
Sift: Using Refinement-guided Automation to Verify Complex Distributed Systems

Haojun Ma Hammad Ahmad Aman Goel Eli Goldweber
Jean-Baptiste Jeannin Manos Kapritsos Baris Kasikci

University of Michigan
{mahaojun, hammada, amangoel, edgoldwe, jeannin, manosk, barisk}@umich.edu

Abstract
Distributed systems are hard to design and implement cor-

rectly. Recent work has tried to use formal verification tech-
niques to provide rigorous correctness guarantees. These
works present a hard choice, though. One must either opt
for the power of refinement-based approaches like IronFleet
and Verdi, at the cost of large amounts of manual effort; or
choose the more automated approach of I4, IC3PO, SWISS
and DistAI which give up the ability to prove refinement and
the power and scalability that come with it.

We propose an alternative approach, Sift, that combines
the power of refinement with the ability to automate proofs.
Sift is a two-tier methodology that uses a new technique,
refinement-guided automation, to leverage automation in a
refinement proof and a divide-and-conquer technique to split
a system into more refinement layers when necessary. This
combination advances the frontier of what systems can be
proven correct using a high degree of automation. Contrary
to what was possible before, our evaluation shows that our
novel approach allows us to prove the correctness of a num-
ber of systems with little manual effort, and to extend our
proofs to include not just the protocols, but also an executable
distributed implementation of these systems.

1 Introduction

Recently, formal verification has emerged as a potential alter-
native to the traditional approach of testing. The promise of
formal verification—to eliminate all bugs by construction—
is particularly attractive for distributed systems, which are
notoriously hard to design and implement correctly.

Despite recent efforts, however, formal verification of dis-
tributed systems is still not ready for real-world applications.
The most powerful techniques, such as IronFleet [34] and
Verdi [63], rely on refinement proofs [1, 25, 42] to reason
about complex systems and verify real implementations. Alas,
the power of those techniques comes at a high cost: perform-
ing these refinement proofs manually requires large amounts
of manual effort.

In an attempt to reduce the manual verification effort, the
Ivy tool [56] proposes to express distributed protocols using
decidable—and thus simpler to verify—reasoning [57]. The
Ivy tool achieves remarkable automation, but still requires
significant human effort to complete the proof. More recent
approaches, like I4 [50, 51], IC3PO [27], SWISS [33] and
DistAI [66], leverage model checking and SMT solvers to
automate the most challenging part of proving the correctness
of distributed protocols: finding an inductive invariant. Alas,
this automation comes at the expense of expressiveness and
applicability, because tools like I4 and DistAI were designed
to prove properties of monolithic protocols which consist of a
single layer. As such, they cannot prove refinement.

Refinement [1, 25, 42], however, is an essential concept in
proving the correctness of real, complex systems. It allows
us to prove the correctness of a system by showing that it is
equivalent to a simpler, more abstract version of that system.
The power of refinement comes in many forms:
Concise specification As Lamport has argued [45] and as
IronFleet demonstrated, specifications should be written as
simple, abstract state machines. Consider the specification
of a Paxos-based State Machine Replication in IronFleet,
where the goal is to prove that the entire service is lineariz-
able. Expressing linearizability as a set of properties on the
requests and responses is daunting and will likely yield a
complex specification. Using refinement, the task is simple:
just show that the entire service is equivalent to a single ma-
chine executing requests one at a time. Similarly, the sharded
key-value store in IronFleet was simply proven equivalent to
an abstract, logically centralized key-value store; i.e., a map.

Scaling to complex systems As IronFleet and Verdi demon-
strated, the key to dealing with the complexity of a real
system is to take a modular approach: split the proof into
multiple layers and show that each layer refines the one
above it. This is especially true when verifying actual im-
plementations, as these tend to be much more complex than
abstract protocols. In the absence of refinement, we are left
with the task of reasoning about a single, monolithic system,
whose complexity now becomes a limiting factor for both

USENIX Association 2022 USENIX Annual Technical Conference 151

manual and automated approaches.
Dealing with undecidability Even when one only cares

about proving the correctness of the protocol, and not of the
implementation, being unable to split a monolithic system
into multiple layers can be a showstopper for automation.
As Padon et al. demonstrated [55], some protocols may be
undecidable by construction and thus not amenable to the
automation of I4 and IC3PO. In these cases, one can use re-
finement to split the protocol into two layers, each of which
is separately decidable [62].
We aim to get the best of what are currently two distinct

worlds: the power of refinement (i.e. IronFleet-style proofs)
but with only a fraction of the manual effort (i.e. using the
automation of monolithic provers like I4, IC3PO, SWISS and
DistAI). This combination allows us to not only achieve sim-
ple, concise specifications, but also to scale our proofs to more
complicated distributed protocols, and even to distributed im-
plementations.

To achieve this goal, we introduce Sift, a two-tier methodol-
ogy that combines automated verification with a small amount
of manual effort to push the boundary on the kinds of systems
that can benefit from proof automation. Just like IronFleet
before it, Sift is a methodology, not a tool. Its contribution is a
way of structuring refinement proofs in order to leverage the
automation of existing tools. Similar to how IronFleet guided
developers to manually construct proofs based on the existing
tools (TLA+ and Dafny), so does Sift show developers how to
construct proofs that leverage the automation of more recent
tools, like IC3PO and Ivy.

The first tier of Sift introduces a new technique, called
refinement-guided automation, which leverages the automa-
tion of monolithic provers in the context of a refinement proof.
At the high level, this technique enables the automation of
refinement proofs between two layers by encapsulating the
state of the upper, more abstract, layer into the state of the
lower, more concrete layer. This encapsulation allows us to
transform a two-layer refinement proof into a single-layer,
monolithic proof that provers like I4, IC3PO, SWISS and
DistAI can perform.

Leveraging automation to prove refinement is not always
enough, though. Monolithic provers have their limits and thus
some refinement proofs are just too complex to prove auto-
matically. When that happens, we provide developers with
an escape hatch. The second tier of the Sift methodology
describes a divide-and-conquer technique for introducing in-
termediate layers, thus splitting a complex proof into chunks
that are small enough for the prover to handle.

The Sift methodology applies refinement-guided automa-
tion within each refinement step and uses our divide-and-
conquer technique to split a refinement step into smaller, more
manageable steps. As a result, Sift allows us to apply, for the
first time, automation to refinement-based proofs and scale
to much harder problems than was previously possible. We
use Sift to automate the verification of four distributed imple-

mentations, whose proof required minimal manual effort (less
than five minutes, in most cases).

We further use our divide-and-conquer technique to prove
the correctness of an implementation of Raft [54] and an im-
plementation of MultiPaxos [43, 44] — a feat that was only
possible before by providing a fully manual proof of correct-
ness. Using Sift, we were able to automate most of the proof
for both Raft and MultiPaxos. The manual effort required to
complete the proof with Sift is not only significantly less than
that of previous approaches, it is also much less reliant on
having expertise in formal verification.

Overall, this paper makes the following contributions:
• We introduce refinement-guided automation, a technique

that leverages the automation of monolithic-oriented
tools to perform more complex, refinement-based proofs.

• We present a divide-and-conquer technique for splitting
a complex refinement proof into smaller pieces, such that
each piece is amenable to automated verification.

• We introduce Sift, a methodology that incorporates
refinement-guided automation and our divide-and-
conquer technique. We evaluate Sift on six distributed
implementations and find that it allows us to prove their
correctness in a mostly automated manner which dras-
tically reduces the manual effort required compared to
previous refinement-based approaches.

The rest of the paper is structured as follows. Section 2 dis-
cusses the tradeoff between automation and refinement. Sec-
tion 3 recaps some background material, while Section 4 gives
an overview of Sift. Section 5 introduces refinement-guided
automation and Section 6 shows how to introduce intermedi-
ate refinement layers when needed. Section 7 evaluates the
effectiveness of using Sift to automate the verification of a
number of distributed implementations. Section 8 presents
the limitations of Sift and discusses future work. Section 9
discusses related work and Section 10 concludes.

2 The Price of Automation

As discussed earlier, there are currently two approaches for
verifying the correctness of distributed systems. The first is
the powerful but manual approach of IronFleet and Verdi [34,
35, 63], where the developer uses refinement to show that a
complex implementation is equivalent—through a series of
layers or transformations—to an abstract specification.

The second approach is that of I4 [50], IC3PO [27],
SWISS [33] and DistAI [66] which leverage the power of
model-checking and SMT solving [5] to automatically prove
the correctness of abstract system descriptions at the proto-
col level. These approaches aim to prove that a given safety
property holds for the protocol at hand, by automatically iden-
tifying an inductive invariant that implies this safety property.

While such automation is undoubtedly a desirable property,
it comes at a heavy price. In particular, I4, IC3PO, SWISS and
DistAI can only perform monolithic proofs: they can prove

152 2022 USENIX Annual Technical Conference USENIX Association

that a protocol—defined as a single layer—satisfies a given
safety property. As we described in Section 1, this not only
limits the type of specifications we can use, but also severely
limits the scalability of the approach.

Most importantly, the scalability limitation is not an artifact
of the implementation of monolithic provers—like I4, IC3PO,
SWISS and DistAI—but rather inherent in their design. By
asking the underlying solver to find an inductive invariant that
supports the desired safety property, they essentially adopt an
all-or-nothing approach: either the solver is powerful enough
to find an inductive invariant or it is not. If we consider more
and more complex systems, we soon reach a point where the
solver is simply not powerful enough to find an inductive
invariant.

In fact, a similar dichotomy presents itself when the proto-
col description has elements outside the decidable fragment
of logic [47,55]. In several of these cases, the solver struggles
considerably, even when it is trivial for a human to split the
problem into decidable sub-problems. Without the ability to
split this monolithic proof into multiple pieces, there is no
middle ground. For example, I4 simply fails when the prob-
lem lies outside the decidable fragment, even though it is still
possible to use refinement to split the protocol into two layers,
each of which is separately decidable [62].

In this paper, we show that there exists a middle ground
between the fully manual approaches that support refinement,
like IronFleet and Verdi; and the automated-but-monolithic
approaches, like I4, IC3PO, SWISS and DistAI. This middle
ground, enabled by our novel Sift methodology, allows for
refinement-based reasoning—and thus allows us to prove the
correctness of complex distributed implementations—while
making heavy use of automation to drastically reduce the
amount of manual effort required compared to IronFleet and
Verdi.

3 Background

3.1 Multi-Layer Refinement
Sift is heavily based on the notion of refinement. We will
therefore first recap the notion of refinement and how it can
be used to prove the correctness of complex systems.

A system P refines another system Q if the observable
outputs produced by any execution of Q can also be produced
by some execution of P. In the case of distributed systems,
the only outputs that are visible to external observers are the
messages produced by these systems.

In the simplest application of refinement, the developer
writes two layers: a specification and an implementation. The
specification is written as a simple, logically centralized state
machine. In the case of a sharded key-value store, for example,
the specification is a simple map, where the only possible
actions are to put something to the map, or to get something
from the map [34, 35]. The developer then shows that the

implementation refines the specification, thus proving the
correctness of the implementation.

In more complex systems, directly proving refinement from
the implementation to the specification can be difficult [34,
35, 63]. In that case, the developer must insert one or more
increasingly complex layers between the implementation and
specification, thus creating a multi-layer structure, where each
layer must be proven to refine the one above it. We explain
how to design and insert intermediate layers in Section 6.

3.2 Automated Reasoning and Monolithic
Provers

Traditional verification languages [4, 46] rely on the devel-
oper to write a full proof, including a large number of manual
annotations. As a result, approaches like IronFleet [34, 35]
and Verdi [63] incur a high proof-to-code ratio. To reduce
this manual effort, Ivy [56] uses decidable logic to guarantee
completeness. With Ivy, the developer only needs to find an
inductive invariant—an invariant which is closed (inductive)
under the system transitions—and the prover can automat-
ically identify if this inductive invariant is correct. Ivy sig-
nificantly simplifies the effort of proving the correctness of
distributed systems, but finding such inductive invariants is
still a non-trivial task that relies on human intuition and an
intimate understanding of the system at hand.

To push the automation a step further, I4 [50] leverages
the regularity of distributed protocols, so that the inductive
invariant can be automatically inferred from a small, finite
instance. Unfortunately, such a strategy only applies to mono-
lithic protocols, not refinement proofs. Thus, I4 doesn’t scale
well when the system has a large state space and complex
transitions. More recent tools [27, 33, 66] have followed the
direction of using finite instances to guide the verification
of distributed protocols. All these tools, however, apply only
to monolithic proofs and cannot support refinement. We call
such tools monolithic provers.

3.3 IC3PO: Our Monolithic Prover of Choice
The design of Sift does not rely on the internals of the mono-
lithic prover that it uses. The refinement-guided automation
technique of Sift can leverage any tool designed for automat-
ing monolithic, single-layer proofs. In fact, we previously
tried I4 as the monolithic prover in Sift, but later found that
IC3PO performs better. Our experience so far shows that
IC3PO also outperforms SWISS and DistAI. As new and
more powerful monolithic provers become available, Sift can
adopt them to perform even larger refinement steps to fur-
ther reduce manual effort. The next paragraph gives a short
overview of IC3PO.

IC3PO [27,28] is a recently-developed prover that uses the
synergistic relationship between symmetry and quantification
to prove the safety of distributed protocols fully automatically,

USENIX Association 2022 USENIX Annual Technical Conference 153

()

④ Use a monolithic
prover to find an

inductive invariant
SuccessNo

Fails, and there
are preconditions
to convert

⑤ Add a new
refinement layer

Yes

② Convert preconditions
to an if-statement

③ Convert preconditions
to invariants

Fails, and there are no more preconditions to convert

Refinement-Guided Automation
Target system

implementation

intermediate
layers

specification
① Are there any

unchecked
preconditions?

Figure 1: Summary of the Sift methodology. White boxes are fully automated, gray boxes indicate a trivial syntax change, and
black boxes denote manual effort.

by inferring compact inductive invariants with both universal
and existential quantifiers. At its core, IC3PO exploits the
inherent regularity present in distributed protocols to signifi-
cantly scale up IC3/PDR-style verification [10, 23] over finite
instances of the protocol. Starting with an initial instance size,
IC3PO systematically computes quantified inductive invari-
ants over protocol instances of increasing sizes, until protocol
behaviors saturate, concluding with an inductive proof that
works for all instances of the protocol.

4 Overview of Sift

This paper introduces Sift, a methodology that allows reason-
ing about complex systems while still using a large degree of
automation in proofs. Sift accomplishes this by employing a
small amount of manual effort, when needed, to split the sys-
tem into a number of layers, where each layer can be shown
to refine the layer above it.

Figure 1 shows an overview of the Sift methodology. Ini-
tially, the developer starts with an implementation of the sys-
tem, along with a specification, both written in the Ivy lan-
guage [56]. If one were to use the Ivy prover, they would
have to provide a manual proof of refinement between the
specification and implementation. Sift, instead, introduces our
encapsulation technique to merge the two layers into a single
proof that our monolithic prover can attempt to solve.

Indeed, the first step of the Sift methodology is to attempt
to prove refinement directly between the implementation and
specification layers. If this proof is too much for the prover to
handle, the developer adds an additional layer of refinement
and tries again. Each additional layer of refinement splits the
proof into smaller pieces that are more amenable to automa-
tion; but, of course, this comes at the cost of some manual
effort, as the developer must manually introduce the new layer.

In the next two sections, we describe the Sift methodol-
ogy in more detail. Section 5 describes how we can use the

Algorithm 1 Specification of the Sharded Hash Table (SHT)
1 function requests(R : request) : bool
2 function replies(R : reply) : bool
3 function map(K : key) : value
4 initialization {
5 8R. requests(R) f alse
6 8R. replies(R) f alse
7 8K. map(K) 0
8 }
9 action commit(req : request, rep : reply) = {

10 require rep.type = req.type
11 require rep.src = req.src
12 require rep.key = req.key
13 require req.type = read) rep.data = map(req.key)
14 if ¬requests(req) { . require ¬requests(req)
15 if req.type = write {
16 map(req.key) req.data
17 };
18 requests(req) true;
19 replies(rep) true;
20 }
21 }

automation of a monolithic prover to perform a refinement
proof between two layers (steps 1 - 4 in Figure 1). Section 6
presents the methodology for adding intermediate layers to
the refinement structure (step 5).

Case Study: Sharded Hash Table Throughout this paper,
we use the example of a Sharded Hash Table application
(SHT) [34] to illustrate the Sift methodology. SHT imple-
ments a distributed key-value store, and consists of two layers,
a specification layer and an implementation layer. As shown
in Algorithm 1, the specification layer describes a key-value
store as a simple map from keys to values. It maintains two
local sets (modeled as boolean-valued functions, lines 1 and 2)
to keep track of which messages (requests and replies) have

154 2022 USENIX Annual Technical Conference USENIX Association

1

A

Upper layer

Lower layer

B C

2 3 4

step

A B B C

refines

Figure 2: Encapsulation: to enable automatic refinement
proofs, the state of the upper layer (A, B, C) is encapsulated
inside the state of the lower layer (1, 2, 3, 4) refining it.

been sent. Initially, all keys are mapped to 0, and no messages
have been sent. Requests can either be read requests or write
requests. The only transition allowed by this specification is
to commit a request req and its reply rep: i.e., perform the
update (if this is a write request) and mark the corresponding
messages as sent by setting requests(req) and replies(rep) to
true. The specification layer consists of 32 lines of Ivy code.

In the implementation layer, every node contains a local
hash table containing some subset of the total keys in the
system and a delegation map. The node uses the delegation
map to maintain its knowledge of where keys are stored on
remote nodes. Each node can service a request using get

and set actions for the keys that are locally stored, or use
the delegation map to look up and forward requests to the
appropriate node in the system if the requested key is not
local. Nodes at the implementation layer can dynamically
exchange sets of keys they are responsible for, by exchanging
delegate messages (each carrying a key-value pair) among
themselves. The implementation layer consists of 127 lines
of Ivy code.

We aim to show that the implementation layer refines the
specification, i.e., that any observable output produced by any
execution of the implementation layer can also be produced
by some execution of the specification. A key property is
that for every key owned by a node at the implementation
layer, the data matches the value stored in the specification.
Additionally, every key is either owned by exactly one node
in the system, or part of an in-flight delegate message.

5 Refinement-Guided Automation

We first explain the key high-level idea behind automating
refinement proofs (step 4 in Fig. 1, Section 5.1). We then
present what modifications Sift makes to the layers of a tar-
get system description to ensure that the correspondences
between the layers are correctly represented before a proof is
attempted (steps 1 - 3 in Fig. 1, Section 5.2).

Algorithm 2 Example of encapsulation in SHT
1 action set(req : request) = {
2 require req.type = write
3 owner delegation.get_owner(req.key)
4 if owner = me {
5 hash(req.k) req.v
6 rep create_reply(req)
7 call spec.commit(req, rep)
8 call network.send_reply(rep)
9 } else {

10 call network.forward_request(req, owner)
11 }
12 }

5.1 From Monolithic Proofs to Refinement
A key feature of Sift is that it uses the automation of mono-
lithic provers to perform more complex, refinement-based
proofs. As we explained in Section 2, monolithic (i.e. single-
layer) proofs do not scale to complex systems, either due to
complexity or undecidability. Yet, monolithic proofs are the
only type of proof supported by these provers. The first inno-
vation of Sift is that it converts a refinement proof between
two layers into a monolithic proof which can be given as input
to any monolithic prover.

We perform this transformation using our encapsulation
technique, depicted in Figure 2. The idea of encapsulation
is simple: if we want to show that a lower layer L refines
an upper layer U , then we augment the state of L with the
state of U . Additionally, whenever the state machine L makes
a transition, the encapsulated U state also makes an upper-
layer transition. In practice, this is expressed as a function
call in Ivy, where the lower layer invokes a transition on
its encapsulated state. For example, in the SHT application,
the lower layer includes an encapsulated spec object (see
Algorithm 1) and a lower-layer transition calls spec.commit()
if it refines the commit transition of the upper layer.

Encapsulating the upper-layer state into the lower layer
effectively creates a single, augmented lower layer that can
be used to reason about the relation between the upper and
lower layer. Most importantly, we can now leverage traditional
single-layer provers to show whether a certain property—the
refinement property—holds for this augmented lower layer.

Case study: refinement proof for the SHT Algorithm 2
shows a simple example of encapsulation at the implemen-
tation layer of SHT. To perform this encapsulation, the im-
plementation layer imports (in Ivy) the specification layer. In
this example of handling a set request, the program checks if
this node (me) is the owner of the key in the request (line 4).
If it is the owner, the implementation layer internally makes
a call (line 7) to spec.commit (shown in Algorithm 1). This
transition corresponds to the transition from state 1 to state 2
in Figure 2: the implementation layer transitions from state 1

USENIX Association 2022 USENIX Annual Technical Conference 155

to state 2, while each of these states encapsulates the corre-
sponding upper layer state, indicating a transition from state
A to state B at the upper layer.

If this node is not the owner, it simply redirects the request
to the owner. Such an implementation layer transition does
not entail a specification layer transition and so the code does
not call spec.commit or any specification-level function. This
is usually called a “stutterring” step of the specification layer—
essentially a no-op—and corresponds to the transition from
state 2 to state 3 in Figure 2.

To prove that the implementation refines the specification,
we ask our monolithic prover to prove a simple property:

8R : reply,N : node. net.replied(R,N) =) spec.replies(R)

This property says that any reply R sent to any node N at
the network (implementation level) can only be present if the
same reply R is present at the specification level. Since replies
are the only observable outputs of the system, it ensures that
every output of the implementation is also an output of the
specification, thus ensuring that the implementation is indeed
a refinement of the specification. Note that the reply message
at the implementation layer is part of the network and thus
modeled as net.replied(M,N).

5.2 Enforcing pre- and postconditions across
layers

When calling functions from a lower layer to an upper layer,
an upper-layer transition’s precondition must be met. The
preconditions of the callee (in the upper layer) become post-
conditions (assertions) for the caller (in the lower layer) to
check. For example, on line 13 of SHT’s specification (Al-
gorithm 1), before committing a request, the precondition
concerning the request, req, and the corresponding reply, rep,
must be met:

req.type = read =) rep.data = map(req.key)

This precondition ensures that every time a read request
is committed, the data contained in the response must corre-
spond to the data in the abstract map. Since it is the caller’s
responsibility to guarantee that this precondition is met be-
fore committing the request, this precondition is effectively
an assertion that needs to be checked by the monolithic prover.
Unfortunately, the current state-of-the-art monolithic provers
do not support checking these kinds of assertions, and can
only find an inductive invariant for a safety property.

If we attempt to ignore this assertion check and let the
monolithic prover prove the refinement property as is, the
result could be unsound—i.e., the proof may go through even
if the implementation is buggy. For example, let us consider
again the refinement property for SHT:

8R : reply,D : node. net.replied(R,D) =) spec.replies(R)

Without precondition checks, a buggy implementation can
send a bogus reply message and call commit at the encap-
sulated specification layer. This would make the refinement
property trivially inductive—since the commit call adds the
message to the replies—without guaranteeing that contents
of that message are correct.

To avoid this problem, Sift needs to consider the asser-
tions in function calls to maintain soundness in automated
refinement proofs. In the rest of this section, we explain how
we transform the assertions to either conditionals (if/else) or
invariants that the monolithic prover can reason about.

5.2.1 Converting Assertions to Conditionals

A straightforward approach to model assertions in function
calls is to convert the callee to an always-enabled action
using a conditional if/else block [35]. The developer can
manually rewrite an assertion P as follows: if P holds, take
the transition; otherwise, do nothing. In this context, the entire
if/else block is always-enabled, in that it has no preconditions
and can always be taken.

For example, the original SHT specification had a precondi-
tion ¬requests(req) in the specification of the commit action,
which we convert to an if-statement (Algorithm 1, line 14).
This precondition ensures that the specification can never
execute the same request twice.

The benefit of this approach is that it does not rely on any
understanding of the system, which makes it very easy to
implement. It has, however, two downsides. First, adding an
if/else block in place of a precondition makes the proof a
little harder for monolithic provers, since it is harder to find
an inductive invariant for a weaker problem. Second, if the
if-statement refers to ghost state—i.e., proof-related state that
is not compiled to an executable—such as the sets correspond-
ing to network messages, these if-statements are not compiled
directly to executable code.Therefore, if there are any asser-
tions that refer to ghost states at the implementation layer, we
cannot rely on the approach of converting assertions to condi-
tionals. In these cases, we need to convert them to invariants,
as we describe below.

5.2.2 Converting Assertions to Invariants

A second, more involved approach to the problem is to convert
these assertions into invariants. Doing so requires human
intuition but reduces the difficulty for the monolithic prover.
For every assertion that needs to be checked, there must be
an invariant to support its proof. The key idea is simple: a
programmer can trace backward through a function call from
the upper layer (the callee) to the lower layer (the caller) to
find the enabling precondition. For the SHT precondition
example above, we observe that only the node who owns the
key can commit the reply. Leveraging this observation, we
can construct an invariant that if node N thinks it is the owner

156 2022 USENIX Annual Technical Conference USENIX Association

of key K, the local value for key K at node N, which forms
the reply, must match the value in the spec:

8N : node,K : key. server(N).delmap(K,N) =)
server(N).hash(K) = spec.map(K)

where server(N).delmap(K,N) indicates that from the per-
spective of server N, the owner of key K is N (delmap stands
for the delegation map). By maintaining this invariant, Sift
can ensure the associated assertion will never be violated dur-
ing the execution of the system. Note that the invariant is not
necessarily inductive, but Sift leverages the automation of the
monolithic prover to complete the proof.

Case study: converting assertions for the SHT The man-
ual effort involved in the SHT proof requires converting seven
assertions into two if-statements and five invariants. The as-
sertion ¬requests(r1) is converted from an assertion to an
if-statement, as described in Section 5.2.1. On the other hand,
the first three assertions (lines 10 to 12 in Algorithm 1) are
already enforced by the implementation layer and do not need
to be converted. We could further use the methodology de-
scribed above in Section 5.2.2 to convert the fourth assertion
(line 13) to an invariant, but it turns out that monolithic provers
are powerful enough to complete the proof even if we simply
convert it to a if-statement.

6 Introducing Intermediate Layers

We have discussed how to use automation to prove refinement
between two layers. However, sometimes, the automation
provided by the monolithic prover is not powerful enough to
prove the desired refinement. This can happen either due to
the complexity of the proof, or the presence of undecidable
reasoning. When faced with such complex proofs, monolithic
provers will either time out or run out of memory.

To perform such complex proofs, the solution is to intro-
duce an intermediate layer (step 5 in Figure 1), thereby split-
ting the proof into two simpler refinement proofs: one refine-
ment proof from the original lower layer to the intermediate
layer, and another refinement proof from the intermediate
layer to the original upper layer. By repeatedly using this
proof-splitting technique until every refinement proof is auto-
mated, we effectively execute a divide-and-conquer strategy
that allows us to tackle complicated refinements.

This idea is similar to IronFleet’s methodology of intro-
ducing an intermediate protocol layer to simplify the proof.
In IronFleet, however, the developer needed to both write an
intermediate layer and manually prove it correct. By contrast,
Sift uses the automation of monolithic provers to dispense
with most of the latter manual effort of writing the proof, and
only requires the user to write intermediate layers—a much
smaller effort than coming up with manual proofs.

Thankfully for developers, introducing an additional layer
is done incrementally. The new layer is essentially a variation
of the layer above or below it: either a more detailed version of
the layer above it or a more abstract version of the layer below
it. This helps keep the manual effort needed to introduce such
layers small.

In the rest of this section, we discuss the strategies that we
have developed and used to introduce intermediate layers, and
walk through the process on a MultiPaxos example.

6.1 Intermediate Layers for Complexity
In most cases, the biggest challenge for a monolithic prover
to automatically prove a refinement is its complexity. If the
system is too complex, the prover either times out or runs out
of memory. When this happens, we can split the refinement
proof into two simpler refinement proofs by introducing an
intermediate layer. We list here a number of ways in which
such a split can simplify the proof burden. This list is extracted
from our experience adding intermediate layers to facilitate
refinement, and is not meant to be a complete enumeration of
all possible layer-splitting strategies.

Abstract Away Messages Not Needed for Safety. Some of
the messages used in the implementation may only be needed
for liveness or performance, but not for safety. When trying
to prove safety, those messages can be abstracted away in an
intermediate layer: they are removed from the intermediate
layer but kept in the implementation layer—itself proven to
be a refinement of the intermediate layer.

For example, in MultiPaxos the current leader needs to
periodically broadcast a heartbeat message to indicate that
it is still alive. This message is not needed for safety and
can therefore be removed in an intermediate layer—though
it is preserved in the implementation layer. The resulting
intermediate layer is now simpler and thus easier to prove
equivalent to the specification.

Merge Multiple Transitions into One Abstract Transition.
Sometimes, the intermediate layer can take an abstract transi-
tion which is broken into multiple transitions in the low-level
implementation.

For example, in MultiPaxos the learner can only receive
one vote (two_b message) from an acceptor at a time. But
what the learner really needs is a quorum of messages to learn
a value. In this case we can merge multiple transitions of
receiving each message separately into one abstract transition
of receiving a quorum, and remove local variables for tem-
porary results. This significantly simplifies the intermediate
layer, with fewer state variables and simpler transitions.

Simplify Local State and Requirements for Transitions.
Implementation layers have to take into account implementa-
tion constraints: for example, a node can only read its local

USENIX Association 2022 USENIX Annual Technical Conference 157

state when taking a transition; and it cannot access messages
sitting in the network. But intermediate layers are essentially
proof constructs and thus do not need to respect such imple-
mentation constraints.

For example, in MultiPaxos, a node needs to maintain an
explicit local history of previous two_b votes to construct
its one_b promise to a new leader, since a promise message
depends on previous votes. In an intermediate layer however,
a node can directly access all sent messages in the network,
thus eliminating the need for this local history. Moreover,
in an implementation a node can only read its local history,
thus requiring a proof that the local history is consistent with
sent messages. In the intermediate layer, since the node has
access to all sent messages, it can directly check that the one_b
promise is consistent with the vote messages, thus eliminating
the need for this proof.

6.2 Intermediate Layers for Decidability
When the verifier returns an explicit decidability error, it
means our refinement is not in the EPR decidable logic [47]
and may take forever to check. Such an issue is typically re-
solved by introducing an intermediate layer and a ghost state
(also known as a derived relation [55]) to hide the existential
quantifier creating the undecidability [55, 62]. We apply a
similar technique in Sift.

For example, in MultiPaxos an acceptor needs to send its
last votes for different slots in a one_b message to a new leader
to decide what value to propose. When a proposer becomes a
leader, it needs to have a quorum of one_b messages, resulting
in the following 8Round9Votes alternation:

8N : Node,R : Round. quorum_o f (R).contains(N)

=) 9V : votes. one_b(N,R,V)

The alternation of the 8 and 9 quantifiers, along with the
inductive invariant, means that this proposition is outside
the decidable logic of EPR. We leverage results from a fol-
lowup work on Ivy [62], and introduce an intermediate layer
to abstract away the payload (previous votes), thereby break-
ing the quantifier alternation. In this case, we only need
an intermediate-layer state joined_round(N,R) to represent
9V. one_b(N,R,V).

7 Evaluation

We evaluate Sift by using it to formally verify the correct-
ness of six implementations of distributed systems: a leader
election protocol (Section 7.1), a distributed lock protocol
(Section 7.2), a two-phase commit protocol (Section 7.3), a
sharded hash table (SHT, Section 7.4), and two consensus pro-
tocols: Raft (Section 7.5) and MultiPaxos (Section 7.6). We
use Ivy to implement these systems, and extract the executable

code to C++ using Ivy’s built-in translator. For the more com-
plex systems (SHT, Raft and MultiPaxos), we also perform
a performance evaluation (Section 7.7) to demonstrate our
automated approach does not impact the performance of im-
plementations.

For all systems in our evaluation, we consider crash failures
and an asynchronous network, which can arbitrarily delay,
drop, or duplicate messages. Both of these can be easily im-
plemented in Ivy. Note that since Sift (like all its predecessors
that also target automation) does not support liveness proofs,
it does not need to explicitly reason about crash failures—a
crash results in a machine no longer taking any steps and thus
has no effect on safety properties.

We find that we are able to prove these complex systems
with little manual effort within a reasonable memory and
time budget, using IC3PO [27] as our monolithic prover. Our
verification results are in Table 1. The complexity of different
systems is illustrated by the number of different types that
are needed to express state transitions for a given system.
For example, for the leader election protocol, there are just
two types: node and id. In contrast, MultiPaxos contains 14
different types, e.g., round, inst, value, time, node, etc.

We now give details about the proofs of the aforementioned
systems, followed with a performance evaluation (Section-
7.7) of three of the more complex resulting implementations
(i.e., SHT, Raft and Paxos). We ran our performance exper-
iments on a cluster where nodes have a 16-core Intel Xeon
E5-2667 v4 @3.20 GHz processor and are connected with
a 10 GB Ethernet connection running Ubuntu 16.04. All our
implementation and artifact can be found in GitHub [49]

7.1 Leader Election
The leader election protocol aims to elect a unique leader
from a ring with an unbounded number of nodes with unique
integer IDs [13, 50, 56]. The specification layer dictates a
single action the system can take: elect a node as the leader,
under the condition that no other node is already the leader.
This layer contains 13 lines of Ivy code.

In the implementation layer, the nodes are totally ordered
in a ring so that every node has a next node. A node n has
two valid actions: (a) periodically send its ID idn(n) to the
next node in the ring; or (b) forward an ID i received from its
predecessor if i > idn(n). Once n receives its idn(n), it knows
that no other node in the system has a larger ID, and can now
safely become the leader. The implementation layer consists
of 28 lines of Ivy code.

To prove refinement between the implementation and the
specification layers, we ensure that when a message stating
that a leader is elected is sent in the implementation, the
destination of the message should correspond to the leader
node in the specification.

We perform a manual, albeit trivial, syntactic change to
the specification layer to convert one precondition into an

158 2022 USENIX Annual Technical Conference USENIX Association

System Proof
Effort Refinement # of types Solution to

Preconditions
of Clauses
in Invariant

Time
(sec)

Memory
(MB)

Leader Election < 5 min spec to impl 2 1 if-statement 6 196 1744
Distributed Lock < 5 min spec to impl 2 1 if-statement 8 111 425

Two-Phase Commit < 5 min spec to impl 4 3 if-statements 12 613 815

SHT < 30 min spec to impl 7 5 invariants,
2 if-statements 13 1021 856

Raft 1 person-
month

spec to layer 0 6 manual
layer 0 to layer 1 6 15 invariants 22 787 4178

layer 1 to impl 10 15 invariants,
1 if-statement 17 1239 2981

MultiPaxos

Previously
proved spec to layer 0 9 manual

3 person-
weeks

layer 0 to layer 1 9 7 invariants,
2 if-statements 12 49 249

layer 1 to layer 2 11 8 invariants,
8 if-statements 21 258 719

layer 2 to layer 3 11 19 invariants 28 841 1935
layer 3 to impl 14 19 invariants 25 196 398

Table 1: Summary of our six distributed systems; “spec” stands for specification, “impl” stands for implementation, and “layer
i” represents intermediate layers. The number of different types that are needed to express the state transition illustrates the
complexity of different system.

if-statement, which takes less than 5 minutes. We then simply
use Sift’s encapsulation technique to convert the refinement
between the implementation and specification layers into a
monolithic proof that is proven automatically by IC3PO.

7.2 Distributed Lock

The distributed lock protocol [34, 50, 56] models an un-
bounded number of nodes that transfer the ownership of a
single lock. In this system, the ownership of a lock is associ-
ated with an ever-increasing epoch: only one node can own
the lock at each epoch. This makes for a concise specification
layer—12 lines of Ivy code—that only contains a lock history
to indicate which node holds the lock at every epoch.

In the implementation layer, there are two possible transi-
tions for a node: (a) transfer the lock if it holds the lock; or
(b) accept the lock and jump to a higher epoch by sending a
locked message to indicate ownership. This implementation
has 35 lines of Ivy code.

The refinement property in this system is that all locked
messages should have a corresponding node in the specifica-
tion layer’s lock history.

The only manual effort involved in this proof is converting
one precondition to an if-statement in the specification layer,
which takes less than 5 minutes. After this transformation,
we can use the encapsulation technique from Sift to convert
the refinement between the implementation and specification
layers into a monolithic proof, and prove the locked message
is equivalent to the lock history.

7.3 Two-Phase Commit

The two-phase commit protocol [31] is used by a group of
nodes, known as resource managers (RMs), to coordinate the
decision on whether to abort or commit a transaction. The
RMs vote to either commit or abort the proposed transac-
tion and a transaction manager (TM) node is in charge of
coordinating the decision-making procedure.

The specification layer of this system uses the Transaction
Commit protocol by Lamport [30, Sec. 2] translated from
TLA+ [45] to Ivy. The safety property does not allow a node
to commit if another node aborts. The specification contains
54 lines of Ivy code.

The implementation of this system is an Ivy translation in-
spired by the TLA+ specification of Two-Phase Commit [30,
Sec. 3]. This layer introduces a special TM node, which coor-
dinates all RMs. An RM can send a Prepared message to the
TM when transiting into the prepared state, or unilaterally de-
cide to abort. Upon receiving a Prepared message from every
RM, the TM can decide to commit, broadcasting a Commit
message to every RM node. The receipt of a Commit message
from the TM allows an RM to decide to commit the transac-
tion. This implementation of two-phase commit has 110 lines
of code.

The refinement property between the implementation and
specification ensures that all RMs commit or abort at the same
time between the implementation and the specification.

After a trivial syntactic change converting preconditions to
three if-statements in the specification layer, this refinement
property is proven automatically.

USENIX Association 2022 USENIX Annual Technical Conference 159

7.4 Sharded Hash Table (SHT)
The Sharded Hash Table protocol was previously introduced
as a running example in Section 4. Its specification is a simple
key-value map processing read and write requests. We can au-
tomatically prove the refinement from the implementation to
the specification, after converting preconditions to five invari-
ants and two if-statements to guide IC3PO, as detailed in Sec-
tion 5.2. Compared to IronKV (IronFleet’s implementation of
SHT), we simplify the delegate messages by transferring one
key at a time. Transferring intervals of keys would require a
loop iterating over keys and a loop invariant [59, 65], which
cannot be found automatically by IC3PO.

The network interface for SHT is more complex than that of
other systems. In particular, SHT’s network interface requires
that messages are not delivered twice, so that requests can
only be committed once and only one node at a time can own
a key. As this is not part of refinement, we leverage an existing
proof [53] for these requirements.

7.5 Raft
Raft [54] implements a shared log among nodes, which can
be used to implement a fault-tolerant distributed service. The
log is maintained as a set of (index, value) pairs.

Raft is a term-based protocol. In each term, a node can be
elected as the leader, append values to the log, and replicate
its log to other nodes by sending an append message. For
safety, each node maintains its own log and only votes for
a leader whose log is not earlier than its own. When the
leader receives reply messages for its append message from
a majority of nodes , the leader can consider all previous log
entries committed. This strategy ensures that all future leaders
contain the committed log.

At the specification layer, Raft can commit a prefix to an
index in the leader’s log and ensure that only one value is
committed at each index. The refinement property from the
implementation to the specification ensures that they have the
same log.

7.5.1 Intermediate Layers and Proof Effort

Our Raft implementation is similar to the previous Ivy im-
plementation of Raft [62] with 212 lines of code. Due to
undecidability, we could not refine the implementation to the
specification directly. Instead, we build a first intermediate
layer—layer 0—to separate the quantifier alternation (as out-
lined in Section 6.2). We tried to prove the refinement from
specification to layer 0 automatically, but the inductive invari-
ant contains complex quantifier alternations, which IC3PO
was unable to handle. As a result, we manually prove the
refinement from specification to layer 0. The refinement from
spec to layer 0 took two person-weeks (including understand-
ing the protocol). Layer 0 contains 143 lines of code.

From layer 0, the implementation is still too complex to re-
fine directly using IC3PO. We introduce another intermediate
layer, layer 1, to help IC3PO automatically prove the refine-
ment. To write layer 1, we follow the strategies presented in
Section 6, specifically by merging actions into one abstract
action. In the abstract action a node can receive a quorum of
messages at once, rather than receiving each of them individ-
ually in separate transitions. Layer 1 changes 57 lines from
layer 0. We spent another two person-weeks to identify this
intermediate layer and debug our implementation.

Overall, we were able to complete the proof of Raft in
one person month, which compares favorably to the three
person months needed by the original proof [62] written in
Ivy. This reduction was the result of using a much higher
degree of automation, by splitting the proof into layers and
leveraging the power of IC3PO to prove each refinement
between consecutive layers.

7.6 MultiPaxos
MultiPaxos [43, 44] is a common consensus protocol that is
widely used in industry (e.g., Chubby [11], Megastore [2], and
Spanner [19]). However, MultiPaxos is notoriously complex
and difficult to verify.

At the specification level, MultiPaxos maintains an array
of values; some that have been decided (i.e., agreed upon
and finalized) and some that are empty. The only possible
transition in the specification is to add a new decided value
to this array. Similar to Raft, our refinement ensures that the
implementation maintains the same values as the array in the
specification.

The implementation of MultiPaxos is very similar to that
of Raft but uses different strategies to ensure safety. In Raft,
the leader can only be a node with the most up-to-date logs,
while MultiPaxos relies on the messages from other nodes to
generate an up-to-date log for the new leader.

7.6.1 Intermediate Layers and Proof Effort

Our design of the MultiPaxos protocol is inspired by previ-
ous work on expressing Paxos and MultiPaxos in the EPR
decidable logic [55, 62]. Our evaluation uses the MultiPaxos
implementation from [62], removing certain re-transmissions
that are unnecessary for safety to simplify the refinement.

Since proving refinement directly between the implemen-
tation layer and the specification layer would introduce un-
decidability (see Section 6.2), we initially introduce a single
intermediate layer, layer 0, to circumvent this undecidability.
Moreover, as the refinement from the specification to layer 0
contains complex quantifier alternations that are too hard for
IC3PO to prove automatically, we borrow the existing manual
proof from Ivy. Layer 0 contains 88 lines of Ivy code.

After addressing undecidability concerns through layer 0,
we found that a direct refinement from the implementation to

160 2022 USENIX Annual Technical Conference USENIX Association

Figure 3: SHT performance

layer 0 remains infeasible for IC3PO. Using our divide-and-
conquer technique, we added three additional intermediate
layers to simplify this refinement. Following the strategies
outlined in Section 6.1, we first added a layer 1 that abstracts
away liveness messages and merges transitions to receive a
quorum of messages. We augmented this by introducing a
layer 2 that uses a local variable to track the current round,
receives one two_b message, and keeps track of when a valid
quorum can be formed. We then introduced a final intermedi-
ate layer that more closely resembles the implementation by
using an array to track previous voted values for acceptors,
and restricting a node to only receive one message during a
transition.

With the addition of the four intermediate layers, Sift splits
the complex refinement proof into manageable pieces, where
each refinement between layers is amenable to automated
verification. Producing the three intermediate layers (layers
1, 2, and 3) and converting the necessary preconditions to
invariants is still a non-trivial task which takes about two
person-weeks. About one third of the time is spent waiting
for IC3PO to run out of time or memory, which indicates
that another layer is needed (step 5 in Figure 1). While
non-negligible, this manual effort is significantly less than
the original attempt in Ivy, which was two person-months to
refine layer 0 to the implementation [62].

7.7 Performance Evaluation
7.7.1 SHT Performance

We compare the throughput and latency of our verified Sift
implementation of SHT with IronKV [34], as shown in Fig-
ure 3. IronKV is the closest verified implementation of a
SHT that we could compare against. The SHT cluster was
preloaded with 1,000 keys delegated evenly across the three
nodes and serviced requests from an increasing number of
clients in a closed loop. In one experiment, client processes
send an even 50/50 mix of randomized GET and SET requests.
We further increase the percentage of GET requests to 90%.
IronKV scales about 25% better than our version of SHT. The
disparity in performance between these two systems can be
attributed to both unoptimized generated C++ from Ivy and
design choices made in IronKV, which added extra manual
proof complexity for the sake of performance purposes, such

Figure 4: Raft and MultiPaxos performance

as an efficient delegation map data structure that each node
maintains and consists of 833 lines of Dafny code.

7.7.2 Raft and MultiPaxos Performance

We evaluated the performance of the verified Sift implementa-
tions of Raft and MultiPaxos by varying the load of each sys-
tem with an increasing number of clients submitting requests
in a closed loop, as shown in Figure 4. For both systems, the
experimental setup consists of three replicas on separate ma-
chines, with a fourth machine containing the client processes.

We tried to compare the performance of these systems with
IronRSL, IronFleet’s verified Paxos-based replicated state ma-
chine library, but the performance results of IronRSL were
not reproducible for a direct comparison. By re-running the
original implementation from the IronFleet paper [34], we
found the performance for IronRSL to be lower than origi-
nally reported [34, Sec. 7]1. The performance of our imple-
mentation of MultiPaxos, which does not support batching, is
comparable to the results reported for IronRSL in non-batch
mode [34, Fig. 13].

We do compare both Raft and MultiPaxos with the Ivy-
based manually-verified implementations [62]. The perfor-
mance of Raft is almost identical to the version of Raft, but
we find that our MultiPaxos system exceeds the performance
of MultiPaxos from that work. These results show that the
automation and reduced proof effort gained by using Sift does
not impact the performance of either system.

8 Limitations and Future Directions

Our experience with Sift suggests that it advances what is
possible in the realm of automated verification of complex
systems. For all of its successes, however, there are still more
steps to be taken in this direction.
• Automating simple transformations. While Sift greatly

increases the automation of complex refinement proofs, parts
of the methodology still require manual effort that could po-
tentially be automated, such as converting assertions to if-

1Even after close discussions with two of the IronFleet authors, this
discrepancy was not resolved. They attributed this to possible code changes
between what was originally evaluated and the currently available code.

USENIX Association 2022 USENIX Annual Technical Conference 161

statements and transforming to invariants through automatic
computation of weakest preconditions [22].
• Loop invariants. Certain complex systems, such as SHT,

may require loop invariants to prove optimizations that are
added to enhance the performance of executable code. Loop
invariants are similar to regular inductive invariants, in that
both are inductive under some transitions. As described in
Sections 7.4 and 7.6.1, any loop invariant in Sift must cur-
rently be written manually. In the future, we hope to add
support for automatic deriviation of loop invariants in Sift, by
building further on the existing literature [59, 65].
• Leveraging multiple monolithic provers. As shown in

recent works [27, 33, 66], different monolithic provers show
complementary strengths in different scenarios. Since the de-
sign of Sift is independent of the choice of monolithic prover,
we plan to employ a portfolio of monolithic provers in parallel
to derive refinement proofs with even higher scalability.

9 Related Work

We now provide a summary on previous efforts relevant to
applying formal methods to verify distributed systems.
Automated Verification. With the advancements in auto-
mated reasoning [6, 20, 36] and abstraction techniques [3, 16,
29], automatically verifying correctness through model check-
ing [17, 58] has significantly improved in different domains,
both for hardware [9,10,23,26,61] and software [3,7,8,37,41].
However, model checking still does not scale well to large
complex systems, due to state-space explosion [18, 21].

More recently, several approaches [24,27,33,38,40,50,66]
have extended induction-based model checking [10, 23] to
automatically infer inductive invariants for infinite-state dis-
tributed protocols. I4 [50] leverages the regularity of dis-
tributed protocols, combining finite model checking with un-
bounded reasoning in distributed protocols. IC3PO [27], de-
scribed in detail in Section 3.3, incorporates invariant general-
ization with model checking for better scalability. SWISS [33]
derives an inductive invariant by performing an exhaustive
search over candidate invariants in an optimized invariant
search space. DistAI [66] uses a data-driven approach and is
guaranteed to find a universally-quantified inductive invariant
in finite time.

All the aforementioned techniques [24,27,33,38,40,50,66],
however, target monolithic, single-layer verification, primar-
ily at the protocol level, and cannot scale to detailed system
implementations. In contrast, our approach combines these
monolithic provers with the well-founded concepts of refine-
ment [1, 25, 42] to scale verification all the way to complex
executable implementations.
Systems Verification. Much effort has gone to verifying real
systems, including OS kernels [15,32,39,52], file, and storage
systems [12, 14, 67]. These works provide strong guarantees
of correctness, but at the cost of extensive manual effort; Sift,

by contrast, requires little manual proof effort while verifying
systems of considerable complexity, such as MultiPaxos.

Within the realm of distributed systems, there have been
attempts at manually verifying implementations of proto-
cols [60, 64]. Ivy [56] requires the developer to iteratively
refine an invariant until an inductive invariant is identified.
IronFleet [34] and Verdi [63] have been used to verify practi-
cal implementations of distributed systems. In stark contrast to
our work, all three approaches rely on considerable amounts
of manual effort (in the order of person months) to complete
a proof of correctness. Additionally, while IronFleet always
uses three layers of refinement (i.e., specification, protocol,
and implementation), most of the distributed systems we ver-
ify are refined directly from an implementation to a specifi-
cation, with intermediate layers only added when needed to
reduce the proof complexity for our monolithic provers.

More recently, Lorch et al. [48] presented Armada, a tool
designed to verify concurrent programs. While Armada has
some superficial similarities to Sift—namely the use of re-
finement and automation—it is in fact drastically different.
It operates in an environment almost diametrically opposed
to that of Sift: single-machine, multi-threaded code where
communication happens via shared memory, as opposed to
Sift’s sequential execution on a distributed system where
communication happens via message passing. Additionally,
while Armada makes heavy use of automation to generate
proofs, it still requires its users to write significant parts of
the proof—hundreds of lines of code—manually.

10 Conclusion

This paper introduces Sift, a novel two-tier methodology that
combines the power of refinement with the ability to automate
proofs. Sift decomposes the proofs of complex distributed
implementations into a number of refinement steps, each of
which is amenable to automation. We use Sift to prove the
correctness of six distributed implementations—including
the notorious MultiPaxos—none of which had an automated
proof before. Our evaluation shows that this combination of
refinement and automation lets us verify complex distributed
implementations with little manual effort.

Acknowledgements

We thank the anonymous reviewers for their useful feedback
in improving this paper. This work was supported by the
National Science Foundation under grant No 2018915, and
by an Amazon Research Award.

References

[1] M. Abadi and L. Lamport. The existence of refinement
mappings. Theoretical Computer Science, 82(2):253–

162 2022 USENIX Annual Technical Conference USENIX Association

284, 1991.

[2] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing scalable, highly available storage
for interactive services. In Proceedings of the Confer-
ence on Innovative Data system Research (CIDR), pages
223–234, 2011.

[3] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. Slam
and static driver verifier: Technology transfer of formal
methods inside microsoft. In International Conference
on Integrated Formal Methods, pages 1–20. Springer,
2004.

[4] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Fil-
liatre, E. Gimenez, H. Herbelin, G. Huet, C. Munoz,
C. Murthy, et al. The Coq proof assistant reference
manual: Version 6.1. PhD thesis, Inria, 1997.

[5] C. Barrett, P. Fontaine, and C. Tinelli. The
Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2016.

[6] C. Barrett and C. Tinelli. Satisfiability modulo theo-
ries. In Handbook of Model Checking, pages 305–343.
Springer, 2018.

[7] D. Beyer. Software verification: 10th comparative eval-
uation (sv-comp 2021). Tools and Algorithms for the
Construction and Analysis of Systems, 12652:401, 2021.

[8] D. Beyer and M. E. Keremoglu. Cpachecker: A tool
for configurable software verification. In International
Conference on Computer Aided Verification, pages 184–
190. Springer, 2011.

[9] A. Biere, N. Froleyks, and M. Preiner. Hardware model
checking competition (HWMCC) 2020. http://fmv.
jku.at/hwmcc20.

[10] A. R. Bradley. Sat-based model checking without
unrolling. In International Workshop on Verification,
Model Checking, and Abstract Interpretation, pages 70–
87. Springer, 2011.

[11] M. Burrows. The chubby lock service for loosely-
coupled distributed systems. In Proceedings of the 7th
symposium on Operating systems design and implemen-
tation, pages 335–350, 2006.

[12] T. Chajed, J. Tassarotti, M. F. Kaashoek, and N. Zel-
dovich. Argosy: Verifying layered storage systems with
recovery refinement. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2019, page 1054–1068,
New York, NY, USA, 2019. Association for Computing
Machinery.

[13] E. Chang and R. Roberts. An improved algorithm for
decentralized extrema-finding in circular configurations
of processes. Communications of the ACM, 22(5):281–
283, 1979.

[14] H. Chen, T. Chajed, A. Konradi, S. Wang, A. İleri,
A. Chlipala, M. F. Kaashoek, and N. Zeldovich. Veri-
fying a high-performance crash-safe file system using
a tree specification. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17, page
270–286, New York, NY, USA, 2017. Association for
Computing Machinery.

[15] H. Chen, X. N. Wu, Z. Shao, J. Lockerman, and R. Gu.
Toward compositional verification of interruptible os
kernels and device drivers. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’16, page 431–447,
New York, NY, USA, 2016. Association for Computing
Machinery.

[16] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In In-
ternational Conference on Computer Aided Verification,
pages 154–169. Springer, 2000.

[17] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronization skeletons using branching time tem-
poral logic. In Workshop on Logic of Programs, pages
52–71. Springer, 1981.

[18] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani.
Model Checking and the State Explosion Problem, pages
1–30. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012.

[19] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-
lor, R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In 10th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 12), pages 261–264, Hollywood, CA, Oct. 2012.
USENIX Association.

[20] L. De Moura and N. Bjørner. Z3: An efficient SMT
solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidel-
berg, 2008. Springer.

[21] S. Demri, F. Laroussinie, and P. Schnoebelen. A para-
metric analysis of the state-explosion problem in model
checking. Journal of Computer and System Sciences,
72(4):547–575, 2006.

USENIX Association 2022 USENIX Annual Technical Conference 163

http://fmv.jku.at/hwmcc20
http://fmv.jku.at/hwmcc20

[22] E. W. Dijkstra. Guarded commands, nondeterminacy
and formal derivation of programs. Communications of
the ACM, 18(8):453–457, 1975.

[23] N. Een, A. Mishchenko, and R. Brayton. Efficient imple-
mentation of property directed reachability. In Proceed-
ings of the International Conference on Formal Methods
in Computer-Aided Design, pages 125–134. FMCAD
Inc, 2011.

[24] Y. M. Y. Feldman, J. R. Wilcox, S. Shoham, and M. Sa-
giv. Inferring inductive invariants from phase structures.
In Computer Aided Verification, pages 405–425, Cham,
2019. Springer International Publishing.

[25] S. J. Garland and N. A. Lynch. Using i/o automata
for developing distributed systems. Foundations of
component-based systems, 13(285-312):5–2, 2000.

[26] A. Goel and K. Sakallah. Model checking of verilog
rtl using ic3 with syntax-guided abstraction. In NASA
Formal Methods Symposium. Springer, 2019.

[27] A. Goel and K. Sakallah. On symmetry and quantifi-
cation: A new approach to verify distributed protocols.
In NASA Formal Methods Symposium, pages 131–150.
Springer, 2021.

[28] A. Goel and K. A. Sakallah. IC3PO: IC3 for
Proving Protocol Properties. https://github.com/

aman-goel/ic3po.

[29] S. Graf and H. Saïdi. Construction of abstract state
graphs with pvs. In International Conference on Com-
puter Aided Verification, pages 72–83. Springer, 1997.

[30] J. Gray and L. Lamport. Consensus on transaction com-
mit. ACM Transactions on Database Systems (TODS),
31(1):133–160, 2006.

[31] J. N. Gray. Notes on data base operating systems. In
Operating Systems, pages 393–481. Springer, 1978.

[32] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, and
D. Costanzo. Certikos: An extensible architecture for
building certified concurrent os kernels. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’16, page 653–669,
USA, 2016. USENIX Association.

[33] T. Hance, M. Heule, R. Martins, and B. Parno. Finding
invariants of distributed systems: It’s a small (enough)
world after all. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21),
pages 115–131. USENIX Association, Apr. 2021.

[34] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch,
B. Parno, M. L. Roberts, S. Setty, and B. Zill. Ironfleet:

proving practical distributed systems correct. In Pro-
ceedings of the 25th Symposium on Operating Systems
Principles, pages 1–17. ACM, 2015.

[35] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch,
B. Parno, M. L. Roberts, S. Setty, and B. Zill. Iron-
fleet: Proving safety and liveness of practical distributed
systems. Commun. ACM, 60(7):83–92, June 2017.

[36] M. Heule, M. Järvisalo, M. Suda, T. Balyo, C. Sinz, and
A. Biere. The international SAT Competitions web page.
http://www.satcompetition.org/.

[37] R. Jhala and R. Majumdar. Software model checking.
ACM Computing Surveys (CSUR), 41(4):1–54, 2009.

[38] A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, and
S. Shoham. Property-directed inference of universal
invariants or proving their absence. Journal of the ACM
(JACM), 64(1):7, 2017.

[39] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-
wood. Sel4: Formal verification of an os kernel. In
Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, SOSP ’09, page 207–220,
New York, NY, USA, 2009. Association for Computing
Machinery.

[40] J. R. Koenig, O. Padon, N. Immerman, and A. Aiken.
First-order quantified separators. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, page
703–717, New York, NY, USA, 2020. Association for
Computing Machinery.

[41] D. Kroening and M. Tautschnig. Cbmc–c bounded
model checker. In International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 389–391. Springer, 2014.

[42] L. Lamport. The temporal logic of actions. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 16(3):872–923, 1994.

[43] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[44] L. Lamport. Paxos made simple. ACM SIGACT News
(Distributed Computing Column) 32, 4 (Whole Number
121, December 2001), pages 51–58, December 2001.

[45] L. Lamport. Specifying systems: the TLA+ language and
tools for hardware and software engineers. Addison-
Wesley Longman Publishing Co., Inc., 2002.

164 2022 USENIX Annual Technical Conference USENIX Association

https://github.com/aman-goel/ic3po
https://github.com/aman-goel/ic3po
http://www.satcompetition.org/

[46] K. R. M. Leino. Dafny: An automatic program verifier
for functional correctness. In Proceedings of the 16th
International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, LPAR’10, pages
348–370, Berlin, Heidelberg, 2010. Springer-Verlag.

[47] H. R. Lewis. Complexity results for classes of quan-
tificational formulas. Journal of Computer and System
Sciences, 21(3):317–353, 1980.

[48] J. R. Lorch, Y. Chen, M. Kapritsos, B. Parno, S. Qadeer,
U. Sharma, J. R. Wilcox, and X. Zhao. Armada: Low-
effort verification of high-performance concurrent pro-
grams. In Proceedings of the 41st ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, PLDI 2020, page 197–210, New York, NY,
USA, 2020. Association for Computing Machinery.

[49] H. Ma, H. Ahmad, A. Goel, E. Goldweber, J.-B. Jeannin,
M. Kapritsos, and B. Kasikci. Sift Artifact. https:

//github.com/GLaDOS-Michigan/Sift.

[50] H. Ma, A. Goel, J.-B. Jeannin, M. Kapritsos, B. Kasikci,
and K. A. Sakallah. I4: incremental inference of induc-
tive invariants for verification of distributed protocols. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 370–384, 2019.

[51] H. Ma, A. Goel, J.-B. Jeannin, M. Kapritsos, B. Kasikci,
and K. A. Sakallah. Towards automatic inference of
inductive invariants. In Proceedings of the Workshop on
Hot Topics in Operating Systems, pages 30–36, 2019.

[52] H. Mai, E. Pek, H. Xue, S. T. King, and P. Madhusu-
dan. Verifying security invariants in expressos. In
Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’13, page 293–304,
New York, NY, USA, 2013. Association for Computing
Machinery.

[53] K. L. McMillan. non-duplicating ordered transport ser-
vice. https://github.com/microsoft/ivy/blob/

master/doc/examples/sht/trans.md.

[54] D. Ongaro and J. Ousterhout. In search of an under-
standable consensus algorithm. In 2014 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 14),
pages 305–319, 2014.

[55] O. Padon, G. Losa, M. Sagiv, and S. Shoham. Paxos
made EPR: decidable reasoning about distributed pro-
tocols. Proceedings of the ACM on Programming Lan-
guages, 1(OOPSLA):1–31, 2017.

[56] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and
S. Shoham. Ivy: safety verification by interactive gen-
eralization. ACM SIGPLAN Notices, 51(6):614–630,
2016.

[57] R. Piskac, L. de Moura, and N. Bjørner. Deciding ef-
fectively propositional logic using dpll and substitution
sets. Journal of Automated Reasoning, 44(4):401–424,
Apr 2010.

[58] J.-P. Queille and J. Sifakis. Specification and verifica-
tion of concurrent systems in cesar. In International
Symposium on programming, pages 337–351. Springer,
1982.

[59] G. Ryan, J. Wong, J. Yao, R. Gu, and S. Jana. Cln2inv:
Learning loop invariants with continuous logic networks.
In International Conference on Learning Representa-
tions, 2020.

[60] N. Schiper, V. Rahli, R. Van Renesse, M. Bickford,
and R. L. Constable. Developing correctly replicated
databases using formal tools. In 2014 44th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 395–406. IEEE,
2014.

[61] B. L. Synthesis and V. Group. ABC: A system for se-
quential synthesis and verification. http://www.eecs.
berkeley.edu/~alanmi/abc/, 2017.

[62] M. Taube, G. Losa, K. L. McMillan, O. Padon, M. Sa-
giv, S. Shoham, J. R. Wilcox, and D. Woos. Modularity
for decidability of deductive verification with applica-
tions to distributed systems. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 662–677, 2018.

[63] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock,
X. Wang, M. D. Ernst, and T. Anderson. Verdi: a
framework for implementing and formally verifying dis-
tributed systems. ACM SIGPLAN Notices, 50(6):357–
368, 2015.

[64] D. Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst,
and T. Anderson. Planning for change in a formal veri-
fication of the raft consensus protocol. In Proceedings
of the 5th ACM SIGPLAN Conference on Certified Pro-
grams and Proofs, CPP 2016, page 154–165, New York,
NY, USA, 2016. Association for Computing Machinery.

[65] J. Yao, G. Ryan, J. Wong, S. Jana, and R. Gu. Learning
nonlinear loop invariants with gated continuous logic
networks. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI 2020, page 106–120, New York,
NY, USA, 2020. Association for Computing Machinery.

[66] J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan.
DistAI: Data-driven automated invariant learning for
distributed protocols. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
21), pages 405–421. USENIX Association, July 2021.

USENIX Association 2022 USENIX Annual Technical Conference 165

https://github.com/GLaDOS-Michigan/Sift
https://github.com/GLaDOS-Michigan/Sift
https://github.com/microsoft/ivy/blob/master/doc/examples/sht/trans.md
https://github.com/microsoft/ivy/blob/master/doc/examples/sht/trans.md
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/

[67] M. Zou, H. Ding, D. Du, M. Fu, R. Gu, and H. Chen. Us-
ing concurrent relational logic with helpers for verifying
the atomfs file system. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 259–274, New York, NY, USA, 2019. Association
for Computing Machinery.

166 2022 USENIX Annual Technical Conference USENIX Association

	Introduction
	The Price of Automation
	Background
	Multi-Layer Refinement
	Automated Reasoning and Monolithic Provers
	IC3PO: Our Monolithic Prover of Choice

	Overview of Sift
	Refinement-Guided Automation
	From Monolithic Proofs to Refinement
	Enforcing pre- and postconditions across layers
	Converting Assertions to Conditionals
	Converting Assertions to Invariants

	Introducing Intermediate Layers
	Intermediate Layers for Complexity
	Intermediate Layers for Decidability

	Evaluation
	Leader Election
	Distributed Lock
	Two-Phase Commit
	Sharded Hash Table (SHT)
	Raft
	Intermediate Layers and Proof Effort

	MultiPaxos
	Intermediate Layers and Proof Effort

	Performance Evaluation
	SHT Performance
	Raft and MultiPaxos Performance

	Limitations and Future Directions
	Related Work
	Conclusion

