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Two-Sample Instrumental Variables Estimators

I. Introduction

A familiar problem in econometric research is consistent estimation of the coefficient

vector in the linear regression model

y = Wθ + ε (1)

where y and ε are n × 1 vectors and W is an n × k matrix of regressors, some of

which are endogenous, i.e., contemporaneously correlated with the error term ε. As

is well known, the ordinary least squares estimator of θ is inconsistent, but consistent

estimation is still possible if there exists an n×q (q ≥ k) matrix Z of valid instrumental

variables. For example, in the case of exact identification with q = k, the conventional

instrumental variables (IV) estimator is

θ̂IV = (Z ′W )−1Z ′y. (2)

With exact identification, this estimator is identical to the two-stage least squares

(2SLS) estimator

θ̂2SLS = (Ŵ ′Ŵ )−1Ŵ ′y (3)

where Ŵ = Z(Z ′Z)−1Z ′W . If, in addition, ε is i.i.d. normal, this estimator is asymp-

totically efficient among “limited information” estimators.

An influential article by Angrist and Krueger (1992) has pointed out that, under

certain conditions, consistent instrumental variables estimation is still possible even
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when only y and Z (but not W ) are observed in one sample and only W and Z

(but not y) are observed in a second distinct sample. In that case, the same moment

conditions that lead to the conventional IV estimator in equation (2) motivate the

“two-sample instrumental variables” (TSIV) estimator

θ̂TSIV = (Z ′

2W2/n2)
−1(Z ′

1y1/n1) (4)

where Z1 and y1 contain the n1 observations from the first sample and Z2 and W2

contain the n2 observations from the second.

Of the many empirical researchers who have since used a two-sample approach

(e.g., Bjorklund and Jantti, 1997; Currie and Yelowitz, 2000; Dee and Evans, 2003;

Borjas, 2004), nearly all have used the “two-sample two-stage least squares” (TS2SLS)

estimator

θ̂TS2SLS = (Ŵ ′

1Ŵ1)
−1Ŵ ′

1y1 (5)

where Ŵ1 = Z1(Z
′

2Z2)
−1Z ′

2W2. These researchers may not have been aware that the

equivalence of IV and 2SLS estimation in a single sample does not carry over to the

two-sample case. Instead, it is easy to show that, in the exactly identified case,

θ̂TS2SLS = (Z ′

2W2/n2)
−1C(Z ′

1y1/n1) (6)

where C = (Z ′

2Z2/n2)(Z
′

1Z1/n1)
−1. θ̂TS2SLS differs from θ̂TSIV by inserting the C

matrix, which can be viewed as a sort of correction for differences between the two

samples in their empirical covariance matrices for Z. Under Angrist and Krueger’s

assumptions, the correction matrix C would converge in probability to the identity
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matrix, and the TSIV and TS2SLS estimators therefore would have the same prob-

ability limit. In finite samples, however, the TSIV estimator originally proposed by

Angrist and Krueger and the TS2SLS estimator typically used by practitioners are

numerically distinct estimators.

The obvious question then becomes: Which estimator should be preferred? Our

formal analysis, which considers overidentified as well as exactly identified models,

demonstrates that the TS2SLS estimator is superior because its implicit correction

for differences between the two samples in the distribution of Z yields a gain in

asymptotic efficiency. After providing the formal demonstration, we develop intuition

for the result by discussing simple examples.

II. Asymptotic Distributions of Two-Sample IV Estimators

We will compare two-sample IV estimators in a general single-equation framework:

y1i = β ′x1i + γ′z
(1)
1i + ε1i = θ′w1i + ε1i, (7)

x1i = Πz1i + η1i, (8)

x2i = Πz2i + η2i, (9)

where x1i and x2i are p-dimensional random vectors, z1i = [z
(1)′

1i z
(2)′

1i ]′ and z2i are

q(= q(1)+q(2))-dimensional random vectors, w1i is a k(= p+q(1))-dimensional random

vector, and Π is a p × q matrix of parameters.

For efficiency comparison, it is useful to characterize these estimators as gener-

alized method of moments (GMM) estimators. First the TSIV estimator is a GMM
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estimator based on moment conditions

E
[

z1i(y1i − z
(1)′

1i γ) − z2ix
′

2iβ
]

= 0. (10)

Next the TS2SLS estimator is a GMM estimator based on

E[z1i(y1i − z′1iΠ
′β − z

(1)′

1i γ)] = 0, (11)

E[z2i ⊗ (x2i − Πz2i)] = 0. (12)

When Π is defined to be the coefficient on zi in the population linear projection of xi

on zi, (12) holds by definition of linear projections.

Finally we consider the two-sample limited-information maximum likelihood (TSLIML)

estimator for efficiency comparison. Let σ11 = E[(ε1i + β ′η1i)
2] and Σ22 = E(η2iη

′

2i).

When [εi η′

1i]
′ and η2i are normally distributed the log of the likelihood function can

be written as

lnL = −n

2
ln(2π) − n1

2
ln(σ11) −

n2

2
ln|Σ22|

− 1

2σ11

n1
∑

i=1

(y1i − β ′Πz1i − γ′z
(1)
i )2

−1

2

n2
∑

i=1

(x2i − Πz2i)
′Σ−1

22 (x2i − Πz2i). (13)

The TSLIML estimator is asymptotically equivalent to a GMM estimator based on

the population first-order conditions for the TSLIML estimator:

E[Πz1i(y1i − β ′Πz1i − γ′z
(1)
i )] = 0, (14)

E[z
(1)
i (y1i − β ′Πz1i − γ′z

(1)
i )] = 0, (15)

E(z1i ⊗ βu1i/σ11 + z2i ⊗ Σ−1
22 η2i) = 0, (16)
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E(u2
1i/σ

2
11 − 1/σ11) = 0, (17)

E[(Σ−1
22 η2i) ⊗ (Σ−1

22 η2i) − |Σ22|tr(Σ−1
22 )]D2 = 0, (18)

where D2 is a p2 × p(p + 1)/2 matrix such that vec(Σ22) = D2vech(Σ22).

To derive the asymptotic distributions of these estimators we assume the following

conditions.

Assumptions.

(a) {[y1i, z
′

1i]
′}n1

i=1 and {[x2i, z
′

2i]
′}n2

i=1 are i.i.d. random vectors with finite fourth mo-

ments and are independent.

(b) E(z1iε1i) = 0, E(z1iη1i) = 0 and E(z2iη2i) = 0.

(c) ε1i and η1i are uncorrelated with third moments of z1i.

(d) Third moments of [ε1i η′

1i] and those of η2i are all zero conditional on z1i and

z2i, respectively.

(e) E(u2
1i|z1i) = σ11 and E(η2iη

′

2i|z2i) = Σ22 where u1i = ε1i + β ′η1i, σ11 > 0 and

Σ22 is positive definite.

(f) For the TSIV estimator

rank

[

E(z2ix
′

2i) 0

0 E(z1iz
(1)′

1i )

]

= dim(θ)

and for the TS2SLS and TSLIML estimators rank[E(z1iw
′

1i)] = dim(θ).
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(g) E(z1iz
′

1i) and E(z2iz
′

2i) are nonsingular.

(h) E(z1ix
′

1i) = E(z2ix
′

2i) and second and fourth moments of z1i and z2i are

identical.

(i) limn1,n2→∞ n1/n2 = κ for some κ > 0.

Remarks. Assumptions (c) and (d) are used to simplify the asymptotic covariance

matrices of the TSIV and TSLIML estimators, respectively. Assumption (h) provides

a basis for combining two samples.1

The following proposition compares the asymptotic distributions of the three es-

timators. The proof is in the appendix.

Proposition. Suppose that Assumptions (a)– (i) hold. Then θ̂TSIV , θ̂TS2SLS and

θ̂TSLIML are
√

n1-consistent2 and asymptotically normally distributed with asymp-

totic covariance matrices ΣTSIV , ΣTS2SLS and ΣTSLIML, respectively, where

ΣTSIV =
{

B′
[(

σ11 + κβ′Σ22β
)

A + (1 + κ)C
]

−1
B
}

−1
, (19)

ΣTS2SLS = {B′[(σ11 + κβ ′Σ22β)A]−1B}−1, (20)

ΣTSLIML = ΣTS2SLS, (21)

1One can show that the TS2SLS estimator does not require the second part of the assumption

but requires a weaker condition E(z1ix
′

1i
) = cE(z2ix

′

2i
) and E(z1iz

′

1i
) = cE(z2iz

′

2i
) for some c.

Because c does not have to be unity, the TS2SLS estimator is more robust than the TSIV estimator.

2Following Angrist and Krueger (1992), we scale the estimator by
√

n
1
.
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A = E(z1iz
′

1i) = E(z2iz
′

2i), B = E(z1iw
′

1i) = E(z2iw
′

2i), and C = Cov(zjiz
′

jiΠβ) =

E(zjiz
′

jiΠββ ′Π′zjiz
′

ji) − E(zjiz
′

jiΠβ)E(β ′Π′zjiz
′

ji) for j = 1, 2.

Before discussing the proposition’s important implications for the relative effi-

ciency of alternative two-sample IV estimators, we wish to clarify the connections

between our results on asymptotic covariance matrices and those in the previous lit-

erature. First, readers wishing to relate our ΣTSIV to the equivalent expression in

Angrist and Krueger (1992) should note that, in Angrist and Krueger’s notation,

φ1 = σ11A + C, (22)

ω2 = β ′Σ22βA + C. (23)

Second, in a subsequent paper on split-sample IV estimation as a method for avoiding

finite-sample bias when the instruments are only weakly correlated with the endoge-

nous regressors, Angrist and Krueger (1995) noted the distinction between TS2SLS

and TSIV, but conjectured incorrectly that ΣTS2SLS is the same as ΣTSIV .3 Third, in

the related literature on “generated regressors,” first-stage estimation is performed to

create a proxy for an unobserved regressor in the second-stage equation, rather than

3The source of their error was the incorrectness of their claim near the beginning of p.228 that

setting Φ to be (Z ′

2
Z2)

−1Z ′

1
Z1(Z

′

2
Z2)

−1 would reproduce the TS2SLS estimator. It is unclear to

us how much this error has affected inference in applied research. Bjorklund and Jantti (1997),

for example, used a bootstrap method instead to obtain their standard error estimates. Dee and

Evans (2003) noted that, in their exactly identified model, the TS2SLS estimator could be reinter-

preted as an indirect least squares estimator, and they used that insight to motivate a straightforward

delta method for estimating standard errors.
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to treat the endogeneity of the regressor. Murphy and Topel (1985) explicitly dis-

cussed the instance in which the first-stage estimation is based on a different sample

than the second-stage estimation. Our expression for ΣTS2SLS follows from Murphy

and Topel’s theorem 1, and their well-known discussion of how to estimate this co-

variance matrix is perfectly applicable here. Murphy and Topel’s analysis, however,

says nothing about ΣTSIV because θ̂TSIV cannot be written as a two-step regression

estimator.

The main contributions of our proposition concern efficiency comparisons among

alternative two-sample IV estimators. First, the asymptotic equivalence of TS2SLS

and TSLIML implies, that, when the disturbance terms [εi η′

i]
′ are jointly normally

distributed, the TS2SLS estimator is asymptotically efficient within the class of “lim-

ited information” estimators. Second, regardless of whether the disturbances are

normal, since C is positive semidefinite, it follows that ΣTSIV − ΣTS2SLS is positive

semidefinite. Thus, the TS2SLS estimator is more asymptotically efficient than the

TSIV estimator. The asymptotic efficiency gain comes from the implicit correction

of the TS2SLS estimator for differences between the finite-sample distributions of z1i

and z2i stemming from random sampling variation.4

4In Monte Carlo experiments, we have verified that these asymptotic results accurately charac-

terize the finite-sample behavior of the TSIV, TS2SLS, and TSLIML estimators. The exception

is that, when the instruments are very weakly correlated with the endogenous regressor, all three

estimators appear to be biased towards zero. This corroborates an analytical result of Angrist and

Krueger (1995) concerning TS2SLS. The Monte Carlo results suggest that the bias is most severe for
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As an illustration, consider the case in which one endogenous variable is the only

explanatory variable and we have one instrument, i.e., p = q = q(2) = 1. In this case

one can show that

√
n1(β̂TSIV −β)−√

n1(β̂TS2SLS −β) =
n
−1/2
1

∑n1

i=1 z2
1i −

√
κn

−1/2
1

∑n2

i=1 z2
2i

(1/n2)
∑n2

i=1 z2ix2i

Πβ +op(1).

(24)

The first term on the RHS will be asymptotically independent of
√

n1(β̂TS2SLS − β)

and have a positive variance even asymptotically and it follows from the proposition

that its variance is given by

V ar(z2
1iΠβ) + κV ar(z2

2iΠβ)

[E(zixi)]2
. (25)

The intuition for this illustration can be further developed by following a referee’s

suggestion to consider the special case in which the regressor is exogenous and there-

fore can serve as its own instrument. In this case, the TS2SLS estimator simplifies to

OLS applied to the first sample while the TSIV estimator is the ratio of the sample

covariance between the regressor and the dependent variable in the first sample to

the sample variance of the regressor in the second sample. We know that OLS is

the preferred estimator in this instance. The point becomes particularly clear if we

further assume zero variance of the error term in the structural equation. In that

case, the OLS/TS2SLS estimator is identically equal to θ, i.e., it estimates θ with

TSIV and least so for TSLIML. The latter replicates a familiar finding in the one-sample literature

(e.g., Angrist, Imbens, and Krueger, 1999). A summary of our Monte Carlo results is available at

http://www-personal.umich.edu/∼gsolon/workingpapers.htm.
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zero variance. In contrast, the TSIV estimator is θ times the ratio of the regressor’s

sample variance in the first sample to its sample variance in the second sample. That

ratio has probability limit 1, but random sampling variation causes it to have positive

variance. What our proposition demonstrates is that this is a general phenomenon

— random differences between the two samples in their empirical covariance matrices

for the instruments cause the TSIV estimator to be less asymptotically efficient than

the TS2SLS estimator.

To summarize, following Angrist and Krueger’s (1992) influential work on two-

sample instrumental variables (TSIV) estimation, many applied researchers have used

a computationally convenient two-sample two-stage least squares (TS2SLS) variant

of Angrist and Krueger’s estimator. In the two-sample context, unlike the single-

sample setting, the IV and 2SLS estimators are numerically distinct. We have shown

that the commonly used TS2SLS approach is more asymptotically efficient because

it implicitly corrects for differences in the empirical distributions of the instrumental

variables between the two samples.5

5In Inoue and Solon (2005), we also show that the TS2SLS estimator remains consistent under

a practically relevant type of stratified samping that renders the TSIV estimator inconsistent. The

longer paper also extends our analysis to the case of conditionally heteroskedastic disturbances.
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Appendix: Proof of the proposition

The consistency and asymptotic normality of the GMM estimators follow from the

standard arguments. Thus, we will focus on the derivation of asymptotic variances.

Let GTSIV and VTSIV denote the Jacobian and covariance matrix, respectively, of the

moment condition (10). Under Assumptions 1(c), (e), and (i), we have

GTSIV = −[E(z2ix
′

2i) E(z1iz
′

1i)] = −B, (26)

VTSIV = (σ11E(z1iz
′

1i) + κβ ′Σ22βE(z2iz
′

2i)) + Cov(z1iz
′

1iΠβ) + κCov(z2iz
′

2iΠβ)

= (σ11 + κβ ′Σ22β)A + Cov(z1iz
′

1iΠβ) + κCov(z2iz
′

2iΠβ) (27)

from which (19) follows.

Let GTS2SLS and VTS2SLS denote the Jacobian and covariance matrix, respec-

tively, of the moment conditions (11) and (12). Because the Jacobian and covariance

matrices of the moment functions are given by

GTS2SLS = −
[

E(z1iw
′

1i) E(z1iz
′

1i) ⊗ β ′

0 E(z2iz
′

2i) ⊗ Ip

]

= −
[

B A ⊗ β ′

0 A ⊗ Ip

]

(28)

VTS2SLS =

[

σ11E(z1iz
′

1i) 0
0 κE(z2iz

′

2i) ⊗ Σ22

]

=

[

σ11A 0
0 κA ⊗ Σ22

]

(29)

respectively, the asymptotic covariance matrix of the TS2SLS estimator is the k × k

upper-left submatrix of the inverse of

G′

TS2SLSV −1
TS2SLSGTS2SLS =





1
σ11

B′A−1B B′ ⊗ β′

σ11

B ⊗ β
σ11

A ⊗
(

ββ′

σ11

+ 1
κ
Σ−1

22

)



 . (30)

Because the k× k upper-left submatrix of (G′

TS2SLSV −1
TS2SLSGTS2SLS)−1 is the inverse
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of

1

σ11
B′A−1B − B′ ⊗ β ′

σ11

[

A ⊗
(

ββ ′

σ11
+

1

κ
Σ−1

22

)]

−1

B ⊗ β

σ11

=





1

σ11
− β ′

σ11

(

ββ ′

σ11
+

1

κ
Σ−1

22

)

−1
β

σ11





−1

B′A−1B (31)

by Theorem 13 in Amemiya (1985, p. 460) and





1

σ11

− β ′

σ11

(

ββ ′

σ11

+
1

κ
Σ−1

22

)

−1
β

σ11





−1

= σ11 + κβ ′Σ22β (32)

by Theorem 0.7.4 of Horn and Johnson (1985, p.19), (20) follows.

Under the assumptions, one can show that the asymptotic distribution of θ̂TSLIML

and the one of the TSLIML estimator for [σ11 vech(Σ22)
′]′ are independent. Thus,

we can focus on the moment conditions (14), (15) and (16). Under the stated as-

sumptions, the negative of the Jacobian matrix GTSLIML and the covariance matrix

VTSLIML of these moment conditions are the same and are given by









ΠE(z1iz
′

1i)Π
′/σ11 ΠE(z1iz

(1)′
1i )/σ11 ΠE(z1iz

′

1i) ⊗ β ′/σ11

E(z
(1)
1i z′1i)Π

′/σ11 E(z
(1)
1i z

(1)′
1i )/σ11 E(z

(1)
1i z′1i) ⊗ β ′/σ11

E(z1iz
′

1i)Π
′ ⊗ β/σ11 E(z1iz

(1)′
1i ) ⊗ β/σ11 E(z1iz

′

1i) ⊗ ββ′

σ11

+ E(z2iz
′

2i) ⊗ 1
κ
Σ−1

22









=









ΠAΠ′/σ11 ΠE(z1iz
(1)′
1i )/σ11 ΠA ⊗ β ′/σ11

E(z
(1)
1i z′1i)Π

′/σ11 E(z
(1)
1i z

(1)′
1i )/σ11 E(z

(1)
1i z′1i) ⊗ β ′/σ11

AΠ′ ⊗ β/σ11 E(z1iz
(1)′
1i ) ⊗ β/σ11 A ⊗

(

ββ′

σ11

+ ⊗ 1
κ
Σ−1

22

)









. (33)

Since E(z1iη1i) = 0, this matrix is the same as (30) from which (21) follows.
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