Moments of binomial random variables

Let X be a binomial random variable with parameters n and p. Our object is to determine moments $E\left[X^{r}\right]$ in terms of n and p. We first show that if r is a positive integer, then

$$
\begin{equation*}
E[X(X-1) \cdots(X-r+1)]=p^{r} n(n-1) \cdots(n-r+1) . \tag{1}
\end{equation*}
$$

To show this, we first note that if $n<r$, then both sides above are 0 . Hence we may assume that $n \geq r$. For such n, the left hand side above is

$$
=\sum_{k=0}^{n} k(k-1) \cdots(k-r+1)\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

If $k<r$, then the summand above is 0 , so we may restrict k to the interval $r \leq k \leq n$. Thus the above is

$$
\begin{aligned}
& =\sum_{k=r}^{n} k(k-1) \cdots(k-r+1)\binom{n}{k} p^{k}(1-p)^{n-k}=\sum_{k=r}^{n} k(k-1) \cdots(k-r+1) \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} \\
& =\sum_{k=r}^{n} \frac{n!}{(k-r)!(n-k)!} p^{k}(1-p)^{n-k}=p^{r} n(n-1) \cdots(n-r+1) \sum_{k=r}^{n} \frac{(n-r)!}{(k-r)!(n-k)!} p^{k-r}(1-p)^{n-k}
\end{aligned}
$$

On setting $k-r=\ell$, we find that the last sum on the right above is

$$
\sum_{\ell=0}^{n-r} \frac{(n-r)!}{\ell!(n-r-\ell)!} p^{\ell}(1-p)^{n-r-\ell}=\sum_{\ell=0}^{n-r}\binom{n-r}{\ell} p^{\ell}(1-p)^{n-r-\ell}=(p+(1-p))^{n-r}=1
$$

by the binomial theorem. Thus we have (1).
Next we note that if f and g are real-valued functions and X is a discrete random variable, then

$$
\begin{align*}
E[f(X)+g(X)] & =\sum_{i}\left(f\left(x_{i}\right)+g\left(x_{i}\right)\right) p\left(x_{i}\right)=\sum_{i} f\left(x_{i}\right) p\left(x_{i}\right)+\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right) \\
& =E[f(X)]+E[g(X)] . \tag{2}
\end{align*}
$$

This is a special case of a more general result: $E[X+Y]=E[X]+E[Y]$ for arbitrary random variables.

By taking $r=1$ in (1), we see that $E[X]=n p$. By taking $r=2$, we find that $E[X(X-1)]=$ $p^{2} n(n-1)$. By (2) it follows that

$$
E\left[X^{2}\right]=E[X(X-1)+X]=E[X(X-1)]+E[X]=p^{2} n(n-1)+p n=n^{2} p^{2}+n p(1-p) .
$$

Hence

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=n^{2} p^{2}+n p(1-p)-(n p)^{2}=n p(1-p)
$$

For $r=3$ we find that $E[X(X-1)(X-2)]=p^{3} n(n-1)(n-2)$ and $X^{3}=X(X-1)(X-2)+$ $3 X(X-1)+X$, so

$$
E\left[X^{3}\right]=p^{3} n(n-1)(n-2)+3 p^{2} n(n-1)+p n .
$$

For general r the product $x(x-1) \cdots(x-r+1)$ can be expanded, so there are integers $\left[\begin{array}{c}r \\ j\end{array}\right]$, known as Stirling numbers of the first kind such that

$$
x(x-1) \cdots(x-r+1)=\sum_{j=1}^{r}\left[\begin{array}{l}
r \\
j
\end{array}\right] x^{j} .
$$

The numbers $\left[\begin{array}{l}r \\ j\end{array}\right]$ are sometimes denoted $s(r, j)$. They can be generated by the Pascal-like recursion

$$
\left[\begin{array}{l}
r \\
j
\end{array}\right]=\left[\begin{array}{l}
r-1 \\
j-1
\end{array}\right]-(r-1)\left[\begin{array}{c}
r-1 \\
j
\end{array}\right] .
$$

In the reverse direction there exist numbers $\left\{\begin{array}{l}r \\ j\end{array}\right\}$, known as Stirling numbers of the second kind such that

$$
x^{r}=\sum_{j=1}^{r}\left\{\begin{array}{l}
r \\
j
\end{array}\right\} x(x-1) \cdots(x-j+1) .
$$

The $\left\{\begin{array}{l}r \\ j\end{array}\right\}$ are sometimes denoted $S(r, j)$. They can be generated by the Pascal-like recursion

$$
\left\{\begin{array}{l}
r \\
j
\end{array}\right\}=j\left\{\begin{array}{c}
r-1 \\
j
\end{array}\right\}+\left\{\begin{array}{l}
r-1 \\
j-1
\end{array}\right\} .
$$

Stirling numbers arise in combinatorics: $(-1)^{r-j}\left[\begin{array}{c}r \\ j\end{array}\right]$ is the number of permutations of r objects that have exactly j cycles. The number $\left\{\begin{array}{l}r \\ j\end{array}\right\}$ is the number of ways of partitioning a set of r objects into exactly j nonempty subsets.

$n \backslash k$	1	2	3	4	5	6
1	1					
2	-1	1				
3	2	-3	1			
4	-6	11	-6	1		
5	24	-50	35	-10	1	
6	-120	274	-225	85	-15	1

Table 1. Stirling numbers $\left[\begin{array}{l}n \\ k\end{array}\right]$ of the first kind.

$n \backslash k$	1	2	3	4	5	6
1	1					
2	1	1				
3	1	3	1			
4	1	7	6	1		
5	1	15	25	10	1	
6	1	31	90	65	15	1

Table 2. Stirling numbers $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ of the second kind.

