# Harmonic Analysis

*Mean and large values of Dirichlet
polynomials*, Invent. Math. **8** (1969), 334-345.
MR42#3029 (B. Berlowitz)
(with R. C. Vaughan) *The large sieve*,
Mathematika **20** (1973), 119-134.
MR51#10260
(J. W. Porter)

*A note on
rearrangements of Fourier coefficients*, Ann. Inst.
Fourier (Grenoble) **26**(2) (1976), 29-34.
MR53#11292 (E. Grosswald)

*An exponential polynomial formed with the Legendre symbol*,
Acta Arith. **37** (1980), 375-380.
MR82a:10041 (A. I. Vinogradov)

*Maximal variants of the large sieve*,
J. Fac. Sci. Univ. Tokyo Sect. 1A Math. **28** (1981), 805-812.
MR83g:10033 (D. R. Heath-Brown)

(with G. Halász) Bernstein's inequality
for finite intervals, *Conference on harmonic analysis in honor of
Antoni Zygmund*, Vol I, II (Chicago, 1981), Wadsworth (Belmont),
1983, pp. 60-65.
MR85j:41028

(with R. C. Vaughan)
*On the distribution of
reduced residues*, Annals of Math. (2) **123** (1986), 311-333.
MR87g:11119 (S. W. Graham)

Irregularities of distribution by
means of power sums, *Proc. Congress on Number Theory* (Zarauz,
1984), Univ. País Vasco (Bilbao), 1989, pp. 11-27.
MR93m:11072 (D. Hensley)

(with J. D. Vaaler) Maximal variants of basic
inequalities, *Proc. Congress on Number Theory* (Zarauz, 1984),
Univ. País Vasco (Bilbao), 1989, pp. 181-197.
MR94d:11062 (E. Stankus)

(with J. D. Vaaler) *A further generalization
of Hilbert's inequality*, Mathematika **45** (1998), 35-39.
MR2001c:11105 (S. W. Graham)

(with J. T. Barton \& J. D. Vaaler)
*Note on a Diophantine inequality in several variables*,
Proc. Amer. Math. Soc. **129** (2001), 337-345.
MR2002j:11090 (R. C. Baker)

Harmonic analysis as
found in analytic number theory,
*Twentieth century harmonic analysis - a
celebration* (Il Ciocco, Italy, 2000), NATO Sci. Ser. II Math.
Phys. Chem. **33**, Kluwer Acad. Publ. (Dordrecht), 2001, pp.
271-293.
MR2002h:11071 (G. Greaves)

(with U. M. A. Vorhauer) *Changes of sign
of the error term in the prime number theorem*, Funct. Approx.
Comment. Math. **35** (2006), 235-247.

(with U. M. A. Vorhauer) *Biased
trigonometric polynomials*, Amer. Math. Monthly, 6 pp., to
appear.

### Home