply

these countries jumping into the global education frontier if we did nothing but change the

survival curve to Japanese levels. Thus the results in Section 5 are slack upper bounds on

the triangles one might obtain by cranking up the elasticity.

Next, the triangle should be attenuated by standard general-equilibrium effects. A higher

∆ would increase the supply of various types of labor, perhaps depressing wages. The

accompanying increase in schooling would render labor more skilled on average. Consider

separately the change in the base and height of the triangle. The height measures the gap

between MB and MC of schooling if schooling is fixed at s0. The height would shrink no more

than proportionately with the wage.13 By how much should the wage decline? According

13Consider the labor share of direct cost (c) associated with providing a unit of school at a given level. If
this share is one (i.e., labor is the only expense), then the height shrinks proportionately with the reduced
wage. If this share is less than one, then the height is reduced by less than the wage change, in proportional
terms. Let wi be an index of wages in scenario i ∈ {0, 1} and the wage at s0 be wif(s0). Let the marginal
direct cost of school be c(s;wi, ~p), in which ~p is the vector of prices for non-labor inputs to school, e.g.
buildings. The height is now h̃ ≡ w1(f ′(s0)∆1(s0)−f(s0))−c(s0;w1, ~p). Height reponds to wages as follows:
∂h̃
∂w = (f ′(s0)∆1(s0)− f(s0)) − ∂c

∂w , which can be re-written as h + c(s0;w0,~p)
w0

− ∂c
∂w , by the ‘0’ FOC. The

second two terms are weakly positive iff 1 − ∂c
∂ww0/c(s0;w0, ~p) ≥ 0. If we apply Shephard’s Lemma, we see

that this expression is the share of direct costs associated with non-labor inputs in producing schooling at
the s0 level. This share must be non-negative, so h̃ < h if w1 < w0.
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to Weil and Wilde (2009), a typical very-low-income country has a fixed-factor share of

perhaps 0.15. In a Cobb-Douglas economy open to capital flows, the wage would therefore

be 0.85 of its value above, and the height no smaller than that. Furthermore, for a fixed

elasticity, the triangle drops like the square of the change in MB, for a reduction by a factor

of 0.852 = 0.7225 at most. The base instead measures the response of schooling to a given

shock to marginal benefits. The additional supply of skill in this economy should reduce

the price of skill, which would imply that the optimal choice of schooling is lower than in

the partial-equilibrium analysis. Because the empirical studies above examined subnational

differences in exposure to ∆, we should think of those elasticities as overestimates for the

response that would obtain in general equilibrium. Thus the triangle would also have a

smaller base.

7.1 Alternate versions of ∆

I now consider the sensitivity of the results in Section 6 to parameters that were used in

constructing ∆. While the construction of ∆ is straightforward, it is not quite so simple

as to allow for do-it-yourself analysis as above. Thus, Table 1 includes calibrated values of

the triangle for various assumptions and for various sets of countries. Countries are ranked

according to indices of human development: years of schooling, life expectancy at age 15,

and the product of the two. I then separate countries by quintiles according to these indices.

Results for the first (lowest), second, and third (middle) fifths of each index are across the

columns. Throughout this section, I use an elasticity of one for the response of school to

∆. If unit elasticity is not preferred, readers could simply multiply the values in Table 1 by

their preferred elasticity.

For the first set of rows, I compute triangles for various discount rates. Recall that the

default value used throughout the study is 2%, and results for this value are shown in row

(5). In the lowest fifth of countries, the average triangle is between 1% and 1.5%, depending

on the human-development indicator used. For the second fifth, average triangles are less

than 1%, and close to 0.5% for the middle fifth. For higher interest rates (see Rows 6–7),
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triangles are significantly smaller, as should be expected. For example, if r − g = 5%, the

triangles in the lowest quintile are less than 0.04%. If the interest rate is lower, however, the

triangles are larger. For r − g = 0, the average triangles in the lowest fifth are no greater

than 4% of income, and significantly smaller in the higher fifths. Even in the extreme case

of a negative discount rate (r− g = −1%), the average triangles do not exceed 6% of income

for the poorest countries.14

I also show that the result is not sensitive to the way in which life tables were mapped

to cohorts. Recall that the default ∆ is constructed starting at age 15 from the circa-1990

life table using cohorts that were born in the five years prior to 1980. Rows (8) and (9)

present results with a ∆ constructed starting at age 10 or age 20, respectively. In Row

(10), I attempt to align the starting age for ∆ more closely to the school-leaving age in

each country. Specifically, I take the average schooling for the reference cohort in each

country, round it up to the nearest integer, if necessary, and add 7 to account for a typical

school-starting age. This becomes a country-specific starting age for the evaluation of ∆.

Next, in Rows (11) and (12), I use cohorts that are born five years before or five years after

the reference cohort. Then, in Row (13), I construct the triangles using the life table and

schooling data for females rather than males. The resulting triangles in this analysis are

similar in magnitude to the baseline, seen in Row (5).

Next, I consider the effect of changing the health frontier for the thought experiment. For

Row (14), I imagine taking countries to the life table of the US rather than of Japan. From

the distant perspective of a very unhealthy country, the US and Japan have quite similar

health outcomes, but triangles are about 1/3 smaller when computed using the US survival

curve. This is because the triangle rises like the square of the distortion, so that last bit

of difference in ∆ has an outsized impact on T . In Row (15), I conduct what is perhaps a

more realistic exercise for health improvement: take unhealthy countries to the life table of

14Note the contrast with Preston’s (1980) argument that life expectancy gains, once discounted, are too
small to explain large differences in education across countries. Here, I instead show that, even for zero
discounting, the triangles are limited in size. In the spirit of Preston’s calculation, Appendix C presents
analysis of the additional rate of return, conditional on survival, as a function of mortality and the net
interest rate. I show that the required return on human capital is higher because of mortality, and that the
spread for the best versus the worst life table is approximately 100 basis points.
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Thailand. (Thailand is close to the median of both s0 and e15 in these data.) The calibrated

triangles are approximately 0.5 percent for the lowest quintile, about 2/3 lower than the

baseline. Next, I consider truncating the horizon over which ∆ is constructed. In Rows (16)

and (17), I use the survival curve up to ages 80 and 65, respectively, and therefore ignore

survival gains at higher ages. A significant fraction of the gains in longevity in the baseline

exercise arise from increased survival late in life, and therefore the triangles are smaller,

especially in the case of truncation at age 65. For Row (18), I truncate the calculation of

∆ at age 65, but set `(t)/`(s) equal to 1. This simulates taking the survival curve in these

countries past the healthy Japanese one and all the way to the extreme of zero mortality

during working ages. The triangles in this case nevertheless are smaller than the baseline.

Why? Because the greater proportion of differences in ∆, when comparing unhealthy to

healthy countries, occur at relatively old ages.

What if the truncation point (i.e., retirement age) is itself a response to the life table?

Bloom, Canning, and Moore (2014) show that, in a calibrated model, increased longevity

should postpone retirement, while increased income would have the opposite effect. They

conclude that any secular trend towards earlier retirement is therefore driven by income

rather than longevity effects. Because the thought experiment of the present study is to

consider a change in the horizon, ceteris paribus, it is worth analyzing the effect of post-

poning retirement. Recall Row (17), in which I use a truncation horizon of 65 years of age,

approximating a retirement age. In this calculation, the lowest-∆ country (for r − g = .02)

is at 23.7 years, approximately 7.5 years behind Japan. Suppose that we were to add to this

an additional five years of work. Fifty years earlier, the 2% discount rate would make this

look like 1.84 years. This increases the (∆1/∆0 − 1) term by a factor of 1.25, which squares

to 1.57. Thus, the numbers in Row (17), for the lower fifth of countries, would inflate by a

somewhat smaller fraction.

I then add more flexible estimates of returns to experience to the discount factor ∆. Above

this was proxied by an exponential growth rate, g. Mincer’s original work used instead a

growth rate that was quadratic in potential experience, while more recent work has favored
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a quartic polynomial (Murphy and Welch, 1990, and Lemieux, 2006). I use estimates from

Lemieux (2006) to calibrate a wage/experience profile.15 I maintain the truncation at 65,

because estimates of returns to experience are for working ages and it would make little

sense to extrapolate such estimates out to centenarians. Results are shown in Row (19).

The updated triangles are larger than their counterparts in in Row (17), but only by a bit.

Note that, for this last calculation, I also maintain a 2% net discount rate (r−g). This causes

some double-counting in that g already captures some of the returns to experience. Finally,

in Row (20), I adjust instead for age- and country-specific patterns of disability using the

WHO’s Disability-Adjusted Life Years (DALY). I use the fraction of time lost to disability

to scale down the fraction surviving at a specific age (`(t)) and find that the triangles are

little changed from the baseline. (See Appendix E for details on these data, calculations,

and analysis as to why this adjustment has little effect.)

A final remark is in order on Mincer’s assumption (used throughout) that the derivative

of the wage w.r.t. schooling is multiplicatively separable from the rest of the discounting

terms. Heckman et al. (2006) show that Mincer’s separability result can be statistically

rejected in recent decades (see Table 1, page 324). Two points about their results are worth

noting. First, within the first 30 years of labor-market experience, the wage ratios between

the college and high-school educated are relatively stable, with a maximum difference over

time of no more than 0.02 per year of schooling. Second, the greatest departure from

Mincer’s result occurs at approximately 40 years of experience, when some convergence is

seen in the college/high-school gap. So far out, such convergence matters less from a period-

s perspective. For the present purposes, this finding would tend to decrease my estimate

of the triangle based on an (f ′/f) that is stable over one’s career. Instead, the supposed

health improvements tend to add additional survival probabilities in years with relatively

low marginal benefit of schooling.

15For Lemieux’s Figure 11.8, he uses circa-2000 US data and reports log wages growing with experience
approximately like the following quartic:

ĝ(t− s) ≡ .09020(t− s)1 − .005086(t− s)2 + .000139(t− s)3 − (1.445× 106)(t− s)4.

For Table 1, Row (19), I add exp (ĝ(t− s)) inside the integral for ∆.
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Table 1: Sensitivity of Triangle to Assumptions in Constructing ∆

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Quintile: Bottom Second Middle

Variable used for ranking:

(1)  Alternative (r-g) -1% 3.58 5.55 4.98 3.01 2.80 1.79 1.31 1.54 1.48

(2) " 0% 2.31 3.57 3.21 1.93 1.76 1.15 .83 .95 .92

(3) " 0.5% 1.85 2.86 2.58 1.54 1.39 .92 .66 .74 .72

(4) " 1% 1.49 2.29 2.07 1.23 1.09 .73 .52 .57 .56

(5) " 2% (baseline) .97 1.48 1.34 .79 .67 .47 .33 .35 .35

(6) " 2.5% .78 1.20 1.08 .63 .53 .37 .26 .27 .27

(7) " 5% .29 .44 .40 .22 .17 .13 .09 .08 .09

(8) Initial (s)ℓ 10 .82 1.24 1.12 .65 .54 .39 .26 .28 .28

(9) " 20 1.12 1.79 1.61 .98 .84 .56 .40 .43 .42

(10) " 1.25 1.11 .77 .68 .44 .73 .37 .34 .31

(11) Ages in 2010 25-29 1.02 1.56 1.39 .78 .70 .53 .36 .36 .37

(12) " 35-39 .93 1.38 1.10 .63 .68 .61 .40 .34 .31

(13) Females .79 1.08 .86 .66 .61 .68 .34 .25 .34

(14) `Frontier' country USA .58 .93 .85 .44 .26 .19 .11 .08 .11

(15) " Thailand .32 .53 .49 .25 .05 .07 .06 .01 .06

(16) Truncation Horizon 80 .80 1.24 1.13 .65 .52 .37 .25 .25 .26

(17) " 65 .45 .71 .65 .36 .24 .19 .12 .10 .12

(18) " 65, =1ℓ .64 .97 .88 .54 .44 .34 .26 .25 .25

(19) + Experience profile 65 .53 .83 .77 .43 .27 .21 .14 .11 .13

(20) + Disability 65 .47 .74 .68 .38 .25 .20 .13 .11 .12

s0 e15

s0 x 
e15 s0 e15

s0 x 
e15 s0 e15

s0 x 
e15

s0

Notes: this table presents sensitivity analysis for estimates of the average triangle (T ) for subsamples of countries. Except as
noted, the calculations assume a net discount rate (r − g) of 2%, use a reference age of 15 years, take Japan as the frontier for
∆, and use as a reference cohort those born in the five years prior to 1980. These calculations are based on the unit-elastic
response of schooling to ∆, as estimated in various of the studies cited in Section 6. Triangles are computed according to
equation 3. Countries are grouped into fifths based on either initial years of schooling, life expectancy at age 15, or the product
of the two. Results for the first (bottom), second, and third (middle) fifths of countries are reported in Columns 1–3, 4–6, and
7–9, respectively. Various assumptions for the construction of ∆ are noted in the row headings. The underlying data sources
and variable definitions are described in the text.



7.2 What if education reduces mortality?

How does the problem change if education itself has a causal effect reducing mortality?

In many datasets (within a country), more education is associated with lower mortality,

often many years after graduation. See, for example, Cutler and Lleras-Muney (2006) and

Lleras-Muney (2005) and references therein. Many studies focus on mortality rates within

specific age groups, typically older ones. For the present purposes, I require estimates that

at least include working ages. Notably, Cutler and Lleras-Muney (2006) report a gain of

approximately 0.2 undiscounted adult life expectancy per year of school, as does Sanchez-

Gonzalez (2011, chapter 5).16

The modified triangle, T̃ , that accounts for this effect is as follows:

T̃ =
1

2
(s1 − s0)β

[(
∆1 −∆0

∆0

)
+

1

∆0β

(
d∆1

ds
− d∆0

ds

)]

in which the ∆ concepts are evaluated at s0. (See Appendix A for a derivation.) The second

term in the square brackets is new. Notice that the additional marginal benefits depend

on the difference between mortality scenarios in the survival/education gradient. In either

scenario, a gradient would already be reflected in the FOC. Thus, an effect of education on

survival increases the height of the triangle only if the survival/education effect is stronger in

the low-mortality environment. The opposite seems at least as likely, especially at working

ages, when mortality rates are relatively low for all education levels in rich countries. (The

relevant units of the education/survival gradient are probabilities, not in odds ratios.) So,

accounting for this effect might well shrink the triangle.

A plausible upper bound on this additional effect turns out to be small. I start with the

assumption that d∆0

ds
≥ −1, because I know of no study finding a systematically negative

education/survival gradient. The studies mentioned in the previous paragraph suggest that

d∆1

ds
≈ −0.8, if we take the US as representative of the education/longevity gradient at the

frontier. A country with very low human development (e.g. in the bottom left corner of

16Their estimates apply to the US. I am not acquainted with studies conducting a conducting a comparable
exercise for Japan or for any of the least developed countries.
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Figure 3) has ∆0 ≈ 45, for r − g = 0. The β is assumed to be roughly 10%, as above.

Putting these together reveals the new term to be 0.2/45/0.1 = .044, at most. Compare this

with the increase in marginal benefits through the original channel: ∆ increases by roughly

40%, an order of magnitude larger. Thus, the height of the triangle would be 1.11 times

the original estimate, which would increase the change in schooling by a similar fraction. In

sum, the triangle would be at most a factor of 1.23 of those originally computed.

7.3 Misallocation I: Rationing/Constraints

Above I assumed that schooling was set optimally in both mortality scenarios. Indeed, this

assumption is what makes the triangle a triangle. But what if schooling were below the

optimum? The case of underinvestment is seen in Figure 7. The gray dashed lines denote

the optimal choices of schooling in high- and low-mortality environments. For some reason,

schooling levels are rationed below the respective optima, to s0 and s1. As the benefits

of schooling occur in the future, the schooling decision could be distorted by psychological

‘present’ biases or imperfect intergenerational altruism.

In the low-mortality scenario (MB’), the gains of reallocating from s0 to the optimum

form a triangle composed of areas a + b + d. But a constraint prevents d of the gain from

being realized. Further, the gain a arises only if a constraint is relaxed. Thus, only the area

b is directly attributable to the horizon mechanism.

How large is the horizon polygon b? A point estimate would require knowledge of c(s),

f ′′(s) and the optimal s to estimate the sizes of a and d. Instead, note that

(b+ c) ≈ (∆1(s0)−∆0(s0))f ′(s0)(s1 − s0)

The right-hand side is equal to 2T$, which implies that the horizon-mechanism gain is b ≤

2T$. Thus, even in the presence of constraints on schooling, we can put an upper bound

on the gains from reallocation because of the horizon mechanism by simply doubling our

estimate of the triangle.17 Even though this number would be twice as big as before, it

17This bound holds for all four combinations of rationing above or below in either mortality case. Indeed,
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Figure 7: Under-investment in schooling and the horizon polygon (no longer a triangle)
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Notes: this is a modification of the model in Figure 1 to allow for underinvestment in schooling in both scenarios.

would remain small relative to, e.g., cross-country gaps in income.

7.4 Misallocation II: The Price is Right?

In the absence of distortions, the triangle provides a complete (albeit approximate) account-

ing of gains from the horizon mechanism. As James Hines (1999) states in his Journal of

Economic Perspectives piece on Harberger triangles,

it is not necessary to take explicit account of spillover effects into undistorted

markets in calculating deadweight loss, since price and quantity changes in undis-

if schooling is misallocated to be too high in the low-mortality environment, the horizon gains are strictly
less than T$, rather than 2T$. This upper bound would also apply to b + a, if the optimal schooling in the
high-mortality scenario (call it s∗0) is less than or equal to the midpoint between s0 and s1. Why? Because
a and c are each a second-order Taylor approximation, which is symmetric about s∗0. Therefore,

s∗0 ≤
(
s0 + s1

2

)
⇐⇒ a ≤ c.

This is also relevant in the next subsection, for which a is rightly considered part of the cost of misallocation.
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torted markets do not affect the efficiency of resource allocation—after all, in such

markets, marginal values to consumers equal marginal costs of supply. (p. 178–9)

Yet treating the economy as otherwise undistorted is unrealistic. Indeed, distortions are

commonplace, from business formalization to tortilla subsidies. Nevertheless, analysis of

how education affects each of these distortions lies outside the scope of this study.

A modest goal is instead to analyze a distortion of the education decision itself. First,

note that society’s decision problem could be similarly modeled as the intersection of two

curves (social marginal benefits and social marginal costs, in this case). Absent a distortion,

society’s optimization problem looks like Figure 1 and the model in Section 3. Second, if

the private decision is misallocated (from the perspective of society) then we can simply

use an upper bound of double the triangle, as in the prior section. This requires only one

modification to the triangle formula, specifically that we use an f ′ that includes the external

effects (in effect, society’s rather than the individual’s β). Fortunately, there are estimates

in the literature using credible natural experiments to measure such externalities. Acemoglu

and Angrist (2000) estimate externalities of around 1% per average year of education at

the US-state level (with a confidence interval that reaches slightly below zero and almost

to 3%). Moretti (2004) argues that this number (at the US-metro-area level) is somewhat

higher, perhaps 5%. Duflo (2004), in contrast, estimates negative spillovers from education

in Indonesia. (It was not evident to me how to convert Duflo’s estimates into the units of

Mincer’s β.) Respectively, these studies imply a social β of 11%, 15%, or < 10%.

8 Changes over the 20th century

For select countries, I repeat the analysis above but, rather than comparing across countries

today, I compare within countries over the 20th century. Many countries experienced large

gains in both life expectancy and schooling over this time, yet the horizon triangle is small.

The data sources and methods are largely as in prior sections. The Barro/Lee data also

include information on cohorts born in the early part of the 20th century. The historical life
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tables are drawn from Human Life-Table Database (Max Planck Institute for Demographic

Research, 2016). (Appendix D has further information about and analysis of the data.)

Table 2 shows the resulting triangles. The first several columns show the inputs to this

calculation: the proportional change in ∆, the change in years of school, and initial years of

school. I present calculations for three sets of assumptions for discounting: no discounting,

2% per year, and 2% per year but ignoring gains after 65 years of age. Once again, I compute

both an upper bound on the triangle and a triangle that assumes unit-elastic response of

schooling to ∆. I maintain the use of 10% for Mincer’s β and of 0.5 for one half.

Table 2: Triangle Calculations for the 20th Century, Select Countries

Data Upper bound Unit-elastic response

Triangle Triangle

dDD ds s0 implied eps T-bar fraction expl T

USA .17 3.6 9.9 2.2 .031 .46 .014

Japan .46 5.1 7.9 1.4 .117 .71 .082

China .31 6.7 1.7 12.6 .103 .08 .008

Egypt .50 8.6 1.1 15.8 .217 .06 .014

India .64 6.4 1.7 6.0 .204 .17 .034

Panel B: discount at 2%/year

USA .11 3.6 9.9 3.4 .020 .29 .006

Japan .29 5.1 7.9 2.2 .075 .46 .034

China .22 6.7 } 1.7 17.8 .073 .06 .004

Egypt .37 8.6 1.1 21.3 .160 .05 .008

India .44 6.4 1.7 8.6 .142 .12 .017

Panel C: discount at 2%/year, truncate at 65 years

USA .07 3.6 9.9 5.4 .012 .18 .002

Japan .20 5.1 7.9 3.2 .051 .31 .016

China .17 6.7 } 1.7 22.4 .058 .04 .003

Egypt .33 8.6 1.1 24.4 .140 .04 .006

India .37 6.4 1.7 10.2 .120 .10 .012

Prop-
ortional 

change in 
¢

Change 
in school, 

(s1-s0)

Initial 
years of 
school 
(s0)

Implied 
elasticity

Fraction 
of school 
explained

Panel A: no discounting (¢=e15)

Notes: this table presents estimates of the triangle based on the change in ∆ within select countries. The ∆ are computed using
1930 and 1990 life tables, while the school data refer to those born circa 1917 and 1977. The table presents both the upper
bound (T̄ ), which assumes all of the change in school and is due to the horizon mechanism, and also an estimate (T ) assuming
a unit-elastic response of schooling to ∆. Various assumptions about discounting are used for the panels. The underlying data
sources and variable definitions are described in the text.

The results are in line with the cross-country evidence above. The upper bounds can be
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quite high. For example, the upper bounds with no discounting are approximately 20% for

India and Egypt. Nevertheless, this would imply somewhat high elasticities, exceeding 20 in

some cases. Using an elasticity of 1, I find triangles that are smaller, some almost negligible.

The only numbers that exceed 4% are for Japan. However, because so much of the gain in

the Japanese survival curve occurred at old ages, this result is only 1.6% when restricting

our attention to gains at working ages. By this metric, the triangles for Egypt and China

are substantially below 1%, and the triangle for India is only 1.2%.

For the US, the triangle gains are also small. Even at the upper bound and with no

discounting, the triangle is approximately 3% of income. For more realistic discounting

and ignoring survival gains during retirement years, the triangle is less than 0.02%. The

US has smaller triangles in this calculation in part because its improvements in health and

education were less concentrated in the 20th Century as compared to the other countries.

Using instead David Hacker’s (2010, Table 8) survival curve for white males in 1850 and an

r = 2%, I compute a ∆ of 26.4 discounted years (and an e15 of 41.8). The proportional gain

in ∆ from 1850 to 1990 therefore is 0.26, which is comparable to the gains in China and

Japan from 1930–90. Using data from Gould’s (1869) sample of soldiers in the US Army,

Bleakley, Costa, and Lleras-Muney (2014) report an average education of approximately 5.5

years for those born in the 1830s. If β ≈ 0.1, as assumed above, then the triangle associated

with giving the 1990 life table to the 1830 cohort is estimated to be 0.019. This is comparable

to triangles for India and triple the estimate for the US for 1930–1990.

In all, this evidence indicates that the triangle associated with the horizon mechanism is

quite small for these countries and cohorts. Furthermore, because the thought experiment

involves instantaneously giving the earlier cohort the later life table, these triangles are much

smaller than the actual gains experienced along the transition to the new survival curve.

One other feature is worth noting: the response of schooling to survival. The penultimate

column of Table 2 shows the fraction of the increased schooling that is explained by the

changing horizon. Notice that these numbers can be quite large: 18% and 31% for the USA

and Japan, respectively, even in the relatively conservative case that discounts the future
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at 2% and ignores survival gains past age 65. Yet the associated triangles are an order of

magnitude smaller than the fraction of schooling explained.

9 Rectangles versus Triangles

While this study treats the triangle of reallocation, there are two rectangles (i.e., first-order

changes) that bear mentioning. Neither is a measure of the welfare gain, although the first

is closer than the second. (Becker, Philipson, and Soares (2005) examine the direct welfare

gain from shifting up the survival curve, but not any triangles of reallocation.)

The first rectangle R measures the proportional increase in discounted, expected life

years (∆). For the hypothetical transition to the Japanese survival curve, R ≡ ∆JAPAN−∆0

∆0

in which 0 denotes the baseline status for that country. R is related to wellbeing, although

the full welfare calculation also depends on the value of life and the distribution over the

life cycle of survival gains relative to that of borrowing.18 Panel A of Figure 8 contains a

plot of R versus the triangle T for the sample used above. This rectangle ranges from zero

(for Japan, by construction) to over 40%, albeit with most of the observations below 15%.

18Consider the generic lifetime-consumption problem with time-separable utility, ut(ct). The Lagrangian
for this problem is as follows:

L =

∫ ∞
0

e−βt [`tut(ct) + (1− `t)û] dt+ λ

(∫ ∞
0

e−rt`tytdt−
∫ ∞

0

e−rt`tctdt

)
in which yt is income, ct is consumption, β is the subjective discount rate, û is the utility of not being alive,
and λ is the shadow price on the budget constraint. Taking the derivative of L w.r.t. the survival probability
in period t, I find that

1

λ

∂L
∂`t

=
e−βt

λ
(ut(ct)− û) + e−rt (yt − ct) ,

which is the gain in utility translated to period-0 dollars. The first term is the direct effect: increased
survival in period t yields extra expected utility, if the utility of being alive exceeds the utility of being dead.
The second term measures the effect of survival on lifetime consumption. Increased survival in periods with
expected saving relaxes the lifetime budget constraint, while in periods of dissaving it contracts the budget
constraint. Compare this with the derivative of ∆ w.r.t. `t, evaluated from a t = 0 perspective:

∂∆

∂`t
= e−rtyt

in which only the present value of period-t income appears. Thus the change in ∆ is part, but not all, of the
change in welfare.
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Figure 8: Two Rectangles, compared with the Triangle
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Notes: this figure presents estimates of two rectangles: the direct gain from increased life expectancy R and the increase
in discounted lifetime income due to re-optimization (R̃). Both are plotted against the triangle (T ) as computed above (in
Figure 6, for example). For the simulation, the frontier country for the survival curve is Japan and the elasticity of school to
marginal benefits is one. Derivations of R and R̃ are found in Section 9. The underlying data sources, variable definitions, and
parameters are described in the text.

The roughly parabolic relationship is as expected (see equation 3). Note as well that the

rectangle dwarfs the triangle. This is also as expected; R is a first-order effect, while T is

second order.

A second rectangle R̃ measures the increase in discounted lifetime income from the in-

crease in s. In the presence of direct costs of schooling (c(s) > 0), an increase in schooling

(local to the first-order condition) does raise lifetime income. This occurs because, in the

problem above, we maximize lifetime income net of costs, not lifetime income itself. Yet we

can compute R̃ by accumulating the gaps between marginal benefits (∆1(s)f ′(s)) and the

marginal opportunity cost only, f(s), as s shifts from s0 to s1. This object can be approx-

imated as a trapezoid. Its width is s1 − s0. The vertical edges are the marginal gains in

lifetime income, ∆1(s)f ′(s)− f(s), evaluated at s0 and s1. By the formula for the area of a

38



trapezoid,

R̃ ≡ (s1 − s0)

(
∆1(s0)f ′(s0)− f(s0) + ∆1(s1)f ′(s1)− f(s1)

2

)(
1

∆(s0)f(s0)

)
,

with the final term normalizing the object to be in units of lifetime income. Note that the

shape of the survival curve implies that ∆(s0) > ∆(s1) for plausible s. If βt is constant, R

defined as above, and s1 − s0 = εs0R, I can construct the following upper bound:

R̃ <
1

2
εs0R

(
∆1β − 1

∆0

)
(1 + βεs0R) (10)

(See Appendix B for a detailed derivation.) Note that this is not a welfare gain, nor is it a

proxy for one. Instead, the increase in lifetime income when moving from s0 to s1 is partially

offset by the increase in direct cost along the way (and exactly offset at s1). The scatter of

this rectangle versus the triangle is seen in Panel B of Figure 8. The vertical scale is the

same as in Panel A, which highlights R̃ being much smaller than R. The highest country

has a number close to 20%, but almost all of the other countries are below 7.5%.

A final, somewhat rectangular concept is the increasing time in school itself. This number

is too simple to be worth graphing. For a fixed elasticity, the proportional increase in s is

just εR. For some of the least healthy countries, the thought experiment of going to the

Japanese life table implies increases of dozens of percent in ∆. This would translate into

a similar percentage increase in years of schooling, for unit elasticity. For not a few of the

countries this would translate into several years of schooling.

10 Conclusion

Death is like a tax on human-capital investments. Commonly in public economics, (Har-

berger) triangles measure efficiency losses from taxes. In like manner, the triangle here

measures the benefit of reoptimization through this horizon mechanism. An upper bound

(that relies on an implausibly large responses of schooling to longevity) is below 10% for the
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typical low-income country. And that upper bound is pretty slack. Instead, if I use well-

estimated elasticities, I find the triangle is less than a few percent. While it is always good to

receive the equivalent of a few percent more income, this is but a drop in the bucket relative

to the large gap in standards of living (as proxied by incomes per capita, e.g.) that separate

rich and poor countries today. In contrast, the evidence suggests that increasing working-age

longevity would promote large changes in years of schooling. Why the discrepancy between

these two distinct aspects of the horizon channel? In fact, this mismatch is commonplace in a

triangle calculation, which, were it a major motion picture, might be entitled “The Revenge

of the Envelope Theorem.” In optimization problems, a change in parameters (e.g. ∆) can

induce a a large change in decision variables, but the resulting change in the decision only

causes a second-order change in the objective function.

What limits the horizon-channel is that it works through a triangle, and triangles are

shaped that way because of diminishing marginal returns to investment. Nevertheless, the

longevity improvements themselves bring a ‘rectangle’ gain related to the proportional change

in ∆. This is potentially large, but it is not the horizon channel. Also, this finding should not

be construed to minimize the value of health through other mechanisms. Other studies that

find childhood morbidity improves human capital and income (Behrman and Rosenzweig,

2004; Almond, 2006; Bleakley, 2007 & 2010b; Maccini and Yang, 2009; inter alia). Why

is it different from the horizon mechanism? At some level, it is not. Morbidity also brings

a rectangle and a triangle. That is, even if you held fixed the investments (time spent

in school), nevertheless the reduced childhood morbidity could make you more productive

through various mechanisms. Early-life changes in child health and nutrition should achieve

the greatest effect if working through rectangle-like mechanisms (Bleakley, 2010ab).

While this article is focused on welfare and the horizon mechanism, the methodology

can be extended to other education questions. Various shocks and interventions increase

the marginal benefits of and/or the time in school. Such increases are inputs to computing

rectangles and triangles. (See Bleakley, 2017, for an additional example.) Thus, the results

above serve as a demonstration of applied welfare analysis in education questions. This
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would complement analysis of ad hoc extrapolations using Mincer’s β or of cost effectiveness

(e.g., Dhaliwal et al., 2011), the latter of which normalizes increased time in school per dollar

spent by an intervention. Canning (2013) provides a rigorous welfare-theoretic foundation

for the cost-effectiveness analysis of health interventions by treating the time alive as the

numeraire consumption good. However, it seems less reasonable to apply this logic to time in

school, not the least because it is an input to human-capital production rather than strictly

a consumption good. Therefore, while these latter methodologies have the advantage of

being more straightforward to use, they have the disadvantage of being less well connected

to welfare measurement than the rectangle-and-triangles framework.
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A Derivation of the Triangle with a Generic d∆
ds

In this appendix, I re-derive the triangle T for alternative assumptions for the dependency

of ∆ on s. I provide bounds for the extent to which extreme relaxations of this assumption

can affect the triangle. In Section 3, I derive an expression for T if d∆
ds

= −1. In other

words, this assumption is that the only effect of time in school on time available to work

is the inability to work while a student. Yet a large literature argues that more education

might cause greater longevity; see Cutler and Lleras-Muney (2006), Lleras-Muney (2005),

Sanchez-Gonzalez (2011), for instance, and references therein.19 This suggests that d∆
ds

might

be greater than -1, if indeed the foregone work-time while in school is partially offset with

increased survival during working ages. Indeed, those authors report approximately 0.2 extra

years of adult life expectancy, which suggests that d∆
ds
> −0.8 for r − g > 0.

Consider a generic d∆
ds

, not necessarily equal to -1. This relaxation affects the problem

in two distinct ways: (1) the level of marginal benefits and (2) the response of schooling to

what is now a two-part change in MB. Lifetime income, net of costs, Y is as defined above:

Y (s,∆) = f(s)∆(s) +

∫ s

0

c(t)e−(r−g)(t−s0)dt.

The Ys for the original and generic d∆
ds

are as follows:

d∆
ds

= −1 Generic d∆
ds

Ys : f ′∆− (f + c) f ′∆ + f d∆
ds
− c

(The dependencies on s, e.g. f(s), are suppressed for legibility of the equations.) It is

19Sanchez-Gonzalez uses the National Longitudinal Mortality Study to estimate education/mortality gra-
dients for US populations aged 25 and up. He also combines information on differences in survival by
education with estimates of the value of statistical life. He takes the extra longevity experienced by the more
educated and discounts it back to the school-leaving age. He finds the value of such gains to be important,
but nevertheless substantially smaller in magnitude than the Mincer return. Based on his calculations, he
argued that the mortality-adjusted Mincer-like returns should be perhaps one percentage point higher (e.g.
12-13% instead of 10%). Note that he estimates the mortality/education gradient using both cross-sectional
comparisons and standard instrumental-variables strategies.
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instructive to re-write Ys for the generic case as follows:

(
f ′∆ + (1 + d∆

ds
)f
)
− (f + c)

The second term in parentheses is the same as marginal cost in the baseline case. There

remains an opportunity cost of time associated with going to school. Whatever additional

working time is created by more years of schooling now appears in the first term, as an

addition to marginal benefits. These MB are in the first parenthetical term. Within the

MB, there is a level effect, f ′(s)∆(s), as above and newly a slope effect, (1 + d∆
ds

)f .

The height of the triangle continues to measure the gap between marginal benefits in

the ‘1’ and ‘0’ scenarios. However, it now contains two terms, because there are two things

about marginal benefits that might change with more schooling: wages and survival. Let h̃0

be the height, in dollars, for a generic d∆
ds

.

h̃0 = f ′(s0) (∆1(s0)−∆0(s0)) + f(s0)

(
d∆1(s0)

ds
− d∆0(s0)

ds

)

or dh̃0 = f ′(s0)d∆(s0) + f(s0)d∆′(s0) for small changes.20 If d∆
ds

= −1, then the second term

disappears and the height is as above. Otherwise, the second term accounts for the extra

marginal survival gain from schooling. Notice that it is the difference in d∆/ds that matters;

any pre-existing survival gains from schooling were already built in to the decision problem.

Thus the modified triangle, T̃ , is as follows:

T̃ =
1

2
(s1 − s0)h̃0/(∆0(s0)f(s0))

=
1

2
(s1 − s0)

[
β0

(
∆1 −∆0

∆0

)
+

1

∆0

(
d∆1

ds
− d∆1

ds

)]

in which all of the ∆ concepts are evaluated at s0.

For a generic d∆
ds

, the response of schooling to survival implied by the model becomes more

complicated, because there are now both level and slope effects. Consider full differentials

20d∆′(s) is a small change in the slope of ∆ w.r.t. s. I use ∆′ and d∆
ds interchangeably in this appendix.
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of the new FOC, YS = 0, expressed compactly as follows:

ds Yss + d∆ f ′ + d∆′ f = 0,

which I re-write as

ds = − f ′

Yss

(
d∆ +

d∆′

β

)
. (11)

Let Ω ≡
(
d∆ + d∆′

β

)
, which has the same units as ∆, but includes the slope effect. Note

that
ds

dΩ
= − f ′

Yss

has the same right-hand side as equation 5, which expressed ds
d∆

. Thus the sensitivity of time

in school to marginal benefits is in some sense the same, as long as we can account for the

slope effect (d∆′) as well.

Theoretically, there exists the possibility that the effect of mortality reductions on school-

ing might be negative, although this is unlikely. For this to happen, we would need the

survival gains to be very strong for the low educated not so much for the more educated.

This could make the slope effect negative, and perhaps with a magnitude large enough to

overwhelm the level effect. (There would still be a triangle of gains from reoptimization

in this case, but it would involve less rather than more schooling.) The extant empirical

literature, however, finds positive effects of mortality reductions on education. This suggests

that, in the episodes studied, the slope effect did not offset the level effect. Let us take

an extreme case to see why. Suppose that, in unhealthy countries the survival benefits of

education were so large that an additional year of education generated an additional year

of (discounted) survival, for a ∆′0 ≈ 0. This would be markedly different from any estimate

with which I am familiar. Compare this with estimates for the US, which imply ∆′1 ≈ −.8

for r − g = 0. Consider the shock to marginal benefits, expressed as a proportion of ∆0:

dΩ

∆0

=

(
d∆

∆0

+
d∆′

∆0β

)
.
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For the least healthy countries, going to the Japanese survival curve implies a proportional

increase in life expectancy of about 0.4, which I take as an approximation for d∆
∆0

, the first

term. How large is the second term, the slope effect? In this extreme thought experiment,

d∆′, the change in the longevity gains per year of schooling, is -0.8. The denominator has

β ≈ 0.1 and ∆0 ≈ 45 in undiscounted units. These combine for a slope effect of around

-0.18. Even though ∆′0 ≈ 0 is an implausibly large starting point for the longevity gains of

education, this nevertheless implies a slope effect that remains at less than half the magnitude

of the level effect.

On the other side of things, the slope effect could get stronger as we transition from an

unhealthy to a healthy life table. This would increase the size of the triangle, both because

marginal benefits are higher and because the induced response of schooling is larger. But

by how much? Again, consider what is likely an extreme case: zero effect of education

on longevity (∆′0 = −1) in the unhealthy scenario versus with the US gradient discussed

above, (∆′1 = −0.8). This gives a slope effect, expressed in the same units as above, of

0.2/45/10 = .0044, which is an order of magnitude smaller than the level effect. The increase

of marginal benefits, dΩ, would be about a factor 1.11 larger than a baseline that only

includes the level effect. The response of schooling would be larger by a similar fraction, as

per equation 11. These combine to give a triangle about 1.23 times larger than the baseline

(with no slope effect). Such an increase does not materially alter the conclusions offered in

Section 6.
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B Additional details in the derivation of a bound on R̃

In Section 9, equation 10 presents an upper bound on the increase in discounted lifetime

income, R̃. This appendix presents a detailed derivation of this bound. As noted above, the

starting point for R̃ is the area of a trapezoid:

R̃ ≡ (s1 − s0)

(
∆1(s0)f ′(s0)− f(s0) + ∆1(s1)f ′(s1)− f(s1)

2

)(
1

∆(s0)f(s0)

)
,

I shift the denominators one term to the left and use that f ′(st) = βtf(st),

R̃ =
(s1 − s0)

2

[
∆1(s0)β0 − 1

∆0(s0)
+

∆1(s1)β1 − 1

∆0(s0)

(
f(s1)

f(s0)

)]

If education does not bring very large increases in discounted longevity (d∆
ds
> 0), the shape

of the survival curve implies that ∆(s0) > ∆(s1). (For a very high infant mortality, survival

from age zero to one might bring a greater remaining life expectancy, but mortality rates at

typical school-leaving ages are not so extreme.) Thus, we can replace ∆1(s1) with ∆1(s0) to

find

R̃ <
(s1 − s0)

2

[
∆1(s0)β0 − 1

∆0(s0)
+

∆1(s0)β1 − 1

∆0(s0)

(
f(s1)

f(s0)

)]
For βt constant, we can re-write this upper bound as

R̃ <
(s1 − s0)

2

(
∆1(s0)β0 − 1

∆0(s0)

)(
1 +

f(s1)

f(s0)

)

If the β is indeed constant, then f ′′(s) must be positive.21 This in turn implies that f(s1)
f(s0)

<

β(s1 − s0). Thus, R̃ is bounded from above by

R̃ <
(s1 − s0)

2

(
∆1(s0)β0 − 1

∆0(s0)

)
(1 + β(s1 − s0))

With the definition of R and ε, the inequality can be rewritten as in equation 10.

21Consider logarithmic differentiation of β(s): dlnβ
ds = f ′′(s)

f ′(s) −
f ′(s)
f(s) . By assumption, f and f ′ are positive.

For β to be constant, f ′′(s) = β2f(s) > 0.
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C Spreads in the required return to human capital

How does mortality increase the required rate of return on human capital, conditional on

survival? In the absence of mortality, ∆(s) = (r − g)−1. Thus,
(

1
∆
− (r − g)

)
is a spread

over the interest rate that has to be built into the return to human capital.

Appendix Figure C–1 shows these spreads in the four example countries’ life tables for

age ≥ 15 and for different assumptions about r − g. The curves have an opposite order

as in Figure 4, with Japan having the lowest spread and Mozambique having the highest.

The curves all slope downwards, as they should. As the financial discounting gets extreme,

later-life differences in survival might as well not exist because they occur so far in the future.

Yet the spreads do not go to zero even at a high interest rate.

For low interest rates and even for a healthy country like Japan, there is a spread. This

spread is at its largest for r− g = 0, yet it is only 1.6 percentage points. For the developing

countries, this markup is higher, but the gap with Japan is not so great; Mozambique’s

curve is consistently less than 100 basis points higher than Japan. The e15 numbers given

above serve as a quick check on the difference between the curves at the intercept, where

(r − g = 0) =⇒ (∆(15) = e15). The markup for Mozambique over Japan, if r − g = 0, is

(
1

e15,MOZ

− 1

e15,JPN

)
≈
(

1

43
− 1

62

)
≈ 0.7%.

This result gives us another insight as to why the triangles are small. On the one hand,

the return to human capital in Mozambique would be higher if it were valued using the

Japanese survival curve. On the other hand, the extra rate of return in that “if” is simply

not very big. Furthermore, the rate-of-return differential diminishes as one responds to it

by increasing time in school. (In other words, the reallocation generates a triangle, not a

rectangle.)

Note that this result is similar to Samuel Preston’s (1980) well-known calculation. He

used life tables for Mexico to compute returns to schooling in the early and mid 20th century.

He showed that this made a small difference in the rate of return. Preston then used this
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result to argue that the response of education to longevity must be small, at least as a

practical matter. He did not attempt to compute welfare gains. As seen in the main text,

estimating such gains requires credible estimates of the elasticity of school to ∆, which are

only recently available.
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D Additional details for the comparison across 20th

Century

These data are online at lifetable.de. I use circa-1930 survival curves from India, Egypt, and

China, the only still-developing countries available from the Human Life-Table Database at

the time of writing. (An early-20th-century life table for South Africa was also available,

but only for whites.) For comparison purposes, I also use circa-1930 life tables from the

United States, more or less the frontier country at that time, and from Japan, a country

that was relatively poor in the early 20th Century, but clearly on the path of development.

The precise years for the early-20th-Century life tables are as follows:

USA Japan Egypt China India

1930 1921-1925 1927-1937 1929-1931 1921-1931

The data contain survival curves reported at five-year intervals, except for the Egyptian

data, which have ten-year intervals. I interpolate the log survival curves, as above, to obtain

intermediate years’ data.

Appendix Figure C–2 shows some key features of these countries’ health and school

performance in the 20th century. Panel A shows the over-20th-century differences in the

survival curves for these countries. (As above, these curves are all normalized to age 15.)

Japan stands out as having the largest difference between curves at any single age: an over

45% increase in the survival to age 70 when comparing the 1930 and 1990 life tables. India

and Egypt also stand out for very large differences in the survival curves at working ages,

with differences that peak over 40% just below 60 years old. China and the US have smaller,

but still impressive improvements in their survival curves. Panel B is a scatterplot of the ∆

for each country/period. I show two sets of ∆: one computed with no discounting, another

computed with a 2% discount rate. The dotted lines are level curves denoting proportional

increases for reference. The countries besides the USA show large proportional gains in ∆,

approximately 25-50% if no discounting is applied, and closer to 20-30% using a 2% discount

rate. Panel C is a scatterplot of schooling for the cohorts aged 10-15 at the reference date
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for each life table. All of the countries show large gains in years of schooling across cohorts.
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E Adjustment for Disability: Hello, DALY

While the present study is focused on valuing the effect of mortality on education, I show here

that accounting for a standard measure of disability makes little difference for the results

above. The World Health Organization (2016) uses the concept of a disability-adjusted

life year (DALY), a measure which combines years lost to mortality and to disability. For

mortality, the lost life expectancy is computed relative to a frontier life table. For disability,

the WHO reports the ‘years of healthy life lost due to disability’ or YLDs for non-fatal

health conditions. Conditions are scaled according to a disability weight. Such weights are

meant to translate the intensity of each condition into utility equivalents of death. This

is an inexact match for the present study: a condition could be very unpleasant yet not

impede work, or vice versa. A condition might also impede the formation or use of human

capital in a way that is not measured well with standard instruments.22 Nevertheless, these

are, to my knowledge, the only data comprehensive enough to be suitable for adjusting the

county- and age-specific survival curves. This version of the estimated disability burden uses

a prevalence-based approach. As such, the reported numbers refer to conditions occurring

in the specific age bracket.

I combine the disability-by-age tables for 2000 with the 1990 life table used above to

produce a disability-adjusted measure of discounted life years, ∆̃:

∆̃(s) ≡
∫ ∞
s

e−(r−g)(t−s) `(t)

`(s)

(
YLDt

Nt

)
dt

I normalize the years lost to disability (YLD) by population (N , also reported in WHO,

2016) to produce a probability of disability (among those alive) for each age. The DALYs

and YLDs are reported in fairly broad age categories: during working ages, 15-29, 30-49,

50-59, and 60-69. The final age category (70+) is so coarse that I restrict my analysis with

DALYs to working ages. I apply the average value for each bracket to each age within it.

22See, for example, Hotez PJ, Alvarado M, Basanez MG, Bolliger I, Bourne R, et al. “The global burden
of disease study 2010: interpretation and implications for the neglected tropical diseases.” PLoS Negl Trop
Dis. 2014; 8: e2865.
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Because the prevalence of disability tends to increase with age, this will overstate the burden

of discounted disability.

How does ∆̃ compare with ∆? The two measures are very highly correlated, as shown

in Appendix Figure E–1, Panel A. This panel plots the proportional jump that would be

required to reach Japan for both measures of discounted life years. The points, one for each

country, are all very close to the diagonal, which indicates that the disability adjustment

makes very little difference for the thought experiment in which I take a country to Japan’s

level of health.

Why do these adjustments have so little effect on ∆? For one, the disability weights

are generally much less than 1, thus reducing the importance of disability relative to death.

For another, the adjustment is perhaps surprisingly neutral across the global distribution

of ∆. Because no country is disease-free, the ∆̃ < ∆ for all observations. For Japan, this

adjustment reduces discounted life years by 0.20. Yet the jump to the Japanese level can get

larger or smaller with the adjustment. For the median country, (∆− ∆̃) is just 0.0015 larger

than Japan’s. For Zambia (ZMB), the country with the lowest ∆, the adjustment makes less

of a difference than it did for Japan. Appendix Figure E–1, Panel B. contains a scatterplot

of the following object versus the baseline ∆:

(∆̃i − ∆̃JPN)− (∆i −∆JPN)

for each country i. The y axis therefore measures a difference in difference, which is what

would alter the computation of the triangle. As can be seen in the graph, the disability

adjustment delivers a very small change in the gap in discounted life years with Japan.

Thus, the triangles presented in the main text also change very little.
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60
Appendix Figure E– 1: Effect on ∆ of Adjustments for Disability

Panel A: Percentage difference in ∆ with Japan, adjusted for disability versus baseline
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Appendix Figure H: Years of Schooling versus Life Expectancy at Age 15, Log Scales
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