IGNITION OF HYDROGEN-AIR MIXING LAYER IN TURBULENT FLOWS

H. G. IM, J. H. CHEN AND C. K. LAW

1Combustion Research Facility
Sandia National Laboratories
Livermore, CA 94551, USA
2Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, NJ 08544, USA

Autoignition of a hydrogen-air scalar mixing layer in homogeneous turbulence is studied using direct numerical simulation (DNS). An initial counterflow of unmixed nitrogen-diluted hydrogen and heated air is perturbed by two-dimensional homogeneous turbulence. The temperature of the heated airstream is chosen to be 1100 K, which is substantially higher than the crossover temperature at which the rates of the chain-branching and termination reactions are equal. Three different turbulence intensities are tested in order to assess the effect of the characteristic flow time on the ignition delay. For each condition, a simulation without heat release is also performed. The ignition delay determined with and without heat release is shown to be almost identical up to the point of ignition for all of the turbulence intensities tested, and the predicted ignition delays agree well within a consistent error band. It is also observed that the ignition kernel always occurs where hydrogen is focused, and the peak concentration of HO_2 is aligned well with the scalar dissipation rate. The dependence of the ignition delay on turbulence intensity is found to be nonmonotonic. For weak to moderate turbulence, the ignition is facilitated by turbulence via enhanced mixing, while for stronger turbulence, whose timescale is substantially smaller than the ignition delay, the ignition is retarded due to excessive scalar dissipation, and hence diffusive loss, at the ignition location. However, for the wide range of initial turbulence fields studied, the variation in ignition delay due to the corresponding variation in turbulence intensity appears to be quite small.

Introduction

Understanding autoignition in a hydrogen-air system is of importance not only for the utilization of hydrogen as a fuel but also because hydrogen chemistry is a building block for more complex chemistry involving hydrocarbon fuels. While some basic chemical behavior in various pressure and temperature regimes has long been known for a homogeneous explosion system [1], recent studies of the ignition of hydrogen and air within a convective and diffusive environment have revealed many additional interesting characteristics of such a system [2–9]. In particular, the studies of hydrogen against heated air in a counterflow [3] and laminar mixing layer [7,8] have identified chemical behavior leading to ignition in various temperature and pressure regimes, which was further substantiated by a bifurcation analysis [9]. One of the key findings of these studies is that, for ignition temperatures higher than the crossover temperature, at which the rates of branching and three-body termination reactions of H and O_2 become equal, ignition can be described purely by a chemical nonlinear coupling without having to involve thermal feedback. The importance of the chain-branching reaction,

$$\text{H} + \text{HO}_2 = \text{OH} + \text{OH}$$

during the chemical runaway was first identified by Kreutz and Law [3]. This result suggests a significant simplification in identifying ignition events in more complex practical combustion systems by alleviating numerical difficulties related to heat release.

Fig. 1. Schematic of the problem configuration.
In many combustion devices, autoignition is achieved by injecting a relatively cold combustible into hot air. Therefore, the chemical development and turbulent mixing are strongly coupled, and both are important processes during the induction period. Because ignition is a local event, it can be generally anticipated that turbulence will most likely facilitate the production of well-mixed ignition kernels such that ignition is promoted compared to the situation with pure laminar mixing. A recent study by Mastorakos et al. [10] confirmed this result from numerical simulation of ignition in a turbulent mixing layer with simplified chemistry, for relatively weak turbulence intensities.

In the present study, we perform direct numerical simulation (DNS) of ignition in a two-dimensional turbulent mixing layer of hydrogen and heated air using detailed chemistry, thereby providing a more complete realization of the ignition event. A wide range of turbulence intensities is covered in order to assess the effect of turbulence intensity on the ignition delay. The spatial distribution of various species and scalar dissipation rates is also analyzed. Finally, the issue of chemical runaway in characterizing the ignition event and the behavior of the associated key reaction steps in turbulent flows are examined by comparing results with and without heat release for each of the turbulent flows.

Numerical Solution

The full compressible Navier–Stokes, species, and energy equations for a reacting gas mixture are solved using a fourth-order Runge–Kutta method for time integration and an eighth-order explicit spatial differencing scheme [11]. We adopt the chemical
The spatial and temporal variables for the compressible reacting flow are nondimensionalized by acoustic scales that take the value of d_{ref}. The molecular viscosity is temperature dependent, and the mixture specific heat is determined locally as a function of mixture composition; that is, $\kappa = \sum \kappa_i Y_i$, where each κ_i is curve fitted as a function of temperature [13]. The Prandtl number is taken to be 0.708. The mass diffusion coefficient for individual species are determined by constant Lewis numbers given as $Le_H = 0.3$, $Le_O = 1.11$, $Le_O = 0.7$, $Le_{OH} = 0.73$, $Le_{H,O} = 0.83$, $Le_H = 0.18$, $Le_{H,O} = 1.10$, $Le_{H,O} = 1.12$. The temperature profiles are nonreflecting in the direction of the initial mixture fraction gradient and periodic in the direction perpendicular to it.

Figure 1 shows a schematic of the problem configuration. For the initial condition, a mixing layer of initial mixture fraction gradient and periodic in the direction perpendicular to it. The initial condition as in equation 1. Figure 2 shows the time evolution of temperature and species profiles during ignition. Here we choose the elemental mixture fraction for ξ_H [15], as the independent variable. It is seen that the peak concentrations of radicals increase enormously, by many orders of magnitude, before the temperature field shows any noticeable peak due to reaction. It is also noted that, while the stoichiometric mixture fraction, $\xi_{H,\text{st}}$, is 0.304 for this condition, during ignition, the maximum radical concentrations are located farther into the heated air side at approximately $\xi_H = 0.1-0.15$, which we define as the ignition kernel, as observed in previous studies [2,10].

The evolution of the maximum temperature and species concentrations is plotted as a function of time, both with and without heat release, in Fig. 3. It is seen that the two results for radical concentrations are identical almost up to the ignition point, during which the value rises by several orders of magnitude.

\[Y_{\text{H,O}} \times 100 \]

\[\text{Temperature (K)} \]

\[Y_{\text{H,O}} \times 100 \]

\[\text{Temperature (K)} \]

Fig. 4. Temperature (thin) and $Y_{\text{H,O}}$ profiles (bold) during the ignition event for the one-dimensional problem; \(\cdots \cdots ; \tau_{\text{ref}} = 5; \cdots \cdots ; \tau_{\text{ref}} = 10; \cdots \cdots ; \tau_{\text{ref}} = 12 \). The temperature profiles at $\tau_{\text{ref}} = 5$ and 7 are indistinguishable. Note that $Y_{\text{H,O}}$ at $\tau_{\text{ref}} = 5$ is magnified by 100 times.

Results and Discussion

Ignition in a One-Dimensional Laminar Flow

As a point of reference, we first examine a one-dimensional laminar ignition problem for the same initial condition as in equation 1. Figure 2 shows the time evolution of temperature and species profiles during ignition. Here we choose the elemental mixture fraction for ξ_H [15], as the independent variable. It is seen that the peak concentrations of radicals increase enormously, by many orders of magnitude, before the temperature field shows any noticeable peak due to reaction. It is also noted that, while the stoichiometric mixture fraction, $\xi_{H,\text{st}}$, is 0.304 for this condition, during ignition, the maximum radical concentrations are located farther into the heated air side at approximately $\xi_H = 0.1-0.15$, which we define as the ignition kernel, as observed in previous studies [2,10].

The evolution of the maximum temperature and species concentrations is plotted as a function of time, both with and without heat release, in Fig. 3. It is seen that the two results for radical concentrations are identical almost up to the ignition point, during which the value rises by several orders of magnitude.
magnitude. We define ignition delay as the time at which the marker variable, typically H, reaches a maximum temporal gradient. In this case, the ignition delays based on H radical with and without heat release are respectively 0.137 and 0.126 ms, with a difference of approximately 8%. This confirms the dominance of chemical nonlinearity during ignition, consistent with the results of recent studies [2,8].

In Fig. 3, we note two distinct features in the evolution of HO\textsubscript{2} radical. First, HO\textsubscript{2} rises very rapidly in the beginning, then slows down as the ignition point is approached, while other major radicals, such as H, O, and OH, continue to increase exponentially. Furthermore, we observe that maximum HO\textsubscript{2} concentrations with and without heat release remain remarkably close even beyond the ignition point. To understand this distinct behavior, we first note that the main production of HO\textsubscript{2} is through the reaction

\[H + O_2 + M = HO_2 + M \] \hspace{1cm} (R9)

which competes with the branching reaction

\[H + O_2 = O + OH \] \hspace{1cm} (R1)

Furthermore, previous studies [3,9] have demonstrated that an additional branching path

\[HO_2 + H = OH + OH \] \hspace{1cm} (R11)

becomes increasingly important as the ignition point is approached. A secondary path for HO\textsubscript{2} consumption also occurs through the reaction

\[HO_2 + H = H_2 + O_2 \] \hspace{1cm} (R10)

Figure 4 shows the evolution of temperature and HO\textsubscript{2} mass fraction profiles. It is seen that the peak concentration starts to occur in the vicinity of the ignition kernel at approximately $\xi_{H} = 0.15$, but as ignition progresses, the peak point moves toward the colder fuel side. Thus, the location of peak HO\textsubscript{2} remains at lower temperatures even beyond the ignition point, resulting in no noticeable difference from the peak value without heat release. At $t/t_{ref} = 12$, it is noted that another peak of HO\textsubscript{2} begins to develop at the edge of the oxidizer side of the flame. We observe that this new peak is the actual location of maximum HO\textsubscript{2} for the diffusion flame, for which the earlier larger peak completely disappears. Figure 5 further shows the details of the reaction balance at two representative stages in time. At an earlier stage ($t/t_{ref} = 5$), the production of HO\textsubscript{2} is dominated by R9, while the contributions of both R11 and R10 are negligible. As the radical pool develops near the ignition point ($t/t_{ref} = 10$), however, the consumption by R11 and R10 almost balances with production by R9, and the net reaction rate exhibits a much smaller peak farther into the fuel stream. This further substantiates the importance of the branching step R11 in radical runaway, as found in previous studies [3,8,9].

Ignition in Two-Dimensional Turbulent Flows

We now investigate the ignition behavior in two-dimensional turbulent flows. The turbulent flow field is characterized by an integral length scale, L_{11}, and timescale $\tau_{turb} = L_{11}/k^{1/2}$, where k is the turbulent kinetic energy. In this study, we use three different turbulent flow fields characterized by the following initial conditions:

- weak turbulence: $L_{11}/\delta = 10.1$, $\tau_{turb}/\tau_{ref} = 29.2$;
- moderate turbulence: $L_{11}/\delta = 5.9$, $\tau_{turb}/\tau_{ref} = 8.6$; and
- strong turbulence: $L_{11}/\delta = 3.8$, $\tau_{turb}/\tau_{ref} = 2.8$.

In the ignition problem, the characteristic timescales

- weak turbulence: $L_{11}/\delta = 10.1$, $\tau_{turb}/\tau_{ref} = 29.2$;
- moderate turbulence: $L_{11}/\delta = 5.9$, $\tau_{turb}/\tau_{ref} = 8.6$; and
- strong turbulence: $L_{11}/\delta = 3.8$, $\tau_{turb}/\tau_{ref} = 2.8$.
of turbulence relative to the ignition delay are of physical importance. Since the ignition delay of the one-dimensional laminar case, shown in Fig. 3, is approximately $\tau_{\text{ref}}/\tau_{\text{ign}} = 10$, the three cases represent $\tau_{\text{ref}}/\tau_{\text{ign}} = 3, 1, \text{and } 0.3$, respectively.

Figures 6 and 7 show the contours of H at an earlier stage ($t/\tau_{\text{ref}} = 5$) and near ignition ($t/\tau_{\text{ref}} = 10$) for the weak and strong turbulence cases, respectively. Overlaid in the figures are the contours of the scalar dissipation rate defined as $\nu_H^2 = 2\alpha \nabla H^2$, where $\alpha = \alpha/\rho_c$ is the local thermal diffusivity. We first note that, regardless of the strength of the turbulence, the ignition kernel tends to be located around the mixing layer which is convex to the fuel side. Although not shown here, the contours for the moderate turbulence case also reveal the same behavior. This is expected considering the focusing of highly diffusive hydrogen at such locations where oxygen is abundant at higher temperatures.

Comparing Figs. 6 and 7, it is also seen that, while for weak turbulence there is a single dominant ignition kernel throughout the whole induction period, for strong turbulence several ignition kernels with comparable reaction strength evolve simultaneously, with the location for the maximum concentration shifting in time. For the turbulence fields considered in this study, we find that this shift occurs once and twice for the moderate and strong turbulence cases, respectively, during the entire induction period. It is expected that, as the turbulence intensity becomes higher, the local scalar dissipation rate at the ignition kernel fluctuates more rapidly, such that it is less likely to sustain an optimal ignition condition (i.e., the minimum dissipation rate) at a single location throughout the entire induction period. Consequently, the maximum ignition kernel will likely change from one location to the next.

Figures 8 and 9 show the maximum temperature and several intermediate species mass fractions as a function of time for the weak and strong turbulence cases, respectively. For a fairly wide range of relative turbulence intensity, it appears that the overall physicochemical mechanism during ignition remains the same. As in the reference case (Fig. 3), the appearance of the radical runaway before a substantial temperature rise is clearly seen in both Figs. 8 and 9, such that the result without heat release (thin lines) shows almost no difference all the way up to the ignition point. To substantiate this matter, the ignition delays based on H, as defined in the previous section, for the various cases are reported in Table 1. It is seen that, for all cases studied, not only are the relative differences small, but the relative magnitude among the four cases is also consistent with that with heat release, confirming the validity of the radical-ignition concept. Incidentally, some earlier experimental results [16,17] with homogeneous hydrogen-air mixtures report an ignition delay of
The reaction flux analysis for the turbulent ignition shows the same behavior for the reaction rate of HO$_2$ as described in Fig. 5. The earlier decline in the rate of increase in HO$_2$ in Figs. 8 and 9 is consistent with the one-dimensional result. Consequently, as ignition is approached, an excessive amount HO$_2$ is accumulated near the location at the highest dissipation rate. Figure 10 shows that, during the major evolution period of ignition, the HO$_2$ concentration aligns with the maximum scalar dissipation rate, thereby serving as a good marker species both for turbulence fields and for ignition.

Considering the wide range of turbulence fields studied, over which τ_{int} changes by an order of magnitude, the variations in the ignition delay shown in Table 1 appear to be surprisingly small. This is consistent with the previous study [10] that concluded that, because ignition is a local phenomenon, any strength of turbulent flow will produce a few sufficiently well-mixed spots that will become the ignition kernel. It should also be taken into account that the turbulence is decaying in time in the present DNSs. Our estimates show that, for the strong turbulence case, the turbulent kinetic energy k decreases to 0.80 times, or τ_{int} increases to 1.23 times, the initial value during the induction period.

The relative insensitive response of ignition delay to turbulence intensity may also be attributed to the fact that the system under study is relatively easy to ignite. A calculation of a counterflow, strained system with the same boundary conditions as in the present DNS shows that the scalar dissipation rate at the steady ignition turning point, that is, the lower branch of the S-curve, is approximately 9,700 s$^{-1}$, which is far exceeds the maximum values of θ_{int} encountered in the present DNS. Therefore, for the entire spectrum of turbulence studied here, the ignition kernels have always been in an ignitable state, rendering the effect of mixing less important. The situation may differ substantially for a system with lower maximum temperature. However, a reduction in air temperature would result in a much longer ignition delay, a situation that is not computationally feasible.

Despite this observation, for the particular cases studied here, we cautiously note the nonmonotonic behavior in the ignition delay shown in Table 1, that is, the strong turbulence case leading to a slightly longer ignition delay compared to the other cases. To identify the reason for this, in Fig. 11 we plot the reaction rate of H versus the scalar dissipation rate, conditioned over the range, $0.5 < \xi_{\text{int}} < 0.15$, in order to isolate the intensively reacting regions. The solid curve denotes the reference one-dimensional
FIG. 8. Maximum temperature and species mass fraction as a function of time for the weak turbulence case, \(\tau_{\text{turb}}/\tau_{\text{H}} = 3 \); the bold line is with heat release, and the thin line, without heat release.

FIG. 9. Maximum temperature and species mass fraction as a function of time for the strong turbulence case, \(\tau_{\text{turb}}/\tau_{\text{H}} = 0.3 \); the bold line denotes with heat release, and the thin line denotes without heat release.

TABLE 1
Ignition delay based on maximum temporal gradient of \(Y_{\text{H}} \) for various cases. Units are in milliseconds

<table>
<thead>
<tr>
<th>Case</th>
<th>With Heat Release</th>
<th>Without Heat Release</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D laminar</td>
<td>0.1374</td>
<td>0.1260</td>
<td>0.083</td>
</tr>
<tr>
<td>Weak turbulence</td>
<td>0.1293</td>
<td>0.1208</td>
<td>0.066</td>
</tr>
<tr>
<td>Moderate turbulence</td>
<td>0.1301</td>
<td>0.1219</td>
<td>0.063</td>
</tr>
<tr>
<td>Strong turbulence</td>
<td>0.1385</td>
<td>0.1301</td>
<td>0.061</td>
</tr>
</tbody>
</table>

It is seen that, as the turbulence intensity increases, there is wider scatter from the laminar result. In particular, for the strong turbulence case, denoted by the red symbols, the overall reaction rate is suppressed compared to the weaker turbulence cases at the same \(\tau_{\text{H}} \). Furthermore, the maximum reaction rate is shifted further into the higher \(\tau_{\text{H}} \) side, which is responsible for the longer ignition delay.

Knowing the location at which the final ignition is achieved, we also monitor the history of the local scalar dissipation rate at this ignition kernel, as shown in Fig. 12. It is seen that the ignition kernels for the weak and moderate turbulence cases experience slightly lower, yet comparable dissipation...
Fig. 10. Contours of Y_{HO_2} (color) and Z_{H} (line) at an earlier stage ($t/\tau_{\text{ref}} = 5$) and near ignition ($t/\tau_{\text{ref}} = 10$) for the strong turbulence case.

Fig. 11. Scatter plot for the reaction rate of H as a function of scalar dissipation rate for three turbulence cases at $t/\tau_{\text{ref}} = 3$. Solid curve denotes the one-dimensional laminar result. The turbulent data are conditioned around $0.05 < \zeta_{\text{H}} < 0.15$ for which maximum reaction rate is obtained.

Rates throughout the entire induction period. For the strong turbulence case, however, the local dissipation rate is initially much higher than the other cases, subsequently showing a more rapid variation in time. The large dissipation rate in the earlier stage is partly responsible for the longer ignition delay for the strong turbulence case. Therefore, it may be conjectured that, for strong turbulence with $\tau_{\text{turb}} < \tau_{\text{ig}}$, it is less likely to sustain low dissipation rate at a particular ignition kernel throughout the entire induction period, and thus a longer delay compared to moderate turbulence can be expected. Considering the random nature of turbulence, however, more statistical samples are needed to resolve this issue.
Conclusions

Ignition of hydrogen-air mixing layer in homogeneous decaying turbulence is studied where the range of turbulence timescales relative to the ignition delay is varied by an order of magnitude. For the same flows, parallel simulations with heat release suppressed were also performed. The results demonstrate that the solutions with and without heat release are almost identical up to the point of ignition for all of the turbulence fields considered, and the predicted ignition delays agree well within a consistent error band. The results imply that ignition of hydrogen and air in turbulent flow fields can also be characterized purely by radical runaway as opposed to thermal runaway and, as such, also holds the potential of alleviating numerical difficulties related to abrupt heat release, as suggested in a previous study [18].

We have also confirmed the role of the branching reaction, \(\text{HO}_2 + \text{H} = \text{OH} + \text{OH} \), for chemical ignition. As the ignition point is approached, the branching reaction becomes increasingly important such that the peak \(\text{HO}_2 \) concentration is shifted further toward the cold fuel stream, which eventually vanishes at the intensive burning state. Consequently, it was shown that the \(\text{HO}_2 \) peaks align with the maximum scalar dissipation rate during the ignition process. It was also observed that the ignition kernel tends to be located where the mixing layer is convex toward the fuel side due to the high diffusivity of the hydrogen molecules.

As for the effect of the turbulence–chemistry interaction, for the wide range of initial turbulence fields studied, the ignition delays appear to be quite insensitive to the turbulence intensity. It may be stated that, as ignition is a local event, there will always be some well-mixed regions as long as some turbulence exists. For stronger turbulence, whose timescale is smaller than the ignition delay, it was observed that ignition is slightly retarded due to the large magnitude of the scalar dissipation rate and its fluctuations at the ignition location. More data are needed to conclusively address this issue.

Acknowledgments

HGI and JHC were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division, and CKL was supported by the Army Research Office. The authors would like to thank Dr. T. Echekki of Sandia National Laboratories for helpful comments.

REFERENCES

In the context of turbulent combustion models, the so-called ignition delay is in fact composed of two time scales:
1. a first time scale for the appearance of the first ignition site, and
2. a second time scale that is required to establish a fully developed turbulent non-premixed flame.

It was found in the study of Mastorakos et al. that the first time scale is relatively insensitive to turbulence, and your results are consistent with this finding. It was also found that the second time scale is more sensitive to turbulent effects, and this second phase in the overall ignition process was difficult to model. Did you run your simulations long enough to study the second phase, and what are your observations?

Author’s Reply. We have not thoroughly examined the second time scale in the present work. However, due to the highly nonlinear nature of chemical reaction, the initial formation of the ignition kernel will immediately be followed by the development of the non-premixed flame. Therefore, the difference between the two time scales in your comment is expected to be small relative to the total ignition delay, such that the conclusion remains valid regardless of the definition of ignition. In fact, Mastorakos et al. (Ref. [10] in the paper) show that the difference in time required to establish a non-premixed flame is small over a wide range of turbulence intensity.