Supporting Information

Ultrasensitive vapor detection with SERS-active gold nanoparticle immobilized flow-through multi-hole capillaries

Maung Kyaw Khaing Oo, ${ }^{1,+}$ Yunbo Guo, ${ }^{1,+}$ Karthik Reddy, ${ }^{1,2}$ Jing Liu, ${ }^{1}$ and Xudong Fan ${ }^{1, *}$
${ }^{1}$ Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
${ }^{2}$ Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48109

[^0]
1. Normal Raman spectra of pyridine and 4-nitrophenol

As a control experiment, normal Raman spectra of pyridine and 4-nitrophenol were investigated, as shown in Figure S1a, and b, respectively. The Raman measurements were done at $785 \mathrm{~nm}, 12 \mathrm{~mW}$ laser power, and acquisition time of 2 seconds.

Figure S1. Normal Raman spectra of (a) pyridine and (b) 4-nitrophenol

Pyridine and 4-nitrophenol normal Raman frequency and mode assignments, as well as their corresponding SERS peaks (obtained from our experimental results), are tabulated in Table S1, and S 2 , respectively.

Table S1. Assignment of pyridine normal Raman and SERS peaks

Mode assignment ${ }^{1}$	Normal Raman of pyridine Frequency, $\left(\mathbf{c m}^{-1}\right)$	SERS of pyridine Frequency, $\left(\mathbf{c m}^{-\mathbf{1}}\right)$
Symmetric Ring breathing	988	1021
Asymmetric Ring breathing	1027	1045
In-plane CH bending	1064	
In-plane CH bending	1142	
In-plane CH bending	1214	1479
Ring stretching	1568	1578

Table S2. Assignment of 4-nitrophenol normal Raman and SERS peaks

$\underline{\text { Mode assignment }}{ }^{2}$
 Normal Raman of 4-nitrophenol Frequency, $\left(\mathrm{cm}^{-1}\right)$
 SERS of 4-nitrophenol
 Frequency, $\left(\mathrm{cm}^{-1}\right)$

C-H out of plane bending 832
C-H out of plane bending 880 869
C-H in plane bending/ 1121NO_{2} asymmetric stretching
C-H in plane bending/NO_{2} symmetric stretching1180
C-H in plane bending/NO_{2} asymmetric stretching
C-H in plane bending 1294
$\mathrm{C}-\mathrm{H}$ in plane bending 1335 1341
Ring deformation1593

2. Determination of laser excitation volume

As shown in Figure S2a, a focal image was taken at ZX plane using a CMOS camera (DCC1545M, Thorlabs). Notations of a three dimensional Cartesian coordinate system is shown in the lower left corner of Figure S2a. A 785 nm laser was excited into a gold colloidal medium (contrast agent) to generate strong scatter light around a focal point. The camera attached with $2 \times$ tube lens was focused at the focal point of 785 nm excitation. Then focal point image was taken and analyzed using OriginPro 8 software (see Figure S2b). The image resolution of $2.5 \mu \mathrm{~m} /$ pixel was achieved. It was observed that a mode filed diameter (MFD) of $70 \mu \mathrm{~m}$ (Figure S2c), and a penetration depth of $1082 \mu \mathrm{~m}$ at the focal point (Figure S2d). The mode field diameter and the penetration depth are considered the region where the laser intensity is larger than $1 / \mathrm{e}^{2}$ of the maximum intensity.

Figure S2. (a) Schematic of imaging system (b) focal point image taken at Z X plane (c) mode field profile at the focal point in X axis, and (d) penetration depth at the focal point along the Z axis. ($\mathrm{Z}=$ light propagation direction, and X or $\mathrm{Y}=$ perpendicular to the excitation light)

3. Flow rates of multi-hole capillaries

The flow of each capillary was measured using solid state flow meter (Restek 6000), and the flow rates were calculated using Hagen-Poiseuille equation (Eq. 1). The data are shown in Figure S3.

$$
\begin{equation*}
\Delta P=\frac{128 \eta L Q}{\pi d^{4}} \tag{1}
\end{equation*}
$$

where:
$\Delta P=$ pressure drop
$\eta=$ coefficient of viscosity
$\mathrm{L}=$ length
$\mathrm{Q}=$ volumetric flow rate
$d=$ diameter of capillary

Figure S3. Calculated (red curve) and measured (black dot) flow rate of different inner diameter of multi-hole (2700 holes) capillaries

References

1. Bilmes, S. A. Chem. Phys. Lett. 1990, 171, 141-146.
2. Perry, D. A.; Son, H. J.; Cordova, J. S.; Smith, L. G.; Biris, A. S. J. Colloid Interface Sci. 2010, 342, 311-319.

[^0]: ${ }^{+}$These authors contributed equally to this work

 * Corresponding author: xsfan@umich.edu

