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ABSTRACT 
Machine learning (ML) models are now routinely deployed 
in domains ranging from criminal justice to healthcare. With 
this newfound ubiquity, ML has moved beyond academia and 
grown into an engineering discipline. To that end, interpretabil-
ity tools have been designed to help data scientists and ma-
chine learning practitioners better understand how ML models 
work. However, there has been little evaluation of the extent 
to which these tools achieve this goal. We study data scien-
tists’ use of two existing interpretability tools, the InterpretML 
implementation of GAMs and the SHAP Python package. We 
conduct a contextual inquiry (N=11) and a survey (N=197) of 
data scientists to observe how they use interpretability tools 
to uncover common issues that arise when building and eval-
uating ML models. Our results indicate that data scientists 
over-trust and misuse interpretability tools. Furthermore, few 
of our participants were able to accurately describe the visual-
izations output by these tools. We highlight qualitative themes 
for data scientists’ mental models of interpretability tools. We 
conclude with implications for researchers and tool designers, 
and contextualize our findings in the social science literature. 
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interpretability; machine learning; user-centric evaluation 

CCS Concepts 
•Computing methodologies → Machine learning; 
•Human-centered computing → User studies; 

INTRODUCTION 
Machine learning (ML) has become ubiquitous in our every-
day lives in domains ranging from criminal justice and public 
policy to healthcare and education. Modern ML models show 
promise on problems in computer vision and natural language 
processing for which solutions were only recently out of reach. 
Moreover, while ML was once confined to the academic com-
munity, it has now grown into a full engineering discipline. 
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These developments create countless opportunities for impact, 
but with these opportunities come new challenges. ML models 
have been found to amplify societal biases in datasets and lead 
to unfair outcomes [4, 9, 29]. When ML models have the po-
tential to affect people’s lives, it is critical that their developers 
are able to understand and justify their behavior. More gener-
ally, data scientists and machine learning practitioners cannot 
debug their models if they do not understand their behavior. 
Yet the behavior of complex ML models like deep neural net-
works and random forests is notoriously difficult to understand. 

Faced with these challenges, the ML community has turned 
its attention to the design of techniques aimed at interpretabil-
ity1 [14, 39]. These techniques generally take one of two 
approaches. First, there are ML models that are designed 
to be inherently interpretable, often due to their simplicity, 
such as point systems [25, 68] or generalized additive models 
(GAMs) [10]. Second, there are techniques that provide post-
hoc explanations for the predictions made by complex mod-
els, such as local interpretable model-agnostic explanations 
(LIME) [55] and Shapley additive explanations (SHAP) [44]. 

Although the number of proposed techniques continues to 
grow, there has been little evaluation of whether they help 
stakeholders achieve their desired goals. User studies of 
interpretability are notoriously challenging for a number of 
reasons. They require expertise in the mathematics underlying 
ML models and in human–computer interaction (HCI), as well 
as knowledge of both the academic literature and day-to-day 
engineering practices. To paint a full picture, studies must 
rely on qualitative methods to understand the nuances of how 
tools are used in context, and quantitative methods to scale 
up findings. They must also mimic realistic settings, yet not 
be too cumbersome (e.g., take over an hour to complete). 

We study the effectiveness of interpretability tools for one 
key stakeholder group: data scientists and machine learning 
practitioners. (For simplicity, we refer to this group simply as 
“data scientists” throughout the paper.) We perform a human-
centric evaluation of two existing interpretability tools, the 
InterpretML implementation of GAMs and the SHAP Python 
package, in the context of building and evaluating ML models. 
Our work consists of three components that build on each 

1There is not yet consensus within the research community on the 
distinction between the terms interpretability, intelligibility, and ex-
plainability, and they are often, though not always, used interchange-
ably. Throughout this paper, we stick with interpretability, which is 
more commonly used within the machine learning community. 
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other: 1) a series of pilot interviews (N = 6) to identify com-
mon issues faced by data scientists in their day-to-day work; 
2) a contextual inquiry (N = 11) to observe data scientists’ 
abilities to use interpretability tools to uncover these issues, 
and 3) a large-scale survey (N = 197) to scale up and quantify 
the main findings from our contextual inquiry and shed more 
light on data scientists’ mental models of interpretability tools. 

Our results indicate that the visualizations output by inter-
pretability tools can sometimes—though not always—help 
data scientists to uncover the kinds of issues that they deal 
with on a day-to-day basis in their work, such as missing 
values in a dataset that have been filled in incorrectly. We 
found that the choice of interpretability tool matters, with 
participants performing better using one than the other. 
However, for both tools, the existence of visualizations and 
the fact that the tools were publicly available led to cases of 
over-trust and misuse. Furthermore, despite being provided 
with standard tutorials, few of participants were able to 
accurately describe what the visualizations were showing. 
Participants were also biased toward model deployment, 
despite recognizing suspicious aspects of the ML models. 
This was true even when we showed them manipulated, 
nonsensical explanations, though we observed this less with 
data scientists who were more experienced. Our results 
highlight challenges for designing interpretability tools for 
data scientists, and, in line with prior work [49, 62], we 
advocate for similar user-centric evaluations to be conducted 
for all stakeholders of interpretability tools and ML models. 

RELATED WORK 

Machine Learning Research on Interpretability 
Within the ML community, there has been a surge of research 
on interpretability techniques. These techniques generally 
take one of two approaches: “glassbox” ML models that are 
designed to be inherently interpretable (e.g., simple point sys-
tems [25, 68], GAMs [10]) and post-hoc explanation tech-
niques that are designed to make the predictions of “black-
box” models more interpretable (e.g., LIME [55], SHAP [44]). 
Gilpin et al. [19] provide an overview of different interpretabil-
ity techniques. However, despite this proliferation of tech-
niques, there is still debate about what interpretability should 
entail [14, 39, 56]. Rudin [56] argues against the use of post-
hoc explanation techniques for ML models deployed in high-
stakes domains because they may not faithfully represent the 
models’ behavior. Doshi-Velez et al. [15] propose that an ex-
planation for a particular prediction should include not only a 
justification, but also a description of the decision-making pro-
cess followed by the model. Lipton [39] surveys different crite-
ria for assessing interpretability, such as simulatability, as well 
as different goals that interpretability may be used to achieve. 

Only recently has the ML community begun to evaluate in-
terpretability techniques via user studies. Tan et al. [61] use 
publicly available datasets to test the feasibility of a new GAM-
based post-hoc explanation technique with ML experts. Kim et 
al. [31] do the same for a technique based on Bayesian model 
criticism, intended to add criticisms to example-based explana-
tions. Poursabzi-Sangdeh et al. [54] test the impact of two fac-
tors often thought to affect interpretability—number of input 

features and model transparency (i.e., glassbox vs. blackbox). 
They find that it is easier to simulate models with a small num-
ber of features, but that neither factor impacts people’s will-
ingness to follow a model’s predictions. Moreover, too much 
transparency can cause people to incorrectly follow a model 
when it makes a mistake, due to information overload. Lage et 
al. [36] study two aspects of an explanation (length and com-
plexity) via a wizard-of-oz approach in two domains, finding 
that longer explanations overload people’s cognitive abilities. 

Social Science Research on Explanations 
Complementary to the ML community’s research on inter-
pretability, social science research has focused on how to craft 
and present explanations in such a way that people are able to 
understand and use them. Most notably, Miller [47] defines 
overarching principles from the social science literature on 
explanations: explanations are contrastive, social, and selected 
by people in a biased manner (according to cognitive heuris-
tics); referring to probabilities or statistical generalizations 
is usually unhelpful. To that end, Miller [47, 48] and Lom-
brozo [41] propose simplicity, generality, and coherence as the 
main evaluation criteria for explanations. The social science 
literature proposes that we think of explanations as a conver-
sation. Grice et al.’s maxims of quality, quantity, relation, 
and manner [20], which form the core of a good conversation, 
should therefore be followed when designing explanations [34, 
46, 59]. Leake’s goal-based approach to explanation evalua-
tion further includes metrics such as the timeliness of an expla-
nation in providing the opportunity to deal better with the pre-
diction being explained, knowability and the features responsi-
ble for “knowing,” and the independence of individual explana-
tions [38]. Explanations that follow this goal-based approach 
must include grounding in some common demonstrative ref-
erence between people and the explanation system [11, 45]. 

Although this line of work provides guidance for designing ex-
planation systems that work best for humans—and some ML 
researchers have begun to incorporate this guidance into inter-
pretability techniques [2]—it also criticizes the development 
of explanation systems by ML researchers, citing this as an ex-
ample of “inmates running the asylum” [48] because of a lack 
of user-centric evaluation. Our work addresses this critique by 
conducting user studies of two existing interpretability tools. 

HCI and Interpretability 
HCI has a long-standing tradition of studying complex systems 
from a user-centric perspective. Bellotti and Edwards [6] were 
the first to consider intelligibility and accountability, provid-
ing guidelines for system designers. These guidelines include 
clarifying the system’s capabilities, providing feedback, navi-
gating privacy via personalized settings, and providing control 
and interactive guidance for edge cases. This line of work has 
been extended to ML-based systems, with a focus on interac-
tive ML (iML). The term was coined by Fails and Olsen Jr. [18] 
to describe an approach where people are involved in an iter-
ative process of training, using, and correcting an ML model, 
requiring interpretability for effective corrections [13]. Several 
examples of iML systems now exist, for applications includ-
ing annotation of animal behavior [26], academic citation 
review [63], and on-demand personalized group formation [3]. 
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More recently, the HCI community has sought to improve the 
relationship between people and machines in iML systems. 
Stumpf et al. [60] study the viability of including rich human 
feedback in an ML-based email filtering system, finding the 
lack of common language shared by people and machines to be 
a key challenge. Kulesza et al. [35] suggest that accurate men-
tal models can help people to better use a music recommender 
system, leading to greater satisfaction. Kocielnik et al. [33] 
find that people’s mental models and subsequent expectations 
of accuracy from an ML-based system can be controlled via 
different design strategies. Patel et al. [53] and Zhu et al. [69] 
provide domain-specific challenges to designing iML systems 
for software developers and game designers, respectively. 

Finally, there has been recent research within the HCI com-
munity on defining new metrics for human–ML collabora-
tion. Adbul et al. [1] highlight interactivity and learnability as 
cornerstones for designing visualizations that better support 
interpretability. Dourish [16] adds scrutability as an important 
component of interactivity. Most closely related to our work, 
Hohman et al. [23] follow these guidelines to design visual-
izations for GAMs, confirming that interactivity plays an im-
portant role in data scientists’ understanding and satisfaction. 

PILOT INTERVIEWS 
The goal of our work is to study data scientists’ use of two 
existing interpretability tools. To better understand the issues 
that data scientists face in their data-to-day work—i.e., the set-
ting in which the interpretability tools will be used—we first 
conducted semi-structured interviews with six data scientists 
at a large technology company. The interview protocol (in-
cluded in the supplementary material) was designed to surface 
common issues that arise when building and evaluating ML 
models. On average, each interview lasted about 40 minutes. 

Based on an inductive thematic analysis of the interview tran-
scripts, conducted via open coding followed by affinity dia-
gramming [7], we identified six themes capturing common 
issues faced by data scientists. We present these themes in 
the first two columns of Table 1. Five correspond to issues 
with data itself: missing values, temporal changes in the data, 
duplicate data masked as unique, correlated features, and ad-
hoc categorization. The sixth theme relates to the difficulty of 
trying to debug or identify potential improvements to an ML 
model based on only a small number of data points. With only 
six interviews, we cannot claim that this list is at all exhaustive, 
but it is consistent with previous research on ML pitfalls [42]. 

STUDY 1: CONTEXTUAL INQUIRY 
With these common issues in mind, we designed a contextual 
inquiry, intended to put data scientists in a realistic setting: 
exploring a dataset and an ML model in a hands-on fashion. 
We recruited eleven participants, each of whom was given a 
Jupyter notebook that included a dataset, an ML model that 
we had trained using that dataset, an interpretability tool that 
we had set up, and several questions to answer. Our goal was 
to observe whether they were able to use the interpretability 
tool to uncover the issues identified via our pilot interviews. 
With participants’ consent, we recorded both audio and video, 

and saved all responses provided in the Jupyter notebooks for 
analysis. The scenario was approved by our internal IRB. 

Dataset 
We derived the dataset from the Adult Income dataset,2 a pub-
licly available ML dataset based on 1994 US census data. Each 
data point corresponds to a person. The input features include 
age, education, marital status, native country, and occupation. 
Each label is a binary value indicating whether or not the per-
son in question made >$50k in 1994 (equivalent to ∼$86.5k 
when adjusted for inflation). We synthetically manipulated a 
subset of the features to incorporate the common issues iden-
tified via our pilot interviews. For example, to incorporate 
missing values, we replaced the age value with 38, the mean 
for all data points, for 10% of the data points with an income of 
>$50k. We provide the details of all manipulations in Table 1. 

ML Models and Interpretability Tools 
We used two existing interpretability tools: one that imple-
ments GAMs, an inherently interpretable technique, and one 
that implements SHAP, a post-hoc explanation technique. 

GAMs are a class of ML models, rooted in statistics, that de-
compose a learned predictor into additive components that are 
functions of one input feature each [22]. Each component can 
be complex and non-linear, but because it is a function of only 
a single input feature it can be easily visualized. GAMs can 
be as accurate as more complex ML models such as random 
forests or boosted decision trees. Because GAMs are glassbox 
models that are designed to be inherently interpretable, they do 
not require post-hoc explanations. We used the InterpretML3 

implementation of GAMs. InterpretML provides built-in plot-
ting functionality, allowing each individual component to be vi-
sualized (see Figure 1, top middle). InterpretML also provides 
global explanations (see Figure 1, top left) and local explana-
tions (see Figure 1, top right) by ranking and sorting the con-
tributions made by each input feature to the predictions [50]. 

SHAP is a post-hoc explanation technique for blackbox ML 
models. It assigns each input feature an importance score for 
each prediction [44]. These scores are based on the notion of 
Shapley values from cooperative game theory [58]; for each 
prediction, they capture a fair distribution of “credit” over the 
input features. We used the implementation of SHAP in the 
SHAP Python package.4 The importance scores computed by 
this package directly translate to local explanations for individ-
ual predictions (see Figure 1, bottom right). By aggregating 
the importance scores for many predictions, the SHAP Python 
package can also produce global explanations (see Figure 1, 
bottom left) and dependence plots for single input features 
(see Figure 1, bottom middle). Ideally, we would have used the 
same underlying ML model—i.e., a GAM—with both inter-
pretability tools; however, it was not computationally feasible 
to generate explanations for GAMs using the SHAP Python 
package. As a result, we used LightGBM [30], an implementa-
tion of gradient boosted decision trees, to create the underlying 
model to be explained using the SHAP Python package. This 
2https://archive.ics.uci.edu/ml/datasets/Adult 
3https://github.com/interpretml/interpret 
4https://github.com/slundberg/shap 

CHI 2020 Paper  CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 92 Page 3

https://archive.ics.uci.edu/ml/datasets/Adult
https://github.com/interpretml/interpret
https://github.com/slundberg/shap


Theme Description Incorporation into Contextual Inquiry Num. 
Replaced the value for the “Age” feature with 38 (the mean) Many methods for dealing with missing values (e.g., for 10% of the data points with an income of >$50k, caus-Missing values coding as a unique value or imputing with the mean) 4 of 11 ing predictions to spike at 38. Asked about the relationship can cause biases or leakage in ML models. between “Age” and “Income.” 

Data can change over time (e.g., new categories for Asked whether the model (trained on 1994 data) would work Changes in data 10 of 11 an existing feature). well on current data after adjusting for inflation. 

Modified the “WorkClass” feature to have duplicate values: Unclear or undefined naming conventions can lead Duplicate data “Federal Employee,” “Federal Worker,” “Federal Govt.” Asked 1 of 11 to accidental duplication of data. about the relationship between “WorkClass” and “Income.” 

Including the same feature in several ways can dis- Included two features, “Education” and “EducationNum,” that 
Redundant features tribute importance across all of them, making each represent the same information. Asked about the relationships 3 of 11 

appear to be less important. between each of these and “Income.” 

Converted “HoursPerWeek” into a categorical feature, binning Category bins can be chosen arbitrarily when con-Ad-hoc categorization arbitrarily at 0–30, 30–60, 60–90, and 90+ hours. Asked about 3 of 11 verting a continuous feature to a categorical feature. the relationship between “HoursPerWeek” and “Income.” 

Identifying potential model improvements based on Asked people to identify ways to improve accuracy based on Debugging difficulties 8 of 11 only a small number of data points is difficult. local explanations for 20 misclassified data points. 

Table 1: Six themes capturing common issues faced by data scientists. We incorporated each issue into the contextual inquiry as 
described in the third column. The fourth column contains the number of participants who identified the corresponding issue. 

was for three reasons: the InterpretML implementation of 
GAMs is based on gradient boosted decision trees, the SHAP 
Python package has a highly optimized routine for comput-
ing explanations for the predictions made by a LightGBM 
model [43], and LightGBM is widely used. We emphasize 
that the comparisons that we make between GAMs and SHAP 
are comparisons between the InterpretML implementation 
of a GAM and the SHAP Python package used to explain a 
LightGBM model. The two trained models had similar test-
set accuracies (.907 and .904, respectively) for our dataset. 

We chose these two interpretability tools because they are 
publicly available, widely used, and provide both local and 
global explanations. In contrast, LIME, another popular post-
hoc explanation technique, provides only local explanations. 
Each participant used only one interpretability tool, selected 
at random; 6 participants used GAMs, while 5 used SHAP. 

We provided each participant with a print-out of a tutorial, 
written by us based on READMEs and examples included 
with the interpretability tools, containing a light overview of 
the math behind the interpretability technique implemented in 
the tool that they were to use and information on the tool’s vi-
sualizations. These tutorials are in the supplementary material. 

Contextual Inquiry Protocol 
First, we asked each participant to sign a consent form and 
answer some questions. We followed a semi-structured in-
terview protocol with questions about (1) their background 
in ML; (2) their team and role; (3) their typical ML pipeline, 
including how they make decisions about data and models; 
(4) any checks they typically perform on data or models; (5) 
if they work in customer-facing scenarios, what makes them 
feel confident enough about a model to deploy it; and (6) their 
awareness of and prior experience with interpretability tools. 

Next, we let each participant explore the dataset, model, and 
interpretability tool on their own. For each tool, we provided 
examples of all three types of visualization—i.e., global ex-
planations, components (GAMs) or dependence plots (SHAP), 
and local explanations, as depicted in Figure 1. After this, we 

asked each participant to complete the trust questionnaire of 
Jian et al. [24] with respect to the interpretability tool. We 
then asked them to answer ten questions about the dataset and 
model. Four were general questions about the visualizations 
(e.g., “What are the most important features that affect the 
output Income, according to the explanation above?”), while 
the remaining six were designed to get at the issues identified 
via our pilot interviews; a full list is in the supplementary 
material. Answering these questions required participants to 
use all three types of visualization. For each question, we also 
asked each participant to rate their confidence in their under-
standing of the visualizations and their confidence that these 
explanations were reasonable, on a scale of 1 (not at all) to 
7 (extremely). After answering the questions, we asked each 
participant to complete the trust questionnaire again, allowing 
us to observe whether their self-reported trust in the inter-
pretability tool had changed. We ended with a short interview, 
asking each participant about their experience with the tool 
and whether it would be useful in their typical ML pipeline. 

Participants and Data 
We recruited participants via an internal mailing list at a 
large technology company. In order to filter out participants 
with no prior experience with ML, the recruitment email 
included a short survey asking people about their background 
in ML, the extent to which they had used interpretability 
tools before, their familiarity with GAMs or SHAP, and their 
familiarity with the Adult Income dataset. Out of 24 potential 
participants, all passed this initial filter, but we subsequently 
excluded several based on their location because we needed 
to conduct the contextual inquiry in person. This left 11 
participants (4 women, 7 men; self-reported). Participants’ 
roles included ML researcher, applied data scientist, and 
intern in ML team. On average, participants had been in their 
current role for 2 years (min = 2 months, max = 6 years). Most 
participants were not familiar with the Adult Income dataset 
(average familiarity = 2 on a scale of 1–7) and moderately 
familiar with GAMs or SHAP (average = 4 on a scale of 1–7). 
All participants were compensated with a $20 lunch coupon 
or gift certificate upon completion of the contextual inquiry. 
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Figure 1: Visualizations output by the InterpretML implementation of GAMs (top) and the SHAP Python package (bottom). Left 
column: global explanations. Middle column: component (GAMs) or dependence plot (SHAP). Right column: local explanations. 

We used speech recognition software to generate transcripts 
from the video files and hand-corrected any errors. We quali-
tatively coded these transcripts and participants’ open-ended 
responses to the questions using inductive thematic analy-
sis [7]. We gave participants credit for uncovering an issue 
if there was any mention of confusion, suspicion, or a need 
for more testing in their response to the question about that 
issue. We also obtained descriptive statistics from the trust 
questionnaire and the questions about their background, etc. 

Results 
Our contextual inquiry reveals a misalignment between data 
scientists’ understanding of interpretability tools and these 
tools’ intended use. Participants either over- or under-used the 
tools. In some cases, they ended up over-trusting the dataset 
or the underlying ML model. Participants trusted the tools 
because of their visualizations and their public availability, 
though participants took the visualizations at face value instead 
of using them to uncover issues with the dataset or models. 

The final column in Table 1 contains the number of participants 
who identified the corresponding issue. Each issue was iden-
tified by at least one participant. However, each participant 
only identified 2.5 issues on average (s.d.=1.4). Participants 
provided high ratings for their confidence in their understand-
ing of the visualizations (mean=5.6, s.d.=0.8) and for their 
confidence that these explanations were reasonable (mean=5.0, 
s.d.=0.7). The only question for which participants’ average 
confidence rating was less than 5 (on a scale of 1–7) was one in 
which participants were asked to use local explanations for 20 
misclassified data points to suggest ways to improve the model. 
Most participants (8 out of 11) recognized that this could not 
be done effectively. We did not observe a substantial differ-
ence in participants’ self-reported trust in the interpretability 
tools before and after using them, though the sample size is too 
small to make claims about significance; participants’ average 
trust (measured via Jian et al.’s trust questionnaire [24]) was 
3.70 (s.d.=0.4) before using the tools and 3.90 (s.d.=0.6) after. 

Misuse and Disuse 
Most participants relied too heavily on the interpretability 
tools. Previous work categorizes such over-use as misuse [17, 
52]. Here, the misuse resulted from over-trusting the tools 
because of their visualizations; participants were excited 
about the visualizations and took them at face value instead of 
using them to dig deeper into issues with the dataset or model: 

“Age 38 seems to have the highest positive influence 
on income based on the plot. Not sure why, but the 
explanation clearly shows it... makes sense.” (P9, GAMs) 

Although interpretability tools are meant to help data scientists 
understand how ML models work, some participants used the 
tools to rationalize suspicious observations instead. After con-
ducting several exploratory tests on the dataset, P8 said “Test 
of means says the same thing as SHAP about Age. All’s good!” 
(P8, SHAP), and gave confidence ratings of 7 (extremely). 

In contrast, two participants under-used the tools because they 
did not provide explanations with the content or clarity that 
they expected. P7 noted that “This is not an explanation sys-
tem. It’s a visualization. There was no interpretation provided 
here” (P7, GAMs). Similarly, P4 became skeptical when they 
did not fully understand how SHAP’s importance scores values 
were being calculated, eventually leading to disuse [17, 52]: 

“[The tool] assigns a value that is important to know, but 
it’s showing that in a way that makes you misinterpret that 
value. Now I want to go back and check all my answers”... 
[later] “Okay, so, it’s not showing me a whole lot more 
than what I can infer on my own. Now I’m thinking... is 
this an ‘interpretability tool’?” (P4, SHAP) 

Social Context is Important 
We found that social context was important to participants’ 
perception and use of the interpretability tools. Both Inter-
pretML and the SHAP Python package are publicly available 
and widely used, which swayed several participants to trust the 
tools without fully understanding them. P8 said, “I guess this 

CHI 2020 Paper  CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 92 Page 5



is a publicly available tool... must be doing something right. 
I think it makes sense” (P8, SHAP). Meanwhile, P6 noted: 

“I didn’t fully grasp what SHAP values were. This is 
a pretty popular tool and I get the log-odds concept in 
general. I figure they were showing SHAP values for a 
reason. Maybe it’s easier to judge relationships using 
log-odds instead of predicted value. Anyway, so it made 
sense I suppose.” (P6, SHAP) 

Participants also relied too heavily on the interpretability tools 
because they had not encountered such visualizations before: 
“[The tool] shows visualizations of ML models, which is not 
something anything else I have worked with has done. It’s very 
transparent, and that makes me trust it more” (P9, GAMs). 

Visualizations can be Misleading 
The visualizations output by both interpretability tools lack 
details about importance scores and other values shown. These 
details were available in our tutorials, but it is not clear that 
participants internalized the tutorials enough to interpret the 
visualizations as intended. Most participants mentioned some 
confusion around the seemingly arbitrary values shown in the 
visualizations: “It shows all these values, and I’m not sure 
what they correspond to because they’re just written on the plot 
with no context for what they are” (P2, SHAP). However, par-
ticipants continued to use the visualizations despite the missing 
details, which in turn led to incorrect assumptions about the 
dataset, models, and interpretability tools, as discussed above. 

Some of the visualizations do not follow usability guidelines. 
P4, observing different axis ranges in different visualizations, 
remarked “cardinal sin of visualization when scales are not 
compatible.” However, many participants did not notice this 
and therefore made erroneous judgments about the contribu-
tion of each input feature to individual predictions. In fact, 
P4’s frustration is evident from their attempt to extract concrete 
information from SHAP’s local explanations: “Am I supposed 
to have some sort of calipers? How can anyone infer the 
weight (magnitude) [of each feature] from this (force plot)?” 

STUDY 2: SURVEY 
Following the contextual inquiry, we designed a survey to 
scale up and quantify our main findings and shed light on data 
scientists’ mental models of interpretability tools. Similar to 
our contextual inquiry, the survey placed data scientists in a 
realistic setting. The dataset, models, and interpretability tools 
used were identical to those used in the contextual inquiry. 
We ran the survey through Qualtrics. All participants were 
compensated with a $20 gift card. Additionally, three partic-
ipants were selected at random from those with high-quality 
open-ended responses to win a pair of Surface headphones. 

Experimental Conditions 
As in our contextual inquiry, each participant used only one 
interpretability tool (either the InterpretML implementation of 
GAMs or the SHAP Python package used to explain a Light-
GBM model, as described above), selected at random. We also 
showed participants either “normal” or “manipulated” visual-
izations, again selected at random. In the normal-visualization 
condition, we showed participants the visualizations output 

by the interpretability tools. However, in the manipulated-
visualization condition, we instead showed participants global 
and local explanations where the input feature names had 
been rearranged, resulting in the input features with smallest 
contributions to the predictions being displayed as the most 
important, and vice versa. We designed this manipulation to 
test the extent to which participants’ perception and use of the 
interpretability tools depend on how reasonable their explana-
tions are (as opposed to the mere existence of visualizations). 

Components of the Survey 
First, we asked each participant to sign a consent form and 
gave them a brief introduction to the survey. We then asked 
them to answer some questions about their demographics and 
background, including (1) their current role and how long 
they had been in this role; (2) the extent to which ML was 
a part of their day-to-day work; (3) how long they had been 
using ML; (4) their familiarity with interpretability, and with 
GAMs or SHAP; (5) the approximate number of hours that 
they had spent using interpretability tools, and using GAMs or 
SHAP; and (6) their familiarity with the Adult Income dataset. 

Because it was not possible to provide Jupyter notebooks, 
participants were not able to explore the dataset, models, and 
interpretability tools on their own. Instead, we showed them 
the results of common exploration commands that had been 
run previously by participants in the contextual inquiry. We 
also gave each participant access to a description of the dataset 
and a tutorial on the interpretability tool that they were to use. 

Next, we asked each participant to answer four blocks of 
questions about the dataset and the model, covering global 
feature importance, the relationship between the age and the 
output variable (i.e., whether or not the person in question 
made >$50k), the local explanation for a correctly classified 
data point, and the local explanation for a misclassified data 
point, respectively. Each of these blocks contained seven 
questions: (1) a multiple-choice question with a ground-truth 
correct answer, which was designed to quantify the partici-
pants’ accuracy at reading the visualizations (e.g., “Which 
is the 3rd most important feature for the underlying model, 
according to the explanation system?”); (2) an open-ended 
question designed to test how well participants understood 
the visualizations and whether any suspicions arose; (3) a 
question about which visualizations they had used to answer 
the previous questions; (4) their stated confidence in their 
understanding of the visualizations (on a scale of 1–7) ; (5) 
their stated confidence that these explanations were reasonable 
(on a scale of 1–7); (6) their stated confidence that the 
underlying model was reasonable (on a scale of 1–7) ; and (7) 
an optional open-ended text field for comments or concerns. 

After answering the questions and familiarizing themselves 
with the visualizations, we asked each participant to select the 
capabilities of the interpretability tool from a list of options 
(shown in Figure 2). To better understand participants’ mental 
models of the tools, we asked them to describe what the x- and 
y-axes represented in each of the visualizations they had seen. 
We also asked them whether the visualizations were useful and, 
if so, how they would use them in their typical ML pipeline. 
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Figure 2: Percentage of participants that selected each option 
when asked about the interpretability tools’ capabilities. 

Finally, to encourage each participant to think critically about 
issues with the dataset or model, we asked them to rate the 
extent (on a scale of 1–7) to which they thought the model 
was ready for deployment and to explain this rating. We also 
asked them to describe how they would convince a customer 
that this was the right model to deploy (or not, as appropriate). 
We concluded with a NASA-TLX cognitive load index [21]. 

Participants 
We advertised the survey via internal mailing lists at a large 
technology company and publicly via social media. To filter 
out participants with no prior experience with ML, we asked 
people about their ML experience, and only surveyed people 
who rated their experience as at least 3 on a scale of 1–7. 
We collected survey responses from 253 participants. After 
filtering out responses with exactly the same content for every 
open-ended text field or other gibberish text, we were left with 
responses from 197 participants. Of these, 49 participants 
were assigned to GAM-Normal, 51 to GAM-Manipulated, 51 
to SHAP-Normal, and 46 to SHAP-Manipulated. On average, 
participants took about 44 minutes to complete the survey 
(s.d.=28), excluding clear outliers. All participants were com-
pensated with a $20 gift card upon completion of the survey. 

Preregistration 
Before conducting any analyses, we preregistered our intent to 
analyze eight outcome variables: (1) participants’ accuracy on 
the four multiple-choice questions with ground-truth correct 
answers; (2) their stated confidence in their understanding 
of the visualizations; (3) their stated confidence that the ex-
planations were reasonable; (4) their stated confidence that 
the underlying models were reasonable; (5) their NASA-TLX 
cognitive load index; (6) the extent to which they thought the 
models were ready for deployment; (7) whether they expressed 
any suspicions about the dataset or models; and (8) whether 
they expressed any suspicions about the interpretability tools. 

For each outcome variable, the comparisons that we preregis-
tered were (1) the main effect of normal vs. manipulated 
visualizations; (2) GAM-Normal vs. GAM-Manipulated; 
(3) GAM-Normal vs. SHAP-Normal; (4) SHAP-Normal vs. 
SHAP-Manipulated; and (5) GAM-Manipulated vs. SHAP-
Manipulated. These comparisons allow us to understand dif-
ferences that arise because of the tools, as well as differences 
that arise based on how reasonable the explanations are. We 
intentionally omitted comparing the main effect of GAMs 

vs. SHAP to avoid lumping together data from the normal-
visualization and manipulated-visualization conditions. We 
noted our intent to conduct additional exploratory analyses. 
The preregistration document is available on AsPredicted.5 

Methods 
We used two-way ANOVAs to compare the main effect of 
normal vs. manipulated visualizations and unpaired t-tests for 
the more specific comparisons. Following convention, we did 
not apply Bonferroni correction because only four compar-
isons were performed for each outcome variable. We coded 
the content from the open-ended responses via open and axial 
coding [12]. We used inductive, data-driven coding to code 
participants’ open-ended responses (in sum) for any mention 
of suspicions about the dataset or models, or about the inter-
pretability tools. Two authors coded these responses with an 
inter-rater reliability of 1, measured using Cohen’s kappa on 
12% of the data. Once coded, these suspicion variables were 
compared via Fisher’s exact test; we used this over the pre-
registered chi-squared test due to a class imbalance for these 
variables. We conducted exploratory analyses using the par-
ticipants’ ML experience by fitting multiple linear regression 
models and calculating Pearson correlation coefficients. We 
also noted descriptive means, standard deviations, and counts. 

Results 
Table 2 summarizes the results of our preregistered analyses. 
For three outcome variables—participants’ accuracy on the 
four multiple-choice questions with ground-truth correct 
answers, their stated confidence in their understanding of the 
visualizations, and their NASA-TLX cognitive load index— 
there are significant differences between GAM-Normal and 
SHAP-Normal and between GAM-Manipulated and SHAP-
Manipulated. Specifically, participants who used GAMs 
had higher accuracy, higher stated confidence in their under-
standing of the visualizations, and lower cognitive load than 
participants who used SHAP. This suggests that explanations 
based on GAMs are easier to understand than explanations 
based on SHAP. There are no differences between normal 
and manipulated visualizations for these outcome variables. 

Although there are no differences between conditions for par-
ticipants’ stated confidence that the explanations were rea-
sonable, we do see differences in their stated confidence that 
the underlying models were reasonable, both as a main ef-
fect of normal vs. manipulated visualizations in an ANOVA 
(F(1,101) = 25.05, p << 0.001) and when comparing GAM-
Normal and GAM-Manipulated, SHAP-Normal and SHAP-
Manipulated, and GAM-Manipulated and SHAP-Manipulated. 
These results indicate that it is not the mere existence of vi-
sualizations that matters. Reassuringly, participants were less 
confident that the underlying models were reasonable when 
shown manipulated visualizations. The difference between 
GAM-Manipulated and SHAP-Manipulated suggests that par-
ticipants who used GAMs were more likely to be skeptical of 
the models when shown manipulated visualizations than partic-
ipants who used SHAP. This is an argument in favor of GAMs. 

5https://aspredicted.org/ek2bm.pdf 
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Table 2: The results of our preregistered analyses. Each column is a pair of conditions, while each row is an outcome variable. 
Each cell contains the mean of the outcome variable in that row for one of the conditions being compared in that column (µ1 and 
µ2 are the means of conditions 1 and 2 in the header, with standard deviations). We highlight significant differences in gray and 
list details of the t-test. Cohen’s d values: 0.2–0.5 = small effect size, 0.5–0.8 = medium effect size, > 0.8 = large effect size. 

Even though participants were, on average, not very confident 
that the underlying models were reasonable, few explicitly 
mentioned suspicions about the dataset or models, or about 
the interpretability tools. Furthermore, they generally thought 
that the models were ready for deployment. There are no 
differences between conditions for these outcome variables. 

Factors that Affect Willingness to Deploy 
To explain why participants thought, on average, that the under-
lying models were ready for deployment, we present a selec-
tion of themes that emerged from their open-ended responses. 

Intuition. Most participants gave the models high deployment 
ratings based on intuition, driven by their prior experience 
with ML, rather than careful consideration of the explanations: 

“I think it’ll be good to test this model in practice. The 
numbers [for performance metrics] seem good, and based 
on my experience with such numbers, I would deploy it 
and see if it works.” (P102, SHAP-Normal) 

A subset of these participants also said that they would at-
tempt to convince a customer that this was the right model to 
deploy by simply asking the customer to trust their judgment. 

Superficial Evaluation of Explanations. Instead of critically 
evaluating the explanations, some participants took the visual-
izations at face value, using their existence to convince them-
selves that the underlying models were ready for deployment. 

Participants in all conditions mentioned things like, “the re-
sults of the comprehensive chart display make it easy to make 
effective judgments” (P28, GAM-Normal), and crafted narra-
tives to convince themselves about the reasonableness of the 
models: “The charts in combination help you infer reasonable 
things about the model. Person has college level education, 
working in private sector full-time, having married to civilian 
spouse and white race indicates high income which makes 
actual sense” (P148, SHAP-Manipulated). They relied on 
these narratives, along with the visualizations from the tools, 
when explaining how they would attempt to convince a cus-
tomer that the model was ready for deployment. There was an 
element of only superficial evaluation to these responses: 

“Considering plot A, the top features are reasonable, and 
the model does not seem to be very much impacted by 
ethnicity or gender bias. Plot B looks reasonable, since 
it provides a bonus to individuals in working age range 
and penalizes others. It also correctly considers widowed 
people to be more likely to earn more, since they are 
more likely to inherit assets.” (P137, SHAP-Normal) 

Perceived Suspicions. Not all participants gave the underly-
ing models high deployment ratings: 14.2% were neutral and 
18.3% gave low ratings (see the figure in the supplementary 
material). One reason for these ratings was that participants 
were suspicious about the models, and felt that they could be 
biased in several ways: “what the heck is happening with the 
37/38 year olds?” (P50, GAM-Manipulated); “Marital status 
as the top-most predictor of income? Should we approve loans 
to married people and not single people (or vice-versa?)” (P98, 
SHAP-Normal). The other reason was that participants were 
unsure about deployment without running more comprehen-
sive tests: “No R-square value, no confidence interval, no 
overall test score. Far away from deployment” (P19, GAM-
Normal). These participants were the ones who used the 
interpretability tools in their intended ways: to investigate 
the datasets and underlying models, uncovering issues that 
required deeper investigation. When asked how they would 
convince a customer to deploy the model (or not, as appropri-
ate), these participants tended to argue against deployment. 

Mental Models of Interpretability Tools 
The themes above make it clear that participants, for the most 
part, did not use the interpretability tools as intended. The 
HCI literature refers to this kind of behavior as a mismatch 
between the participants’ mental models of the tools and the 
conceptual models of the tools. A mental model is based on 
someone’s perceptions of a tool, while the conceptual model 
is the intended use that the tool’s designer had in mind [51]. 

Qualitative analysis of participants’ descriptions of the visual-
izations indicates that most participants did not have an accu-
rate understanding of the visualizations. For all three types of 
visualizations, one of the axes represents a score (e.g., SHAP’s 
importance score), and is titled as such (“Score” for GAMs and 
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“Shap value” for SHAP). Three authors iteratively coded par-
ticipants’ open-ended responses until complete agreement was 
achieved. A response was considered to be “accurate” when 
the values represented were explained (e.g., a clear description 
of what “Score” represents), “partially accurate” when the 
description was accurate but incomplete, and “superficially 
accurate” when the axis title was used as-is as the description. 

Only 5.6% of participants were able to accurately describe 
the score axis for local explanations, 1.9% for components 
(GAMs) or dependence plots (SHAP), and 1.9% for the global 
explanations. Another small percentage of participants (16.4% 
for local, 7.5% for components of dependence plots, and 1.9% 
for global) provided partially accurate descriptions of these 
axes, giving a general outline of what they represent, but 
no details. A large percentage of participants (23.4% for 
local, 43% for components or dependence plots, 48.2% for 
global) indicated only a superficial understanding of the axes. 
Furthermore, the largest percentage of participants did not 
understand the visualizations at all (54.6% for local, 47.6% 
for components or dependence plots, and 48% for global). 
These participants often suggested that the scores represented 
the data points’ labels or the underlying models’ predictions. 

These results indicate that participants did not fully understand 
the visualizations output by the interpretability tools. However, 
despite this, they had high expectations for these visualiza-
tions, above and beyond the tools’ capabilities. When asked to 
explain how they would use these visualizations in their typical 
ML pipeline, participants listed uses that ranged from actual 
capabilities of these visualizations (e.g., understanding the un-
derlying model and its most important features, understanding 
how a prediction was made) to uses that no interpretability tool 
could currently provide (e.g., automated checking for societal 
biases in the dataset or unfair outcomes). Figure 2 depicts the 
percentage of participants that selected each of the options pro-
vided when asked about the interpretability tools’ capabilities. 

Tension between Cognitive and Social Factors 
Our survey captured contextual information about both cog-
nitive factors (e.g., prior experience with ML, familiarity with 
interpretability) and social factors (e.g., confidence ratings for 
participants’ understanding of the visualizations, the reason-
ableness of the explanations, the reasonableness of the underly-
ing models). Below we discuss how these factors affected par-
ticipants’ use of the tools and their deployment ratings for the 
underlying models. These are exploratory analyses; although 
we report p-values, we did not preregister these analyses. 

Accuracy at Reading Visualizations. To explore the rela-
tionship between participants’ prior experience with ML and 
their accuracy at reading the interpretability tools’ visualiza-
tions, we fit a multiple linear regression (MLR) using partic-
ipants’ accuracy on the four multiple-choice questions with 
ground-truth correct answers as the dependent variable and the 
following independent variables: (1) how long they had been 
in their current role; (2) the extent to which ML was a part of 
their day-to-day work; (3) how long they had been using ML; 
(4) their familiarity with interpretability, and with GAMs or 
SHAP; and (5) their familiarity with the Adult Income dataset. 
The second and third of these independent variables signifi-

cantly predicted participants’ accuracy at reading the visual-
izations (b = 5.77, t(189) = 3.44, p � 0.001 and b = 0.39, 
t(189) = 5.04, p � 0.001, respectively, where b is the cor-
responding coefficient). The MLR was effective at predict-
ing participants’ accuracy (adjusted R2 = 0.27, F(7,189) = 
11.62, p � 0.001; R > 0.5 represents a large effect size). 

We used Pearson correlation coefficients to explore the rela-
tionship between social factors and participants’ accuracy at 
reading the interpretability tools’ visualizations because this 
relationship is more symmetric. Of the three questions about 
confidence ratings, only participants’ stated confidence in 
their understanding of the visualizations is strongly correlated 
with their accuracy (Pearson’s r(195) = 0.49, p � 0.001). 
This result confirms that participants’ confidence ratings were 
high when they were accurately reading the visualizations. 

Deployment Ratings. We fit an MLR using participants’ de-
ployment ratings as the dependent variable and the following 
independent variables: the cognitive factors, the social factors, 
and participants’ accuracy on the four multiple choice ques-
tions with ground-truth correct answers. There are several sig-
nificant predictors for participants’ deployment ratings: how 
long they had been using ML (b = −0.02, t(184) = −3.75, 
p < 0.001), their stated confidence that the explanations 
were reasonable (b = 0.37, t(184) = 3.02, p < 0.01), their 
stated confidence that the underlying models were reasonable 
(b = 0.23, t(184)= 2.43, p < 0.05), and their accuracy at read-
ing the visualizations (b = −0.01, t(184) = −2.61, p < 0.01). 
More ML experience and higher accuracy at reading the 
visualizations have a negative effect on deployment ratings, 
whereas higher confidence ratings for the reasonableness of 
the explanations and the underlying models have a positive 
effect. The MLR was accurate at predicting deployment 
ratings (adjusted R2 = 0.37, F(12,184) = 10.8, p � 0.001). 

These results suggest an inverse relationship between cogni-
tive and social factors: participants with more ML experience 
had higher accuracy at reading the tools’ visualizations, but 
lower confidence ratings for the reasonableness of the explana-
tions and the underlying models, and thus, lower deployment 
ratings. We confirmed this relationship using Pearson corre-
lation coefficients and found them to match our expectations. 
Participants’ ML experience and their stated confidence that 
the explanations were reasonable are strongly negatively cor-
related (Pearson’s r(195) = −0.17, p < 0.01), as are their ML 
experience and their stated confidence that the underlying mod-
els were reasonable (Pearson’s r(195) = −0.27, p < 0.001). 

The Role of Mental Models. Mental models play a crucial 
role in this inverse relationship between cognitive and social 
factors. The tension between these types of factors reflects 
a complicated relationship between two outlooks on the use 
of interpretability tools. When participants were able to form 
(partially) accurate mental models of the tools, they evaluated 
them in a more principled way, and therefore made careful 
decisions. For example, P88, who had only two months of ML 
experience, noted, “the spike in age around 35–39 worries me 
because it seems more representative of a boom that describes 
a very specific group of people. The model doesn’t account 
for the fact that that group of people will age past 35–39.” 
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In contrast, without (partially) accurate mental models of 
the tools, even the most experienced participants “don’t 
see any red flags as confirmed by the explanations” (P57, 
GAM-Manipulated, 4 years of ML experience). Worse, in 
some cases, their prior experience with ML led them to rely on 
their intuition and only superficially evaluate the explanations. 
Without accurate mental models, social factors can rationalize 
suspicious observations, leading to higher deployment ratings. 

DISCUSSION AND FUTURE WORK 

Bridging the Gap Between the ML and HCI Communities 
To date, research on interpretability in the ML and HCI com-
munities has evolved somewhat independently [66]. Our re-
sults highlight the value of user studies for evaluating inter-
pretability techniques from the ML community with stake-
holders, marrying the goals and methods of both communities. 
Indeed, we previously argued that user studies of interpretabil-
ity require qualitative methods to understand the nuances of 
how tools are used in context, coupled with quantitative meth-
ods to scale up findings. One of our findings is that data 
scientists with different amounts of ML experience are unable 
to fully understand the visualizations output by two existing in-
terpretability tools, in turn hindering their ability to understand 
the dataset and underlying models. Overcoming this challenge 
will require expertise in the mathematics underlying ML mod-
els and in communicating information to users (e.g., the design 
of tutorials, visualizations, or interactive tools). Ideally, mem-
bers of the HCI and ML communities should work together 
from the start, with HCI methodologies applied at all stages 
of interpretability tool development: supporting need-finding 
studies (e.g., [8, 64]), designing tools that can be understood 
by users with different background (e.g., [37]), and undertak-
ing user studies at each stage of tool development (e.g., [67]). 

Designing Interactive Interpretability Tools 
Interpretability is typically viewed as being unidirectional, 
with tools providing information to user. However, it may be 
better to design interpretability tools that allow back-and-forth 
communication [5]. As one of our participants said, “These 
explorations are like goal-based communication. If I go in 
without a hypothesis, it’s hard to evaluate what the tool tells 
me. When I do make an evaluation [based on the tool], can 
the tool follow up?” (P4, Contextual Inquiry). In essence, this 
participant was looking for interactivity from the interpretabil-
ity tool. Social science and HCI research consider this kind of 
back-and-forth to be a key factor in making explanations acces-
sible to people with different levels of expertise [23, 48]. Weld 
and Bansal [65] propose interactive interpretability tools that 
allow users to dig deeper into explanations or to compare ex-
planations from multiple different interpretability techniques. 
One might also imagine a tool that could update its mode of 
interactivity based on users’ perceptions [40]. More gener-
ally, interpretability tools should be designed to adapt to users’ 
expectations. We describe one such design implication below. 

Designing Tools for Deliberative Reasoning 
Interpretability tools are designed to help stakeholders bet-
ter understand how ML models work. However, as we found, 
these tools’ visualizations can encourage people to make quick 

decisions instead of digging deeper. As P4 from our contex-
tual inquiry said, “There is this concept in UX called thinking 
fast and slow. While these visualizations are made to make 
me think fast, every detail about them requires that I think 
slow.” This sentiment echoes Kahneman’s [27, 28] cognitive 
processes for humans: system 1, which tries to make quick, 
automatic decisions based on heuristics, and system 2, which 
performs deliberative reasoning and engages more deeply be-
fore making decisions. People are prone to make decisions 
using system 1, unless system 2 is engaged, because of missing 
heuristics. Designing interpretability tools so that they activate 
system 2 is therefore an important avenue for future work. 

LIMITATIONS 
Our work has several limitations. First, although we tried to 
put data scientists in a realistic setting via Jupyter notebooks 
in our contextual inquiry and via visualizations and the re-
sults of common exploration commands in our survey, we 
cannot be certain that this was sufficient. Second, longitudi-
nal studies might reveal different or more nuanced patterns 
of behavior than either our contextual inquiry or our survey. 
Third, we found it challenging to distinguish between partici-
pants’ high-level understanding of the tools’ visualizations and 
participants’ deeper understanding of the importance scores 
shown. Indeed, research on mental models commonly faces 
this challenge. We therefore relied on our qualitative findings 
to support and add nuance to our quantitative results. Fourth, 
we used a tabular dataset. Although there is research on in-
terpretability techniques for deep learning and richer types of 
data (e.g., images [32, 57]), this was not the focus of our work. 

CONCLUSION 
We study data scientists’ use of two existing interpretability 
tools: the InterpretML implementation of GAMs (glassbox 
models) and the SHAP Python package (a post-hoc explana-
tion technique for blackbox models). We conduct pilot inter-
views (N = 6) to identify common issues faced by data scien-
tists in their day-to-day work, a contextual inquiry (N = 11) to 
observe how data scientists use interpretability tools to uncover 
these issues, and a survey (N = 197) to scale up and quantify 
the main findings from our contextual inquiry. Our results indi-
cate that the visualizations output by interpretability tools can 
sometimes help data scientists to uncover issues with datasets 
or models. However, for both tools, the existence of visualiza-
tions and the fact that the tools were publicly available led to 
cases of over-trust and misuse. Finally, we end by highlighting 
the need for members of the HCI and ML communities to 
work together, and discussing avenues for future exploration. 
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