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Abstract—Botnets are one of the most serious security threats
to the Internet and its end users. In recent years, utilizing
P2P as a Command and Control (C&C) protocol has become
popular due to its decentralized nature that can help hide the
botmaster’s identity. Most bot detection approaches targeting
P2P botnets either rely on behavior monitoring or traffic flow
and packet analysis, requiring fine-grained information collected
locally. This requirement limits the scale of detection. In this
paper, we consider detection of P2P botnets at a high-level—
the infrastructure level—by exploiting their structural properties
from a graph analysis perspective. Using three different P2P
overlay structures, we measure the effectiveness of detecting each
structure at various locations (the Autonomous System (AS),
the Point of Presence (PoP), and the router rendezvous) in the
Internet infrastructure.

I. INTRODUCTION

A botnet consists of a group of coordinated compromised
computers or bots that can mount attacks, such as Distributed
Denial of Service (DDoS), spamming, phishing and identity
theft. Botnets have become a serious security threat to the In-
ternet users; they can bring down the entire system and disrupt
Internet services. In a botnet, its Command and Control (C&C)
channel, in which the botmaster disseminates commands to,
and get response from bots, is a key element. Traditional bot-
nets utilize the IRC or HTTP protocol to implement centralized
C&C. Under this design, bots have to connect to central servers
and even listen on certain channels to retrieve commands.
Evidently, centralized C&C is vulnerable to a single point
of failure, meaning that, whenever the central servers are
identified and removed, the entire botnet will be disabled.
To overcome this weakness, attackers have recently devised a
decentralized C&C infrastructure exploiting the P2P protocol.
A few noteworthy P2P botnets include Storm, Waledac and
Conficker. Their P2P implementations are either based on an
existing protocol (Storm utilized Kademila [12]) or completely
customized.

The decentralized nature of P2P botnets inevitably makes
their detection difficult. Approaches targeting centralized C&C
structures [7], [4] become ineffective under this new structure
in which a botmaster can join, issue commands and leave at
any time at any place. Generic detection approaches [6], [20]
relying on behavior monitoring and traffic correlation analysis
are mostly applicable at a small scale such as in edge networks
and do not scale well because they require analysis of vast

amounts of fine-grained information. In addition, if there are
only a small number of bots in an edge network, detection
based on bots’ coordination may fail due to the limited number
of instances seen. Given the fact that sizes of existing botnets
are in the order of hundreds of thousands, effective and
efficient large-scale detection needs to function at a high level
without requiring fine-grained information that can only be
obtained locally. As a P2P botnet has a structured overlay and
connectivity patterns different from other applications from
a graph analysis perspective, we naturally consider detection
at the Internet infrastructure level by assessing the impact
imposed by a P2P botnet at various network components and
measuring the effectiveness of detection at such places.

In this paper, we evaluate the feasibility of detecting large-
scale P2P botnets with different network components in the
Internet infrastructure. We construct three types of P2P-botnet
overlays, map them to the corresponding AS (Autonomous
System)-level underlays by inferring each overlay connection’s
AS-path, and thus determine the PoP (Point of Presence) path
and geographical router rendezvous (co-located routers in the
infrastructure) each connection goes through. We then take a
close look at each individual AS, PoP and router rendezvous
based on graph analysis. In particular, we calculate a few
P2P traffic classification metrics to see whether the portion of
botnet connections observed by a single network component
can be identified as P2P traffic. We would like to answer the
following three questions from our analysis: (1) which network
component is the best place for detection? (2) which P2P
overlay structure can help hide the botnet traffic well? (3) what
are the limitations of detection at the infrastructure level? Our
main contribution lies in the thorough analysis of detection
potential at the three infrastructure-level network components
for three different P2P overlay topologies. Our analysis has
led to three key observations. First, a small number of ASes
can observe almost all overlay connections, but the AS-level
detection is less practical. PoPs can capture a large fraction of
connections but the number of monitoring points is limited.
Router rendezvous strike a balance between detection capa-
bility and feasibility. Second, a botnet has to make a tradeoff
between resilience/efficiency and the ability to evade detection.
Third, the infrastructure-level detection is not a panacea for
all large-scale botnets: it needs to be integrated with detection
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schemes in edge networks to complete a detection picture.
The remainder of the paper is structured as follows. Section

II describes related work. Section III details our methodology.
Section IV presents our analysis results. The paper discusses
a few challenges and concludes with Section V.

II. RELATED WORK

As botnets have become a major security threat, numerous
approaches have been proposed for their detection and mitiga-
tion. Most of these approaches can only be applied to specific
types of botnets, requiring in-depth understanding of the C&C
profiles prior to their detection. A few generic approaches
can detect different types of botnets regardless of the C&C
structure based on network packet and flow analysis [6] or
combined host and flow analysis [20]. These approaches are
effective for small-scale networks, such as in a campus or an
enterprise network, but do not scale to large networks, because
they need to obtain fine-grained information.

Considering the fact that P2P botnets have structured
overlay topologies, our approach takes a high-level view by
exploiting structural properties derived from graph analysis,
and is thus not limited by the availability of fine-grained
information. In this regard, our work is closely related to
graph-based traffic classification and analysis. Iliofotou et al.
[10] proposed the use of Traffic Dispersion Graphs (TDGs) to
monitor and classify network traffic. TDGs focus on network-
wide interactions among hosts and show that graph features,
such as the average degree and directionality, can be utilized
to distinguish different applications. In our analysis, we adopt
some of their metrics to determine whether the portion of
traffic observed by a network component is P2P. BotGrep [14]
analyzes structured graphs to locate bots by extracting P2P
subgraphs from a communication graph containing back-
ground traffic. This approach was evaluated on entire botnet
communication graphs and graphs with some edges removed.
Unlike our work, BotGrep did not assess the botnet detection
potential at different network components.

We are aware of two efforts on AS-level underlays mapped
from P2P overlays. Rasti et al. [16] examined the global
impact of the load imposed by a P2P overlay on the AS-
level underlay. Their focus was on the effect of overlay on the
underlay, while our work is concerned with whether the effect
can be utilized for detection. Jelasity et al. [11] constructed a
modified Chord [17] topology and showed that the visibility
of P2P botnet traffic at any single AS is limited and not
sufficient for detection. Our work differs from theirs, as we
have simulated three P2P overlay topologies and observed the
traffic not only at the AS-level but also at PoPs and router
rendezvous, providing a more thorough analysis.

III. METHODOLOGY

A. Overview

We would like to achieve the following two goals. First,
from a defender’s perspective, we want to see how much of
the botnet connections can be observed at a single network
component and whether the respective communication graph

has P2P properties. Second, from an attacker’s perspective,
we want to study which P2P overlay topology is stealthy
enough so that at a single network component the graph-level
information is not sufficient for detection. Our methodology
consists of four main steps. In the first step, we construct a
P2P overlay topology based on simulation and learn which
end-device talks to which, i.e., the overlay connections. In
the second step, to map the overlay to the AS-level underlay,
we associate the IP addresses of the two end-devices of a
connection with the corresponding ASes and calculate the AS-
level path between the two ASes. Given the AS paths, we then
determine PoP-level paths and geographical router rendezvous
paths. Knowing the paths of all connections, in the third step,
we break down the connections on a per-AS, per-PoP, and per-
router-rendezvous basis. We are especially interested in the top
ASes, PoPs and router rendezvous ranked by the number of
connections going through. In the last step, we inspect those
top network components individually. As in [11], [16], we do
not consider background traffic but focus only on the traffic
coming from the P2P overlay, which is the best scenario,
implying that if the P2P traffic cannot be identified under this
situation, it will definitely not be captured when background
traffic is present. We analyze several graph properties of the
communication patterns at each top network component and
determine whether it has the characteristics of P2P traffic.

B. Internet Infrastructure and End-Device Modeling

Before detailing the four main steps, we briefly describe the
Internet infrastructure and end-device modeling, which lays a
basis for our methodology. We use multiple real-world datasets
to construct a realistic model of the US Internet infrastructure.
Table I lists all data sources in the model construction. In total,
73,884,296 residential computers are generated in the entire
US (except Hawaii and Alaska). The distribution of Internet
access routers including dial-up, DSL and Cable is based on
the market share of top US broadband companies and dial-
up service aggregators, and how these access routers connect
to the backbone topology at Internet PoP locations is derived
from AS peering relationships. We refer interested readers to
[19] for details of this modeling.

C. Overlay Topology Construction

In recent years, P2P overlays have become popular in botnet
construction due to their decentralized nature. Many existing
P2P overlays can be utilized to facilitate botnets’ C&C. We
construct three types of P2P overlays: a widely-used Kademlia
[12], a modified Chord [17] and a simple ring structure. We
will later compare the structural properties of these three
overlay topologies at each network component, the results
of which will be presented in Section IV. Next, we will
introduce each P2P overlay followed by the way we construct
the topology.

1) Kademlia: Kademlia is a Distributed-Hash-Table
(DHT)-based P2P overlay protocol. Under this protocol,
nodes are identified by node IDs and data items are identified
by keys generated from a hash function; node IDs and keys
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TABLE I
DATA SOURCES USED IN OUR INTERNET INFRASTRUCTURE AND END-DEVICE MODEL

Model component Data sources
Backbone topology Skitter dataset: http://www.caida.org/tools/measurement/skitter/

Alias clustering data from the iPlane project: http://iplane.cs.washington.edu/data/alias lists.txt
IP geolocation dataset: http://www.ip2location.com/

Internet Point of Presence Telegeography co-location database: http://www.telegeography.com/
Internet end-devices US census data: census-block population in each 250×250m2 grid in US for a 24-hour duration [13]

Internet access routers Dial-up service aggregators per each zip code: http://www.findanisp.com
Broadband ISP market share: http://www.leichtmanresearch.com/press/081108release.html
DSL central office locations: the LERG (Local Exchange Routing Guide) dataset from Telcordia
Cable company service locations: Dun & Bradstreet (D&B) dataset

Internet routing BGP routing information from the University of Oregon Route Views Project: http://www.routeviews.org/
AS prefix sets: http://www.fixedorbit.com/
AS-level path inference: Qiu and Gao’s algorithm [15]

are of the same length. Data items are stored in nodes whose
IDs are close to data items’ keys. The distance between two
IDs, X and Y , is calculated by bitwise exclusive or (XOR)
operation: X ⊕ Y . To search a data item, a node queries its
neighbors for nodes whose IDs are close to this data item’s
key. After getting responses from its neighbors, the node
continues to query those nodes that are closer to the key. This
iterative process repeats until no closer nodes can be found.
The benefit of Kademlia is its resilience to disruptions. Even
if a few nodes are shut down or removed, the network will
still be able to function. Kad network is an implementation of
Kademlia. A few major P2P file sharing networks adopt the
Kad implementation, such as Overnet and eMule. The Storm
botnet was built upon Overnet.

An ideal way to construct the botnet overlay topology is to
collect traffic traces from a real network, such as the Storm
botnet. Since the Storm botnet is decentralized (i.e., there are
no central venues where all communications can be observed),
traces captured from the Storm botnet fall into two categories
each of which has its drawbacks. In the first category, the
traffic data were collected from a single or a few vantage
points. They can only provide partial views of the botnet. In
the second category, snapshots of the network were taken by
network crawlers. The snapshots contain information such as
which IPs are alive or dead, but cannot tell which IP connects
to which IP. To characterize the effectiveness of detection
at the underlay, a full picture capturing the entire network’s
connections is indispensable, so we have to construct a Kad
network by simulation.

We use a high-fidelity botnet simulator BotSim [8] which
integrates a popular P2P client named aMule [1], an imple-
mentation of Kad. Considering the fact that simulating a large-
scale botnet (100,000 bots) on a single or a few machines
will take a prohibitively long time, our simulator was run
on a distributed platform consisting of 400 machines, each
with 2 Pentium III CPUs and 4Gb RAM. The simulator is a
component of MIITS [18] which is built upon PRIME SSF
[3], a distributed simulation engine. To make aMule work
seamlessly on our simulator, several modifications were made
to the original aMule code including intercepting time-related
system calls and substituting them for simulated time function
calls, and replacing socket API calls with network functions
developed in MIITS. The rest of the code remains intact.

In a botnet, a majority of bots are compromised residential
computers and not necessarily geographically close, so we
have to take locations into account. Constrained by data
availability, all bots in our simulation are in the US and their
locations follow the geographical distribution of 73 million
residential computers by state. The simulation of 100,000 bots
executed for three days in simulation time. The output files
log timestamps and connections in the network. We discarded
the first day in which bots bootstrapped and the entire botnet
stabilized, and kept the second and the third day for analysis.
With the log files keeping track of which node talks to
which other node and each node’s state information, we need
to obtain the IP address of each end-device to completely
construct the overlay topology. For this, we randomly chose an
end-device address from the state a bot resides in. This way,
we created two Kad overlay topologies with 100,000 nodes,
one day each.

2) Modified Chord: Chord is a DHT-based P2P protocol
under which nodes form a ring structure. Each node has a
predecessor and a successor and a few long range links. For
example, there are a total of N nodes in the ring. Node i
connects to nodes (i−1) mod N and (i+1) mod N . It also
connects to nodes (i+2k) mod N for k = 1, 2, . . . , log2N−1
to form long-range links. In [11], modifications to Chord are
proposed so that it is difficult to detect through graph analysis
at any single AS. The main modification is to create clusters
in the ring each of which has log2 N consecutive nodes. This
way, nodes in the same cluster can share the same set of
long-range links for routing. This topology is of interest to
us because we want to see whether using a more realistic AS-
path calculation algorithm can make a difference in detection
and whether this topology can successfully hide itself at PoPs
and router rendezvous as well. Since this modified Chord’s
topology is relatively simple, we constructed its overlay with
100,000 nodes directly based on its protocol without simula-
tion. Following the same practice as in Kademlia, each end-
device address is a random draw from the state a bot belongs
to.

3) Simple Ring: We also consider the simplest case: each
node has only two neighbors—a predecessor and a successor—
to construct a ring structure. Presumably, this structure is
stealthier and harder to detect than the modified Chord due
to lack of connectivity at the overlay. We will verify this
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presumption in later analysis. Similar to the modified chord,
this overlay has 100,000 nodes constructed directly and the
bots’ locations follow the same geographical distribution.

D. Overlay to Underlay Mapping

1) AS-Path: Given all overlay connections, the next step
is to map each connection to an AS-level path. Note that
each end-device IP address is associated with an AS number
and determining an AS-path of a connection is actually to
determine the AS-path between two ASes. We use the AS-
path inference algorithm in [15] for inter-domain routing. The
key idea is to infer AS paths from existing BGP routing tables.

2) PoP-Path: A PoP is an access point to the Internet. It
is a physical location owned by an ISP or located at Internet
exchange points and co-location centers. The computation of
a PoP-level path is based on the respective AS-level path.
Given a pair of source and destination end device IPs, the
algorithm first determines the AS-level path AS1AS2 . . . ASn,
then iteratively finds the shortest IP-level path between PoPs
connecting every neighboring pair of ASes and finally maps
the IP-level path to the PoP-level path. We refer interested
readers to [19] for details of this algorithm.

3) Router Rendezvous Path: Given an IP-level path of a
connection, the geographical router rendezvous along this path
can be determined.

E. Traffic Breakdown

Since our work focuses on structural properties of the com-
munication graph observed by a single network component,
not the entire botnet overlay per se, we need to break down
the overlay connections on a per AS, per PoP and per router
rendezvous basis. We then rank the three types of network
components by the number of connections going through, and
take a close look at the graph properties observed at each of
the top 10 ASes, PoPs, and router rendezvous, respectively, in
our analysis.

F. Graph Analysis

After breaking down the traffic, we know all connections
that traverse a particular AS, PoP and router rendezvous. We
can then generate directed graphs in which bots are represented
by vertices and connections among them are represented by
edges. For simplicity, all edges carry the same weight. Graph
metrics to determine whether the traffic is P2P are proposed
in [9] and adopted to analyze the modified chord in [11]. In
our analysis, we inspect the same set of features as in [11]
for consistency. The features used to characterize P2P traffic
include the number of weakly-connected components, size of
the largest weakly-connected component, average node degree
and InO (In Out) ratio. We introduce each of them as follows.

Number of Weakly-Connected Components: A weakly-
connected component is a maximal subgraph of a directed
graph such that in the subgraph replacing all of its directed
edges with undirected edges produces a connected undirected
graph. For effective detection, we expect a small number of
weakly-connected components. As one can imagine, a large

number of connected components usually means small-size
components that are less likely to exhibit typical P2P patterns.

Size of the Largest Weakly-Connected Component: This
metric is meaningful to us because as pointed out in [10] the
graph formed by a P2P network tends to be densely connected
and have a large connected component including the majority
of participating nodes.

Average Node Degree: This metric counts both the in-
coming and outgoing edges of a node, i.e., ignoring the
directionality. A graph with a high average degree tends to
be tightly-connected and P2P networks normally have high
average node degrees.

InO Ratio: The metric calculates the percentage of nodes
in the graph that have both incoming and outgoing edges.
This metric is of interest because under client-server protocols
such as HTTP and SMTP, clients usually initiate connections
(outgoing edges) whereas servers normally accept connections
(incoming edges). But nodes in P2P networks usually serve
as both clients and servers so that P2P’s InO is distinctively
higher than others.

IV. ANALYSIS RESULTS

This section presents our analysis results. After construct-
ing three different P2P overlay topologies, namely, Kad,
the modified Chord and the simple ring, we examine their
communication graphs at three types of network components.
We conduct a graph analysis first at the AS-level, then the
PoP-level and finally, the router-rendezvous-level, and show
the graph features at the top 10 places of each level.

A. AS-Level Analysis

We first take a look at the AS-level graphs of three different
topologies. Table II shows the Kad graph properties for day1
at top 10 ASes (for brevity we omit day2’s result as they are
similar to day1’s), ranked by the number of unique connections
going through. We map the AS numbers to ISPs using the
AS-name lookup list [2]. Note that the traffic percentage at a
single AS is calculated by the number of unique connections
observed at that particular AS divided by the total number
of unique connections in the entire overlay topology. Since
one connection usually can be seen at more than one AS
(this is why the first column of the table adds up to more
than 100%), we count each connection only once while
calculating the number of connections observed at multiple
ASes altogether. Following such calculations, in day1, top 10
ASes aggregated together can observe 98.95%—almost all of
the Kad overlay’s unique connections. In particular, the top
1 AS (3356/Level3) alone can see two thirds of the overlay
connections with all nodes (100000) in the picture. Even for
ASes carrying fewer connections, they have at least 99937
nodes’ connections traverse through. Most importantly, at each
top AS, all nodes are weakly-connected with each other,
forming one giant weakly-connected component. This property
can facilitate detection because one single weakly-connected
graph containing a majority of connections is more likely to
demonstrate P2P characteristics and easier to get caught than
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TABLE II
KAD AS-LEVEL

Kad Day1
ISP AS Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

Level3 3356 65.25% 100000 38192566 763.9 1 99.02%
AT&T 7018 35.33% 100000 20679083 413.6 1 99.02%

XO 2828 23.39% 100000 13691127 273.8 1 99.02%
Sprint 1239 8.32% 99983 4872140 97.5 1 99.01%

Verizon 19262 8.30% 100000 4859686 97.2 1 100.00%
Qwest 209 8.28% 100000 4848724 97.0 1 99.02%
NTT 2914 7.78% 99993 4556302 91.1 1 99.02%

BellSouth 6389 7.78% 100000 4554972 91.1 1 99.01%
AT&T 7132 6.78% 99995 3965587 79.3 1 100.00%

UUNET 701 5.38% 99937 3148400 63.0 1 88.13%

TABLE III
MODIFIED CHORD AS-LEVEL

ISP AS Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

Level3 3356 64.25% 80620 112431 2.8 9639 66.22%
AT&T 7018 38.09% 54272 66650 2.5 10534 51.62%

XO 2828 22.73% 36234 39784 2.2 7470 47.03%
Verizon 19262 9.43% 17365 16494 1.9 3726 37.01%

NTT 2914 8.09% 15339 14151 1.8 3384 34.45%
Sprint 1239 7.64% 14908 13366 1.8 3602 31.16%
Qwest 209 7.20% 14642 12594 1.7 3757 27.99%
AT&T 7132 7.13% 13849 12482 1.8 2956 33.29%

BellSouth 6389 6.82% 13486 11934 1.8 3080 30.47%
UUNET 701 6.27% 13900 10978 1.6 4305 16.41%

TABLE IV
SIMPLE RING AS-LEVEL

ISP AS Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

Level3 3356 64.76% 79327 64755 1.6 14522 63.31%
AT&T 7018 37.51% 51316 37511 1.5 13805 46.20%

XO 2828 22.81% 32148 22805 1.4 9343 41.88%
Verizon 19262 9.30% 13632 9297 1.3 4335 36.40%

NTT 2914 8.05% 11867 8046 1.3 3821 35.60%
Sprint 1239 7.53% 11604 7532 1.3 4072 29.82%
Qwest 209 7.36% 11494 7362 1.3 4132 28.10%
AT&T 7132 7.07% 10430 7066 1.3 3364 35.49%

BellSouth 6389 6.73% 10193 6728 1.3 3465 32.01%
UUNET 701 6.17% 10831 6166 1.1 4665 13.86%
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a disconnected graph with many connected components of
small sizes. As suggested in [9], two metrics can characterize
P2P traffic. One is a high average degree (larger than 2.8),
and the other is a high InO ratio (large than 1%). At all top
ASes, the average degrees and InO values are high enough
for P2P classification: the lowest value of average degree is
63.0 and that of InO is 88.13%. Thus, all top AS venues have
high visibility of Kad’s overlay that demonstrates typical P2P
patterns, sufficient for detection.

Table III shows graph features of the modified Chord at top
10 ASes. Compared to Kad, top 10 AS numbers remain same
but their ranks change a bit. They in total observe 99.61%,
an enormous fraction of overlay connections and the top 1
AS is still 3356 witnessing 64.25% of all connections. Note
that the AS observing the most can see 80620 while the one
observing the least can only see 13900 nodes. As for the
number of connected components, to the contrary of Kad,
each AS’s graph is not well connected and has thousands of
connected components. Figure 1 shows in log scale the sizes
of 10 largest weakly-connected components at top 5 ASes. Top
1 AS 3356’s largest component has 36532 nodes but all other
components are very small containing 15 nodes or so. Top 2
AS 7018 has two large components with 8729 and 7506 nodes
respectively and sizes of other components drop significantly.
The component sizes remain stable at other ASes, all in the
order of hundreds. Due to the relatively sparse structure of
the modified Chord, unsurprisingly, the average degree at each
AS is low—from 2.8 to 1.6, though the InO values are high—
from 66.22% to 16.41%. Taking all metrics into account, AS
3356 is able to detect the P2P overlay since it can see a large
portion of the overlay with typical P2P patterns, if not the
entire one. If we relax the average degree threshold a bit, AS
7018 may also be a good venue to make detection efforts
considering the two large connected components. We think it
is hard for the rest of the ASes to do so due to their relatively
fragmented views. Note that our observations on the modified
Chord are slightly different from those in [11] which concludes
that even at the most central (top) ASes the average degrees
are less than 2 and connected components are mostly of size 2
and 3 with the maximal containing 29 nodes. This difference
may be attributed to the way of mapping the overlay to the
underlay: they make the number of overlay nodes in each AS
proportional to the size of the AS whereas we consider the
geographical distribution of nodes. In addition, our AS-path
inference algorithm is also different from theirs: they assume
shortest paths while our AS-pathes are derived from real-world
BGP routing tables.

When it comes to the simple ring structure (Table IV), the
top AS numbers do not change, and their ranks are the same as
those for the modified Chord. 99.62% of overlay connections
traverse through top 10 ASes. Though the top 1 AS 3356
can see 64.76% of overlay connections, the number of nodes
visible (79327) are more than the number of edges (64755),
resulting in a great number of connected components (14522)
and small component sizes. As seen in Figure 2, 3356’s largest
component only has 34 nodes. We also verify that a majority of

3356 connected components have fewer than 10 nodes. The
average degrees are all below 2, which is expected because
each node only has a predecessor and a successor so that the
average degree of the entire graph is only 2. Even though
the InO values are high enough, detection based on scattered
information at a single AS is difficult.

B. PoP-Level Analysis

At the PoP level, we also present graph features at each
top PoP of three P2P structures. PoPs are represented by ID
numbers and ranked by the number of unique connections
going through as well. In Kad’s case (Table V), the top 10
PoPs account for 80.88% of overlay connections, a slight drop
compared to that observed at top 10 ASes which can see more
than 98%. This makes sense because PoPs, normally as traffic
exchange points, are not able to see intra-domain traffic taking
place within ASes. The top PoP 74 alone is able to observe
53.78% of all connections. Similar to the AS-level, not only
almost all nodes (more than 99975) can be seen at each top
PoP, but also they are weakly connected forming one single
component. The average degrees and InO ratios are well above
the P2P classification thresholds.

In the case of the modified Chord (Table VI), top PoPs are
almost the same as those of Kad and only the ranks change,
taking up 80.29% of overlay connections aggregately. 74 is
still the top 1 PoP observing 54.07% of total connections
containing 77488 nodes, but all other PoPs observe fewer than
20000 nodes. As for sizes of weakly connected components,
shown in Figure 3 in log scale, PoP 74’s largest component
is of size 23153 and others are quite small. Other PoPs’
component sizes are fewer than 300. Given all these statistics,
if the average degree threshold can be relaxed a bit, PoP 74
can be a good place for detection.

In the case of the simple ring (Table VII), the PoP numbers
are exactly the same as those of modified Chord. 89.25% of
overlay connections reach top 10 PoPs with 54.51% traversing
PoP 74. Despite the fact that half of overlay connections
can be observed at PoP 74, similar to the AS-Level, the
number of edges is smaller than the number of nodes. The
largest component of PoP 74 is very small containing 22
nodes (Figure 4). It is the same case for all other top PoPs.
Though InO values are moderate, low average degrees and a
good many small connected components can prevent the P2P
structure from being captured at any PoP.

C. Router-Rendezvous-Level Analysis

At the router-rendezvous level, we present results in the
same way. Router rendezvous are denoted by ID numbers
and ordered by the number of unique overlay connections
observed. For the Kad structure, as shown in Table VIII, the
top 10 router rendezvous see 89.75% of total connections.
The top 1 router rendezvous number 2 is reached by 68.77%
of all connections. A majority of nodes (more than 98858)
appear in the graph as one giant component at each top
router rendezvous. In addition, high average degrees and InO
values make detection feasible. Let us take a look at the
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TABLE V
KAD POP-LEVEL

Kad Day1
PoP Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

74 53.78% 100000 31479094 629.6 1 100.00%
7 10.29% 100000 6024939 120.5 1 99.94%

435 8.27% 100000 4837622 96.8 1 98.50%
11 8.14% 99998 4763870 95.3 1 99.86%
128 7.77% 99981 4550316 91.0 1 99.52%
282 7.37% 99995 4315967 86.3 1 100.00%
4 7.27% 99977 4257513 85.2 1 99.73%

267 6.72% 99992 3934199 78.7 1 100.00%
291 6.26% 99975 3661420 73.2 1 100.00%
295 6.25% 99997 3658911 73.2 1 99.97%

TABLE VI
MODIFIED CHORD POP-LEVEL

PoP Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

74 54.07% 77488 94629 2.4 16735 48.00%
7 9.27% 19927 16222 1.6 6095 21.91%

267 7.99% 14764 13981 1.9 3092 34.80%
11 7.98% 17225 13957 1.6 5334 18.75%

128 7.46% 17169 13058 1.5 5673 17.39%
4 7.25% 15962 12686 1.6 4834 20.36%

435 6.94% 13649 12151 1.8 3067 32.38%
282 6.81% 13677 11913 1.7 3184 31.41%
291 6.36% 12433 11137 1.8 2683 32.68%
295 5.84% 11877 10228 1.7 2803 29.32%

TABLE VII
SIMPLE RING POP-LEVEL

PoP Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

74 54.51% 75999 54506 1.4 21493 43.44%
7 9.40% 16165 9400 1.2 6765 16.30%
11 7.78% 13648 7779 1.1 5869 13.99%
128 7.63% 13765 7631 1.1 6134 10.88%
267 7.52% 11079 7521 1.4 3558 35.77%
4 7.31% 12505 7305 1.2 5200 16.83%

435 7.13% 10568 7127 1.3 3441 34.88%
282 7.08% 10587 7078 1.3 3509 33.71%
291 6.37% 9392 6373 1.4 3019 35.71%
295 5.77% 8829 5774 1.3 3055 30.80%
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TABLE VIII
KAD ROUTER-RENDEZVOUS-LEVEL

Kad Day1
Router Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

2 68.77% 100000 40251799 805.0 1 100.00%
2164 14.91% 99959 8728267 174.6 1 98.96%

12 11.90% 99997 6967203 139.3 1 84.22%
98 11.75% 100000 6874621 137.5 1 100.00%

222 9.26% 100000 5419174 108.4 1 99.99%
8919 8.30% 100000 4855632 97.1 1 98.50%
745 7.82% 99997 4579803 91.6 1 99.85%
82 7.33% 99978 4288889 85.8 1 99.74%
47 6.99% 98858 4090556 82.8 1 92.32%
88 6.67% 99997 3904395 78.1 1 99.71%

TABLE IX
MODIFIED CHORD ROUTER-RENDEZVOUS-LEVEL

Router Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

2 68.76% 88913 120337 2.7 13816 59.33%
2164 15.00% 29299 26245 1.8 8964 25.60%

12 11.57% 23682 20247 1.7 7629 20.07%
98 11.33% 21641 19821 1.8 5586 31.07%
222 8.73% 17779 15280 1.7 4771 27.68%
745 7.59% 16673 13275 1.6 5286 17.14%
82 7.29% 16133 12758 1.6 4926 19.98%

8919 6.94% 13649 12151 1.8 3067 32.38%
88 6.26% 12913 10962 1.7 3364 25.96%
57 6.16% 13606 10784 1.6 4029 19.42%

TABLE X
SIMPLE RING ROUTER-RENDEZVOUS-LEVEL

Router Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

2 68.89% 88161 68885 1.6 19276 56.27%
2164 15.12% 25513 15122 1.2 10391 18.54%

12 11.35% 20126 11351 1.1 8775 12.80%
98 11.28% 17720 11275 1.3 6445 27.26%

222 8.93% 14243 8933 1.3 5310 25.44%
745 7.42% 13218 7419 1.1 5799 12.26%
82 7.36% 12653 7356 1.2 5297 16.27%

8919 7.13% 10568 7127 1.3 3441 34.88%
88 6.10% 9762 6102 1.3 3660 25.02%
47 6.06% 9669 6061 1.3 3608 25.37%

modified Chord at the router-rendezvous level (Table IX).
There is one new router rendezvous in the top 10 list that
does not appear in that of Kad’s and the ranks of the two lists
are quite similar. Top 10 router rendezvous carry 89.96% of
total connections and the top 1 router rendezvous is still 2
accounting for 68.76% of connections including 88913 nodes.
As for the sizes of weakly connected components, the trend
does not differ much from that at the AS- and PoP-level. The
top 1 router rendezvous’s largest connected component is of
a big size—35943 nodes (Figure 5 in log scale) and other
components have small sizes (fewer than 15 nodes). With a
distinctive average degree and a high InO value, this router
rendezvous is a reasonable venue for capturing the modified
Chord. Finally, for the simple ring structure (Table X), the
top router rendezvous list is the same as that of Kad. Top 10
router rendezvous observe 80.54% of overlay connections and
router 2 sees 68.89% of them. With more nodes than edges
at each top router rendezvous, it is difficult to get a good
view of the overlay. Similar to AS- and PoP-level, the top
1 router rendezvous’s largest component contains 33 nodes.

The average degrees are unsurprisingly low, insufficient for
detection.

D. Insights from Analysis

From the above analysis, we have several key observations.
First, the visibility of Kad’s overlay and structure at the top
places of all levels is good enough for detection; the modified
Chord’s P2P characteristics can be captured by a few top
locations but not all; and the information of the hypothetical
simple ring’s topology at all levels is quite fragmented and
hardly useful for detection. From the attacker’s viewpoint, in
terms of efficiency, Kad has the most efficient routing: con-
tacting O(logN) nodes during a search (where N is the size
of the network); the modified Chord can achieve O(log2 N)
hops; and the simple ring is the worst, requiring O(N) steps.
From resilience’s perspective, the Kad network is shown to
be robust to a few types of mitigation strategies such as
cutting off random nodes and removing peers learnt from bots’
peer lists [5]; the simple ring structure is evidently fragile—
removing a couple of nodes can disconnect the overlay; and
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the modified Chord structure hits the middle ground: not as
resilient as Kad but better than the simple ring. We believe
that, while constructing a P2P botnet, the attacker needs to
strike a balance between resilience or efficiency and the ability
to evade detection. Although the simple ring can hide its
traffic well at various network components, to build upon this
structure the botnet has to compromise resilience and C&C
efficiency. The modified Chord makes a tradeoff though its
structural properties cannot be concealed at some locations.
Kad was successfully utilized by the Storm botnet, but given
our detection strategy, to use it for a future botnet, the attacker
has to come up with techniques to mask its P2P patterns.

Second, from detection’s perspective, AS-level provides
better overlay views than PoP- and router-rendezvous-level do,
but is less practical than the other two for actual detection
deployment. Since AS is only a logical concept, capturing
all connections within one AS requires collaboration and
synchronization among multiple physical devices at different
geographical locations, which renders it highly impractical.
From our analysis, we can see that at the PoP-level, detecting
Kad and the modified Chord is very likely though the latter is
only visible to the top 1 PoP. Compared to ASes and router
rendezvous, PoPs observe less traffic due to the invisibility
of traffic within ASes (intra-domain traffic). Moreover, the
number of PoPs is small so that the points of monitoring are
limited. Among the three, router rendezvous make a tradeoff.
Their detection capabilities are comparable to PoPs’ and they
can observe intra-domain traffic with more monitoring points
available, making detection more feasible.

V. DISCUSSIONS AND CONCLUSION

For actual implementation of botnet detection in the Internet
infrastructure, there remain a few challenges to be addressed.
First, since our techniques are applied at the structure-level via
graph analysis, they will also identify regular P2P file-sharing
topologies. To avoid misclassifying such regular P2P networks
as botnets, we can perform preprocessing such as flow filtering
and clustering [9] based on known patterns of regular P2P
networks such as the port numbers. Also, bots identified
locally in edge networks are helpful as their presence in a
communication graph makes other nodes suspicious as well, so
our approach may need assistance from detection mechanisms
at the edge to further confirm that a graph is indeed formed by
a botnet. However, if the botnet is immersed into an existing
regular P2P network, detecting it solely by graph analysis
at the infrastructure level would be challenging and other
information is thus needed for effective detection. Second,
our models on the Internet infrastructure are abstracted from
real-world datasets, so the accuracy depends on how well the
datasets characterize the behavior and the state of the Internet,
which could be error-prone. Moreover, some datasets may be
outdated and may not reflect the current state of the Internet
due to its fast-evolving nature. Lastly, in the presence of a huge
traffic volume, some connections could not be captured due
to sampling. For densely-connected topologies such as Kad, it
may not be a problem. But for the modified Chord and simple

ring’s cases, it will complicate the detection. We plan to dig
deeper into this issue.

To sum up, as P2P structures become a popular choice for
recent botnets, especially large-scale ones, detection mecha-
nisms have to keep up with this change and identify bots in
an efficient and effective manner. In this paper, we propose
detection of P2P botnets at a high-level—the infrastructure-
level by analyzing their structural properties from a graph
perspective. We find that detection at any of the three network
components has its advantages and drawbacks. Overall, router-
rendezvous-level detection is able to strike a balance between
detection capability and feasibility. Also, a botnet needs to
make a tradeoff between resilience and stealthiness.
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