Linear Recurrences

Suppose that a sequence $\left\{u_{n}\right\}$ is generated by a recurrence of the form

$$
u_{n+1}=a u_{n}+b u_{n-1}
$$

and that we wish to find a formula for the general term. The first step is to find sequences of this type in which the general term is simply a power of a fixed base: $u_{n}=\lambda^{n}$. Such a sequence will satisfy the recurrence if $\lambda^{n+1}=a \lambda^{n}+b \lambda^{n-1}$, which is to say if $\lambda^{2}=a \lambda+b$. Usually, the polynomial $P(x)=x^{2}-a x-b$ will have two distinct roots, say λ_{1} and λ_{2}. The general solution of the linear recurrence is then given as a linear combination of the two basic solutions λ_{1}^{n} and λ_{2}^{n} :

$$
u_{n}=c_{1} \lambda_{1}^{n}+c_{2} \lambda_{2}^{n}
$$

The values of the constants c_{1} and c_{2} are chosen so that the seuqence satisfies some prescribed initial conditions.

Example 1. The Fibonacci numbers F_{n} are defined by the relations $F_{0}=0, F_{1}=1$, and $F_{n+1}=F_{n}+F_{n-1}$. The associated polynomial is $x^{2}-x-1$, which has the two roots $\lambda_{1}=(1+\sqrt{5}) / 2$ and $\lambda_{2}=(1-\sqrt{5}) / 2$. We note that $\lambda_{1}=1.618 \ldots$ and $\lambda_{2}=-0.618 \ldots$. Thus $F_{n}=c_{1} \lambda_{1}^{n}+c_{2} \lambda_{2}^{n}$ for some choice of c_{1} and c_{2}. These constants are to be chosen so that $c_{1}+c_{2}=0$ and $c_{1} \lambda_{1}+c_{2} \lambda_{2}=1$. Here we have two linear equations in two variables, and by elimination we discover that $c_{1}=1 / \sqrt{5}, c_{2}=-1 / \sqrt{5}$. That is,

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
$$

Since $\left|\lambda_{2}\right|<1$, the contribution made by $-\lambda_{2}^{n} / \sqrt{5}$ tends to 0 exponentially. Since $\lambda_{2}<0$, this exponentially small contribution is also alternating in sign. Thus, for example,

$$
\begin{array}{ll}
\lambda_{1}^{20} / \sqrt{5}=6765.00002956 \ldots & F_{20}=6765 \\
\lambda_{1}^{21} / \sqrt{5}=10945.99998173 \ldots & F_{21}=10946 .
\end{array}
$$

What we have discussed thus far is called a linear recurrence of order 2, but the theory of linear recurrences of higher order is the same. Sometimes it happens that the polynomial $P(x)$ does not have a full complement of distinct roots, but instead has some repeated roots. If λ is a double root of P, then in addition to λ^{n} as a basic solution of the recurrence, one also has $n \lambda^{n}$. Similarly, if λ^{n} is a triple root, then one has basic solutions $\lambda^{n}, n \lambda^{n}$, and $n^{2} \lambda^{n}$.

Example 2. Find a formula for u_{n} where $u_{0}=1, u_{1}=2$, and $u_{n+1}=2 u_{n}-u_{n-1}$. Here the associated polynomial is $x^{2}-2 x+1=(x-1)^{2}$, so the general solution is of the form $u_{n}=c_{1} \cdot 1^{n}+c_{2} n \cdot 1^{n}=c_{1}+c_{2} n$. Thus $1=u_{0}=c_{1}$ and $2=u_{1}=c_{1}+c_{2}$. Again we have two linear equations in two unknowns, which we solve to find that $u_{n}=n+1$.

