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In this paper, we present a data-based approach that can be used to improve the fuel economy of connected automated vehicles. We
propose a connected cruise control algorithm that utilizes beyond-line-of-sight information while responding to the motion of multiple
vehicles ahead. We demonstrate that by optimizing the control parameters one can achieve significant fuel economy improvements
for a class-8 truck. The results are validated using a high-fidelity TruckSim model.

1 INTRODUCTION

Improving fuel efficiency for ground vehicles, in particular
for heavy duty vehicles, carries both economical and societal
benefits. Vehicle automation and wireless vehicle-to-everything
(V2X) communication may be used to achieve this. Using geo-
location and grade information to optimize speed profile was
shown to improve fuel economy in sparse traffic conditions [1].
In heavy traffic, numerical optimization methods can be used to
achieve better fuel economy when the motion of the vehicle im-
mediately ahead can be accurately predicted [2]. However, when
the preceding vehicle is driven by a human driver such prediction
may become inaccurate.

On the other hand, wireless vehicle-to-vehicle (V2V) commu-
nication may be used to monitor the motion of multiple vehicles
ahead even when they are beyond the line of sight. Using such
information in the longitudinal controller of a connected auto-
mated vehicle, referred to as connected cruise control [3–6], may
lead to significant energy savings. In this paper, we utilize traffic
data collected from a chain of human-driven vehicles and de-
sign connected cruise controllers to improve fuel economy for a
class-8 truck inserted into the traffic flow. We establish an opti-
mization method that allows energy-efficient responses to traffic
perturbations and we demonstrate its impacts on fuel economy
using high-fidelity TruckSim simulations.

2 DATA ANALYSIS, MODELING, AND CONTROL
DESIGN

In this section, we discuss how real-time traffic data can be uti-
lized to control a connected automated truck. We consider a driv-
ing scenario where the truck drives behind several human-driven
vehicles on a segment of flat road; see Fig. 1(a). All vehicles are
equipped with GPS and V2X devices so they can broadcast their
positions and velocities. The truck utilizes this information in or-
der to control its longitudinal motion through a connected cruise
control algorithm.
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Figure 1: (a) Layout of the connected vehicle system consisting
of three human-driven vehicles and a heavy duty vehicle that is
driven by a connected cruise control algorithm. (b) The satura-
tion function in (2). (c) The range policy function (7). (d) The
saturation function (8).

2.1 Traffic data

Velocity data of human-driven vehicles are displayed in
Fig. 2(a.1-a.3) in three different driving scenarios. The green,
black, and red curves correspond to the speed of vehicle 3, ve-
hicle 2 and vehicle 1, respectively. Fig. 2(a.1) shows a scenario
where the cars are driving around 30 [m/s] with very little speed
variations. In Fig. 2(a.2) the speeds vary between 0 and 30 [m/s]
such that the plateaus are connected by short periods of mild
accelerations and decelerations. Finally, the speed profiles in
Fig. 2(a.3) consist of constant speed driving around 25 [m/s] that
is interrupted by short periods of braking and acceleration.

The differences between the different speed profiles are fur-
ther emphasized through the Fourier components shown in
Fig. 2(b.1-b.3,c.1-c.3). These can be used to reconstruct the
speed profiles according to

vi(t) = v∗ + ṽi(t)

= v∗ +
m∑
j=1

ρi,j sin(ωjt+ ϕi,j),
(1)
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Figure 2: (a.1-a.3) Speed profiles of human-driven vehicles as function of time. (b.1-b.3) Amplitudes of the Fourier spectra as function
of frequency. (c.1-c.3) Phases of the Fourier spectra as function of frequency; cf. (1).

along the time interval t ∈ [0, T ] where the time horizon T may
be different for different traffic scenarios. Here we discretized
frequency ωj = j∆ω with ∆ω = 2π/T and used the notation
ρi,j = ρi(ωj) and ϕi,j = ϕi(ωj) for the amplitude and phase
angle at frequency ωj . The constant Fourier component v∗ is
separated as this is the same for all vehicles in the chain.

Below we will utilize the Fourier decomposition (1) and select
the control parameters in the connected cruise controller in order
to optimize the energy efficiency of the truck. We will demon-
strate that the three different profiles shown in Fig. 2 will lead
to different sets of optimal parameters allowing us to ”tailor” the
connected cruise controllers to the traffic data.

2.2 Longitudinal dynamics

The longitudinal motion of the truck can be described by the
simplified model

ṡ(t) = v(t) ,

v̇(t) = −f
(
v(t)

)
+ sat

(
u(t− ζ)

)
,

(2)

where the dots denote differentiation with respect to time t, s
denotes the position of the rear bumper of the truck, v denotes
its velocity; see Fig. 1(a).

The air resistance and rolling resistance are included in

f(v) =
1

meff
(γmg + kv2) , (3)

where g is the gravitational constant, γ is the rolling resistance
coefficient, k is the air drag constant, and the effective mass
meff = m+ I/R2 includes the mass of the vehicle m, the mo-
ment of inertia I of the rotating elements, and the wheel radius
R [7]. The values of these parameters are listed in Table 1.

The commanded acceleration u is implemented by the engine
and the brakes. The parameter ζ represents the actuator delay
while the saturation function sat(·) corresponds to the torque
limits of these actuators; see Fig. 1(b). While the minimum
umin is independent of the speed, for the maximum we have
umax = min{ūmax, Pmax/(meffv)} where Pmax represents the
power limit of the engine; see Table 1. In this paper we use the
controller

u = ad + f̃(v) , (4)

where ad represent the acceleration demanded by the connected
cruise controller (see below) while the term f̃(v) is added to
compensate for the air drag and the rolling resistance.

2.3 Connected cruise control design

Considering the scenario when the connected automated truck
receives motion information about n human driven vehicles

Parameter Value
Mass (m) 29484 [kg]

Tire rolling resistance coefficient (γ) 0.006
Air drag coefficient (k) 3.84 [kg/m]
Tire rolling radius (R) 0.504 [m]
Rotational inertia (I) 39.9 [kg·m2]

Gravitational constant (g) 9.81 [m/s2]
Braking limit (umin) -4 [m/s2]

Acceleration limit (ūmax) 1 [m/s2]
Maximum engine power (Pmax) 300.65 [kW]

Table 1: Data of a 2012 Navistar Prostar truck [8].

ahead, we propose the connected cruise controller

ad(t) = α
(
V
(
h(t− ξ1)

)
− v(t− ξ1)

)

+
n∑

i=1

βi

(
W

(
vi(t− ξi)

)
− v(t− ξi)

)
.

(5)

where the headway

h = s1 − s− l , (6)

is the distance gap between the truck and the vehicle immedi-
ately ahead and l denotes the length of the truck. Moreover, α
and βi are the feedback gains while ξi represents the communi-
cation delay from vehicle i.

The range policy function

V (h) =


0 if h ≤ hst ,

κ(h− hst) if hst < h < hgo ,

vmax if h ≥ hgo ,

(7)

describes the desired velocity of the truck as a function of its
headway; see Fig. 1(c). For a small headway (h < hst), the truck
intends to stop; for a large headway (h > hgo), it intends to travel
with the speed limit vmax; between hst and hgo the desired veloc-
ity increases linearly, with the gradient κ = vmax/(hgo − hst).
Finally, the saturation function

W (vi) =

{
vi if vi ≤ vmax ,

vmax if vi > vmax ,
(8)

shown in Fig. 1(d) is included to stay below the speed limit when
a preceding vehicle is speeding. In this paper, we use vmax =
30 [m/s], hst = 5 [m] and κ = 0.6 [1/s].

3 ENERGY-OPTIMAL CONNECTED CRUISE
CONTROL

In order to evaluate the influence of different traffic perturbations
on energy efficiency, we define the cumulative energy consump-
tion per unit mass as

w(t) =

∫ t

0

v(τ)g
(
v̇(τ) + f

(
v(τ)

))
dτ , (9)



where t ∈ [0, T ] and g(x) = max(0, x). For vehicles with in-
ternal combustion engines, fuel consumption typically increases
with the energy consumption w(t). However, as w(t) is defined
by the vehicle’s motion, it can also be used to evaluate the energy
consumption of electric or hybrid vehicles due to speed varia-
tions using an appropriate g function. Our goal here is to find the
feedback gains βi in (5) that minimize the (9).

3.1 Plant stability

Before searching for the energy-optimal feedback gains, it is
necessary to obtain the stability boundaries to ensure that the
connected automated truck is able to maintain constant speed
when the vehicles ahead are traveling at constant speed. Thus,
we consider the steady-state

v(t) ≡ vi(t) ≡ v∗ , (10)

for i = 1, . . . , n and

h(t) ≡ h∗ , v∗ = V (h∗) , (11)

cf. (7) and Fig. 1(c).
We define s̃, s̃1, ṽi, i = 1, . . . , n as the perturbations about the

equilibrium positions and velocities (cf. (1)) and assume that the
influence of the physical effects f(v) can be negated by f̃(v).
Then linearizing the dynamics (2,4,5) of the connected auto-
mated truck about (10), we obtain

˙̃s(t) = ṽ,

˙̃v(t) = α
(
κ
(
h̃(t− σ1)

)
− ṽ(t− σ1)

)

+
n∑

i=1

βi

(
ṽi(t− σi)− ṽ(t− σi)

)
,

(12)

where h̃= s̃1 − s̃ is the perturbation about the equilibrium head-
way h∗ and σi = ξi + ζ gives the total delay in the control loop.
For simplicity, we consider σi = σ for i = 1, . . . , n.

In order for the connected automated truck to be able to main-
tain its speed around the equilibrium, we require the linearized
dynamics (12) to be plant stable [4]. That is, all roots of the char-
acteristic equation

D(λ) = λ2eσλ +

(
α+

n∑
i=1

βi

)
λ+ ακ = 0 , (13)

must be located in the left half complex plane. Thus, the design
parameters α and βi need to be selected from the domain en-
closed by

α = 0 , (14)

and

α =
Ω2

κ
cos(Ωσ) ,

n∑
i=1

βi = Ωsin(Ωσ)− Ω2

κ
cos(Ωσ) ,

(15)

for Ω > 0.
In Fig. 3, we plot the plant-stable domain in the (

∑n
i=1 βi, α)-

plane for κ= 0.6 [1/s] and σ = 0.7 [s]. The black line highlights
the plant-stable range of

∑n
i=1 βi for the headway feedback gain

α = 0.4 [1/s] that is chosen here based on safety considerations.

α
[1/s]

n∑

i=1

βi[1/s]

Figure 3: Stability diagram for κ= 0.6 [1/s] and σ = 0.7 [s] where the
shaded region corresponds to plant stable parameters. The black line
segment corresponds to α = 0.4 [1/s].

3.2 Data-driven energy minimization

Since directly minimizing the energy consumption (9) may
lead to designs that are overly sensitive here we propose an
energy-optimal connected cruise control design by exploiting the
Fourier decomposition of traffic perturbations.

Based on the linearized dynamics (12), the speed oscillation
of the connected automated truck can be written as

Ṽ (λ) =
n∑

i=1

Γi(λ;pn)Ṽi(λ) , (16)

where Ṽi(λ) is the Laplace transform of the velocity perturbation
ṽi(t). The vector pn = [α,κ,β1, . . . , βn] contains the design pa-
rameters, and the so-called link transfer function from the i-th
vehicle to the connected automated truck can be formulated as

Γ1(λ;pn) =
ακ+ λβ1

λ2eσλ +

(
α+

n∑
k=1

βk

)
λ+ ακ

,

Γi(λ;pn) =
λβi

λ2eσλ +

(
α+

n∑
k=1

βk

)
λ+ ακ

,

(17)

for i = 2, . . . , n.
Based on (1,16,17), the steady-state oscillation of the con-

nected automated truck is given by

v(t) = v∗ + ṽ(t)

= v∗ +
m∑
j=1

n∑
i=1

ρ̃i,j(pn) sin
(
ωjt+ ϕ̃i,j(pn)

)
,

(18)

where

ρ̃i,j(pn) = ρi,j · Γi(iωj ;pn) ,

ϕ̃i,j(pn) = ϕi,j + ̸ Γi(iωj ;pn) .

(19)

This can be rewritten as

v(t) = v∗ + ṽ(t)

= v∗ +
m∑
j=1

Dj(pn) sin
(
ωjt+ θj(pn)

)
,

(20)
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Figure 4: (a.1-a.3) The value of the cost (20) as function of the gain parameter β1 when the truck only utilizes motion information
from the vehicle immediately ahead. (b.1-b.3) The level sets of the cost (20) in the (β2, β3)-plane when the truck utilizes information
from three vehicles ahead. (c.1-c.3) The speed profiles for the energy-optimal connected automated truck obtained by Trcuksim. Blue
curves correspond to the cases when motion information from one car is utilized while red curves correspond the cases when motion
information from all three vehicles are used. (d.1-d.3) The corresponding fuel consumption profiles.

where

Dj =

√√√√( n∑
i=1

ρ̃i,j cos ϕ̃i,j

)2

+

( n∑
i=1

ρ̃i,j sin ϕ̃i,j

)2

,

tanθj =

n∑
i=1

ρ̃i,j sin ϕ̃i,j

n∑
i=1

ρ̃i,j cos ϕ̃i,j

.

(21)

We propose the minimization of the cost function

min
pn∈P

Jn(pn) =

√√√√ m∑
j=1

ω2
jD

2
j (pn) , (22)

where P is the admissible set of pn that ensures plant stability;
see (14,15) and Fig. 3. Other specifications such as string stabil-
ity may also be incorporated [9]. The details about the construc-
tion of (22) are provided in Appendix A. By computing the level
sets of (22), the parameters in pn can be related to the energy
efficiency of the connected automated truck at the linear level.
We remark that the computational demand of such minimization
is very low.

The results of are summarized in Fig. 4 where the columns
correspond those in Fig. 2. In order to create a benchmark, in

panels (a.1-a.3) we show the values of Jn given in (22) when
varying the control gain β1 (with resolution 0.1 [1/s]) and β2 =
β3 = 0. This means that the truck only utilizes motion infor-
mation from its immediate predecessor. For the different speed
profiles the values of Jn change significantly but the minimum
is located around β1 = 0.4− 0.5 [1/s] as indicated by the black
crosses. Then, in panels (b.1-b.3), we vary β1, β2, β3 (again us-
ing resolution 0.1 [1/s]) to find the minima of Jn that are in-
dicated by black crosses. The red dashed curves are the plant
stability boundaries; cf. Fig. 3.

When comparing the minimum values of Jn in panels (a.k)
and (b.k) in the k-th column, one may notice significant im-
provements. Even the minimum values along the lines β2 = 0
and β3 = 0 are significantly lower than for the case β2 = β3 = 0.
This implies that utilizing motion information from more than
one vehicle ahead can improve the energy efficiency of the truck.
Also notice that the locations minima changes significantly when
comparing the different columns. This shows that by selecting
the gain combinations appropriately one may ”tailor” the con-
troller to the traffic scenario ahead to maximize the energy sav-
ings.

In order to demonstrate the impact of these energy savings on
fuel economy we utilized a high fidelity model in Trucksim and
we implemented the controller (4, 5). The corresponding veloc-
ity profiles are displayed in Fig. 4(c.1-c.3) where the blue curves
correspond to the energy-optimal CCC when the truck only uses
motion information from the vehicle immediately ahead while
the red curves correspond to the energy-optimal CCC when
motion information from all three vehicles ahead are utilized.



When comparing the blue and red curves the differences are not
very significant though the red curves look smoother. The ben-
efits become evident when looking at the fuel consumption in
Fig. 4(d.1-d.3). This show that monitoring three vehicles ahead
can lead to 10-15% fuel economy improvements compared to
the case when only one vehicle ahead is monitored.

4 CONCLUSIONS

In this paper, we proposed a data-based method to improve the
energy efficiency of connected automated trucks. We used an op-
timization method to design an energy efficient connected cruise
controller based on the traffic data collected during road experi-
ments. Using high-fidelity simulations in TruckSim, we demon-
strated the fuel-economy benefits compared to a benchmark de-
sign.
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A APPROXIMATING THE ENERGY CONSUMPTION

In this Appendix we provide the detailed derivation of the cost
function (22).

Recall the truck’s speed response (20) for a certain parameter
set pn, we have

v(t) = v∗ + ṽ(t)

= v∗ +

m∑
j=1

Dj sin(ωjt+ θj) ,
(23)

where t ∈ [0, T ], ωj = j∆ω, j = 1, . . . ,m, and ∆ω = 2π/T .
Correspondingly, the acceleration of the truck is

v̇(t) =
m∑
j=1

Djωj cos(ωjt+ θj) . (24)

Note that the nonlinear function g(x) = max(x,0) in (9) can be
approximated by

ĝ(x) =
1

2

(
x+

x2

√
ε+ x2

)
, (25)

for small ε > 0.
To approximate the total energy consumption we omit f(v) in

(9), that is,

ŵ =

∫ T

0

v ĝ
(
v̇
)

dt =
1

2

∫ T

0

v v̇2√
ε+ v̇2

dt . (26)

Note that

v̇2 =
m∑

j,k=1

DjDkωjωk cos(ωjt+ θj) cos(ωkt+ θk) . (27)

Thus, for some M > 0, we have

ε ≤ ε+ v̇2 ≤ ε+
m∑

j,k=1

DjωjDkωk ≤ M
m∑
j=1

D2
jω

2
j , (28)

where in the last step we utilized the Cauchy-Schwarz inequality.
Thus, we obtain the bounds∫ T

0

v v̇2dt

2

√√√√M
m∑
j=1

D2
jω

2
j

≤ ŵ ≤

∫ T

0

v v̇2dt

2
√
ε

. (29)

On the other hand,

v∗v̇2 =
v∗

2

m∑
j=1

D2
jω

2
j −

v∗

2

m∑
j=1

D2
jω

2
j cos(2ωjt+ 2θj)

+
v∗

2

m∑
j=1

m∑
k=1,k ̸=j

DjDkωjωk

×
[
cos

(
(ωj + ωk)t+ θj + θk

)

+ cos
(
(ωj − ωk)t+ θj − θk

)]
,

(30)



and

ṽ v̇2 =
m∑
j=1

m∑
k=1

m∑
l=1

DjDkDlωjωk

× cos(ωjt+ θj) cos(ωkt+ θk) sin(ωlt+ θl)

=
1

4

m∑
j=1

m∑
k=1

m∑
l=1

DjDkDlωjωk

×
[
sin

(
(ωj + ωk + ωl)t+ θj + θk + θl

)
− sin

(
(ωj + ωk − ωl)t+ θj + θk − θl

)
+ sin

(
(ωj − ωk + ωl)t+ θj − θk + θl

)
− sin

(
(ωj − ωk − ωl)t+ θj − θk − θl

)]
.

(31)

Thus, adding (30) and (31) and evaluating the integrals, we ob-
tain∫ T

0

v v̇2dt =
T

2
v∗

m∑
j=1

D2
jω

2
j

+
T

4

m−1∑
j=1

m∑
k≤m−j

DjDkDj+kωjωk sin(θj+k − θj − θk)

+
T

2

m−1∑
j=1

m∑
k>j

DjDkDk−jωjωk sin(θj + θk−j − θk) .

(32)

Here, we assume the speed oscillations are small compared to
the steady-state speed, that is, v∗ ≫ Dj for j = 1, . . . ,m. Then
denoting D = max{Dj |j = 1, . . . ,m}. Thus, we have∣∣∣∣m−1∑

j=1

m∑
k≤m−j

DjDkDj+kωjωk sin(θj+k − θj − θk)

∣∣∣∣
≤

m−1∑
j=1

m∑
k≤m−j

DjDkDj+kωjωk < mD
m∑
j=1

ω2
jD

2
j ,

(33)

and ∣∣∣∣m−1∑
j=1

m∑
k>j

DjDkDk−jωjωk sin(θj + θk−j − θk)

∣∣∣∣
≤

m−1∑
j=1

m∑
k>j

DjDkDk−jωjωk <
mD

2

m∑
j=1

ω2
jD

2
j ,

(34)

yielding

(v∗ −mD)T

2

m∑
j=1

D2
jω

2
j

≤
∫ T

0

v v̇2dt ≤

(v∗ +mD)T

2

m∑
j=1

D2
jω

2
j .

(35)

Finally, the energy consumption (26) can be bounded as

C

√√√√ m∑
j=1

D2
jω

2
j ≤ ŵ ≤ C

m∑
j=1

D2
jω

2
j , (36)

where

C =
(v∗ −mD)T

4
√
M

, C =
(v∗ +mD)T

4
√
ε

. (37)

Given v∗ > mD, the energy consumption (26) is bounded by
class-K functions of

√∑m
j=1D

2
jω

2
j , which can be used for a

robust energy-optimal design; see (22).


