
Math 425 Fall 2015

Moments of binomial random variables

Let X be a binomial random variable with parameters n and p. Our object is to determine moments
E
[
Xr

]
in terms of n and p. We first show that if r is a positive integer, then

(1) E[X(X − 1) · · · (X − r + 1)] = prn(n− 1) · · · (n− r + 1) .

To show this, we first note that if n < r, then both sides above are 0. Hence we may assume that
n ≥ r. For such n, the left hand side above is

=

n∑
k=0

k(k − 1) · · · (k − r + 1)

(
n

k

)
pk(1− p)n−k .

If k < r, then the summand above is 0, so we may restrict k to the interval r ≤ k ≤ n. Thus the
above is

=

n∑
k=r

k(k − 1) · · · (k − r + 1)

(
n

k

)
pk(1− p)n−k =

n∑
k=r

k(k − 1) · · · (k − r + 1)
n!

k!(n− k)!
pk(1− p)n−k

=
n∑

k=r

n!

(k − r)!(n− k)!
pk(1− p)n−k = prn(n− 1) · · · (n− r + 1)

n∑
k=r

(n− r)!

(k − r)!(n− k)!
pk−r(1− p)n−k

On setting k − r = ℓ, we find that the last sum on the right above is

n−r∑
ℓ=0

(n− r)!

ℓ!(n− r − ℓ)!
pℓ(1− p)n−r−ℓ =

n−r∑
ℓ=0

(
n− r

ℓ

)
pℓ(1− p)n−r−ℓ =

(
p+ (1− p)

)n−r
= 1

by the binomial theorem. Thus we have (1).

Next we note that if f and g are real-valued functions and X is a discrete random variable, then

E[f(X) + g(X)] =
∑
i

(
f(xi) + g(xi)

)
p(xi) =

∑
i

f(xi)p(xi) +
∑
i

g(xi)p(xi)

= E[f(X)] + E[g(X)] .(2)

This is a special case of a more general result: E[X + Y ] = E[X] + E[Y ] for arbitrary random
variables.

By taking r = 1 in (1), we see that E[X] = np. By taking r = 2, we find that E[X(X − 1)] =
p2n(n− 1). By (2) it follows that

E
[
X2

]
= E[X(X − 1) +X] = E[X(X − 1)] + E[X] = p2n(n− 1) + pn = n2p2 + np(1− p) .

Hence

Var (X) = E
[
X2

]
− E[X]2 = n2p2 + np(1− p)− (np)2 = np(1− p) .

For r = 3 we find that E[X(X − 1)(X − 2)] = p3n(n− 1)(n− 2) and X3 = X(X − 1)(X − 2) +
3X(X − 1) +X, so

E
[
X3

]
= p3n(n− 1)(n− 2) + 3p2n(n− 1) + pn .
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For general r the product x(x− 1) · · · (x− r+1) can be expanded, so there are integers
[
r
j

]
, known

as Stirling numbers of the first kind such that

x(x− 1) · · · (x− r + 1) =
r∑

j=1

[
r

j

]
xj .

The numbers
[
r
j

]
are sometimes denoted s(r, j). They can be generated by the Pascal-like recursion[

r

j

]
=

[
r − 1

j − 1

]
− (r − 1)

[
r − 1

j

]
.

In the reverse direction there exist numbers
{
r
j

}
, known as Stirling numbers of the second kind such

that

xr =

r∑
j=1

{
r

j

}
x(x− 1) · · · (x− j + 1) .

The
{
r
j

}
are sometimes denoted S(r, j). They can be generated by the Pascal-like recursion{

r

j

}
= j

{
r − 1

j

}
+

{
r − 1

j − 1

}
.

Stirling numbers arise in combinatorics: (−1)r−j
[
r
j

]
is the number of permutations of r objects

that have exactly j cycles. The number
{
r
j

}
is the number of ways of partitioning a set of r objects

into exactly j nonempty subsets.

n\k 1 2 3 4 5 6
1 1
2 −1 1
3 2 −3 1
4 −6 11 −6 1
5 24 −50 35 −10 1
6 −120 274 −225 85 −15 1

Table 1. Stirling numbers
[
n
k

]
of the first kind.

n\k 1 2 3 4 5 6
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1

Table 2. Stirling numbers
{
n
k

}
of the second kind.
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