Math 425 003/006 Fall 2015

An analytic proof of the binomial theorem

On pages 7 and 8, the text gives two proofs of the binomial theorem, one by induction, and
the other by combinatorial reasoning. Here is a third proof, one that depends on calculus.

Let f(2) = ag+a1z+az2®+---+a,2" be a polynomial of degree at most n. We give
two proofs that
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First proof. Consider what happens when we differentiate the monomial a;27 k times. If
J < k, the result is 0. If j > k, then the result is a;j(j —1)---(j — k + 1)2=F. We note
that j(j —1)---(j —k+1) = j1/(j — k)! = k!(3,). Thus

f(k)(z) = k:!j_ik (i)ajzj_k.

In particular, on taking z = 0 we discover that f)(0) = klay. That is, ar = f*)(0)/k!,
and so we have (1).
Second proof. If f is a function with derivatives through the order n 4 1, Taylor’s formula

asserts that .
£(z) = Z SEO) o fOTDE) et

z0 +
=kl (n+1)!

When f is a polynomial of degree at most n, f("*1(z) is identically 0, so the remainder
vanishes, and we have (1).

Now take f(z) = (1+2)™. Then f'(2) = n(1+2)""1, f"(2) = n(n—1)(14+2)"2, and in
general f(®)(2) =n(n—1)--- (n—k+1)(1+2)""*. Hence f*)(0) = n(n—1)---(n—k+1) =
n!/(n—k)! for 0 < k <n, and so a, = f*¥)(0)/k! = (7). That is,
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If we take z = x/y and multiply by y” we find that
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We can do this only when y # 0, but the above is also true (obviously) when y = 0, so it
holds for all x and y. Conversely, if we take x = z, y = 1 in (3) we obtain (2), so (2) and
(3) are equivalent forms of the binomial theorem.

In combinatorics, a polynomial or power series generating function is often used to
establish combinatorial identities. Thus the argument above is not an isolated curiosity,
but is rather a first simple example of a host of arguments that proceed along these lines.



