
Photonic  Crystal  Biosensor 
Yunbo Guo1,2, Jing Yong Ye1,2, Charles Divin1, Thommey P. Thomas2, James R. Baker, Jr.2, and Theodore B. Norris1,2

1 Center for Ultrafast Optical Science, 2 Michigan Nanotechnology Institute for Medicine and Biological Sciences 

 Two detection methods to measure the shift of the resonance mode:
a) Spectrum measurement is to measure the shift of the resonance wavelength that  

provides large detection range (~μm) with a reasonable resolution (~10-2nm);
b) Differential intensity measurement is used to measure the intensity ratio change of the 

resonant mode at a single wavelength. This yields a high detection resolution (~10-5);
 A microfludic flow system enables real-time measurement.   

 We would like to develop a label-free optical biosensor capable of 
performing real-time analysis. This biosensor will be significantly more 
sensitive than the state-of-the-art surface-plasmon-resonance (SPR) based 
instruments, and will allow us to perform binding studies that are currently 
out of reach of those systems already on the market.

Concept behind the PC-TIR sensor
 A narrow resonance mode (∆λ ~ 1nm) is achieved by a high finesse Fabry-

Perot microcavity formed with a photonic crystal (PC) structure and total-
internal-reflection (TIR) boundary in the defect layer;

 Large enhancement in the evanescent field provides high sensitivity to 
small changes on the sensing surface ( >103 nm/RIU);

 Open sensing surface enables label-free, real-time measurement.

Operating principle
 Suitable absorption in defect layer used to characterize resonance mode;
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Typical PC-TIR sensor structure & reflectance spectra

Bulk solvent index change (detection limit: 7×10-8 RIU) 
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 Resonance mode shifts when refractive index of the surrounding medium 
varies or the analyte is adsorbed on the sensing surface, by changing 
resonance condition of the Fabry-Perot microcavity:

By monitoring the resonance mode, we can get the information on the 
solvent index change, the analyte’s index, thickness, mass density or 
affinity constants, etc. 

 Ways to achieve high sensitivity:
a) Narrow resonance mode for 
higher resolution;
b) Intensity modulation for larger 
signal change;
c) Reference channel  to eliminate 
fluctuations of laser intensity and 
temperature, etc.

Experiment results

Thin molecular layer adsorption (detection limit: 6×10-5 nm) 
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α represents the Goos-Hänchen phase shift between defect layer and bulk solvent

 Developed a novel optical biosensor which can perform label-free, real-time 
analysis on biomolecular interaction;

 Achieved orders of magnitude higher detection sensitivity than the state-of-
the-art SPR-based system.

Developed surface chemistries on sensing surface

Real-time protein binding (mass density detection limit: 0.02pg/mm2)

Small molecule-protein interaction (D-Biotin: 244Da)

 Biotinlyated chip: used for immobilization of streptavidin (SA)
 Carboxyl chip     : used for immobilization via –NH2 or –COOH groups 
 Streptavidin chip: used for immobilization of biotinylated peptides, proteins, 

nucleic acids, or carbohydates

SA  layer thickness              : 0.60 nm
Detected surface density    : 240 pg/mm2

Signal to noise ratio (SNR)  : 1.2×104

Detection limit                      : 0.02 pg/mm2 

Large molecule-protein interaction (Biotinylated IgG: 150kDa)

SNR ~ 70,  which can be further  
improved by more than 10 times 


