1 Reminders

- Boundary of ∂E, is the set off all point which are neither interior nor exterior = $\mathbb{E}\setminus E^o = \text{ Every nbhd meets both } E \text{ and } E^c$.

- $E = (\text{disjoint}) E^o \cup \partial E = E \cup \{\text{limit points} = E'\} = (\text{disjoint union of})$:

$$E = \left\{ E^o \cup \begin{cases} E \cup \partial E \setminus E^o \cup \partial E \end{cases} \right\} \bigcup \begin{cases} \mathbb{E} \setminus E \cup \partial E \cap E' \cup \partial E \setminus E' \cup \partial E \setminus E \end{cases}$$

- $\partial E = \mathbb{E} \setminus E^o$

Theorem 1. • CTS bijection from compact to Hausdorff is homeomorphism.

- CTS bijection $\mathbb{R} \to \mathbb{R}$ is homeo.

Theorem 2. Tietze extension Let $f : K \to [a, b]$ CTS, K closed in \mathbb{R}^d, then exists a CTS extension to $\tilde{f} : \mathbb{R}^d \to [a, b]$.

Cor/Lemma 1. (y_n) Cauchy sequence in a metric space X, $y' \in X$ then $d(y_n, y')$ is bounded.

1 var Riemann integrability

- on $[a, b]$ $f(x)$ is integrable \iff bounded and CTS almost everywhere.

- $\int_0^\infty e^{-x^2} = \sqrt{\pi}$

Gamma function

- $\Gamma(s) := \int_0^\infty e^{-t^{s-1}} dt$ when defined($s > 0$).
2 Main Results - complex Analysis

2.1 Function and series

- $e^z = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ..., $ radius ∞.
- $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i} = -i \sin(iz)$
- $\cos(z) = \frac{e^{iz} + e^{-iz}}{2} = \cosh(iz)$

Stereographic projection

- $F : S^2 \rightarrow \mathbb{C}, (A, B, C) \mapsto \frac{A+iB}{1-iC}, x+iy \mapsto \frac{1}{x^2+y^2}(2x, 2y, r^2 - 1)$
- Circles in \mathbb{C} mapped to circles in S^2. Lines mapped to circles in S^2 through the north pole.

Differentiability

- $f'(z) = \lim_{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}$ When the limit exists.
- $f(z)$ is Holomorphic in a region Ω (open connected set) if it is differentiable at any $z \in \Omega$.
- $f(z) = u(x,y) + iv(x,y)$ differentiable at $z_0 \Rightarrow$ Cauchy-Riemann equations hold at z_0: $u_x = v_y, u_y = -v_x$.
 - $f'(z_0) = u_x + iv_x = v_y - iv_y$.
- Conversely, CR on a region $\Omega + u, v \in C^1(\Omega) \Rightarrow f(z)$ holo’ in Ω.

Power Series

- For $S(z) = \sum_0^\infty a_n z^n$ exist unique radius $R \in [0, \infty]$ s.t.
 - S converges absolutely in $|z| < R$, diverges in $|z| > R$.
 - S converges uniformly in $|z| < R - \epsilon$.
 - $1/R = \lim sup |a_n|^{1/n}$.
 - S is holo’ in $|z| < R$ and $S' = \sum a_n z^{n-1}$ with the same R. e.i. ∞-times differentiable.
- By using later Cauchy’s formulas for a_n, the radius is up to the nearest singularity.
- $\log(x)$ power series is valid up to 0.

Integrability

- A smooth curve $z(t)$ has param $z(t) : [a, b] \rightarrow \mathbb{C}$ differentiable (including one sided derivatives), $z'(t)$ exists,CTS, and non zero.
- Piecewise Smooth (p-s) exists finite intervals $a = a_0 < a_1 < ... < a_n = b$ dividing $[a, b]$ on each the CTS curve is smooth.
- For $f(z)$ CTS on (p-s) γ, define $\int_\gamma f(z)dz = \sum_{a_i}^{a_i+1} f(z(t))z'(t)dt$
- $length(\gamma) = \int_0^b |z'(t)|dt$
- \(|\gamma f(z)dz| \leq \int_0^1 |f(z(t))||z'(t)|dt \leq \sup_{\gamma} |f(z)| \cdot \text{len}(\gamma)\)
- \(f_n(z) \to f(z)\) uniformly Then \(\int_\gamma f_n \to \int_\gamma f\).
- \(f: \Omega \to \mathbb{C}\) (open set). \(F(z)\) is the Primitive of \(f(z)\) on \(\omega\) if \(F'(z) = f(z)\) on \(\Omega\).
 - Primitive of \(z^n\) is \(\frac{z^{n+1}}{n+1}\) on \(\mathbb{C}\) for \(n \neq 1\).
 - For \(\gamma \subset \Omega\) from \(w_1\) to \(w_2\), \(\int_\gamma f(z) = F(w_2) - F(w_1)\)
- **Goursat** \(\Omega\) open set, \(T\) closed triangle in \(\Omega\) including interior, \(f\) holo on \(\Omega\) then \(\frac{1}{\text{area}(T)} \int_T f = 0\).
- **Cauchy** \(D\) open disk, \(f\) holo on \(D\), \(\gamma \subset D\) closed then \(\frac{1}{2\pi i} \int_\gamma f = 0\). Can be extended to disk minus a ray, or any region with \(z_0\) for with any line \(z \to z_0\) is in \(D\).
- **Cauchy Integral Formula** \(D\) open disk, \(C = \partial D\) oriented positively, \(f\) holo on \(\bar{D}\), then for \(z \in D\):
 \(f(z) = \frac{1}{2\pi i} \int_C \frac{f(w)}{w-z} dw\), (Later) \(f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(w)}{(w-z)^{n+1}} dw\)
- \(f(z)\) holomorphic in open set \(\Omega\) Then \(f\) has a power series expansion for any \(z_0 \in \Omega\) for \(D_R(z_0) \subset \Omega\) with \(a_n = \frac{f^{(n)}(z_0)}{n!}\), and \(f(z)\) \(n\) times diff.
- **Cauchy Inequalities** \(D(z_0, R)\) open disk, \(C = \partial D\) oriented positively, \(f\) holo on \(\bar{D}\), then for \(z_0\):
 \(|f^{(n)}(z_0)| \leq \frac{n!|f(z_0)|}{R^n}\)
- Let \(\Omega\) be a region and \(z_n \to z_0\) is a sequence of distinct points with a limit point in \(\Omega\). If \(f\) is holomorphic on \(\Omega\) and \(f(z_n) = f(z_0) = 0\) then \(f = 0\).
- **Mean Value** \(f\) holo in \(D_R(z_0)\) then \(f(z_0) = \frac{1}{2\pi} \int_{\partial D} f(z) dz, 0 < r < R\).
- **Maximum modulus** \(f\) holo in a region \(\Omega\), non constant, then \(|f|\) has no local maximum.
 - If further, \(\Omega\) is bounded and \(f\) is CTS on \(\bar{\Omega}\) then \(\sup_{\Omega} |f| \leq \max_{\partial \Omega} |f|\). (Note that \(f\) is CTS on a compact set and thus attains its maximum.
- **Winding number** \(n(\gamma, a) = \frac{1}{2\pi i} \int_\gamma \frac{dz}{z-a}\)
- \(\gamma \sim 0 \pmod{\Omega}\) if \(\forall z \notin \Omega, n(\gamma, z) = 0\)
- **Jordan’s Curve**: the complement of any simple p-s (not closed) curve is a region. The complement of a closed simple p-s curve is a disjoin union of the interior \((n(\gamma, z) = 1, \text{ simply connected bounded region})\) and the exterior \((n(\gamma, z) = 1, \text{ unbounded region})\).
- **General Cauchy** \(\Omega\) open, \(f\) holo in \(\Omega\), \(\gamma \subset \Omega\), \(\gamma \sim 0 \pmod{\Omega}\) then \(\int_\gamma f dz = 0\).
- A region \(\Omega\) is **Simply Connected** if \(\mathbb{C}\cup\{\infty\}\) \(\Omega\) is connected. Equivalently \(\iff\) of any Cycle(sum of closed curves) \(\gamma \in \Omega, \gamma \sim 0 \pmod{\Omega}\)
 - In a simply connected region, \(f\) holo, \(\gamma\) is a Cycle (sum of closed curves) Then \(\int_\gamma f = 0\).

Zeros and Poles
- \(\Omega\) region, \(f \neq 0\) holo:
 - The zeros of \(f\) are isolated. For each zero \(a \exists! k \in \mathbb{N}\) s.t. \(0 = f(a) = f^{(1)}(a) = \ldots = f^{(k-1)}(a), f^{(k)}(a) \neq 0\).
 - So \(f = (z-a)^k g(z), g(a) \neq 0\) g holo in \(\Omega\).
- **Laurent Expansion** \(f(z) = \sum_{-\infty}^{\infty} a_n(z-z_0)^n\) is a holo function in \(r < |z-z_0| < R\), \(1/r = \limsup |a_{-n}|^{1/n}\).
 - Converges uniformly far from the edges. \(a_n = \frac{1}{2\pi i} \int_{|z-z_0|=\rho} \frac{f(z)}{(z-z_0)^{n+1}} dz\) for \(r < \rho < R\).
- \(f\) holo in an annulus has a Unique Laurent Expansion.
- \(f\) has a **pole** at \(z_0\) if \(1/f\), with 0 at \(z_0\) is holo in a nbhd of \(z_0\).
• f with a pole, so in a nbhd of z_0 exists unique $n \in \mathbb{N}$ and a non vanishing holo g s.t. $f = (z-z_0)^{-n}g(z)$.

• **Residue** for an order n pole $Res(f, z_0) = \frac{1}{2\pi i} \oint_{|z-z_0|<\rho} f(z) = a_{-1} = \lim_{z \to z_0} \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}}(z-z_0)^n f(z)$.

• f with z_0 as an isolated singularity, then
 - Removable \iff f is bounded in a nbhd of $z_0 \iff \lim_{z \to z_0}$ exists an finite.
 - pole $\iff 1/f$ has a zero there $\iff |f| \to \infty$.
 - Essential $\iff \lim_{z \to z_0}$ do not exist.

• **Casorati-Weierstrass** The image of f holo in $D_r(z_0) \setminus \{z_0\}$ with essential singularity in z_0 is dense in \mathbb{C}. (**Picard**: the image is \mathbb{C} or minus one point).

• A **Meromorphic** function is holo in a region Ω except isolated poles.

• **Residue theorem** f meromorphic with $\{z_1, z_2, \ldots\}$ poles, $\gamma \sim 0$ (mod Ω) cycle in a region Ω, Then $\oint_{\gamma} f = \sum n(\gamma, z_j) Res(f, z_j) 2\pi i$.

• **Morera** f CTS in an open disk and for every triangle there $\oint_{\gamma} f = 0$ then f is holo in the open disk.

• f_n holo on the open set ω and converge uniformly to f on every compact subset of Ω. Then f is holo and $f_n' \to f'$ also uniformly on ω.

Argument Principle: Let

- γ be a simple curve, $n(\gamma, z) = 0 \lor 1$ for $\mathbb{C}\setminus\gamma$. denote $\Omega = \{z \mid n(\gamma, z) = 1\}$
- Let f be meromorphic in an open set containing $\gamma \cup \omega$, with no zeros or poles on γ.
- THEN $\frac{1}{2\pi i} \oint_{\gamma} \frac{f'}{f} = \sum_{\gamma} n(\gamma, f) - P(\gamma(f))$ i.e. the number of zeros minus the number of poles in Ω, counting multiplicities.
- THEN $n(f(\gamma), 0) = 0$.

- **Rouche** Ω, γ as before, f, g holo in an open set containing both, and $|f| > |g|$ on γ. THEN $f, f + g$ has the same number of zeros.

• **Open Mapping** f holo non const in region is an open map.

• **Inverse** $f : \Omega \to \Omega'$ (region to region) holo and bijective then so is the inverse f^{-1}, and $f^{-1}(z)' = \frac{f'(f^{-1}(z))}{f(f^{-1}(z))}$

• f holo $z_0 \in \Omega$ then is locally 1-1 $\iff f'(z_0) \neq 0$.

• **Liouville**: f entire and bounded is constant.

Conformal Mappings

- $f : \Omega \to \mathbb{C}$ is **Conformal** if Ω is a region and $f'(z) \neq 0$ there.

- Regions U, V are **conformally equivalent** if exists $f : U \to V$ conformal and bijective.

- Such f is locally 1-1, preserves angles and if it is globally 1-1 then the inverse is conformal as well.

- γ closed p-s simple curve (p-s Jordan curve), with interior Ω. f holo on Ω, $f|_{\gamma}$ is 1-1 and denote $\Gamma = f|_{\gamma}(\gamma)$. THEN Γ is Jordan, $f(\Omega)$ is the interior of Γ and $f|_{\Gamma}$ is a conformal bijection.

- **Fractional Linear Transformation** $\frac{az + b}{cz + d}$ with $ad - bc \neq 0$
 - Bijection from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$.
 - Maps lines/circles to lines/circles.

- let \mathbb{D} be the open unit disc and $Aut(\mathbb{D})$ be the conformal bijections $\mathbb{D} \to \mathbb{D}$.

Schwartz’s Lemma $f : \mathbb{D} \to \mathbb{D}$ holo, $f(0)=0$. THEN $|f(z)| \leq |z|$, $|f'(0)| \leq 1$ AND
- if for some $z_0 \neq 0$ we have $|f(z_0)| = |z_0|$, then f is a rotation, $f = e^{i\theta}z$.
- if $|f'(0)| = 1$ the f is a rotation.
- Corollary $f \in \text{Aut}(\mathbb{D})$ fixing 0 must be a rotation.

$\text{Aut}(\mathbb{D}) = \left\{ f(z) = e^{i\theta} \frac{az+b}{cz+d} \mid a \in \mathbb{D}, \theta \in [0, 2\pi) \right\}$

Let \mathbb{H} be the upper half plane $\{x+iy \mid y < 0\}$. $\text{Aut}(\mathbb{H}) = \left\{ f(z) = \frac{az+b}{cz+d} \mid a,b,c,d \in \mathbb{R}, ad - bc \neq 0 \right\}$

Equicontinuity: Left \mathcal{F} be a family of functions from a fixed region Ω to a metric space S. Then \mathcal{F} is Equicontinuous on a subset $E \subset \Omega$ if $\forall \epsilon > 0, \exists \delta$ s.t. $|z - w| < \delta$ implies $d(f(z), f(w)) < \epsilon$ for the entire family.

A family \mathcal{F} as above is Normal if every sequence in \mathcal{F} has a subsequence which converges uniformly on every compact subset of Ω. (limit need not be in \mathcal{F})

Arzela-Ascoli A family \mathcal{F} of CTS functions on Ω to a metric space S is normal iff both
- \mathcal{F} is equicontinuous on every compact subset of Ω
- for any $z \in \Omega$ the values $f(z)$, $f \in \mathcal{F}$ lie in a compact subset of S.

Montel’s: let \mathcal{F} be a family of holomorphic functions on Ω which are uniformly bounded on any compact subset $B \subset \Omega$: exists $M < 0$ s.t. $|f(z)| < M \forall z \in B, \forall f \in \mathcal{F}$. THEN \mathcal{F} is equicontinuous on every compact subset \subset AND normal.

Riemann Mapping: Let Ω be simply connected proper region. Given $z_0 \in \Omega$, there exists a unique (up to rotation) conformal bijection $f : \Omega \to \mathbb{D}$ with $f(z_0) = 0$.

3 Measure Function

3.1 Notation

Definition 1 (Indicator Function). For $S \subset A, \mathbb{1}_S : A \to \{0,1\}$ is defined by $\mathbb{1}_S(a) = \begin{cases} 1 & a \in S \\ 0 & a \notin S \end{cases}$

Definition 2 (liminf lim sup). (Note: inf on less members is getting bigger. limit of monotonously increasing sequence.

sup on less members is getting smaller. limit of monotonously decreasing sequence).

$$\lim \inf x_n = \sup \left(\inf_{k \geq 1} x_n \right)$$

$$\lim \sup x_n = \inf \left(\sup_{k \geq 1} x_n \right)$$

Cor/Lemma 2. (Countable sets)

- A countable $\iff A = \phi$ or $\exists f : \mathbb{N} \to A$.
- A countable and infinite $\rightarrow \exists f : \mathbb{N} \to A$ bijection.
- finite Cartesian product of countable is countable.
- countable union of countable is countable.
3.2 Measure function

Definition 3. Measure function $m: \{\text{some sets of } \mathbb{R}^d\} \to [0, +\infty]$, must have to following:

1. $m(\emptyset) = 0$
2. $m(A_1 \cup A_2 \cup \ldots) = \sum m(A_i)$, where A_i-disjoint.
3. m is invariant under translation and rotation.
4. $m([a_1, b_1] \times \cdots \times [a_n, b_n]) = (b_1 - a_1) \cdot \ldots \cdot (b_n - a_n)$

Definition 4. For a box B in \mathbb{R}^d, $|B|$ is defined as the product of the lengths of its intervals.

Definition 5. For a subset E in \mathbb{R}^d, $m_{\text{pixel}} \overset{\text{def}}{=} \lim_{n \to \infty} \frac{\#(E \cap N_{-1/n}^d)}{N^d}$

Theorem 3. $B^{\text{box}} \subset \mathbb{R}^d$, $m_{\text{pixel}}(B) = |B|$

Cor/Lemma 3. E_1, E_2, \ldots, E_k are disjoint pixel-measurable sets. So $m_{\text{pixel}}(\bigcup_1^k E_i) = \sum_1^k m_{\text{pixel}}(E_i)$

Cor/Lemma 4. Examples:

- $m_{\text{pixel}}(Q) = +\infty$
- $m_{\text{pixel}}(Q + \sqrt{2}) = 0$

Cor/Lemma 5. $E = B_1 \cup \ldots \cup B_d$ disjoint union of boxes. So E is pixel-measurable and $m_{\text{pixel}}(E) = \sum |B_i|$. This sum is independent of the choice of boxes.

Definition 6. E is elementary if E is a finite union of boxes (not necessarily disjoint).

IMT lemma 1.1.2 \implies E can be written as a disjoint union of boxes so it is pixel-measurable, and we write the measure as $m_{\text{elem}}(E)$.

Cor/Lemma 6 (properties of m_{elem}): Let E,F elementary sets, then:

- (Finite additivity) $m_{\text{elem}}(E \cup F) = m_{\text{elem}}(E) + m_{\text{elem}}(F)$, if disjoint.
- $m_{\text{elem}}(E \cup F) = m_{\text{elem}}(E) + m_{\text{elem}}(F \setminus E)$
- (Monotonicity) $m_{\text{elem}}(E) \geq m_{\text{elem}}(F)$ if $E \supset F$.
- (Finite sub-additivity) $m_{\text{elem}}(E \cup F) \leq m_{\text{elem}}(E) + m_{\text{elem}}(F)$

Cor/Lemma 7. E elementary, $m_{\text{elem}}(E) = m_{\text{elem}}(E)$

Definition 7. E bounded set.

- Jordan Inner Measure: $m_{\text{*,}(j)}(E) = \sup_{A_{\text{elem}} \subset E} m_{\text{elem}}(A)$
- Jordan Outer Measure: $m_{\text{*,}(j)}(E) = \inf_{B_{\text{elem}} \supset E} m_{\text{elem}}(B)$
- Note: $m_{\text{*,}(j)}(E) \subseteq m_{\text{*,}(j)}(E)$
- Note: If equal, E is Jordan measurable.

Cor/Lemma 8 ("Cauchy" Criterion). E bounded. E is Jordan Measurable $\iff \forall \epsilon > 0, \exists A_{\text{elem}} \subset E \subset B_{\text{elem}}$ s.t. $m_{\text{elem}}(B) - m_{\text{elem}}(A) < \epsilon$ (i.e. $m_{\text{elem}}(B \setminus A) < \epsilon$).

Cor/Lemma 9. E,F are Jordan Measurable, then so are $E \cup F, E \cap F, E \setminus F, E \Delta F$

- Jordan Measure holds for finite additivity, monotonicity, finite sub-additivity, invariant under translation.
- Let B be a box in \mathbb{R}^d and $f: B \to \mathbb{R}$ a cts function. so the set $\{(x, t) : x \in B; 0 \leq t \leq f(x)\} \subset \mathbb{R}^{d+1}$ is Jordan measurable. Also the set of the graph itself $\{(x, t) : x \in B; t = f(x)\} \subset \mathbb{R}^{d+1}$ in Jordan Measurable and has measure 0.
- Cross product of Jordan measurable sets is also Jordan measurable. The new measure is just multiplication.
Cor/Lemma 10. E bounded:

- $m_*(J\cap E) = m_*(J\cap E^c)$
- $m_*(J\setminus E) = m_*(J\setminus E)$

Cor/Lemma 11. $\mathbb{Q}\cap [0,1]$ is not Jordan-Measurable.

Definition 8 (Cantor middle-thirds). Define $U_{1,1} = \left(\frac{1}{3}, \frac{2}{3}\right)$, leaving 2 intervals.

Definition 9. (Lebesgue Outer Measure of E): $m^*(E) = \inf_{F\in\mathcal{U}} \sum_{j=1}^{\infty} |B_j|$

Theorem 5. E compact $\implies m^*(E) = m^*(J)(E)$

Cor/Lemma 13. E Elementary $\implies m^*(E) = m_{\text{elem}}(E)$

Cor/Lemma 14. properties of m^*:

- $m_*(J\cap E) \leq m^*(E) \leq m_*(J\setminus E)$
- E countable, or empty $\implies m^*(E) = 0$
- (monotonicity) $E \subset F \implies m^*(E) \leq m^*(F)$
- (countable sub-additivity) $m^*(\bigcup_{n} E_n) \leq \sum_{n} m^*(E_n)$

Cor/Lemma 15. (Banach-Tarski) Exists disjoint sets s.t. $m^*(E \cup F) < m^*(E) + m^*(F)$

Definition 10. $\text{dist}(E,F) = \inf \{ ||x - y||, x \in E, y \in F \}$

Cor/Lemma 16. Fix $\delta > 0$ and considering only boxes s.t. $\text{diam}(B_j) < \delta$ so $\inf_{E \in \mathcal{U}} \sum_{j} |B_j| = m^*(E)$

Theorem 6. Suppose $\text{dist}(E,F) > 0$ then $m^*(E \cup F) = m^*(E) + m^*(F)$

Definition 11. (almost disjoint) B_1, B_2, \ldots are almost disjoint if their interiors are disjoint.

Cor/Lemma 17. B_1, B_2, \ldots are almost disjoint, so $m^*(\bigcup B_j) = \sum_{j=1}^{\infty} |B_j| = m_*(\bigcup B_j)$.

- For E with positive measure, for every ϵ, exists an interval I with $m(E \cap I) > (1 - \epsilon)m(I)$

3.3 From HW2

Given E bounded, and closed elementary $F \supset \partial E$, WTS $E \setminus F$ is elementary: See hints in HW2. basically, we are B_1F is a disjoint union of disconnected open sets, one of them is a subset of E^c, and both elementary.
3.4 Back to Lectures

Definition 12 (closed dyadic box). A closed dyadic box is of the form $[j_1/2^n, (j_1 + 1)/2^n] \times \ldots \times [j_r/2^n, (j_r + 1)/2^n], n, j_r \in \mathbb{Z}$. Let Q be the set of closed dyadic boxes with side length ≤ 1.

Cor/Lemma 18. E open, then E is almost disjoint union of boxes in Q, and so $m^*(E) = m^*_{\ast,J}(E)$

Cor/Lemma 19. $m^*(E) = \inf_{U \supseteq E} m^*(U)$, where U is open

Definition 13. E is (Lebesgue) **Measurable** if $\forall \epsilon > 0, \exists U \supseteq E$ s.t. U is open, and $m^*(U \setminus E) < \epsilon$

Cor/Lemma 20. Properties:
- E open (or closed), then measurable
- $m^*(E) = 0$ then measurable.
- E compact, then measurable.
- E_1, E_2, \ldots measurable then the countable union is measurable.
- E measurable, then the compliment is as well.

Definition 14. σ-**algebra on a set X, is a collection of subsets A where:**
- $\phi \in A$
- A closed under countable union.
- A closed under complement.

Theorem 7. The set of measurable subsets \mathcal{L} is a σ-algebra

Cor/Lemma 21. E meas, the exists closed set $F \subseteq E$ s.t. $m^*(E \setminus F) < \epsilon, \forall \epsilon > 0$

Definition 15. E is a
- F_σ set if $E = \bigcup_n F_n$ closed
- G_δ set if $E = \bigcap_n F_n$ open

Cor/Lemma 22. E meas then,
- E is a union of F_σ set and a null set
- E is G_δ set cut a null set.

Cor/Lemma 23. $m^*(E) = \inf_{U \supseteq E} \sup_{F \subseteq U} m^*_{\text{elem}}(F)$, where U is open, F-elementary. If $m^*(E) < \infty$, then $\exists F_{\text{elem}}$ s.t. $m^*(E \setminus F) < \epsilon$.

Cor/Lemma 24. Criteria for measurability: the following are equivalent to measurability:
- $U \supseteq E$ open with $m^*(U \setminus E) < \epsilon$.
- U open with $m^*(U \setminus E) < \epsilon$.
- $F \subseteq E$ closed with $m^*(E \setminus F) < \epsilon$.
- F closed with $m^*(F \setminus E) < \epsilon$.
- G measurable with $m^*(G \setminus E) < \epsilon$.

Definition 16. A function of σ-algebra is a **measure function** if the measure of the empty set is 0 and the function in countably additive.

Cor/Lemma 25. m^* on \mathcal{L} is a measure function.

Theorem 8 (jordan measurable implies lebesgue). If E is Jordan meas then $E \in \mathcal{L}$:

> **Proof.** E Jordan so exits elementary $A \subseteq E \subseteq B$ s.t. $m_J(B \setminus A) < \epsilon$. WLOG A, B are open. So $m^*(B \setminus E) \leq m^*_{\ast,J}(B \setminus E) \leq m^*_{\ast,J}(B \setminus A) \leq \epsilon$.

8
Cor/Lemma 26. Limits properties, all sets are in \mathcal{L}:

- $E_1 \subset E_2 \subset \ldots \text{ then } m(\cup_{1}^{d}E_i) = \lim m(E_i)$.
- $E_1 \supset E_2 \supset \ldots \text{ then } m(\cap_{1}^{d}E_i) = \lim m(E_i)$, given the series is not ∞ from some point.
- **Fatou’s for sets** E_1, E_2, E_3, \ldots, $\liminf E_j := \cup_{k} \cap_{j=k} E_k$, so $m(\liminf E_j) \leq \liminf m(E_j)$.
- $E_1, E_2, E_3, \ldots,$ $\limsup E_j := \cap_{k} \cup_{j=k} E_k$, so $m(\limsup E_j) \geq \limsup m(E_j)$.
- When $\lim E_j$ exists, $E_j \subset F, m(F) < \infty$ (dominating set) then $m(E_j)$ exists and $m(\lim E_j) = \lim m(E_j)$.

Theorem 9. Not all sets measurable. **Vitali Set** is a set of representatives from $[0,1]$ when partitioning \mathbb{R} to cosets of \mathbb{Q}. This set contains no measurable set of positive measure.

Cor/Lemma 27. $m^*(A) > 0$ \iff A contains a non-meas set.

Definition 17. Riemann-Darboux Integration Vs. Lebesgue.

- For Riemann-Darboux:
 - $g, f : B_{\text{closed-box}} \rightarrow [0, \infty)$
 - f is boxwise-constant (b.c.) \iff $\#f(B) < \infty, f^{-1}(y)$ is elementary
 - $\iff f = \sum_{i=1}^{n} c_j 1_{E_j}, c_j \in [0, \infty), E_j$ disjoint boxes
 - f b.c. so $\int_B f := \sum_{y \in f(B)} y \cdot m(f^{-1}(y))$
 - Lower Darboux $\int_B g = \sup_{0 \leq f \leq g} \int_B f$
 - Upper Darboux for bounded function $\int_B g = \inf_{g \leq f \leq g} \int_B f$
 - If upper-lower agree, $\int_B g$ is one of them.

- For Lebesgue:
 - $g, f : \mathbb{R}^d \rightarrow [0, +\infty]$.
 - f is simple \iff $\#f(\mathbb{R}^d) < \infty, f^{-1}(y)$ is measurable.
 - $\iff f = \sum_{i=1}^{n} c_j 1_{E_j}, c_j \in [0, +\infty), E_j$ disjoint measurable.
 - f simple. so $\int_{\mathbb{R}^d} f := \sum_{y \in f(B)} y \cdot m(f^{-1}(y))$
 - Lower Lebesgue $\int_{\mathbb{R}^d} g = \sup_{0 \leq f \leq g} \int_{\mathbb{R}^d} f$ (NOTE: f can be taken of finite values).
 - Upper Lebesgue $\int_{\mathbb{R}^d} g = \inf_{g \leq f \leq g} \int_{\mathbb{R}^d} f$

Cor/Lemma 28. g Darboux integrable $\iff E_g := \{(x,t) \in B \times [0,\infty) | 0 \leq t \leq g(x)\}$ is Jordan Meas.

Cor/Lemma 29. Properties of Integrals:

- For $g : B_{\text{closed-box}} \rightarrow [0, \infty)$ bounded we can extend with 0 to get function on \mathbb{R}^d. Thus $\text{Darb}_{\mathbb{R}^d} g \leq \text{Leb}_{\mathbb{R}^d} g \leq \text{Darb}_{\mathbb{R}^d} g$.
- Riemann integrable so above are equalities.
- on simple functions: $\int f + g = \int f + \int g$
- $f \leq g$ then $\int f \leq \int g$
- for $c \in [0,\infty)$ $\int cg = c \int g$ and same for \int Not for $c = \infty$.
- $\int f + g \leq \int f + \int g$
- $\int f + g \geq \int f + \int g$
- $\int_{E} g = m^*(E)$

Definition 18. Inner measure of a bounded set E, bounded by B: $m^*(E) = m(B) - m^*(B/E)$.

9
Theorem 10. \(f : \mathbb{R}^d \to [0, +\infty] \) is \textit{measurable} if one of the (equivalent) following:

1. \(f^{-1}(S) \) measurable for all \(S = (\lambda, +\infty] \).
2. \(f^{-1}(S) \) measurable for all \(S = [0, \lambda] \).
3. \(f^{-1}(S) \) measurable for all \(S = [0, \lambda) \).
4. \(f^{-1}(S) \) measurable for all \(S = [\lambda, +\infty] \).
5. \(f^{-1}(S) \) measurable for all \(S = \text{interval in } [0, +\infty] \).
6. \(f^{-1}(S) \) measurable for all \(S = \text{open in } [0, +\infty] \).
7. \(f^{-1}(S) \) measurable for all \(S = \text{closed in } [0, +\infty] \).
8. \(\exists f_n \text{ simple with } f_n \to f \text{ pointwise.} \)
9. like above, but in addition \(f_1 \leq f_2 \leq \ldots \) and all \(f_j \) bounded and \(m(f_j^{-1}(0, +\infty)) < \infty \)

Cor/Lemma 30. \(g, f_n \) measurable functions so:
- \(\sup f_n, \inf f_n, \limsup f_n, \liminf f_n \) if exists, are meas.
- \(f + g \) meas.
- CTS function is meas.

4 From HW5

Cor/Lemma 31. \(f : \mathbb{R}^d \to [0, +\infty] \) is bounded and measurable \(\iff \) it is a uniform limit of bounded simple functions.

5 Back to Lectures

Cor/Lemma 32. Let \(g \) be bounded, meas and \(m(\{g > 0\}) < \infty \). Then \(\int g = \int f \). And for two like those: \(\int g + f = \int f + \int g \)

Definition 19. for a measurable \(f : \mathbb{R}^d \to [0, +\infty] \) define \(\int f = \int f \)

Cor/Lemma 33.
- \(f : \mathbb{R}^d \to [0, +\infty] \Rightarrow \lim_{n \to \infty} \int \min(f, n) = \int f \).
- \(f, g \) means so (without boundedness or something like that) \(\int (f + g) = \int f + \int g \)

Cor/Lemma 34. \textbf{Markov/Chevishev Inequality} \(g \) meas., unsigned, \(\lambda \in (0, \infty), E = \{g \geq \lambda\} \Rightarrow m(E) \leq \frac{\int g}{\lambda} \)

counter examples
- Cantor closed uncountable set \(K \) has measure 0 but can be a CTS preimage of a set of measure 1.
- measurability is not a topological property - exists a non measurable set whose image is measurable under homeomorphism. (same for pre-image)

Definition 20. For \(f : \mathbb{R}^d \to \mathbb{R} \):
- \(f \) meas \(\iff \) \(f_+, f_- \) are meas.
- \(f \) (abs.) integrable \(\iff \) \(f_+, \int f_-, \int f < \infty \iff \int |f| < \infty \). Then \(\int f = \int f_+ - \int f_- \).

For \(f : \mathbb{R}^d \to \mathbb{C} \)
- \(f \) meas \(\iff \) \(\text{Re} f, \text{Im} f \) are meas \((\Rightarrow |f| \) meas.\).
\begin{itemize}
 \item f (abs int) \iff \text{Ref, Im int} \iff \text{f meas and } \int |f| < \infty.
 \item Properties: f, g \mathbb{C}-valued, int. So:
 \begin{itemize}
 \item \(\int \overline{f} = \overline{\int f}\)
 \item \(c \in \mathbb{C} \Rightarrow \int cf = c \int f\)
 \item \(\int (f + g) = \int f + \int g\)
 \end{itemize}
\end{itemize}

Cor/Lemma 35. Triangle inequalities:
\begin{itemize}
 \item \(\int |f + g| \leq \int |f| + \int |g|\)
 \item \(\|f\| \leq \int |f|\).
\end{itemize}

Theorem 11. Littlewood’s 3 principles:
\begin{itemize}
 \item 1. E meas, \(m(E) < \infty, \epsilon > 0 \Rightarrow \exists F^{d_{\text{lem}}}, m(E \Delta F) < \epsilon\)
 \item 2a. f integrable, \(\exists h = \sum c_j \mathbb{1}_{B_j^{\text{box}}} \) (boxwise const function) s.t. \(\int |f - h| < \epsilon\).
 \item 2b. f integrable, \(\exists h \text{ CTS function s.t. } \{h(x) \neq 0\}\) is bounded and \(\int |f - h| < \epsilon\).
 \item 2c. h can be even be \(C^\infty\).
\end{itemize}

Egorov thm \(f_n^{\text{meas}} \to f\) pointwise (almost everywhere) on \(\mathbb{R}^d\), Then exists \(B^{\text{meas}}, m(B) < \epsilon\) s.t. \(f_n \to f\) uniformly on each bounded set of \(\mathbb{R}^d\).

Lusin’s thm Given f integrable, then exists \(B^{\text{meas}}, m(B) < \epsilon\) s.t. \(f|_{B^c}\) is CTS on \(B^c\).

revised Lusin we can choose \(B\) to be open, and then \(f|_{B^c}\) is CTS on \(\mathbb{R}^d\).

Let \(f\) be measurable and supported by a measurable set of finite measure(0 outside that set). So exists a meas set \(E\) of meas \(\epsilon\) s.t. \(f\) is locally bounded: Given \(R > 0\), exists \(M > 0\) s.t. \(|f| < M\) on \(B(0, R)\setminus E\).

6 General Measures

Definition 21. Let \(B\) be collection of subsets of \(X\). \(B\) is boolean algebra if:
\begin{itemize}
 \item \(\phi \in B\)
 \item \(E \in B \Rightarrow X\setminus E \in B\)
 \item \(E, F \in B \Rightarrow F \cup E \in B\)
\end{itemize}

properties:
\begin{itemize}
 \item Intersection of bool/\(\sigma\)-algebra’s is a bool/\(\sigma\)-algebra.
 \item Borel \(\sigma\)-algebra \(B[X] = \{\text{open \ sets}\}\).
 \item \(B[\mathbb{R}^d] \subset \mathcal{L} = \{\text{open \ sets}, \{\text{null \ sets}\}\} \).
 \item \(h : X \to Y\) homeo, \(A\)-borel set \(\Rightarrow f(A)\) is a borel set.
\end{itemize}

Definition 22. A countably additive measure \(\mu : B^{\sigma\text{-alg}} \to [0, +\infty]\) s.t.
\begin{itemize}
 \item \(\mu(\emptyset) = 0\)
 \item \(E_1, E_2, \ldots \in B\), disjoint, \(\Rightarrow \mu(\bigcup E_i) = \sum \mu(E_i)\).
\end{itemize}

properties:
\begin{itemize}
 \item Measure \((X, B, \mu)\) is complete if \(F \subset E \in B, \mu(E) = 0 \Rightarrow F \in B\).
 \item Given \(f(x) : X \to [0, +\infty], B = 2^X, \mu(E) = \# f(E) = \sum_{x \in E} f(x)\) is a measure.
\end{itemize}
Theorem 12. Monotone convergence for seq. of functions

\[\lim_{n \to \infty} \int X \, d\mu_n = \int X \, d\mu \]

Definition 24. Give a measure

Definition 23. Modes of convergence

Properties of convergence: finite measure case, dominated case, True for subsequence

Theorem 13. Properties of convergence: finite measure case, dominated case, True for subsequence

- For \(f = \mathbb{1}_{\{y\}} \Rightarrow \#(E) = 1 \iff y \in E, 0 \text{ otherwise, we get Dirac measure } = \delta_y. \)
- The measure is finite if \(\mu(X) < \infty \), probability space if \(\mu(X) = 1 \)
- The measure is \(\sigma \)-finite if \(X = \bigcup_{n \in \mathbb{N}} E_n, E_n \in \mathcal{B}, \mu(E_n) < \infty \).
 - \(E_n \) can be taken disjointed OR nested.
 - \(\# f \) is \(\sigma \)-finite \(\iff \forall x: f(x) < \infty \text{ AND } \{f(x) \neq 0\} \text{ is countable.} \)
- Measurability of function is as before: preimage of open set is measurable. Integral is defined as sup of simple integrals bounded by the function.
- \(f, g \) measurable. \(\int (f + g) = \int f + \int g \). If \(f \leq g \Rightarrow \int f \leq \int g \), equal \(\iff g = f \) a.e.

Theorem 12. Monotone convergence for seq. of functions \(0 \leq f_1 \leq f_2 \leq \ldots \) means on \(X \) then

\[\lim_{n \to \infty} \int f_n \, d\mu = \int \lim_{n \to \infty} f_n \, d\mu. \]

- **Tonelli’s for integrals** \(f_1, f_2, \ldots: X \to [0, +\infty] \) measurable \(\Rightarrow \sum f_n = \sum f_n. \)

- **Example of measure** Given \(g: X \to [0, +\infty] \) alter the measure function \(\mu_g(E) = \int g \, d\mu. \)

- **Fatu’s for functions** \(f_1, f_2, \ldots: X \to [0, +\infty] \Rightarrow \lim \inf f_n \leq \lim \inf \int f_n. \)

- **Lebesgue dominated conv.** \(f_1, f_2, \ldots: X \to \mathbb{C}, f_n \to f \text{ a.e., } G: X \to [0, +\infty] \text{ integrable, } |f_n| \leq G \text{ a.e. } \Rightarrow \int f \to f \text{ and } \int |f_n - f| \to 0. \)

Definition 23. \(L_1 \)-norm \(\|h\|_{L_1} = \int |h|d\mu \).

Definition 24. Give a measure \((X, \mu, \mathcal{B}) \) and an integrable function \(g \) define a new measure \((X, \mu_g, \mathcal{B}), \mu_g(E) = \int g \, d\mu. \) Properties:

\[\int f \, d\mu_g = \int fg \, d\mu. \]

Definition 25. Modes of convergence

- \(f_n \to f \) pointwise a.e. \(\iff f_n \to f \) pointwise on \(X\setminus\{nulll - set\} \).

- \(f_n \to f \) uniformly a.e. \(\iff f_n \to f \) uniformly on \(X\setminus\{nulll - set\} \).

- \(f_n \to f \) almost uniformly \(\iff \forall \epsilon, \exists B, \mu(B) < \epsilon, f_n \to f \) uniformly on \(X\setminus B \).

- \(f_n \to f \) in \(L_1 \) \(\iff \|f_n - f\|_{L_1} \to 0 \) \(\iff \int |f_n - f| \, d\mu \to 0 \).

- \(f_n \to f \) in measure \(\iff \exists \epsilon, \mu(\{|x| |f_n - f| > \epsilon\}) \to 0 \).

- Fast \(L_1 \): \(\sum_{n} |f_n - f| < \infty \).

- Fast in measure: \(\forall \epsilon, \sum \mu(\{|x| |f - f_n| > \epsilon\}) < \infty \).

Theorem 13. Properties of convergence: finite measure case, dominated case, True for subsequence

- \(f_n \to f \) is any mode, \(f_n \to f \) is other any mode \(\Rightarrow f = \bar{f} \text{ a.e.} \)

- In the dominated case, \(|f_n| \leq G \text{ a.e, } f_n \to f \text{ in any mode, } \Rightarrow |f| \leq G \text{ a.e.} \)

- **General Egorov:** \(f_n \to f \) p.w. a.e on a finite measure \(\Rightarrow f_n \to f \) almost uniformly.

- Absolute continuity of the integral - Vitaly \(f \) integrable, \(\epsilon > 0 \Rightarrow \exists \delta \) s.t. if \(\mu(E) < \delta \) then \(\int_E |f| < \epsilon \) \(\mu(E) \to 0 \Rightarrow \int_E |f| \to 0 \).

\[\text{Unif } \rightarrow \text{ almost-unif } \rightarrow \text{ p.w. a.e}\]

\[\text{Fast } L_1 \rightarrow \text{ Fast in measure}\]

Fast - L1 \(\rightarrow \) Fast - in - measure

12
Definition 26. p-norms: \(0 < p < \infty, \|f\|_p = \left(\frac{1}{\mu(X)} \int_X |f|^p \, d\mu \right)^{1/p} \). \(L^p(X, \mathcal{B}, \mu) \) = all measures \(f \) s.t. \(|f|_p < \infty \).

- \(\mu \)-finite, \(0 < p_1 < p_2 < \infty, f \in L^{p_2} \Rightarrow f \in L^{p_1} \).
- \(0 < p_1 < p_2 < \infty, f \in L^{p_1}(X, 2^X, \#) \Rightarrow f \in L^{p_2}(X, 2^X, \#) \).
- For Lebesgue \(L^{p_1} \subseteq L^{p_2}, L^{p_1} \supset L^{p_2} \).

Chebyshev: \(\mu(\{|f| \geq \lambda\}) \leq \frac{|f|_p^p}{\lambda^p} \).

\(\|f_n - f\|_p \to 0 \Leftrightarrow f_n \to f \) in measure \(\Rightarrow \) for subsequence we have fast conv. in measure and p.a.e.

Definition 27. Convex functions: I interval in \(\mathbb{R} \), \(\phi : I \to \mathbb{R} \). \(\phi \) is convex \(\iff \) \(a, b \in I, t \in [0,1] \) implies \(\phi((1-t)a + tb) \leq (1-t)\phi(a) + t\phi(b) \) \(\iff \) \(a < x_0 < b \) implies \(\frac{\phi(x_0) - \phi(a)}{x_0 - a} \leq \frac{\phi(b) - \phi(x_0)}{b - x_0} \).

- \(\phi \) CTS on \(I \), \(\phi' \) is (strictly) increasing on \(I^p \) \(\Rightarrow \) \(\phi \) is (strictly) convex.
- \(\phi \) (strictly) convex on \(I \), then \(R(x_0, x_1) = \frac{\phi(x_1) - \phi(x_0)}{x_1 - x_0} \) is a (strictly) increasing function of \(x_0 \) on \(I \setminus \{x_0\} \) when fixing \(x_1 \).
- \(0 < p < 1, x, y \geq 0 \Rightarrow (x + y)^p \leq x^p + y^p \).

Theorem 14. p-norm:

- \(0 < p < 1 \) : \(\|f + g\|_p^p \leq \|f\|_p^p + \|g\|_p^p \)
- \(1 \leq p < \infty : \|f + g\|_p \leq \|f\|_p + \|g\|_p \) (minkowski)

- For \(0 < p < \infty \) : \(L^p := \{f^{\text{meas}} \mid \|f\|_p < \infty \} \) is a vector space.
- \(d_p(f, g) := \|f - g\|_p^p \) for \(0 < p < 1 \) and \(\|f - g\|_p \) for \(1 \leq p \). Is a pseudo norm. On \(L^p = L^p/(\{f^{\text{meas}} \mid f = 0 \text{ a.e.}\}), d_p \) is a norm.

- Riesz–Fisher \((L^p, d_p)\) is complete.
- \{Simple functions\} \(\cap L^p \) is dense in \(L^p, 0 < p < \infty \).
- Support is \(\{x \mid f(x) \neq 0\} \) (in Tau, sometimes the the closure of that called support). \(C_c(\mathbb{R}^d) \) - is the functions with bounded support.
- \(f \) CTS with bounded support \(\Rightarrow \) uniformly CTS.
- \(C_c(\mathbb{R}^d) \) are dense in \(L^p(\mathbb{R}^d, m) \), also \(C_c^\infty(\mathbb{R}^d) \)

Theorem 15. \(\infty \)-norm:

- \(\|f\|_\infty = \inf\{\lambda \mid \mu(\{|f| > \lambda\}) = 0\} = \inf\{\lambda \mid \mu(\{|f| \geq \lambda\}) = 0\} \)
- \(L^\infty = \{f^{\text{meas}} \mid \|f\|_\infty < \infty\} \iff \exists g^{\text{bdd}} \text{ s.t. } g = f \text{ a.e} \)
- \(L^\infty = L^\infty/\mathbb{N} \).

- \(\|f_n - f\|_\infty \to 0 \iff f_n \to f \) unif.a.e.
- \(L^\infty \) is complete.

Cor/Lemma 36. translation and reflection:

- \(T_h(f) = f(x - h) \)
- \(R(f) = f(-x) \)
- \(T_aT_b = T_{a+b} \)
- \(T_h(f \cdot g) = T_h(f) \cdot T_h(g) \)
- \(R(f \cdot g) = R(f) \cdot R(g) \)
- \(RT_h = T_{-h}R \)
- \(\|T_h(F)\|_p = \|R\|_p = \|f\|_p \)
- \(f \in L^p(\mathbb{R}^d, m) \Rightarrow T_h f \to f \) in \(L^p \) as \(h \to 0 \).
6.1 From HW 8

Theorem 16. Holder inequality: \(\sum_{x} |f(y)| \leq \|f\|_p \cdot \|g\|_q \) for \(p > 1 \) or \(p = \infty \) and \(1/p + 1/q = 1 \).

\((1 < p < \infty)\) Equality \(\Longleftrightarrow |f|^p = C |g|^q \) a.e. or \(g = 0 \) a.e.

\(p = q = 2 \) Cauchy-Schwartz

6.2 Back to lectures - p 32

Definition 28. Convolution

- \((f * g)(x) = \int f(y) \cdot RT_x(g(y)) \, dm(y) = \int f(y) \cdot g(x - y) \, dm(y)\)
- \(z + y = x \Rightarrow (f * g)(x) = \text{a function of } f(y), g(z) \).
- \(1 \leq p, q \leq \infty, 1/p + 1/q = 1, \, f \in L^p, g \in L^q \Rightarrow (f * g)(x) \text{ is well defined for all } x, \text{ uniformly CTS and bounded, and } \|f * g\|_{\infty} \leq \|f\|_p \cdot \|g\|_q \)
- \(\text{(using later results - Schur’s test) For } k(x, y) : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}, \text{ define } T_k(f)(y) = \int k(x, y) f(x) \, dm(x), T_h(f) = f(x - h). \text{ So:} \)
- \(- T_h \circ T_k = T_k \circ T_h, \forall h \in \mathbb{R}^d \Longleftrightarrow k(x, y) = g(x - y). \text{ Then, } T_k(f) = f * g \)
- \(- f \in L^p, g \in L^q \Rightarrow f * g \text{ exists a.e. and } \|f * g\|_p \leq \|f\|_p \cdot \|g\|_q \)
- \(- \text{ Youngs inequality: } 1 \leq p, q \leq \infty, 1 + 1/r = 1/p + 1/q, \, f \in L^p, g \in L^q \Rightarrow \|f * g\|_r \leq \|f\|_p \cdot \|g\|_q \)

Theorem 17. Lebesgue Differentiation Thm - LDT:

- Notation: \(cB(x, r) = B(x, cr) \)
- Vitaly covering lemma Given \(B_1, \ldots, B_n \) balls in \(\mathbb{R}^d \). Then we can pick a subset of disjoint balls \(s.t. \cup^0_0 B_j \subset \cup^m_{m=1} 3B_{1,k} \).
- For \(f \in L^1(\mathbb{R}^d, m) \), define \(Mf(x) = \sup_{r > 0} \frac{1}{m(B(x, r))} \int_{B(x, r)} \|f\| \, dm \).
- \(\text{(HW9Q1) } f \in L^1 \) does not imply \(Mf \in L^1 \).
- Inner regularity \(E \) measurable, than \(m(E) = \sup_{K \subset E, \text{compact}} m(K) \).
- Hardy-Littlewood Inequality \(m(\{x : Mf(x) > \lambda\}) \leq \frac{c\|f\|_1}{\lambda} \)
- \(\mu \)-finite borel measure, \(\mu(x) = \sup_{r > 0} \frac{\mu(B(x, r))}{m(B(x, r))} \), then \(m(\{x : M\mu(x) > \lambda\}) \leq \frac{c\|\mu\|_{\infty}}{\lambda} \)
- \(\text{(LDT) } f \in L^1(\mathbb{R}^d) \Rightarrow \frac{1}{m(B(x, r))} \int_{B(x, r)} |f(x) - f(y)| \, dm(y) \to 0 \text{ as } r \to 0^+. \text{ for a.e. } x \)
- \(\text{(LDT) } f \in L^1(\mathbb{R}^d) \Rightarrow \frac{1}{m(B(x, r))} \int_{B(x, r)} f(y) \, dm(y) \to f(x) \text{ as } r \to 0^+. \text{ for a.e. } x \).
- \(\text{This defines a natural value for } [f](x) \text{ in } L^1 = L^1/N. \)
- Points where LDT hold - Lebesgue points.
- \(\{E_r\} \text{ Shrinks Nicely} \text{ to } x \text{ if } E_r \subset B(x, r) \text{ and } m(E_r) > \alpha \cdot m(B(x, r)) \).
- \(\text{(LDT) } f \in L^1(\mathbb{R}^d), x\text{-lebesgue point} \Rightarrow \frac{1}{m(E_r)} \int_{E_r} |f(x) - f(y)| \, dm(y) \to 0 \text{ as } r \to 0^+. \)
- \(\text{(LDT) } f \in L^1(\mathbb{R}^d), x\text{-lebesgue point} \Rightarrow \frac{1}{m(E_r)} \int_{E_r} f(y) \, dm(y) \to f(x) \text{ as } r \to 0^+. \)
- \(\text{(FTC1) } \text{Given } f \in L^1(\mathbb{R}^d), \text{ define } F(x) = \int_{[-\alpha, \alpha]} f \, dm. \text{ Then } F \text{ is CTS and } \frac{F(x + r) - F(x)}{r} \to f(x) \text{ at each lebesgue point.} \)
6.3 Monotone Functions p36

For $F: \mathbb{R} \to \mathbb{R}$ increasing:

- $F_-(x) = \lim_{y \to x^-} F(y)$
- $F_+(x) = \lim_{y \to x^+} F(y)$
- F_\pm are increasing, $F_-(x) \leq F(x) \leq F_+(x)$.
- $F(x)$ left(right) CTS at x if $F(x) = F_-(x)(F(x) = F_+(x))$

lem: The number of points in which monotone F is discontinuous is countable.

Jumps

- $\gamma: \mathbb{R} \to [0, \infty)$ s.t. $\sum_{\mathbb{R}} \gamma(x) < \infty (\iff \#(\mathbb{R}) < \infty)$
- Def $A_\gamma = \{x : \gamma(x) > 0\}$ (Countable by HW1Q1).
- For $\theta: A_\gamma \to [0, 1]$ Def
 \[
 J_{\gamma, \theta}(x) = \begin{cases}
 \#_\gamma(-\infty, x) = \#_\gamma(-\infty, x) & x \notin A_\gamma \\
 \#_\gamma(-\infty, x) + \theta(x)\gamma(x) & x \in A_\gamma
 \end{cases}
 \]
- $(J_{\gamma, \theta})_0 = J_{\gamma, 0}, (J_{\gamma, \theta})_+ = J_{\gamma, 1}$
- Discontinuity of $J_{\gamma, \theta} \iff x \in A_\gamma$
- $(J_{\gamma, \theta})'(x) = 0$ for all $x \notin A_\gamma$.
- For $F: \mathbb{R} \to \mathbb{R}$ increasing and bounded, let $\gamma = F_+ - F_-, \theta = (F - F_-)/\gamma$ then:
 - $\#(\mathbb{R}) < \infty$
 - $F = J_{\gamma, \theta} + F_c$, F_c-CTS, increasing.

Theorem 18. Differentiability of increasing

- F CTS increasing, then differentiable a.e.
- F bounded and increasing(or decreasing), then differentiable a.e.

Dini Derivatives:

- $D^+ F(x) = \limsup_{h \to 0^+} \frac{F(x+h) - F(x)}{h}$
- $D^+ F(x) = \liminf_{h \to 0^+} \frac{F(x+h) - F(x)}{h}$
- $D^- F(x) = \limsup_{h \to 0^-} \frac{F(x+h) - F(x)}{h}$
- $D^- F(x) = \liminf_{h \to 0^-} \frac{F(x+h) - F(x)}{h}$
- When $F(x)$ increasing - all are non negative
- When $F(x)$ increasing - all are finite almost everywhere
- $F(x)$ diff at $x \iff$ all the Dini’s exists and positive.

Theorem 19. Total variation

- $H: \mathbb{R} \rightarrow \mathbb{R}$, Def $|H|_{TV} = \sup_{0 \leq x_1 \leq \ldots \leq x_n} \sum_1^n |H(x_j) - H(x_{j-1})|$.
- $BV = \{H : \|H\|_{TV} < \infty\}$, Norm on $BV\\setminus\{\text{constants}\}$.
- $H \in BV \iff H = F^{\text{bdd+increasing}} + G^{\text{bdd+decreasing}}$. In such case $|H|_{TV} = \|F\|_{TV} + \|G\|_{TV} \iff F(x) = \text{const} + \sup_{0 \leq x_1 \leq \ldots \leq x_n} \sum_1^n \max(H(x_j) - H(x_{j-1})), 0$
- $H \in BV \Rightarrow H$ diff’ almost everywhere, $H' \in \mathcal{L}^1(\mathbb{R}, m), |H'|_1 \leq |H|_{TV}$
Theorem 20. FTC2

- \(F : [a, b] \to \mathbb{R} \), increasing, then \(F' \) defined a.e. and \(\int_a^b F' dm \leq F(b) - F(a), \ F' \in L^1([a, b], m) \).
- \(F \) bdd and inc. on \(\mathbb{R} \Rightarrow F' \in L^1(\mathbb{R}, m) \)
- Def: \(H : [a, b] \to \mathbb{R} \) is Lipshitz CTS if \(|H(x) - H(y)| \leq M |x - y| \).
- Lipshitz CTS \(\Rightarrow H \in BV([a, b]), \text{ diff a.e. and } \int_a^b H' dm = H(b) - H(a) \).
- A function \(F : \mathbb{R} \to \mathbb{R} \) is absolutely CTS if for \(\epsilon > 0 \), \(\exists \delta > 0 \) s.t. \(\sum_{i=1}^n |F(b_i) - F(a_i)| \leq \epsilon \) for any disjoint \((a_1, b_1), \ldots, (a_n, b_n) \) of total length \(\leq \delta \).
- \(f \in L^1 \Rightarrow F(x) = \int_a^x f dm \) is abs.CTS.

Lipschiz \(\Rightarrow \) abs.CTS \(\Rightarrow \) unif.CTS.

- \(F \) abs.CTS at \([a, b] \Rightarrow F \in BV([a, b]) \Rightarrow \) diff. a.e.
- \(F \) abs.CTS \(\Rightarrow F(x) = F(a) + \int_a^x F' dm \).
- abs.CTS functions form a vector space. This is Additive.
- \(F : [a, b] \to \mathbb{R} \) diff everywhere, \(F' \in L^1 \) then \(F(b) - F(a) = \int_a^b F' \).

Decomposition of functions

- \(F : [a, b] \to \mathbb{R} \) increasing, then \(F = J_{\gamma, \theta} + \int_a^b F' dm + F_{sc} \).

Outer/Weak/pre measure

- Outer Measure is \(\mu^* : 2^X \to [0, +\infty] \) s.t. \(\mu^*(\emptyset) = 0, \mu^*(E) \leq \mu^*(F) \) for \(E \subset F, \mu^*(\cup E_n) \leq \sum \mu^*(E_n) \).
- Weak premeasure consists \(B_0 \subset 2^X, \mu_0 : B_0 \to [0, +\infty] \) s.t. \(\emptyset \in B_0, \exists E_1, E_2, \ldots \in B_0 \) s.t. \(\cup E_n = X \) (Sequential Covering).
- Define \(\mu^*(E) = \inf_{E \subset \cup E_n, E_n \in B_0} \sum \mu_0(E_n) \Rightarrow \mu^* \) is an outer measure.
- Given outer measure, Define \(B_{car} = \{ E \subset X : \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E), \forall A \subset X \} = \{ E \subset X : \mu^*(A) \geq \mu^*(A \cap E) + \mu^*(A \setminus E), \forall A \subset X \} \).
- Caratheodory's thm: \(B_{car} \) is a \(\sigma-\)alg, and \(\mu = \mu^*|_{B_{car}} \) is a complete measure.
- For \(\mu^* = m^*, B_{car} = L \).
- Standard pre-measure is a weak pre-measure with \(B_0 \) boolean-alg, \(\mu(\emptyset) = 0, E_1, E_2, \ldots \) disjoint \(\in B_0 \cap \cup E_n \in B_0 \Rightarrow \mu(\cup E_n) = \sum \mu(E_n) \).
- Hahn-Kolmogorov extension thm \(\mu_0 \text{ std.pre-meas } \Rightarrow B_0 \subset B_{car} \) induced by the outer measure and \(\mu|_{B_0} = \mu_0 \).

Lebesgue-Stieltjes:

- Given and increasing \(F : \mathbb{R} \to \mathbb{R} \) define \([a, b]^F = F(b) - F(a), [a, b]^F = F_-(b) - F_-(a), [a, b]^F = F_+(b) - F_+(a), [a, b]^F = F_+(b) - F_-(a), [a, b]^F = F_-(a) - F_-(a) \). Denote \(B_{\#} \) all disjoint unions of intervals and \(\mu_0(\cup \# I_i) = \sum |I_i|^F \). Then \(\mu_0 \) is a std.pre-measure inducing a (complete) Lebesgue-Stieltjes measure \(\mu_F \) on \(B_{car} \) containing Borel-alg.
- \(\mu_F \) is a unique measure on Borel-alg agreeing with \(| \cdot |_F \).
- \(\mu \text{ finite measure on Borel algebra on } \mathbb{R}, \mu = \mu_F \text{ for } F(x) = \mu([-\infty, x]) \).
- \(F \) increasing \(\Rightarrow (F_+)_+ = (F_-)_- = F_+(F_-) = F_-(F_+) = \mu_F = \mu_{F_+} = \mu_{F_-} \).
- Bijection \(\{ F \text{ right CTS, increasing on } \mathbb{R}, F(\infty) = 1, F(-\infty) = 0 \} \leftrightarrow \{ \text{Borel probability meas} \} \).
• $F = F_1 + \ldots + F_n \Rightarrow \mu_{F_1} + \ldots + \mu_{F_n}$ also for countable.

• $\mu_{\gamma} = \# \gamma$

• F abs.CTS $\Rightarrow \mu_F(E) = \int_E F' dm \Rightarrow \mu_F = m_F \Rightarrow \int h d\mu_F = \int h F' dm$.

• **canton measure** F extended canton function, K - closed cantor set, $\mu_F(\mathbb{R}\setminus K) = 0, \mu(K) = 1$.

• F non const, increasing, $F' = 0$ a.e. $\Rightarrow \exists$ borel set E with $m(E) = 0, \mu_F(\mathbb{R}\setminus E) = 0$.

Product Measure

• For $(X, B_X, \mu_X), (Y, B_Y, \mu_Y) : R$ - measurable rectangles, $B_0 = \{0, \infty\}, \mu_0(E_1 \times F_1 \cup \ldots \cup E_n \times F_n) = \sum \mu_X(E_i) \mu_Y(F_i)$ is a std.premeasure. Get complete measure $\mu_X \times \mu_Y$ on $B_X \times B_Y$. Denote $\mu_X \times \mu_Y = \mu_X \times \mu_Y$ on $B_X \times B_Y$.

• **Slices** for $E \subset X \times Y, E_x = \{y : (x, y) \in E\}$. Same for E^y.

• **Tonelli’s Thm:**
 1. $e \in B_X \times B_Y \Rightarrow E_x \in B_Y \forall x, E^y \in B_X \forall y$.
 2. $\mu_X, \mu_Y \sigma$-finite, $E \in B_X \times B_Y \Rightarrow x \Rightarrow \mu_Y(E_x) \text{ measurable and } (\mu_X \times \mu_Y)(E) = \int \mu_Y(E_x) d\mu_X(x)$
 3. Further μ_Y - complete, $E \in \mathcal{B}_X \times B_Y \Rightarrow (\mu_X \times \mu_Y)(E) = \int \mu_Y(E_x) d\mu_X(x)$

• **Tonelli for functions** $\mu_X, \mu_Y \sigma$-finite + complete, $f : X \times Y \rightarrow [0, \infty]$ $\mu_X \times \mu_Y$ measurable, then:

 1. $y \Rightarrow f(x, y)$ is measurable a.e. x. (Same for y).
 2. $x \Rightarrow \int f(x, y) d\mu_Y(y)$ is measurable (Same for y).
 3. $\int_{X \times Y} f(x, y) d\mu_X \times \mu_Y = \int_X \left(\int f(x, y) d\mu_Y \right) d\mu_X$ (Same for the other way).

 4. **Fubiny**: Denote L' as C-valued abs-int functions. So, also, if $f \in L'$ then $1. \in L'(Y)$ a.e x and $2. \in L'(X)$ a.e. y (and reverses). and the above holds.

• Define $T_k(f)(y) = \int k(x, y) f(x) dm(x), T_h(f) = f(x - h)$, for k meas in the product $(X, \mu) \times (Y, \nu)$, So:

 1. $\int |k| dm < C \text{ a.e. } y, f \in L^p \Rightarrow T(f)$ defined a.e. y and $\|T(f)\|_1 \leq C^{1/p} \|f\|_p$.
 2. **Schur’s test**: $\int |k| dm < C \text{ a.e. } y, \int |k| dw < C \text{ a.e. } x, f \in L^p, 1 \leq p < \infty \Rightarrow T(f)$ defined a.e. y and $\|T(f)\|_p \leq C \|f\|_p$.

Fourier - complex course

• For $f : \mathbb{R} \rightarrow \mathbb{C}$ we define $\hat{f}(\zeta) = \int_{\mathbb{R}} f(x) e^{-2\pi i x \zeta} dx, \zeta \in \mathbb{R}$.

• Necessary condition for existance: $\int_{\mathbb{R}} |f| < \infty$.

Fourier

Definition 29. Fourier Transform f int’ on $\mathbb{R}^d, \hat{f}(t) := \int f(x) e^{-2\pi i t \cdot x} dm(x) : \mathbb{R}^d \rightarrow \mathbb{C}$

properties:

• \hat{f} is CTS.

• $\hat{f}(t) = \int f(x) e^{-2\pi i t \cdot x} dm(x)$

• For $f \in L^1$:

 $- T_h f = e^{-2\pi i h \cdot t} \hat{f}$

 $- e^{-2\pi i h \cdot t} f = T_h \hat{f}$

 $- \hat{f} = R \hat{f}$

• $1 \leq p \leq \infty, 1 = \frac{1}{p} + \frac{1}{q}, f \in L^p, g \in L^q \Rightarrow T_h(f \ast g) = (T_h f) \ast g = f \ast (T_h g)$
Fourier in

Fourier Operator

Hausdorff Measure
• **Def** a weak premeasure \((h_{d,r})_0 : \{\emptyset\} \cup \{B(x, \rho) : x \in \mathbb{R}^n, \rho \in [0,r]\}\) \(\rightarrow [0, \infty]\), \((h_{d,r})_0(B(x, \rho)) = \rho^d\). Derive an outer measure \(h_{d,r}^*\).

• Define **Hausdorff outer measure** \((\mathcal{H}^d)^0 = \lim_{r \rightarrow 0^+} h_{d,r}^*\). Obtain a borel measure \(\mathcal{H}^d\).

• \(\mathcal{H}^d\) is a borel measure.

• For \(d_1 < d_2\), \((\mathcal{H}^{d_1})^*(E) < \infty \Rightarrow (\mathcal{H}^{d_2})^*(E) = 0\). Equivalently \((\mathcal{H}^{d_1})^*(E) > 0 \Rightarrow (\mathcal{H}^{d_2})^*(E) = \infty\).

• Define **Hausdorff dimension** as the number \(\gamma = \dim_\mathcal{H} E\) s.t. \((\mathcal{H}^d)^*(E) = 0\) for \(d > \gamma\) and \((\mathcal{H}^d)^*(E) = \infty\) for \(d < \gamma\).

• \((\mathcal{H}^1)^* = \#\).

• \((\mathcal{H}^n) = \frac{1}{m(B[0,1])} m\) (lebesgue). \(m(E) > 0 \Rightarrow \dim_\mathcal{H} E = n\).

• For \(F : [a,b] \rightarrow \mathbb{R}\) CTS+injective, \((\mathcal{H}^1)(F[a,b]) = \frac{1}{2} \|F\|_{TV}\).

7 Examples and Counter Examples

- \(\mathbb{Q}, \mathbb{R}\setminus\mathbb{Q}\)
 - "middle thirds" cantor set, and "fat" Cantor set.
- Cantor function \([0, 1] \rightarrow [0, 1]\) - CTS and increasing with \(F' = 0\) a.e. NOT abs.CTS
- \(\sqrt{x}\) is abs.CTS but not Lipschitz.
- \(r_n\) enumeration of \(\mathbb{Q} \cap [0, 1]\), so \(f(x) = \sum_{n} \frac{1}{n^2 \sqrt{|x - r_n|}}\) finite a.e.

- **TypeWriter function** \(f_n := \mathbb{1}_{[(n-2^k)/(n-2^{k+1}), (n-2^k+1)/n]}\) when we choose \(k\) to be s.t. \(2^k \leq n < 2^{k+1}\). We get a function that is one over the following: \([0,1], [0,1/2], [1/2,1], [0,1/4], [1/4,2/4], [2/4,3/4],\ldots\) Coverages to 0 in \(L_1\) and in measure, but not p.w.a.e.

- \(f_n = \mathbb{1}_{[n,n+1]}\) escape to horizontal infinity
- \(f_n = \mathbb{1}_{[1/n,2/n]}\) escape to vertical infinity
- \(f_n = 1/n\mathbb{1}_{[0,n]}\)

- \(f(x)\) is 1 on \((1,1.2),(2.01,3),(3.001,4),\ldots, 0\) on \((1.1,1),(2.201),(3.3001)\ldots\) This function is constant on \(A = f^{-1}(1)\) and \(B = f^{-1}(0)\), and CTS on \(A \cup B\) but not uniformly CTS, Since there isn’t good choice for \(\delta\).

8 QR

may2012, q 6

W.T.S that \(f_n\) converges to 0 fast in measure, (and then we are done since fast in measure implies almost unif’ implies p.w.a.e). Using chevichev:

\[
\sum_n \mu(|f_n| \geq \epsilon) \leq \sum_n \frac{\|f\|^2}{\epsilon}
\]

Since the function \(x^2\) is less than \(x\) for small positive numbers, we can leave out finitely many numbers and then loose the upper 2 to get

\[
\sum_n \mu(|f_n| \geq \epsilon) \leq \sum_n \frac{\|f\|^2}{\epsilon} = C + \sum_n \frac{\|f\|^2}{\epsilon} < \infty
\]

may2014, q 6

For \(h \in \mathbb{R}\) and \(q \in \mathbb{Q}\) define \(f_{h,q} = |f(x+h) - f(x) - q|\). This is a CTS function as well. Notice, \(f\) is diff at \(x \iff\) for any \(\epsilon\) exist \(\delta\) and \(q\) s.t. \(|h| < \delta\) implies \(f_{h,q} < \epsilon\) (since the rational are dense). Notice that we can take \(\epsilon, \delta\) to be rational as well. So, the set \(\{x \mid f_{h,q} < \epsilon\}\) is open by continuity.