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Testing Parameters in Structural Equation Modeling:
Every “One” Matters
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A problem with standard errors estimated by many structural equation modeling
programs is described. In such programs, a parameter’s standard error is sensitive
to how the model is identified (i.c., how scale is set). Alternative but equivalent
ways to identify a model may yield different standard errors, and hence different Z
tests for a parameter, even though the identifications produce the same overall
model fit. This lack of invariance due to model identification creates the possibility
that different analysts may reach different conclusions about a parameter’s signifi-
cance level even though they test equivalent models on the same data. The authors
suggest that parameters be tested for statistical significance through the likelihood
ratio test, which is invariant to the identification choice.

Structural equations modeling (SEM) is a powerful
and flexible tool for data analysis that proceeds in
roughly three stages (for introductions to SEM, see
Bollen, 1989; Hoyle, 1995). In Stage 1, the analyst
postulates a structural model, possibly with latent
variables. In Stage 2, the analyst compares the overall
fit of the model to the data. In Stage 3, the analyst
evaluates the specific parameters of the model. Prob-
lems need to be solved at each stage. For example,
when postulating the structural model, one should
consider alternative but equivalent models (e.g.,
Breckler, 1990); when testing the overall fit of the
model, one should be sensitive to issues such as
sample size and the meaning of several fit indices
(Bollen, 1989; Hu & Bentler, 1995); and when evalu-
ating the individual parameters, the scale of the input
data should be considered (i.e., the correlation matrix
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problem; see Cudeck, 1989). It is well-known that
decisions made in Stage 1 about how to identify the
model do not influence the results of Stage
2—equivalent ways to identify a model produce iden-
tical fits. What is not as well-known is that the seem-
ingly arbitrary identification decisions made in Stage
1 have important implications for the parameter tests
in Stage 3.

In this article, we show that the standard errors
estimated in many SEM programs may not be invari-
ant under equivalent ways to identify a model. Model
identification refers to the scaling restrictions imposed
on a subset of parameters to allow estimation (e.g.,
fixing a path coefficient to 1 or fixing a latent variance
to 1). As we show, a parameter’s standard error, and
hence its corresponding statistical test, can vary dra-
matically across different identifications, even though
all other indices indicate identical model fits. An
analogous observation was made in the behavioral
genetics literature by Neale and his colleagues (Neale,
Heath, Hewitt, Eaves, & Fulker, 1989; Neale &
Miller, 1997) and in the econometrics literature by
Dagenais and Dufour (1991).

In the first section of the article we illustrate this
problem with a specific example. We then clarify why
the standard errors and corresponding Z tests of most
SEM programs fail to be invariant, and we point to a
test that is invariant across different model identifica-
tions. The article presents a relatively intuitive de-
scription of the problem, designed to be accessible to
a nontechnical audience.
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Different Z Tests for Identical Models

To illustrate how the standard error and Z test of a
parameter can fluctuate as a function of equivalent
identifications, we present a simplified model from
Wheaton, Muthen, Alwin, and Summers (1977) that
has become a standard example in the SEM literature.
The observed covariance matrix is presented in Table
1; sample size N = 932.

In this simple model there are two latent variables,
each with two indicators; there are also equality con-
straints on the error variances, V(E1) = V(E3) = ¢,
and V(E2) = V(E4) = ¢,, and the loadings. The
model and data are taken from the EQS manual
(Bentler, 1995). The critical parameter for our illus-
tration is the covariance between the two latent vari-
ables (d,,). Restrictions are needed in order to set the
scale of the latent variables. The analyst may fix the
variance of each of the latent variables to a constant or
may fix indicator coefficients to a constant (by con-
vention, this constant is chosen to be 1; e.g., Bollen,
1989). We refer to such restrictions as model identi-
fications. Figures 1 and 2 illustrate the model under
two different identifications, or scale restrictions. The
model in Figure 1 forces one indicator loading to 1
within each latent variable and treats the latent vari-
ances as parameters to estimate, whereas the model in
Figure 2 forces the latent variances to 1 and treats the
indicator loadings as parameters. Except for this dif-
ference in identification, the two models are equiva-
lent, and both models produce identical fits to the
observed covariance matrix.

The two models represented in Figures 1 and 2
were estimated using the observed covariance matrix
with CALIS (SAS Institute, Inc., 1989); the parameter
estimates are presented in Table 2. Comparable re-
sults are obtained with LISREL (Joreskog & Sorbom,

Table 1

Data From Wheaton et al. (1977)

Variable (V) Vi1 V2 V3 V4
V1 11.834 0.660 0.560 0.440
V2 6.947 9.364 0.470 0.520
V3 6.819 5.091 12.532 0.670
v4 4.783 5.028 7.495 9.986

Note. Variances are shown on the diagonal, covariances in the
lower half, and correlations in the upper half (¥ = 932). Data are
from “Assessing Reliability and Stability in Panel Models,” by B.
Wheaton, B. Muthen, D. F. Alwin, & G. F. Summers, in Sociologi-
cal Metholodology (Vol. 8, pp. 84-136), by D. R. Heise (Ed.),
1977, Oxford, England: Blackwell. Copyright 1977 by Blackwell
Publishers. Reprinted with permission. (Data also presented by
Bentler, 1995.)

1989), SEPATH (StatSoft, 1997), AMOS (Arbuckle
& Wothke, 1999), EQS, and RAMONA (Browne &
Mels, 1996). Maximum-likelihood estimation was
used to compute the estimates in Table 2, but the
points made in this section also apply to other esti-
mation procedures such as generalized least squares
(GLS).

These two methods of model identification pro-
duced identical model fits. The models in Figures 1
and 2 both had a goodness-of-fit index = .998 and
x2(4, N = 932) = 2.969, p = .563. Both identifica-
tions produced the identical model-implied covari-
ance matrix. Thus, any index based on the model-
implied covariance matrix will be invariant across
these two identifications.'

There are two notable differences in the covariance
estimate between the two latent variables presented in
Table 2. One difference is the scale of the parameter.
Obviously, when the identification was implemented
by fixing the latent variances to 1 (as in Figure 2), the
covariance between the latent variables was identical
to the latent correlation. By comparison, when the
model identification was implemented by fixing an
indicator coefficient to one (as in Figure 1), then the
covariance between the two latent variables was esti-
mated. In the latter case, the standardized covariance
is identical to the correlation between the two latent
variables (as shown in Table 2). The second differ-
ence is the topic of this article. Even though both
models have identical global fits and the standardized
parameter estimates are identical, the Z tests for the
covariance between the two latent variables differ.’

! This result shows that the models under consideration
are scale invariant (Browne, 1982). Scale invariance occurs
when the model-implied covariance matrix %(8) under
parameter vector @ is related to the model-implied covari-
ance matrix 2(0*) under parameter vector 0* by the equa-
tion 2(0*) = DX(0)D’ for some symmetric matrix D and
superscript ¢ representing the transpose. Throughout this
article the matrix D is the identity matrix and the two pa-
rameter vectors @ and 0* arise from different identifications
of the same model.

2 There are other ways to identify this model, which also
lead to the identical x*(4) = 2.969. For example, take the
model in Figure 1 and interchange which path within each
latent variable is fixed to 1. That is, allow A, to be a free
parameter and fix A, to 1. Under this identification, the Z
test for the latent variable covariance ¢,, is 11.7, which
differs from the two Z tests for the same parameter reported
in Table 2 of 12.83 and 26.61.
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Figure 1. Two latent variables each with two indicators. The scale restriction is imposed in this model by fixing one indicator
path (A) to 1. The variances (var) of each latent variable as well as the covariance between them are estimated. In addition,
the model constrains the latent variances ¢, = ¢, and the error covariances 6, ,.

Although in this example the tests lead to the same
action in rejecting the null hypothesis, with such dra-
matic differences in Z tests (26.61 vs. 12.83) one can
imagine cases where two identifications can lead to
identical model fits but different conclusions about
the significance of a given parameter.

Because one model estimates “standardized” latent
variables and the other does not, this may suggest to
the reader that we have stumbled on a well-known
problem—different results can be observed depending
on whether the SEM analysis is performed on the
covariance matrix or the correlation matrix (e.g., Cu-
deck, 1989; Joreskog & Sorbom, 1989). As noted by
McDonald, Parker, and Ishizuka (1993), the issue of
model identification is related to the concept of scale
invariance, but it is not identical to it. For instance,
had the researcher supplied the observed correlation
matrix instead of the observed convariance matrix and
estimated the models in Figures 1 and 2, different Z
tests across identifications would still be observed.

However, intuition gained from the proper analysis
of correlation matrices can be applied to the present
problem. Cudeck (1989) distinguished between scale
invariant models and scale free parameters. In Cu-
deck’s terminology, a parameter is scale free if (a) the

model is scale invariant (see Footnote 1) and (b) for
all choices of matrix D the value of the parameter
remains the same. He showed that even for scale in-
variant models the standard errors for parameters that
are not scale free will be incorrect when one uses a
typical SEM program with a correlation matrix as
input. Cudeck provided an example showing that a
scale free parameter yields the same standard error
regardless of whether the standard error is computed
with the formula that corrects for the correlation ma-
trix as input or the formula that assumes the covari-
ance matrix as input (Cudeck, 1989, p. 323). His ex-
ample contained six indicators and two latent factors.
The variances of the latent variables were fixed to
1. The six indicator coefficients, the six error vari-
ances, and the covariance between the two latent vari-
ables were free parameters. The Z test for the latent
variable covariance, the only scale free parameter in
this model, was 8.32, regardless of whether or not the
standard error was corrected for entering a correlation
matrix.

We now extend Cudeck’s (1989) example. When a
different identification is used such that the latent
variances are free to vary and the indicator coeffi-
cients are fixed, the Z test for the latent variable co-
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Figure 2. Two latent variables, each with two indicators (A, and \,). The scale restriction is imposed in this model by fixing
the latent variances (var) to 1. In addition, the model constrains the error covariances 6,,. ¢ = latent covariance.

variance is 5.06. Note that the difference in Z tests
occurs on a scale free parameter even though both
model identifications yield identical x’s (7.92) and
degrees of freedom (8). Thus, the concern raised in
this article is not with which input matrix is used but
rather with how the model is identified.

The next section presents an informal, somewhat
intuitive analysis of why the standard error differs
across different identifications of a model. After pre-
senting this intuitive explanation, we recommend a

method for testing parameters that is invariant to
model identification. The article ends with a more
formal analysis of the problem and some simulation
results.

Why Does the Z Test Vary Across
Identification? An Intuitive Explanation

The reason Z tests vary across different model iden-
tifications is because the standard errors are typically

Table 2
CALIS Results From Applying the Models in Figures 1 and 2 to the Covariances in
Table 1
Model in Figure 1 Model in Figure 2

Parameter Estimate SE z Estimate SE z
Loading A\, (0.84) 294(0.84) 0.09 32.86
Loading X\, 083(0.79) 0.03 2449 246(0.79) 0.08 30.36
Latent variance ¢, = ¢,  8.65 0.53 16.43
Error variance 6, 3.53 0.27 13.23 353 027 1323
Error variance 0, 3.65 0.21 1765  3.65 0.21 17.65
Error covariance 6,, 091 0.12 745 0091 0.12 7.45
Covariance &,, 591(0.68) 046 1283 0.68(0.68) 0.03 26.61

Note.

The critical row in this table is the covariance between the two latent variables ¢,,, which have

different values for the Z test. Standardized parameter estimates appear in parentheses.
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computed using an approximation that is influenced
by how the model is identified. Intuitively, the ap-
proximation measures the curvature of the fit function
evaluated against parameter estimates (Buse, 1982;
Edwards, 1972). The fit function is the index the pro-
gram optimizes, such as the likelihood function or
GLS. The standard measure of curvature is based on
the second derivative, which is the rate of change of
the fit function given a change in the parameter of
interest, and leads to an asymptotic estimate of a pa-
rameter’s standard error (see, e.g., Bollen, 1989; Sil-
vey, 1975).

The identification of the model directly influences
this measure of curvature—different identifications
can produce different estimates of curvature. To illus-
trate, we refer to Figure 3, which plots a hypothetical
fit function against one parameter; analogous figures
appeared in Buse (1982) and in Bollen (1989). Imag-
ine that there are four ways to identify the identical
model, and each identification yields the same value
for the fit function. That is, the four fit functions attain
the same maximum height (for instance, the same x*
value) at different parameter values because the four
identifications place the parameters on different
scales. Note that the curvature at the maximum point
differs for the four identification methods. These four
fit functions would then produce four different esti-
mates of the standard error. If model identification

influences the scale of the parameter and the curvature
of the fit function in a nonlinear way, then the Z test
will differ across identical identification methods. We
show in the formal section below that the impact of
model identification can be understood through the
“Jacobian matrix”; there we see how the off-diagonal
terms of the Jacobian matrix explain the lack of iden-
tification invariance.

This intuitive analysis of the problem suggests a
solution. Rather than approximating the value of the
fit function by a measure of curvature that is sensitive
to model identification, one could evaluate the fit
function directly both when the parameter is freely
estimated (i.e., maximum height) and when the pa-
rameter is restricted to the value of the null hypoth-
esis. That is, one could estimate the model twice: once
with the parameter of interest free to vary and again
with the parameter constrained to the null value. Note
that the four identifications cross at the value of the fit
function corresponding to the null hypothesis. This
yields two values for each fit function that are the
same across identifications: the value at the null and
the maximum height. Geometrically, this vertical dif-
ference between the two model fits remains un-
changed when the parameter space is rescaled, even
though the curvature is sensitive to the particular pa-
rameterization (see Buse, 1982).

In the context of SEM, the test based on curvature

maximum height

vertical distance

null value

fit function

1

parameter

Figure 3. Hypothetical fit function with one parameter under four different model identi-
fications. The four identifications lead to the same maximum height, and they have the same
value under the null hypothesis. The identifications differ, however, in their curvature near

the maximum height.
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is the Wald test (Wald, 1943) and the difference be-
tween the two fit functions is the likelihood ratio test.
Satorra (1989) proved, among other things, that under
the null hypothesis, the Wald test is asymptotically
equivalent to the likelihood ratio test. However, it is
well-known that the Wald test is not invariant across
different model identifications, or parameterizations.
Satorra was aware of this point: “Different parameter-
izations may also lead to substantial changes on the
quality of these approximations (and note that in gen-
eral W [the Wald test] and GW [the generalized Wald
test] are not invariant under such reparameterization)”
(p. 147).

We suggest that investigators avoid the Z test
printed in most SEM outputs. Instead, we recommend
the likelihood ratio test as an alternative procedure for
testing individual parameters because it is invariant to
different methods of imposing scale restrictions for
model identification. We now turn to a discussion of
the likelihood ratio test.

Illustrating the Likelihood Ratio Test

In SEM models, the likelihood ratio test can be
implemented by taking the difference of the x? fit for
the “reduced model” and the x* fit for the “full
model,” and comparing this difference to a x> distri-
bution with degrees of freedom equal to the difference
in the number of free parameters. In the present con-
text, the full model refers to the model that allows the
parameter of interest to be estimated, and the reduced
model refers to the model that fixes the parameter of
interest to the value of the null hypothesis. Dagenais
and Dufour (1991) discussed a family of tests based
on Neyman’s C(a) test as an alternative to the likeli-
hood ratio test that is invariant to model identification
under special conditions. In this article we focus on
the likelihood ratio test because it is relatively easy for
a user to implement in current SEM programs.

We illustrate the invariance of the likelihood ratio
test by returning to the two-factor, two-indicator ex-
ample in Figures 1 and 2. Recall that both models
produced identical x* values of 2.969, yet the Z tests
for the parameter of interest ¢,,, the covariance be-
tween the two latent variables, differed across the two
identifications. If both identifications depicted in Fig-
ures 1 and 2 are reestimated as reduced models with
the value of &, fixed to zero (the value of the null
hypothesis), then both reduced models produce the
identical x2 of 343.25. Thus, the likelihood ratio test
for this example is 343.25 — 2.969 = 340.29, which

follows a x* distribution with one degree of freedom.
Recall that when there is one degree of freedom, the
square root of the x* is normally distributed; thus the
Z test corresponding to the null hypothesis test of ¢,
is 18.45 for both identifications. Neither identification
produced a Wald Z test for ¢, (see Table 2) that was
close to the Z given by the likelihood ratio test. For an
example of an empirical article using the likelihood
ratio test to evaluate individual parameters, see
Bentler and Speckart (1981).

Unfortunately, the likelihood ratio test will not
work in all cases because sometimes the reduced
model cannot be fit. One reason is that for some situ-
ations setting a parameter to zero produces estimation
problems (see Kenny’s, 1979, related discussion of
empirical underidentification). In such cases, one
could derive the error term symbolically (see Bollen,
1989, pp. 107-110 and Appendix 4B, for examples)
or use nonstandard numerical procedures (Silvey,
1975, Sections 4.7.5 and 7.4.1). These alternatives are
not easy to implement in most standard SEM pack-
ages and require additional derivation or program-
ming on the part of the user. The likelihood ratio test
should not be performed when one parameter is tested
at a boundary (such as when testing a variance at 0)
because in that situation the statistic can be distributed
as a mixture of x°s (see, e.g., Self & Liang, 1987).

We now turn to a more formal analysis of the ef-
fects of identification. The next section shows that a
Jacobian matrix can explain how identification influ-
ences the standard errors of individual parameters.

Formal Analysis

To simplify our treatment, we focus on maximum
likelihood estimation because it is widely used, but
the argument can be extended to GLS as well as
frameworks with less stringent distributional assump-
tions (see Bentler, 1995, for references). To keep the
notation simple, we do not distinguish between popu-
lation parameters and their sample estimates.

We consider two matrices. One is the covariance
matrix of parameter estimates—that is, the matrix that
has the parameter variances in the diagonal and pa-
rameter covariances in the off-diagonal. The param-
eter correlation matrices for the two identifications on
the example data appear in Table 3. Following stan-
dard theory, the parameter covariance matrix is pro-
portional to the inverse of the Hessian matrix. The
Hessian matrix has in the diagonal the second deriva-
tive of the fit function with respect to each parameter,



264 GONZALEZ AND GRIFFIN

Table 3
The Parameter Correlation Matrices for the Two
Identifications in Figures 1 and 2

Parameter 9, 9, 0, & Ay 12

Figure 1
0, — -45 22 -49 65  -31
0, — 27 31 -59 21
0,5 — -.07 01 -16
b, — -.61 .88
A, — -42
¢12 -
61 e2 912 )\1 A2 ¢12
Figure 2
0, — -45 22 -49 .35 .16
6, — 27 31 -4 -07
0,5 — =07 <05 -22
A, — 17 21
A, — 32
4’12 _

and the off-diagonal cells contain the partial deriva-
tives of all pairwise combinations of parameters. The
definition of the parameter covariance matrix appears
in many treatments of SEM (e.g., Bollen, 1989). For
an introduction to relevant theory and theorems, see
Mood (1950) or Silvey (1975); for a distinction be-
tween the observed and expected Hessian matrices,
which play an important role below, see Efron and
Hinkley (1978); and for a discussion of numerical
approximation, see Dolan and Molenaar (1991).

The second matrix that we need is the Jacobian
matrix of the mapping that converts one model iden-
tification to another. The Jacobian matrix is created
by taking the first derivative of a vector of functions
with respect to a vector of parameters. In the present
application we consider the vector of functions that
maps the parameters in one identification to corre-
sponding parameters in a different identification. For
instance, the indicator coefficient A, for the identifi-
cation given in Figure 2 is equivalent to the square
root of the variance of the latent variable &, for the
identification given in Figure 1. In addition, the co-
variance between the two latent variables in Figure 2
is identical to the standardized covariance in Figure 1,
that is,

b
¢12=;)‘1—2, (1)

where the parameter with a prime is from the identi-
fication in Figure 2 and parameters without a prime
are from the identification of Figure 1. The mapping
functions between each pair of parameters are listed in
Table 4.

The Jacobian matrix is, in this example, the 6 x 6
matrix of partial derivatives of each of the six func-
tions in Table 4 with respect to each of the six pa-
rameters. The Jacobian matrix for this example is as
follows:

1 00 0 0 0

010 0 0 0

001 0 0 0

00 0 — 0 0
2V,

000)\2\/4710
2V,

00 0 -2 —

0

¢ Vo
The ijth entry in this matrix is the partial derivative of
the ith function from Table 4 with respect to the jth
parameter. Note that the structure of the Jacobian ma-
trix does not depend on data but on the mapping that
relates the two model identifications to each other.

Let J represent the Jacobian matrix and V represent
the covariance matrix of the parameters under the
identification depicted in Figure 1 (i.e., the square
root of the diagonal of V contains the standard errors
of the parameters). The covariance matrix for the pa-

Table 4
The Mapping of Parameters From Figure 1 to the
Parameters in Figure 2

Parameter in

Figure 1 Mapping from Figure 1 to Figure 2
8, 01 =£1(81,85,815,91,02,012) = 6,
0, 03 =12(81,85.812,$,02,$1,) =0,
82 012 =/3(01,02,912,01,42,415) = 0y,
b A =£3(01,82,012,0,,05,015) = \/‘E
b2 A3 =£5(81,02,012,$1,02,415) = )\2\/&
b2 bl =16(61,02,012.01,$2,015) = b1/ by

Note. Each parameter i has a multivariate function f; that relates it
to the parameter vector in the other identification. The first column
lists the six parameters in Figure 1, and the second column gives the
mapping of the parameters from the model in Figure 1 to the pa-
rameters from the model in Figure 2.
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rameters under the identification in Figure 2 is a func-
tion of the parameter covariance matrix for the iden-
tification in Figure 1 and the Jacobian matrix:

V' =JVY, (2)

where the superscript ¢ denotes matrix transposition
and the prime denotes the new identification. The
square root of the diagonal of V” contains the standard
errors of the parameters under Figure 2, and the
square root of the diagonal of V contains the standard
errors of the parameters under Figure 1. Thus, intu-
itively, the Jacobian matrix is what relates the stan-
dard errors in one identification to the standard errors
in the other. The theory underlying Equation 2 was
reviewed in Edwards (1972) and Mood (1950). For a
more technical definition of equivalent models under
reidentification, see Luijben (1991).

Take, for instance, parameter i. If the ith row of J
contains zeros everywhere except for a constant at the
diagonal position Zi, then the Z test for parameter i will
be invariant across the two model identifications. For
example, in Table 4, the parameters 6, and 6, will
have identical Z tests across these two identifications
(as well as identical parameter estimates and standard
errors). This will be true even when the constant at
position ii is not 1 because the scaling constant will
cancel when forming the Z ratio.

However, if the ith row of J contains nonzero ele-
ments anywhere other than at position ii, then the Z
test for parameter i will not, in general, be invariant
across model identifications. For instance, let V; refer
to row i and column j of parameter covariance matrix
V (i.e., from the identification in Figure 1). The stan-
dard error of ¢,, under the identification in Figure 1
is \R’;, whereas the standard error of ¢, under the
identification in Figure 2 will be given by VV',
which can be expressed as

2 2
\/¢12V44 = 241,01 V46 + d1V66
4
ol
where &, &,, &y, and V;; refer to estimates from the
identification in Figure 1. The terms other than Vg
are introduced because of the nonzero elements in J.
Thus, the structure of the Jacobian matrix tells us
when a parameter test will be invariant across two
parameterizations and when it will not.
Note that under the null hypothesis that the popu-
lation value of ¢,, = 0, Equation 3 reduces to
Ves

—. @)
o

; &)

Thus, when the terms in Equation 3 that go to zero
under the null hypothesis are manually forced to zero,
then the two identifications yield identical standard
errors (up to a scaling constant that cancels when
constructing the ratio for the Z test). Most SEM pro-
grams do not force each parameter to the value of the
null hypothesis when computing the standard errors.
This means that off-diagonal terms in the Jacobian
matrix could influence the standard error and the Z
test. The likelihood ratio test is invariant because it
compares the model fit when the parameter is free to
the model fit when the parameter is restricted to the
value of the null hypothesis. This forces all “identifi-
cation relevant” terms (up to scaling constants) to
drop out of the standard error, making the likelihood
test invariant to model identification.

The observation that manually forcing the param-
eter to the value of the null hypothesis yields tests that
are invariant to identification is important for another
reason. The asymptotic result for the symbolic defi-
nition of the standard error is based on the expected
Hessian matrix (recall that the inverse of the Hessian
matrix is the parameter covariance matrix V). Thus,
when distributional assumptions hold, the null hy-
pothesis is true, and sample size is large, the asymp-
totic result leads to the theoretical standard error. If
sample size is small, then observed parameter esti-
mates and their covariances may not necessarily can-
cel out. For example, in Equation 3 if the null hypoth-
esis that in the population ¢3, = 0 is true, then as
sample size increased, the sample standard error
would approach Equation 4 regardless of the model
identification that was used.

Simulation Analysis

In their 1982 study, de Pijper and Saris conducted
a simulation to study the issue of model identification
in a one-factor model with four indicators (see Figure
4). Using LISREL, they compared three models that
differed in their identification—fixing the latent vari-
ance to 1, fixing A, to 1, and fixing A, to 1. We
replicated their simulation using their population pa-
rameters (N = 1,000) and estimated the model under
four different identifications.

Table 5 presents the popuiation values and maxi-
mum-likelihood parameter estimates for one sample
of N = 1,000 under four different identifications:
fixing the latent variance &, = 1 or fixing any one of
three indicator coefficients. The effects on the stan-
dard errors and Z tests of ¢, and A\, (the fourth indi-
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Figure 4. The one-factor model fit by de Pijper and Saris (1982). var = variance; 8 = error
variance; A = indicator value; ¢ = latent covariance.

cator coefficient) are also presented. This allows one
indicator A, to remain a free parameter across the four
example identifications. We verify what de Pijper and
Saris (1982) observed in their simulation: Z tests can
vary across different identifications even though the
models have identical fits. Note that identification
even influences the indicator coefficient \,, which is
a free parameter in each of the four identifications.
The likelihood ratio test for A, is 15.99 and is identical
across the four identifications. The likelihood ratio
test for ¢, in the three models in which it is a free
parameter is 37.39, but this test should be interpreted
with caution because the likelihood ratio test is not
necessarily distributed as a simple x> when a param-
eter is tested at the boundary (e.g., a variance tested at

Table 5

0 is at a boundary because variances cannot be nega-
tive; see Self & Liang, 1987).

Our previous analysis in terms of the Jacobian ma-
trix extends the results of the simulation. Arbitrarily
taking the model identification that fixes the latent
variance ¢, = 1 as the reference, the mapping of
these parameters to the parameters from the identifi-
cation that fixes one of the indicator coefficients \; =
1 and frees the latent variance ¢, involves the follow-
ing three sets of functions: (a) dividing each of the As
in the reference identification by \; (b) dividing the
latent variance ¢, from the reference identification by
A?; and (c) leaving the error variances, the 0s, un-
changed. For example, using primers to denote the
parameter values under the new identification and

Hlustration of the One-Factor Model Simulated by de Pijper and Saris (1982): Maximum

Likelihood Parameter Estimates

Population

Parameter value Model 1 Model 2 Model 3 Model 4
A\ 0.9 0.921 (0.028) Fixed to 1 1.501 (0.077) 1.125(0.044)
A, 0.6 0.613 (0.031) 0.666 (0.034) Fixed to 1 0.749 (0.039)
Ay 0.8 0.819 (0.029) 0.888 (0.035) 1.335 (0.069) Fixed to 1
A,y 0.5 0.512 (0.032) 0.555(0.035) 0.834 (0.061) 0.625 (0.040)
¢ 1 Fixed to 1 0.848 0.376 0.670
Z test for A, 16.16 15.89 13.75 15.79
Z test for ¢ NA 16.23 9.98 14.03
Note. The model is described in Figure 4; maximum likelihood estimates were computed from one

sample with N = 1,000. The population error variances for the four indicators were .19, .64, .36, and .75,
respectively. The Z tests for the error variances were invariant across these four identifications and are
not presented in this table. Standard errors appear in parentheses. NA = not applicable.
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choosing to fix the indicator coefficient A, for indi-
cator X, the vector of mapping functions is A] = 1,
IV W) WD VAESD W) Wb VAESI W) IR Y S 1
= 0, 0, = 0, 6, = 6,, 8; = 0,. The Jacobian
matrix of this vector is a 9 x 9 matrix of partial de-
rivatives of each of the mapping functions with re-
spect to each of the parameters in the reference iden-
tification. The effect on the standard errors of this new
identification is completely determined by this Jaco-
bian matrix.

Conclusions

Testing the individual parameters of a model
should be routine in SEM.> As Bollen (1989) and
others have argued, the assessment of a structural
equation model should not stop with global indicators
such as goodness of fit, but an analyst should also
examine the parameter estimates, test each parameter
for statistical significance, and evaluate parameter es-
timates against theoretical predictions or make com-
parisons across models.

The goal of this article was to heighten awareness
that the Z test printed in the output of most SEM
programs is not invariant to how the model was iden-
tified. We showed by example that a parameter’s stan-
dard error, and hence its significance test, can be sen-
sitive to the arbitrary choice of identification. This
lack of identification invariance is another example of
what is a growing list of problems associated with the
usual SEM standard error and Wald test. Previous
problems that have been discussed in the literature
include the effect of small samples, nonnormal data,
the scale of the input matrix, and nonmonotonic
power functions (e.g., Chou & Bentler, 1990; Chou,
Bentler, & Satorra, 1991; Cudeck, 1989; McDonald et
al., 1993; Stone & Sobel, 1990). Together these re-
sults should lead SEM users to exercise caution when
interpreting the statistical significance of a parameter.

The lack of invariance in the Wald test should not
be interpreted as a reason to avoid using SEM. The
Wald test’s lack of invariance due to scale transfor-
mation (which is what identification in the context of
SEM involves) is well-known and creates analogous
problems in other areas of statistics (e.g., Dagenais &
Dufour, 1991). Fortunately, for many structural equa-
tion models there is a way to test parameters in a
manner that is invariant to the kind of model identi-
fication discussed here: the likelihood ratio test. Put
simply, the likelihood ratio test proceeds as follows:
(a) estimate the x* for the full model with all param-

eters free, (b) estimate the x? for the reduced model
with all parameters free except that the parameter of
interest is set to the value of the null hypothesis, and
finally (c) test the difference in the x2 tests. The like-
lihood ratio test is quite flexible in that it can also be
used to test multiple constraints simultaneously, and
when a sequence of likelihood ratio tests is conducted
on a sequence of nested models, the tests are asymp-
totically independent (Steiger, Shapiro, & Browne,
1985).

Although performing likelihood ratio tests is cur-
rently cumbersome for the user, we hope that SEM
software will soon provide parameter tests that are
invariant to model identification. In the meantime,
users may want to perform likelihood ratio tests
manually on parameters that are most central to their
research rather than rely on the Z tests that appear in
the output. The parameters that are most susceptible
to the problem addressed in this article are covari-
ances between latent variables and paths from one
latent variable to another. Such parameters are usually
of theoretical interest. The user should be aware that
the measurement portion of the model (e.g., which
indicator sets the scale of the latent variable) could
have an impact on a parameter’s standard error else-
where in the model (e.g., the standard error of the
path between the latent variable and a second latent
variable).

One alternative that may occur to the reader is that
one may perform a sensitivity analysis in the sense of
trying different identifications to examine the effects
of model identification on a parameter’s significance
test. If the test of the parameter is relatively insensi-
tive to different parameterizations, then one may feel
comfortable about interpreting the results of the Wald
test. However, note that once the reader accepts the
logic of fitting multiple models to test one parameter,
then he or she might as well just perform the likeli-
hood ratio test (which requires one additional model
fit per parameter once the full model is fitted).

A large sample size is one way to reduce the in-
variance problem. However, it should be kept in mind
that “large” usually means greater than N = 500 for

3 We believe that a confidence interval approach may
have more utility in scientific study. We chose to discuss
hypothesis testing in this article because it is commonly
used. The analogous invariance problem is also present for
confidence intervals. An attempt to solve the identification
problem, and also permit asymmetric confidence intervals,
was made by Neale and Miller (1997).
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relatively simple models. This sample size heuristic is
for the case when the distributional assumptions hold,
the null hypothesis is true, and the model has 15 or so
free parameters. Even larger sample sizes may be re-
quired to bypass the lack of identification invariance
when distributional assumptions do not hold or the
model contains many free parameters. Rather than
worrying about whether one’s sample size is large
enough to avoid the invariance problem given the
details of one’s model and data, we recommend the
likelihood ratio test because it will always yield the
identical result across identical identifications regard-
less of sample size.

Unfortunately, the likelihood ratio test cannot be
computed in all cases because sometimes setting a
parameter to zero can create a new problem such as
empirical underidentification or require testing a pa-
rameter at its boundary. There are complicated op-
tions in these cases: One can derive standard errors
manually, or one can use nonstandard numerical al-
gorithms. These options are not straightforward to
implement. Additional research is needed to find
identification invariant Z tests for such cases, and
these new methods should be implemented in stan-
dard software packages so that they are readily acces-
sible to researchers.
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