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Abstract

We consider the problem of identifying and estimating non-zero parameters in the
Markov model for binary variables. We approximate the full likelihood by a pseudo-
likelihood function and propose a joint `1-penalized logistic regression method, which
imposes overall sparsity on the parameters. We show that the proposed method leads
to consistent parameter estimation and model selection under high-dimensional asymp-
totics, and we develop an efficient local quadratic approximation algorithm for com-
puting the estimator. The proposed method is used to explore voting dependencies
between senators in the 109th Congress; our analysis confirms known political pat-
terns and provides new insights into the US Senate’s voting.

Key Words: Graphical model, Ising model, Lasso, `1-regularization, Markov network,
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1 Introduction

Undirected graphical models have proved useful in a number of application areas, includ-

ing bioinformatics (Airoldi, 2007), natural language processing (Jung et al., 1996), image

analysis (Li, 2001), and many others, due to their ability to succinctly represent dependence

relationships among a set of random variables. Such models represent the relationships be-

tween p variables X1, · · · , Xp through an undirected graph G = (V,E), whose node set V

corresponds to the variables and the edge set E characterizes their pairwise relationships.

Specifically, variables Xj and Xj′ are conditionally independent given all other variables if

their associated nodes are not linked by an edge.

Two important types of graphical models are the Gaussian model, where the p variables

are assumed to follow a joint Gaussian distribution, and the Markov model, which captures

relationships between categorical variables. In the former, the structure of the underlying

graph can be recovered by estimating the corresponding inverse covariance (precision) matrix,

whose off-diagonal elements are proportional to the partial correlations between the variables.

A large body of literature has emerged over the past few years addressing this issue, especially

for sparse networks. A number of methods focus on estimating a sparse inverse covariance

matrix and inferring the network from estimated zeros (Banerjee et al., 2008; Yuan and Lin,

2007; Rothman et al., 2008; Friedman et al., 2008; Lam and Fan, 2009; Rocha et al., 2008;

Ravikumar et al., 2008; Peng et al., 2009). Another class of methods focuses on estimating

the network directly without first estimating the precision matrix (Drton and Perlman, 2004;

Meinshausen and Buhlmann, 2006). There is also some recent literature on directed acyclic

graphical models (see, for example, Shojaie and Michailidis (2010) and references therein).

For the Markov model, the estimation problem is significantly harder, since it is compu-

tationally infeasible for any realistic size network to directly evaluate the likelihood, due to

the intractable constant (the log-partition function). Several methods in the literature over-
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come this difficulty by employing computationally tractable approximations. For example,

d’Aspremont et al. (2008) proposed estimating the network structure using an `1-penalized

surrogate likelihood, where the log-partition function is approximated by a log-determinant

relaxation. Kolar and Xing (2008) improved on this method by incorporating a cutting-plane

algorithm to obtain a tighter outer bound on the marginal polytope.

Alternatively, Ravikumar et al. (2010) proposed a neighborhood selection method that

approximates the likelihood by a pseudo-likelihood function, in analogy to the Meinshausen

and Buhlmann (2006) method for Gaussian graphical models, where p individual `1-penalized

regressions were fitted, regressing each variable on all others, and the network structure

was recovered from the regression coefficients. Ravikumar et al. (2010) separately fit p

individual penalized logistic regressions, whose coefficients are used to recover the Markov

network structure. They also showed that the neighborhood selection method satisfies both

estimation consistency and model selection consistency. Recently, Höefling and Tibshirani

(2009) used this algorithm to iteratively approximate the full likelihood by a series of pseudo-

likelihoods estimated by the neighborhood selection method.

The neighborhood selection method, in spite of its established asymptotic properties, has

certain disadvantages in practice. It is impractical to search for an optimal combination of

p different tuning parameters for each of the p regressions, and tuning each regression sepa-

rately can lead to numerical instability, as shown by Peng et al. (2009) in the Gaussian case.

Thus, the same tuning parameter λ is used in practice, which implies that implicitly the

method assumes a “homogeneous” network; i.e. the same degree of sparsity is encouraged

for all nodes. However, there are many real networks with a “hub” like structure (few nodes

possessing very high degrees (Barabasi and Albert, 1999)) that would be a challenge for the

neighborhood selection method. In addition, a consequence of estimating pairwise interac-

tions by fitting p separate logistic regression is lack of symmetry; the estimate of interaction

between Xi and Xj may have a different value and even a different sign from the interac-
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tion between Xj and Xi. An ad hoc symmetrizing procedure was employed by Ravikumar

et al. (2010) after fitting the separate regressions, but a better solution would be to estimate

all the regressions jointly. We propose a JOint Structure Estimation method (JOSE) that

simultaneously solves the p logistic regression problems and encourages the sparsity of the

interaction parameters, thus automatically ensuring symmetry. The joint application of the

`1 penalty allows for a more flexible degree distribution in the estimated graph, as explained

in Section 2. Our proposal is related to the method of Peng et al. (2009) for Gaussian

graphical models, but is significantly more challenging to analyze and implement due to the

more complicated Markov model structure. We show that the proposed algorithm leads to

consistent parameter estimation and model selection under high-dimensional asymptotics,

and develop an efficient local quadratic approximation algorithm for computing the esti-

mator. We have also recently become aware of a simultaneous and independent effort to

develop a similar algorithm by Wang et al. (2009); however, that paper does not provide any

theoretical analysis and focuses on very different biological applications.

The remainder of the paper is organized as follows. Section 2 presents the JOSE method

for binary Markov models and discusses algorithmic issues. Section 3 establishes the the-

oretical properties of the JOSE estimator, including consistency of parameter estimation

and network recovery. Section 4 evaluates the performance of the JOSE method by simula-

tion. Section 5 applies the JOSE method to explore voting dependencies between senators

in the 109th Congress. An extension to Markov models with general categorical variables is

discussed in Section 6.

2 Methodology

We focus initially on a Markov model for binary variables (henceforth called the Ising model)

and discuss the extension to general categorical variables in Section 6. We start by setting

up the problem and also discuss the neighborhood selection criterion (Ravikumar et al.,
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2010), whose shortcomings we overcome through the proposed JOSE method.

2.1 Problem Setup and Neighborhood Selection

Suppose we have p binary random variables X1, . . . , Xp, with Xj ∈ {1, 0}, 1 ≤ j ≤ p, whose

joint distribution has the following density function:

f(X1, . . . , Xp) =
1

Z(Θ)
exp

( p∑
j=1

θj,jXj +
∑

1≤j<j′≤p

θj,j′XjXj′

)
, (1)

where Θ = (θj,j′)p×p is a symmetric matrix specifying the network structure.

Note that θj,j, 1 ≤ j ≤ p, corresponds to the main effect for variable Xj, whereas θj,j′ ,

1 ≤ j < j′ ≤ p, corresponds to the interaction effect between variables Xj and Xj′ . These

θj,j′ ’s reflect the structure of the underlying network. Specifically, if θj,j′ = 0, then Xj

and Xj′ are conditionally independent given other variables and hence their corresponding

nodes are not connected. Ravikumar et al. (2010) pointed out that one could consider only

the pairwise interaction effects, since higher order interactions can be converted to pairwise

ones through the introduction of additional variables and thus retaining the Markovian

structure of the network (Wainwright and Jordan, 2008). The partition function Z(Θ) =∑
Xj∈{0,1},1≤j≤p exp(

∑p
j=1 θj,jXj +

∑
1≤j<j′≤p θj,j′XjXj′) ensures that the density function in

(1) is a proper one, integrating to one.

The structure of the partition function with its 2p terms renders optimizing (1) infeasible,

except in toy problems. A strategy to overcome this difficulty is to use the pseudo-likelihood

function to approximate the joint likelihood function associated with density (1). Specifically,

let xi,j be the i-th realization of variable Xj, then the pseudo-likelihood function can be

written as follows:
p∏
j=1

n∏
i=1

φ
xi,j
i,j (1− φi,j)1−xi,j , (2)

where φi,j = P(xi,j = 1|xi,k, k 6= j; θj,k, 1 ≤ k ≤ p) = exp(θj,j +
∑

k 6=j θj,kxi,k)/{1 + exp(θj,j +∑
k 6=j θj,kxi,k)}. It can be seen that this gives rise to a logistic regression problem where
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the j-th variable is taken as the response and is regressed on the remaining variables, and

hence decomposes the problem into p separate logistic regressions, which are simple to solve.

Ravikumar et al. (2010), in order to recover a sparse network structure, consider a penalized

version of (2) in log-scale. Specifically, for each 1 ≤ j ≤ p, they optimize

max
{θj,k}pk=1

n∑
i=1

[
xi,j

(
θj,j +

∑
k 6=j

θj,kxi,k

)
− log

{
1 + exp

(
θj,j +

∑
k 6=j

θj,kxi,k

)}]
− λj

∑
k 6=j

|θj,k|, (3)

where λj is a tuning parameter controlling the number of neighbors associated with the j-th

node. They call their procedure the neighborhood selection method, which can be imple-

mented efficiently using a coordinate descent algorithm. As discussed in the Introduction,

since the p regularized logistic regressions are fitted separately, the resulting estimates θ̂j,j′

and θ̂j′,j will usually be different, especially in the presence of small sample sizes. Kolar and

Xing (2008) introduced two rules to aggregate these estimates:

Maximum aggregation rule:

θ̂max
j,j′ = θ̂max

j′,j =

{
θ̂j,j′ , if |θ̂j,j′ | > |θ̂j′,j|;
θ̂j′,j, if |θ̂j,j′ | ≤ |θ̂j′,j|.

(4)

Minimum aggregation rule:

θ̂minj,j′ = θ̂minj′,j =

{
θ̂j,j′ , if |θ̂j,j′| < |θ̂j′,j|;
θ̂j′,j, if |θ̂j,j′| ≥ |θ̂j′,j|.

(5)

The neighborhood selection estimators aggregated by formula (4) and (5) are referred to as

NS-MAX and NS-MIN, respectively.

2.2 Joint Structure Estimation

In the proposed JOSE method, we solve the following joint criterion problem:

max
Θ

p∑
j=1

n∑
i=1

[
xi,j

(
θj,j +

∑
k 6=j

θj,kxi,k

)
− log

{
1 + exp

(
θj,j +

∑
k 6=j

θj,kxi,k

)}]
− λ

∑
j<j′

|θj,j′|

subject to θj,j′ = θj′,j, 1 ≤ j < j′ ≤ p. (6)
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Notice that the penalty jointly imposes sparsity over all interaction effects, while the tuning

parameter λ controls its degree. However, the JOSE method does not lead to solving p

separate logistic problems due to the symmetry constraint θj,j′ = θj′,j. On the other hand,

it reduces the number of parameters to be estimated by half, i.e., p(p + 1)/2 for the JOSE

method vs. p2 for the neighborhood selection method.

We present next an algorithm to optimize the objective function in (6). It consists of

two nested loops. In the outer loop, we follow the strategy in Friedman et al. (2010) to

approximate the logistic log-likelihood in (6) by its Taylor series expansion. Specifically, we

denote the estimate of θj,j′ in the t-th iteration by θ
(t)
j,j′ , and write

xi,j

(
θj,j +

∑
k 6=j

θj,kxi,k

)
− log

{
1 + exp

(
θj,j +

∑
k 6=j

θj,kxi,k

)}
≈ −1

2
w

(t)
i,j

(
y
(t)
i,j − θj,j −

∑
k 6=j

θj,kxi,k

)2
+ C

(t)
i,j , (7)

where

p
(t)
i,j =

exp(θ
(t)
j,j +

∑
k 6=j θ

(t)
j,kxi,k)

1 + exp(θ
(t)
j,j +

∑
k 6=j θ

(t)
j,kxi,k)

,

y
(t)
i,j = θ

(t)
j,j +

∑
k 6=j

θ
(t)
j,kxi,k −

p
(t)
i,j − xi,j
w

(t)
i,j

,

w
(t)
i,j = p

(t)
i,j (1− p

(t)
i,j ) ,

and C
(t)
i,j is some constant unrelated to Θ. We define next the following quantities:

θ = (θ1,2, . . . , θj,j′ , . . . , θp−1,p)
T ,

y∗j = (

√
w

(t)
1,jy1,j, . . . ,

√
w

(t)
n,jyn,j)

T

,

y∗∗j = y∗j − ȳj,where ȳj =
1

n

n∑
i=1

√
w

(t)
i,j y

(t)
i,j ,

x∗j = (

√
w

(t)
1,jx1,j, . . . ,

√
w

(t)
n,jxn,j)

T

,

x∗∗j = x∗j − x̄j,where x̄j =
1

n

n∑
i=1

√
w

(t)
i,jx

(t)
i,j . (8)
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We further define an np× 1 column vector

X j,j′ = (0n
T, . . . ,0n

T, x∗∗j′
T,︸ ︷︷ ︸ 0n

T, . . . ,0n
T, x∗∗j

T,︸ ︷︷ ︸ 0n
T, . . . ,0n

T)T,

j-th block j′-th block
(9)

where 0n is an n-dimensional column vector of zeros. X j,j′ consists of p blocks of size

n, where the j-th block and the j′-th block are x∗∗j′ and x∗∗j , respectively, and all other

blocks are zeros. Finally, let Y = (y∗∗1
T, . . . ,y∗∗p

T)T (an np × 1 column vector) and X =

(X 1,2, . . . ,X j,j′ , . . . ,X p−1,p) (an np× p(p− 1)/2 matrix). Then, (6) can be rewritten as the

following lasso problem:

min
θ

1

2
‖Y −Xθ‖2 + λ‖θ‖1. (10)

In the inner loop of the algorithm, criterion (10) can be efficiently solved by shooting-type

algorithms Friedman et al. (2007)). Letting θ̂ be the estimate obtained from (10), then for

each 1 ≤ j ≤ p, the main effects θj,j’s in (7) are calculated as follows:

θ̂j,j =
ȳj −

∑
k 6=j θ̂j,kx̄k

1
n

∑n
i=1

√
w

(t)
i,j

. (11)

3 Theoretical Properties

In this section, we present the asymptotic properties of the JOSE estimator; the proofs can

be found in the Appendices. Since in the Ising model the structure of the underlying network

only depends on the interaction effects, we focus on the variant of the model with no main

effects, which gives rise to the criterion

max
θ

p∑
j=1

n∑
i=1

[
xi,j

(∑
j′ 6=j

θj,j′xi,j′
)
− log

{
1 + exp

(∑
j′ 6=j

θj,j′xi,j′
)}]
− λ

∑
j<j′

|θj,j′ |, (12)

where θj,j′ = θj′,j, 1 ≤ j < j′ ≤ p, and θ has been defined in Section 2.2.

Let θ0 be the true value of θ, and let Q0 be the population Fisher information matrix

of the model in criterion (12) at θ0 (refer to Appendix I for details). Let X (i,j) be the

[(j − 1)n + i]-th row of X and X (i) = (X (i,1), . . . ,X (i,p))
T

, and let U 0 = EX (i)TX (i). In
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addition, let S = {(j, j′) : θ0j,j′ 6= 0, 1 ≤ j < j′ ≤ p} be the index set of all nonzero

components of θ0, whose cardinality is denoted by q, and let Sc be the complement of S.

Finally, for any matrix W and subsets of row and column indices U and V , let W U ,V be the

matrix consisting of rows U and columns V in W , and let Λmin(·) and Λmax(·) denote the

smallest and largest eigenvalue of a matrix.

Our results rely on the following regularity conditions:

(A) Dependency: There exist positive constants τmin and τmax such that

Λmin(Q0
S,S) ≥ τmin and Λmax(U

0
S,S) ≤ τmax ; (13)

(B) Incoherence: There exists a constant τ ∈ (0, 1) such that

‖Q0
Sc,S(Q0

S,S)−1‖∞ ≤ 1− τ . (14)

Similar conditions have been assumed by Meinshausen and Buhlmann (2006), Ravikumar

et al. (2010) and Peng et al. (2009). The most closely related conditions for binary data are

those of Ravikumar et al. (2010), but because they fit regressions separately, their conditions

are on the p × p matrices corresponding to the individual regressions, whereas ours are on

the p(p − 1)/2 × p(p − 1)/2 matrices corresponding to all the parameters combined. These

conditions can be interpreted as a bound on the amount of dependence (A), and a bound on

influence non-neighbors can have on a given node (B). Under these conditions, we establish

the following results:

Theorem 1 (Parameter estimation). Suppose conditions (A) and (B) hold and θ̂ is the

maximizer of the JOSE criterion (12). If the tuning parameter λ = Cλ
√

(log p)/n for some

constant Cλ > 16(2−τ)/τ and if n > (4/C)q3 log(p) for some constant C < τ 2minτ
2/max{288(1−

τ)2, 72}, then with probability tending to 1,

‖θ̂ − θ0‖2 ≤M

√
q log p

n
, (15)

for some constant M > (2Cλ/τmin)[1 + τ/(8− 4τ)].
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Theorem 2 (Structure estimation). Under conditions of Theorem 1, if we further assume

θ0min = min(j,j′)∈S |θ0j,j′ | ≥ 2M
√
q log(p)/n, then with probability tending to 1,

θ̂j,j′ 6= 0 for all (j, j′) ∈ S and θ̂j,j′ = 0 for all (j, j′) ∈ Sc .

The proofs of Theorems 1 and 2 are given in Appendix I.

4 Simulated Examples

In this section, we compare the performance of the JOSE method to that of the neighborhood

selection method (Ravikumar et al., 2010), whose estimates are further aggregated as NS-

MAX (4) and NS-MIN (5), respectively. We use four different types of network structures:

a chain, a lattice, a nearest-neighbor and a scale-free network. Each network consists of

p = 100 nodes. The details of these networks are described below:

Example 1: Chain Network. In this example, we consider a chain network, which con-

nects nodes 1 to p sequentially. Figure 1 (A) illustrates the chain graph.

Example 2: Lattice Network. In this example, we generate a lattice network with p =

100 nodes laid out in a 10× 10 array on a plane. Each node only connects to its closest

neighbors in four directions (east, south, west and north). Figure 1 (B) illustrates the

lattice graph.

Example 3: Nearest-neighbor Network. To generate the nearest neighbor networks,

we slightly modify the data generating mechanism described in Li and Gui (2006).

Specifically, we generate p points randomly on a unit square, calculate all p(p − 1)/2

pairwise distances, and find the m nearest neighbors of each point in terms of these

distances. The nearest neighbor network is obtained by linking any two points that are

m-nearest neighbors of each other. The integer m controls the degree of sparsity of the

network and the value m = 5 was chosen in the simulation study. Figure 1 (C) exhibits

one realization of the nearest-neighbor network.
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Example 4: Scale-free Network. A scale-free network has a power-law degree distribu-

tion and can be simulated by the Barabasi-Albert algorithm (Barabasi and Albert,

1999). A realization of a scale-free network is depicted in Figure 1 (D).

(A) Chain Network (B) Lattice Network

(C) Nearest−neighbor Network (D) Scale−free Network

Figure 1: The networks used in simulations: chain, lattice, nearest-neighbor and scale-free networks.

The symmetric parameter matrix Θ for each network is generated as follows. Each off-

diagonal element θj,j′ is drawn uniformly from [−1,−0.5]∪ [0.5, 1] if nodes j and j′ are linked

by an edge, otherwise θj,j′ = 0. Further, the diagonal elements θj,j are drawn uniformly from

[−1,−0.5]∪ [0.5, 1]. Given Θ, we iteratively generate the data using Gibbs sampling. Specif-
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ically, suppose that the MCMC samples from the t-th iteration are available and denoted by

x
(t)
1 , . . . , x

(t)
p . Then, in the (t+ 1)-th iteration, x

(t+1)
j , 1 ≤ j ≤ p, is drawn from the following

Bernoulli distribution:

x
(t+1)
j ∼ Bernoulli

( exp(θj,j +
∑

k 6=j θj,kx
(t)
k )

1 + exp(θj,j +
∑

k 6=j θj,kx
(t)
k )

)
. (16)

To ensure that the simulated observations are close to i.i.d. from the target distribution, we

discard the samples from the first 106 iterations (burn-in), and then collect samples every

100 iterations.

The structure estimation results of JOSE, NS-MAX and NS-MIN are represented by

ROC curves, which dynamically characterize the sensitivity (proportion of correctly iden-

tified edges) and specificity (proportion of correctly excluded edges) by varying the tuning

parameter λ. Figure 2 shows the average ROC curves over 50 replications for different sam-

ple sizes (n=100, 200 and 500). In all examples, it can be seen that the curves estimated

by the JOSE method dominate those based on NS-MAX and NS-MIN. The JOSE method

has a more pronounced advantage over its competitors for larger sample sizes. When the

false discovery rate (false positive rate) is controlled at the 10% and 5% levels, the power

(sensitivity) of the estimates from JOSE are higher than those from the two neighborhood

selection estimators (Table 1).

While the ROC curves and the power results measure the performance of the structure

estimation, the `2 loss can be used to characterize the goodness-of-fit in terms of parameter

estimation. We define the `2 loss as ‖θ̂ − θ0‖ = (
∑

1≤j<j′≤p(θ̂j,j′ − θ0j,j′)2)1/2, where θ̂ is the

estimate of θ using selected tuning parameter(s) and θ0 is the true value of θ.

The tuning parameter in JOSE is selected using K-fold cross-validation. Specifically, we

randomly split the data set into K subsets (folds) of similar sizes and denote the index set

of the observations in the k-th fold (1 ≤ k ≤ K) by Tk. Then, λ is selected by maximizing
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the following criterion:

K∑
k=1

p∑
j=1

∑
i∈Tk

xi,j

{
θ̂
[−k]
j,j (λ) +

∑
j′ 6=j

θ̂
[−k]
j,j′ (λ)xi,j′

}
− log

[
1 + exp

{
θ̂
[−k]
j,j (λ) +

∑
j′ 6=j

θ̂
[−k]
j,j′ (λ)xi,j′

}]
, (17)

where θ̂
[−k]
j,j′ (λ) is the JOSE estimate of θj,j′ using all observations except those in the k-th

fold and using the tuning parameter λ. These results, summarized in Table 2, show that

though JOSE has an advantage in structure estimation, the three methods are comparable

in terms of parameter estimation.

Table 1: Power (sensitivity) of the estimates in Examples 1–4 when the false discovery rate
(1−specificity) is controlled at 10% and 5%.

Example n
FDR=10% FDR=5%

JOSE NS-MAX NS-MIN JOSE NS-MAX NS-MIN

Chain
100 0.42 0.38 0.40 0.33 0.28 0.31
200 0.61 0.55 0.60 0.51 0.47 0.48
500 0.88 0.86 0.86 0.83 0.79 0.81

Lattice
100 0.37 0.34 0.36 0.28 0.24 0.28
200 0.56 0.50 0.54 0.46 0.41 0.45
500 0.84 0.76 0.78 0.77 0.69 0.72

Nearest-neighbor
100 0.35 0.31 0.34 0.27 0.23 0.26
200 0.52 0.45 0.49 0.43 0.36 0.41
500 0.77 0.67 0.71 0.69 0.61 0.65

Scale-free
100 0.37 0.34 0.35 0.29 0.26 0.27
200 0.57 0.54 0.53 0.46 0.45 0.42
500 0.85 0.82 0.80 0.8 0.75 0.75

5 Application to the Senate Voting Record

The dataset was obtained from the website of the US Congress (http://www.senate.gov).

It contains the voting records of the 100 senators of the 109th Congress (January 3, 2005

— January 3, 2007) on 645 bills, resolutions, motions, debates and roll call votes that

the Senate deliberated and voted on. The votes are recorded as one for “yes” and zero
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Table 2: `2 loss in Examples 1–4 (averages over 50 replications with corresponding standard devi-
ations in parentheses).

Example n JOSE NS-MAX NS-MIN

Chain
100 10.13 (0.12) 9.94 (0.22) 9.91 (0.14)
200 9.17 (0.24) 9.04 (0.23) 9.07 (0.21)
500 6.83 (0.21) 6.87 (0.20) 6.91 (0.23)

Lattice
100 13.89 (0.16) 13.63 (0.17) 13.72 (0.14)
200 12.45 (0.27) 12.38 (0.23) 12.63 (0.21)
500 9.59 (0.20) 9.72 (0.20) 10.08 (0.17)

Nearest-neighbor
100 14.20 (0.19) 13.99 (0.20) 14.06 (0.14)
200 12.93 (0.22) 12.88 (0.18) 13.11 (0.18)
500 10.36 (0.26) 10.51 (0.23) 10.89 (0.22)

Scale-free
100 10.64 (0.13) 10.39 (0.2) 10.37 (0.15)
200 9.80 (0.18) 9.40 (0.21) 9.59 (0.21)
500 7.57 (0.22) 7.31 (0.25) 7.58 (0.22)

for “no”. Missing values (missed votes) for each senator were imputed with the majority

vote of that senator’s party on that particular bill; the missing votes for the Independent

Senator Jeffords were imputed with the Democratic majority vote. The number of imputed

votes is fairly small, less than 5% of the total and less than 3% of the total votes for

90% of the senators, and we do not expect this imputation to have a significant effect

on the analysis. Finally, we excluded bills from the analysis if the ”yes/no” proportion

fell outside the interval [0.3, 0.7], since the Senate votes on many procedural and other

uncontroversial motions that do not reflect the real political dynamics in the Senate. This

resulted in a total of 387 observations (votes) on 100 variables (senators). The tuning

parameter for the JOSE method was selected through cross-validation. The results are

shown in Figure 3. A richer structure than that dictated by the presence of two political

parties emerges, with four distinct communities, two Republican and two Democratic. As

expected, the two political parties are well separated, with many positive dependence links

within their members (green solid lines) and negative links across parties (red dashed lines).

The two communities on the left side of the plot can be broadly described as representing the
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cores of the two parties, although there is additional structure. For example, a number of the

more liberal Democrats (Obama, Boxer, Kennedy, Bingaman, Stabenow, Kerry, Lautenberg,

Sarbanes, Mikulski, Wyden, Leahy, Dorgan) have the strongest negative associations with

the more conservative Republicans (Roberts, Sessions, Hutchison, Coburn, Burr, Shelby,

Allen, Cornyn), mostly from Southern states (see also related analysis of earlier congresses

in Clinton et al. (2004) and de Leeuw (2006)). Further, a number of positive associations

are detected between some of the more centrist Democrats (Lieberman, Nelson, Baucus,

Landrieu, Schumer, Clinton); a detailed inspection of the votes suggests that these are

mostly due to their positions on issues of national security and the economy. Similarly,

there is a separate cluster of moderate Republicans (Grassley, Lugar, Alexander, Warner,

Frist, Voinovich). A separate community of Republicans and Democrats emerges on the

right side of the plot. An inspection of the votes suggests that they differ from the core

members of their respective parties because of their voting record on several issues, including

national security, confirmation votes on nominations, and certain regulatory and budget

measures. Also of interest is the strong agreement between pairs of senators coming from

the same state and party (Schumer-Clinton, Murray-Cantwell, Stevens-Murkowski, Hatch-

Bennett, Collins-Snowe). Further, moderate Republicans DeWine, Chafee and Specter and

the pro-life Democrat Nelson are represented as isolated nodes, thus confirming results of

previous analysis by Clinton et al. (2004) and de Leeuw (2006) (albeit based on data from

the 105th Congress). We also note that the Senate voting record from the 109th Congress

was analyzed by Banerjee et al. (2008); however, the dataset they used turned out to have

been contaminated with many votes from earlier Congresses starting from the 1990s, which

led to a large number of missing votes for senators elected later. Since their imputation

method was to impute “no” for all missing votes, the validity of their analysis is unclear

and their results cannot be directly compared to ours. Overall, our analysis confirms known

political patterns and provides new insights into the U.S. Senate’s voting.
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6 Extension to General Markov Networks

The JOSE method can be extended to model general Markov networks consisting of categor-

ical variables. Let (xi,1, . . . , xi,p) be the i-th observation, where xi,j, 1 ≤ j ≤ p, takes values

in the discrete set {1, 2, . . . , D} for some positive integer D. Denote by z
(1)
i,j , . . . , z

(D−1)
i,j the

dummy variables associated with xi,j, i.e., z
(d)
i,j = I(xi,j = d), 1 ≤ d ≤ D − 1, where I(·)

denotes the indicator function. Notice that we omit z
(D)
i,j because it is redundant given the

constraint
∑D

d=1 zi,j = 1.

The JOSE criterion can be modified as follows:

max
{θ∗j :1≤j≤p}

⋃
{θ∗

j,j′ :1≤j<j
′≤p}

p∑
j=1

n∑
i=1

[D−1∑
d=1

z
(d)
i,j

(
θ
(d)
j +

∑
k 6=j

D−1∑
d′=1

θ
(d,d′)
j,k z

(d′)
i,k

)
− log

{D−1∑
d=1

exp
(
θ
(d)
j +

∑
k 6=j

D−1∑
d′=1

θ
(d,d′)
j,k z

(d′)
i,k

)}]

− λ
∑
j<j′

√√√√D−1∑
d=1

D−1∑
d′=1

(θ
(d,d′)
j,j′ )2

subject to θ
(d,d′)
j,j′ = θ

(d,d′)
j′,j , 1 ≤ j < j′ ≤ p, 1 ≤ d, d′ ≤ D − 1. (18)

In (18), θ
(d)
j corresponds to the main effect of variable j in class d and θ

(d,d′)
j,j′ to the interaction

effect between variable j in class d and variable j′ in class d′. Further, θ∗j = {θ(d)j : 1 ≤ d ≤

D − 1} collects all main effects associated with variable j and θ∗j,j′ = {θ(d,d
′)

j,j′ : 1 ≤ d, d′ ≤

D − 1} collects all interaction effects associated with variables j and j′. Here, we remove

the edge between nodes j and j′ only if all the elements in θ∗j,j′ are zero. To achieve this,

we use the group penalty proposed by Yuan and Lin (2007), where all elements in θ∗j,j′ are

regarded as a group and simultaneously estimated as zeros or nonzeros. Criterion (18) can

be estimated by a modified LQA-shooting algorithm, in which the inner loop is replaced by

a modified shooting algorithm for group lasso (Friedman et al., 2007).
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Figure 2: The ROC curves estimated by JOSE, NS-MAX and NS-MAX in simulated examples with
sample sizes n=100, 200 and 500. The curves associated with JOSE, NS-MAX and NS-MAX are
represented by black solid line, red dashed line and blue dotted-dashed line, respectively. In each
panel, the horizontal and the vertical coordinates are 1−specificity and sensitivity, respectively. All
results are averages over 50 replications.
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Figure 3: Voting dependencies between senators estimated by the JOSE method. Each red (blue)
circle represents a Republican (Democratic) senator, the circle size is proportional to the degree
of the node. Senator Jeffords (the purple circle) is an independent senator. A solid green (dashed
red) link represents a positive (negative) dependence between two senators. The width of each link
is proportional to its associated |θ̂j,j′ |. For clarity, all links with |θ̂j,j′ | ≤ 0.1 have the same width.
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Appendix I: Main Propositions and Proofs of Theorems

The proof of our main result is divided into many steps; Appendix I presents the main idea of

the proof by listing the important propositions and the proofs of Theorems 1 and 2, whereas

Appendix II contains additional technical lemmas and proofs of the propositions. The proof

bears some similarities to the proof of Ravikumar et al. (2010) for the neighborhood selection

method, who in turn adapted the proof from Meinshausen and Buhlmann (2006) to binary

data; however, there are also important differences, since all conditions and results are for

joint estimation, and many of our bounds need to be more precise than those given by

Ravikumar et al. (2010).

The main idea of the proof is as follows. First, we introduce a restricted version of

criterion (12), where S is assumed known and all parameters in Sc are set to zero:

θ̃ = arg max
θ[S]

l(θ[S])− λ
∑

(j,j′)∈S

|θj,j′|. (19)

Further, we introduce sample versions of conditions (A) and (B) as follows (see below for

detailed definitions of Qn and Un, the sample analogues of the population quantities Q0

and U 0):

(A′) Dependency (sample): There exist positive constants τmin and τmax such that

Λmin(Qn
S,S) ≥ τmin and Λmax(U

n
S,S) ≤ τmax. (20)

(B′) Incoherence (sample): There exists a constant τ ∈ (0, 1) such that

‖Qn
Sc,S(Qn

S,S)−1‖∞ ≤ 1− τ. (21)

The proof consists of the following steps. Proposition 1 and Proposition 2 show that,

under sample regularity conditions (A′) and (B′), the conclusions of Theorems 1 and 2

hold for the solution of the restricted problem (19), respectively. Next, Proposition 3 and
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Proposition 4 prove that the population regularity conditions (A) and (B) give rise to their

sample counterparts (A′) and (B′) with probability tending to 1. Proposition 5 gives the

Karush-Kuhn-Tucker (KKT) conditions for the full problem (12), and Proposition 6 shows

that, with probability tending to 1, the solution of the restricted problem (19) satisfies the

KKT conditions of (12). Thus, the solution of the restricted problem is also the solution of

the original problem with probability tending to 1 and both theorems hold.

We start by introducing additional notation. Denote the log-likelihood for the i-th ob-

servation by

li(θ) =

p∑
j=1

xi,j

(∑
k 6=j

θj,kxi,k

)
− log

{
1 + exp

(∑
k 6=j

θj,kxi,k

)}
, (22)

The first derivative of the log-likelihood is ∇li(θ) = (∇1,2li(θ), . . . ,∇p−1,pli(θ))T, where

∇j,j′li(θ) = xi,j′
{
xi,j −

exp(
∑

k 6=j θj,kxi,k)

1 + exp(
∑

k 6=j θj,kxi,k)

}
+xi,j

{
xi,j′ −

exp(
∑

k 6=j′ θj′,kxi,k)

1 + exp(
∑

k 6=j′ θj′,kxi,k)

}
. (23)

The second derivative of li(θ) is given by

∇2li(θ) = −X (i)Tη(i)(θ)X (i) , (24)

where η(i)(θ) = diag(η
(i)
1 (θ), . . . , η

(i)
p (θ)) is a p× p diagonal matrix, and

η
(i)
j (θ) =

exp(
∑

k 6=j θj,kxi,k)

{1 + exp(
∑

k 6=j θj,kxi,k)}2
. (25)

The first derivative of η
(i)
j (θ) is given by ∇η(i)j (θ) = ξ

(i)
j (θ)(X (i,j))

T

, where

ξ
(i)
j (θ) =

exp(
∑

k 6=j θj,kxi,k)[1− exp(
∑

k 6=j θj,kxi,k)]

[1 + exp(
∑

k 6=j θj,kxi,k)]
3

. (26)

It is easy to check that |∇j,j′li(θ)| ≤ 2, |η(i)j (θ)| ≤ 1 and |ξ(i)j (θ)| ≤ 1. For n observations, the

log-likelihood, its first derivative and its second derivative are l(θ) = 1/n
∑n

i=1 li(θ), ∇l(θ) =

1/n
∑n

i=1∇li(θ), and ∇2l(θ) = 1/n
∑n

i=1∇2li(θ), respectively. Then, the population Fisher
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information matrix of (12) at θ0 can be represented as Q0 = E[X (i)Tη(i)(θ0)X (i)], and its

sample counterpart Qn = −∇2l(θ0) = 1/n
∑n

i=1X
(i)Tη(i)(θ0)X (i). We also define Un =

1/n
∑n

i=1X
(i)TX (i) as the sample counterpart of U 0 = E(X TX ) defined in Section 3. LetW

be any subset of the index set {1, 2, . . . , p(p− 1)/2}. For any vector γ, we define γW as the

vector consisting of the elements of γ associated with W . Similarly, we define X (i)
W as the

columns of X (i) associated with W , respectively. Finally, we write δ = θ − θ0, δ̃ = θ̃ − θ0

and δ̂ = θ̂ − θ0.

Proposition 1 Suppose the sample conditions (A′) and (B′) hold. If the tuning parameter

λ = Cλ
√

(log p)/n for some constant Cλ > 16(2 − τ)/τ and q
√

(log p)/n = o(1), then with

probability tending to 1, the optimizer of the restricted criterion θ̃ satisfies

‖θ̃ − θ0‖2 ≤M

√
q log p

n
(27)

for some constant M > (2Cλ/τmin){1 + τ/(8− 4τ)}.

Proposition 2 Under conditions of Proposition 1, if we further assume θ0min ≥ 2M
√
q(log p)/n,

then with probability tending to 1, θ̃j,j′ 6= 0 for all (j, j′) ∈ S and θ̃j,j′ = 0 for all (j, j′) ∈ Sc.

Proposition 3 (Relationship between sample and population dependency) Suppose the reg-

ularity conditions (A) hold, then for any ε > 0,

(i) P{Λmin(Qn
S,S) ≤ τmin − ε} ≤ 2 exp{−(ε2/2)(n/q2) + 2 log q};

(ii) P{Λmax(U
n
S,S) ≥ τmax + ε} ≤ 2 exp{−(ε2/2)(n/q2) + 2 log q}.

Proposition 4 (Relationship between sample and population incoherence) Suppose the reg-

ularity conditions (A) and (B) hold, then for any ε > 0, there exists a constant C =

min{τ 2minτ 2/288(1− τ)2, τ 2minτ
2/72, τminτ/48}, such that

P[‖Qn
Sc,S(Qn

S,S)−1‖∞ ≥ 1− τ

2
] ≤ 12 exp

(
− C n

q3
+ 4 log p

)
. (28)

23



Proposition 5 (KKT conditions) The sufficient and necessary condition for θ̂ to be a so-

lution of problem (12) is

∇j,j′l(θ̂) = λsgn(θ̂j,j′), if θ̂j,j′ 6= 0;

|∇j,j′l(θ̂)| < λ, if θ̂j,j′ = 0.
(29)

Moreover, this solution is unique due to the strict convexity of problem (12).

Proposition 6 (The restricted solution satisfies KKT conditions) Under all conditions of

Proposition 2, with probability tending to 1, we have,

(i) ∇j,j′l(θ̃) = λsgn(θ̃j,j′), for all (j, j′) ∈ S;

(ii) |∇j,j′l(θ̃)| < λ, for all (j, j′) ∈ Sc.

Proof of Theorem 1. The condition n > (4/C)q3 log(p) implies q
√

(log p)/n = o(1). In

addition, since n > (4/C)q3 log(p), we have −(ε2/2)(n/q2) + 2 log q → −∞ and −Cn/q3 +

4 log(p)] → −∞. Thus, by Propositions 3 and 4, the sample dependency and incoherence

conditions (A′) and (B′) hold with probability 1. Therefore, Proposition 1 holds and, with

probability tending to 1, the solution of the restricted problem (19) satisfies parameter

estimation consistency.

On the other hand, Proposition 6 shows that, with probability tending to 1, the solution

of the restricted problem θ̃ satisfies the KKT conditions in Proposition 5. Since the criterion

(12) is strictly convex, we conclude θ̃ is the unique solution of (12), i.e., θ̂ = θ̃. This proves

Theorem 1.

�

Proof of Theorem 2 is analogous to Proof of Theorem 1 and is omitted.

Appendix II: Proofs of Propositions

This appendix contains several additional technical lemmas and proofs of Propositions 1-6.
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Lemma 1 [Bound on ∇l(θ0)] With probability tending to 1, ‖∇l(θ0)‖∞ ≤ C∇
√

(log p)/n

for some constant C∇ > 4.

Proof of Lemma 1: Note that E[∇li(θ0)] = 0, 1 ≤ i ≤ n and |∇j,j′li(θ0)| ≤ 2, 1 ≤ i ≤

n, 1 ≤ j < j′ ≤ p. By applying the Azuma-Hoeffding inequality (Hoeffding, 1963), we get

P [|∇j,j′l(θ
0)| ≥ t] ≤ 2 exp(−nt2/8). (30)

Letting t = C∇
√

(log p)/n for some constant C∇ > 0, we obtain

P
[
|∇j,j′l(θ

0)| ≥ C∇

√
log p

n

]
≤ 2 exp(−C2

∇ log p/8) . (31)

Then, by the union-sum inequality we have

P [‖∇l(θ0)‖∞ ≥ C∇

√
log p

n
] ≤ 2 exp(−C2

∇ log p /8 + 2 log p). (32)

Setting C∇ > 4 establishes the lemma. �

Lemma 2 [Bound on −δST[∇2l(θ0+αδ[S])]S,SδS]m If the sample dependency condition (A′)

holds and q
√

(log p)/n = o(1), then for any α ∈ [0, 1], with probability tending to 1,

−δST[∇2l(θ0 + αδ[S])]S,SδS ≥
1

2
τmin‖δS‖22 . (33)
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Proof of Lemma 2: Applying the mean value theorem, we have ηj(θ
0 + αδ[S]) = ηj(θ

0) +

α∇ηj(θ0 + α∗δ[S])
T

δ[S], for some constant α∗ ∈ (0, α). Then, we have

−δST[∇2l(θ0 + αδ[S])]S,SδS

=
1

n

n∑
i=1

(X (i)
S δS)

T

η(θ0 + αδ[S])(X (i)
S δS)

=
1

n

n∑
i=1

p∑
j=1

ηj(θ
0)(X (i,j)

S δS)2

+
α

n

n∑
i=1

p∑
j=1

∇ηj(θ0 + α∗δ[S])
T

δ[S](X (i,j)
S δS)2

≥ −δST[∇2l(θ0)]S,SδS

− 1

n

n∑
i=1

p∑
j=1

|ξ(i)j (θ0 + α∗δ[S])||X (i,j)
S δS|(X (i,j)

S δS)2 . (34)

The first term is bounded from below by

−δST[∇2l(θ0)]S,SδS ≥ Λmin(Qn
S,S)‖δS‖22 ≥ τmin‖δS‖22 . (35)

To bound the second term, notice that |X (i,j)
S δS| ≤ ‖X (i,j)

S ‖∞‖δS‖1 ≤ ‖δS‖1 and recall that

|ξ(i)j | ≤ 1. Then the second term is bounded from above by

‖δS‖1
1

n

n∑
i=1

p∑
j=1

(X (i,j)
S δS)2 ≤ τmax‖δS‖1‖δS‖22 ≤ (τmin/2)‖δS‖22 , (36)

since ‖δS‖1 ≤
√
q‖δS‖2 = Mq

√
(log p)/n = o(1) and thus when n is large enough, ‖δS‖1 ≤

τmin/(2τmax). Putting (35) and (36) together establishes the lemma. �

Proof of Proposition 1: The proof relies on the convex function proof method from

Rothman et al. (2008). Define

G(δS) = −[l(θ0 + δ[S])− l(θ0)] + λ(‖θ0 + δ[S]‖1 − ‖θ0‖1). (37)

It can be seen from (19) that δ̃S = θ̃S − θ0S minimizes G(δS). Moreover, G(0S) = 0, thus

we must have G(δ̃S) ≤ 0. If we take a ball A which contains 0S, and show that G is strictly
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positive everywhere on the boundary ∂A, then it implies that G has a local minimum inside

A, since G is continuous and G(0S) = 0. Specifically, we define A = {δS : ‖δS‖2 ≤ Man},

with boundary ∂A = {δS : ‖δS‖2 = Man}, for some constant M > (2/τmin)[1+τ/(8−4τ)]Cλ

and an =
√
q(log p)/n. For any δS ∈ ∂A, the Taylor series expansion gives G(δS) =

I1 + I2 + I3, where

I1 = −[∇l(θ0)]S
T
δS ,

I2 = −δST[∇2l(θ0 + αδ[S])]S,SδS, for some α ∈ [0, 1] ,

I3 = λ(‖θ0 + δ[S]‖1 − ‖θ0‖1) = λ(‖θ0S + δS‖1 − ‖θ0S‖1) . (38)

Since Cλ > 16(2− τ)/τ , we have [τ/(8− 4τ)]Cλ > 4. By Lemma 1,

|I1| ≤ ‖[∇l(θ0)]S‖∞‖δS‖1 ≤ ‖[∇l(θ0)]S‖∞
√
q‖δS‖2 ≤

τ

8− 4τ
CλMq

log p

n
.

By Lemma 2, I2 ≥ (τmin/2)‖δS‖22 = (τmin/2)M2q(log p)/n. Finally, by the triangular in-

equality |I3| ≤ λ‖δS‖1 ≤ λ
√
q‖δS‖2 = CλMq(log p)/n. Then we have

G(δS) ≥M2 q log p

n

(τmin

2
− τCλ

4(2− τ)M
− Cλ
M

)
> 0. (39)

The last inequality uses the condition M > 2Cλ[1 + τ/(8 − 4τ)]/τmin. Therefore, with

probability tending to 1, we have ‖θ̃ − θ0‖F = ‖θ̃S − θ0S‖F ≤M
√

(q log p)/n.

�

Proof of Proposition 2: Since θ̃ is the solution of the restricted problem (19), we have

θ̃j,j′ = 0 for all (j, j′) ∈ Sc. To show θ̃j,j′ 6= 0 for all (j, j′) ∈ S, it is sufficient to show

‖θ̃S − θ0S‖∞ ≤
θ0min

2
, (40)

because then |θ̃j,j′ | ≥ |θ̃0j,j′|−|θ̃j,j′− θ̃0j,j′| ≥ θ0min/2 for all (j, j′) ∈ S. With probability tending

to 1, by Proposition 1 we have

‖θ̃S − θ0S‖∞ ≤ ‖θ̃S − θ0S‖2 ≤M

√
q(log p)

n
.
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The additional condition θ0min ≥ 2M
√
q(log p)/n implies (40). �

Lemma 3 For any ε > 0,

(i) P [‖Qn
Sc,S −Q0

Sc,S‖∞ ≥ ε] ≤ 2 exp{−(ε2/2)(n/q2) + log(q) + log[p(p− 1)/2− q]} ,

(ii) P [‖Qn
S,S −Q0

S,S‖∞ ≥ ε] ≤ 2 exp{−(ε2/2)(n/q2) + 2 log(q)}.

Proof of Lemma 3: We first prove claim (i). Let v
(i)
(j,j′),(h,h′) be the [(j, j′), (h, h′)]-th

element of matrix X (i)TηX (i) − Q0. Note E(v
(i)
(j,j′),(h,h′)) = 0 and |v(i)(j,j′),(h,h′)| ≤ 1, and let

v(j,j′),(h,h′) = 1/n
∑n

i=1 v
(i)
(j,j′),(h,h′). Then

P [
∑

(h,h′)∈S

|v(j,j′),(h,h′)| ≥ ε] ≤
∑

(h,h′)∈S

P [|v(j,j′),(h,h′)| ≥ ε/q]

≤ q max
(h,h′)∈S

P [|v(j,j′),(h,h′)| ≥ ε/q]. (41)

Combining the union-sum inequality with (41), we have

P [‖Qn
Sc,S −Q0

Sc,S‖∞ ≥ ε] ≤ q
(p(p− 1)

2
− q
)

max
(h,h′)∈S

P [|v(j,j′),(h,h′)| ≥ ε/q]. (42)

Then, by the Azuma-Hoeffding inequality (Hoeffding, 1963), we have P [|v(j,j′),(h,h′)| ≥ ε/q] ≤

2 exp{−(ε2/2)(n/q2)}, and (i) follows. The proof of (ii) is similar. �

Proof of Proposition 3: Note that

Λmin(Qn
S,S) = min

‖y‖2=1
[yTQ0

S,Sy + yT(Qn
S,S −Q0

S,S)y]

≥ Λmin(Q0
S,S)− ‖Qn

S,S −Q0
S,S‖2 ≥ τmin − ‖Qn

S,S −Q0
S,S‖∞ .

Now claim (i) follows from Lemma 3 (ii). The proof of claim (ii) is similar. �
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Lemma 4 Suppose conditions (A) and (B) hold. Then for any ε > 0,

P [‖(Qn
S,S)−1 − (Q0

S,S)−1‖∞ ≥ ε] ≤ 4 exp{−(τminε
2/8)(n/q3) + 2 log(q)}. (43)

Proof of Lemma 4: Writing (Qn
S,S)−1 − (Q0

S,S)−1 = (Q0
S,S)−1(Q0

S,S −Qn
S,S)(Qn

S,S)−1 and

applying norm inequalities, we have

‖(Qn
S,S)−1 − (Q0

S,S)−1‖∞ ≤ √
q‖(Q0

S,S)−1(Q0
S,S −Qn

S,S)(Qn
S,S)−1‖2

≤ √
q‖(Q0

S,S)−1‖2‖Q0
S,S −Qn

S,S‖∞‖(Qn
S,S)−1‖2

≤
√
q

τmin

‖Q0
S,S −Qn

S,S‖∞‖(Qn
S,S)−1‖2 . (44)

The last inequality holds because ‖(Q0
S,S)−1‖2 = {Λmin(Q0

S,S)}−1. In addition, we have

‖(Qn
S,S)−1‖2 = {Λmin(Qn

S,S)}−1. Then by setting ε = τmin/2 in Proposition 3 (i), we have

P

[‖(Qn
S,S)−1‖2
τmin

≥ 2

τ 2min

]
= P[Λmin(Qn

S,S)

≤ τmin

2
] ≤ 2 exp(−τ

2
min

8

n

q2
+ 2 log q). (45)

By replacing ε in Lemma 3 (ii) with τ 2minε/(2
√
q), we have

P[‖Q0
S,S −Qn

S,S‖∞ ≥
τ 2minε

2
√
q

] ≤ 2 exp(−τ
4
minε

2

8

n

q3
+ 2 log q) . (46)

Finally,

P[‖(Qn
S,S)−1 − (Q0

S,S)−1‖∞ ≥ ε] ≤ P[
‖Qn

S,S‖2
τmin

≥ 2

τ 2min

] + P[
√
q‖Q0

S,S −Qn
S,S‖∞ ≥

τ 2minε

2
] ,

and the lemma follows. �

Proof of Proposition 4: we write Qn
Sc,S(Qn

S,S)−1 = T 1 + T 2 + T 3 + T 4, where

T 1 = Q0
Sc,S[(Qn

S,S)−1 − (Q0
S,S)−1] ,

T 2 = (Qn
Sc,S −Q0

Sc,S)(Q0
S,S)−1 ,

T 3 = (Qn
Sc,S −Q0

Sc,S)[(Qn
S,S)−1 − (Q0

S,S)−1] ,

T 4 = Q0
Sc,S(Q0

S,S)−1 .
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To bound T 1, we write T 1 = Q0
Sc,S(Q0

S,S)−1(Q0
S,S −Qn

S,S)(Qn
S,S)−1. Thus,

‖T 1‖∞ ≤ ‖Q0
Sc,S(Q0

S,S)−1‖∞‖Qn
S,S −Q0

S,S‖∞(
√
q‖(Qn

S,S)−1‖2) .

By condition (B), we have ‖Q0
Sc,S(Q0

S,S)−1‖∞ ≤ 1 − τ . By setting ε = τmin/2 in Proposi-

tion 3(i), and ε = τminτ/(12(1− τ)
√
q) in Lemma 3(ii), we have

P[‖T 1‖∞ ≥
τ

6
]

≤ P

[
‖Qn

S,S −QS,S‖∞ ≥
τminτ

12(1− τ)
√
q

]
+ P

[
‖(Qn

S,S)−1‖2 ≥
2

τmin

]
≤ 2 exp

(
− τ 2minτ

2

288(1− τ)2
n

q3
+ 2 log q

)
+ 2 exp

(
−τ

2
min

8

n

q2
+ 2 log q

)
. (47)

To bound T 2, we write

‖T 2‖∞ ≤ ‖Qn
Sc,S −Q0

Sc,S‖∞
√
q‖(Q0

S,S)−1‖2 ≤
√
q

τmin

‖Qn
Sc,S −Q0

Sc,S‖∞ .

By setting ε = τminτ/(6
√
q) in Lemma 3 (i), we have

P[‖T 2‖∞ ≥
τ

6
] ≤ P(‖Qn

Sc,S −Q0
Sc,S‖∞ ≥

τminτ

6
√
q

)

≤ 2 exp{−τ
2
minτ

2

72

n

q3
+ log q + log[p(p− 1)/2− q]}. (48)

To bound T 3, we set ε =
√
τ/6 in both Lemma 3 (i) and Lemma 4, so that

P[‖T 3‖∞ ≥
τ

6
] ≤ P[‖Qn

Sc,S −Q0
Sc,S‖∞ ≥

√
τ

6
]

+P[‖(Qn
S,S)−1 − (Q0

S,S)−1‖∞ ≥
√
τ

6
]

≤ 2 exp{− τ

12

n

q2
+ log q + log[p(p− 1)/2− q]}

+4 exp{−τminτ

48

n

q3
+ 2 log q}. (49)

Finally, ‖T 4‖∞ ≤ 1−τ by condition (B). Since log q ≤ 2 log p and log[p(p−1)/2−q] ≤ 2 log p,

we have

P[‖Qn
Sc,S(Qn

S,S)−1‖∞ ≥ 1− τ

2
] ≤ P[‖T 1‖∞ ≥

τ

6
] + P[‖T 2‖∞ ≥

τ

6
] + P[‖T 3‖∞ ≥

τ

6
]

≤ 12 exp
(
− C n

q3
+ 4 log p

)
, (50)
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where C = min{τ 2minτ
2/288(1− τ)2, τ 2minτ

2/72, τminτ/48}. �

Lemma 5 [Bound on [∇2l(θ0 + αδ)−∇2l(θ0)]δ] Suppose (A) holds. For any α ∈ [0, 1],

‖[∇2l(θ0 + αδ)−∇2l(θ0)]δ‖∞ ≤ τmax‖δS‖22 . (51)

Proof of Lemma 5: We have

|{[∇2l(θ0 + αδ)](j,j′),S − [∇2l(θ0)](j,j′),S}δS|

≤ 1

n

n∑
i=1

p∑
j=1

|X (i,j)
j,j′

T

||[ηj(θ0 + αδS)− ηj(θ0)](X (i,j)
S δS)|

≤ 1

n

n∑
i=1

p∑
j=1

|ξ(i)j (θ0 + α∗δS)|(X (i,j)
S δS)2 ≤ 1

n

n∑
i=1

p∑
j=1

(X (i,j)
S δS)2

≤ Λmax(U
n)‖δS‖22 ≤ τmax‖δS‖22. (52)

Since ‖[∇2l(θ0 + αδ) − ∇2l(θ0)]δ‖∞ = maxj<j′ |{[∇2l(θ0 + αδ)](j,j′),S − [∇l(θ0)](j,j′),S}δS|,

the lemma follows. �

Proof of Proposition 6: By Proposition 2, with probability tending to 1 θ̃j,j′ 6= 0 for all

(j, j′) ∈ S. Since θ̃ is the maximizer of the restricted problem (19), with probability tending

to 1, ∇j,j′l(θ̃) = λsgn(θ̃j,j′) for all (j, j′) ∈ S, and claim (i) follows.

To show (ii), let u = ∇l(θ̃)/λ. By (i), ‖uS‖∞ = 1. In addition, by the mean value

theorem we have

λu−∇l(θ0) = ∇2l(θ0)δ̃ = −Qnδ̃ + rn , (53)

where α ∈ (0, 1) and rn = [∇2l(θ0 + αδ̃)−∇2l(θ0)]δ̃. Decomposing Qn and using δ̃Sc = 0,

we have

Qn
S,S δ̃S = −λuS + [∇l(θ0)]S + rnS; (54)

Qn
Sc,S δ̃S = −λuSc + [∇l(θ0)]Sc + rnSc . (55)
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The sample dependency condition implies Qn
S,S is invertible. Thus we can plug (54) into

(55) to obtain

Qn
Sc,S(Qn

S,S)−1(−λuS + [∇l(θ0)]S + rnS) = −λuSc + [∇l(θ0)]Sc + rnSc . (56)

Extracting uSc , we have

‖uSc‖∞ ≤ ‖[∇l(θ0)]Sc‖∞
λ

+
‖rnSc‖∞

λ

+‖Qn
Sc,S(Qn

S,S)−1‖∞
(
‖uS‖∞ +

‖[∇l(θ0)]S‖∞
λ

+
‖rnS‖∞
λ

)
≤ ‖∇l(θ0)‖∞

λ
+
‖rn‖∞
λ

+‖Qn
Sc,S(Qn

S,S)−1‖∞(‖u‖∞ +
‖∇l(θ0)‖∞

λ
+
‖rn‖∞
λ

)

≤ 1− τ + (2− τ)(
‖∇l(θ0)‖∞

λ
+
‖rn‖∞
λ

). (57)

By setting C∇ = τ(8−4τ)Cλ in Lemma 1, ‖∇l(θ0)‖∞/λ ≤ τ/(8−4τ). By Lemma 5, we have

‖rn‖∞/λ ≤ τmax‖δ̃S‖22/λ ≤ (τmaxM
2/Cλ)q

√
log p/n ≤ τ/(8 − 4τ), where the last inequality

holds by the condition q
√

(log p)/n = o(1) when n is sufficiently large. Thus

‖uSc‖∞ ≤ 1− τ

2
< 1 , (58)

and we have ‖[∇l(θ̃)]Sc‖∞ = λ‖uSc‖∞ < λ. �
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