Harmonic Analysis

Mean and large values of Dirichlet polynomials, Invent. Math. 8 (1969), 334-345. MR42#3029 (B. Berlowitz)  

(with R. C. Vaughan) The large sieve, Mathematika 20 (1973), 119-134. MR51#10260 (J. W. Porter)  

A note on rearrangements of Fourier coefficients, Ann. Inst. Fourier (Grenoble) 26(2) (1976), 29-34. MR53#11292 (E. Grosswald)  

An exponential polynomial formed with the Legendre symbol, Acta Arith. 37 (1980), 375-380. MR82a:10041 (A. I. Vinogradov)  

Maximal variants of the large sieve, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 28 (1981), 805-812. MR83g:10033 (D. R. Heath-Brown)  

(with G. Halász) Bernstein's inequality for finite intervals, Conference on harmonic analysis in honor of Antoni Zygmund, Vol I, II (Chicago, 1981), Wadsworth (Belmont), 1983, pp. 60-65. MR85j:41028  

(with R. C. Vaughan) On the distribution of reduced residues, Annals of Math. (2) 123 (1986), 311-333. MR87g:11119 (S. W. Graham)  

Irregularities of distribution by means of power sums, Proc. Congress on Number Theory (Zarauz, 1984), Univ. País Vasco (Bilbao), 1989, pp. 11-27. MR93m:11072 (D. Hensley)  

(with J. D. Vaaler) Maximal variants of basic inequalities, Proc. Congress on Number Theory (Zarauz, 1984), Univ. País Vasco (Bilbao), 1989, pp. 181-197. MR94d:11062 (E. Stankus)  

(with J. D. Vaaler) A further generalization of Hilbert's inequality, Mathematika 45 (1998), 35-39. MR2001c:11105 (S. W. Graham)  

(with J. T. Barton \& J. D. Vaaler) Note on a Diophantine inequality in several variables, Proc. Amer. Math. Soc. 129 (2001), 337-345. MR2002j:11090 (R. C. Baker)  

Harmonic analysis as found in analytic number theory, Twentieth century harmonic analysis - a celebration (Il Ciocco, Italy, 2000), NATO Sci. Ser. II Math. Phys. Chem. 33, Kluwer Acad. Publ. (Dordrecht), 2001, pp. 271-293. MR2002h:11071 (G. Greaves)  

(with U. M. A. Vorhauer) Changes of sign of the error term in the prime number theorem, Funct. Approx. Comment. Math. 35 (2006), 235-247.  

(with U. M. A. Vorhauer) Biased trigonometric polynomials, Amer. Math. Monthly, 6 pp., to appear.