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Comparison of Common Amplitude Metrics in Event-Related
Potential Analysis

Karen Nielsen and Richard Gonzalez

University of Michigan

ABSTRACT
Waveform data resulting from time-intensive longitudinal designs require careful treatment.
In particular, the statistical properties of summary metrics in this area are crucial. We draw
on event-related potential (ERP) studies, a field with a relatively long history of collecting
and analyzing such data, to illustrate our points. In particular, three summary measures for a
component in the average ERP waveform feature prominently in the literature: the max-
imum (or peak amplitude), the average (or mean amplitude) and a combination (or adaptive
mean). We discuss the methodological divide associated with these summary measures.
Through both analytic work and simulation study, we explore the properties (e.g., Type I
and Type II errors) of these competing metrics for assessing the amplitude of an ERP com-
ponent across experimental conditions. The theoretical and simulation-based arguments in
this article illustrate how design (e.g., number of trials per condition) and analytic (e.g., win-
dow location) choices affect the behavior of these amplitude summary measures in statis-
tical tests and highlight the need for transparency in reporting the analytic steps taken.
There is an increased need for analytic tools for waveform data. As new analytic methods
are developed to address these time-intensive longitudinal data, careful treatment of the
statistical properties of summary metrics used for null hypothesis testing is crucial.

KEYWORDS
Time series analysis;
intensive longitudinal data;
power; Type I error control;
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Introduction

This article focuses on a specific analytic protocol for
commonly-used metrics in event-related potential
(ERP) studies as an example of how a combination of
analytic work and simulation study can uncover short-
comings of existing methods for time-intensive longi-
tudinal data and drive the development of new
methods. ERP studies are a prominent fixture in the
psychophysiological literature. An ERP is a brain
response to a time-locked stimulus or response. These
brain responses are commonly measured using elec-
troencephalography (EEG) scalp electrodes to capture
voltage fluctuations at a high sampling rate while a
research participant is engaged in a study task.
Typically, the reported voltage is relative to another
recording site on the scalp. Physiologically, changes in
the voltage at the scalp are a result of the aggregation
of many neurons firing (Buzs�aki, Anastassiou, &
Koch, 2012). For this reason, the underlying ERP
waveform is anticipated to be a smooth progression of
positive and negative voltage deflections. These shapes
indicate underlying components, such as the P300

that denotes a positive deflection near 300ms. Figure
1 (created using code from Helwig (2015)) shows the
first 500ms of a prototypical ERP waveform with
three commonly studied components.

Given the anticipated hill shape of the components,
a key element of ERP data analysis is the amplitude of
each component. We focus exclusively on a popular
technique described in detail by Luck (2014) and
implemented in the MATLAB ERPLAB toolbox
(Lopez-Calderon & Luck, 2014). The steps for this
technique are outlined later in this article. Other
approaches exist to answer slightly different research
questions: for example, independent component ana-
lysis (ICA) decomposes the signal into several wave-
forms representing components (Makeig, Bell, Jung, &
Sejnowski, 1996). It can be used to smooth data, such
as for artifact correction. ICA is thus a more data-
driven approach that allows for exploratoration, com-
pared to the confirmatory technique detailed here.

ERP researchers use different methods to quantify
and assess amplitude as well as for aggregating those
amplitude metrics over trials. We begin by
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highlighting two summary metrics commonly used to
quantify the amplitude of a component. One metric
takes the average voltage in a prespecified window
around a hypothesized component, while the other
takes the peak, or maximum, voltage within a win-
dow. These summary measures can be considered spe-
cial cases of a more general weighted average.

There does not appear to be an established stand-
ard for the definition of amplitude within the larger
body of ERP researchers publishing in major journals.
For example, of the 49 articles using ERP data pub-
lished in the journal Psychophysiology in 2014 (some
of which contained multiple studies and may be
counted more than once here), 37 define amplitude as
the average voltage in a prespecified window, 11
define amplitude as the maximum voltage in the win-
dow, and 5 use a combination such as the average
near a local maximum, which is again a special case
of a weighted average.

Several ERP analysis guides (Cohen, 2014; Dien &
Santuzzi, 2004; Donchin & Heffley, 1978; Duncan
et al., 2009; Keil et al., 2014; Luck, 2005, 2014;
Murray, Brunet, & Michel, 2008; Picton et al., 2000)
provide best practices for these summary metrics.
Occasionally, recommendations are discussed in terms
of potential impact on analysis (such as bias), but
these guides typically do not include relevant theoret-
ical background nor give much by way of boundary
conditions of when to expect similarities and differen-
ces between these measures. Additionally, the recom-
mendations do not cover the effects of the summary
metric choice on statistical analyses such as Type I
error rate and statistical power. In this article, we
explore these aspects of each summary metric and
focus on the common analytic approach used in the
existing literature. To highlight the issues surrounding
the choice of amplitude metric we do not consider

other modeling details such as the error structure of
the time series, nonparametric approaches, preprocess-
ing and artifact detection issues, filtering, and data
smoothing methods. We will also discuss the issue of
aggregating curves across multiple trials and/or across
multiple participants.

Several elements make it worthwhile to study the
relative properties of these amplitude measures.
Extreme value theory, a branch of statistics dealing
with order statistics and extreme values, suggests con-
cern about the use of a local maximum in a context
where the average is otherwise appropriate. The max-
imum has been well-studied in the statistics literature
(see, e.g., David & Nagaraja, 1970) and is known to
have different distributional properties from the aver-
age, which has distributional properties that follow
from the central limit theorem. Sometimes new meas-
ures, such as hybrids of the maximum and average,
are proposed in the applied literature without suffi-
cient theoretical justification nor evidence that the
new measures exhibit desirable error rates and
statistical power.

Clayson, Baldwin, and Larson (2013) review
research comparing summary measures of amplitude
as well as provide simulations under various noise
conditions to evaluate their bias and variance proper-
ties. Their overall recommendation is that the max-
imum should be avoided in favor of an average. Their
simulations, however, focus on estimation from a sin-
gle subject fixed at 30 trials. The present article
extends the work of Clayson et al. (2013) in several
ways. In order to gain deeper understanding of the
role of bias, variance, and other properties it is neces-
sary to vary the number of trials. While Clayson et al.
(2013) evaluates metrics by assessing their bias in par-
ameter recovery, we focus on biases in null hypothesis
testing. We also go beyond single-subject properties to
make use of fundamental results in mathematical sta-
tistics to evaluate the differences and similarities
between these estimators of amplitude. Further, ana-
lysis of ERP data frequently involves multiple subjects
across two or more conditions so statistical tests such
as analysis of variance (ANOVA) are conducted to
test condition differences. We evaluate the perform-
ance of these amplitude summary measures with
respect to their Type I error and statistical power
across several settings. This approach reveals that
there are cases where the maximum outperforms
the average.

We begin by describing how ERP data are typically
analyzed. We then give an illustrative example of a
case when test results in the context of a paired t-test

Figure 1. ERP waveform with three common components: N1,
P2, and P300.
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across subjects for the maximum and average do not
agree. This example will serve as the motivation for
the remaining sections, where we explore distribu-
tional theory and use simulations to determine how
related decisions interact with the summary measure
to impact results and interpretations. We conclude
with an overview of the findings and discuss newer
modeling approaches that may circumvent some of
the issues uncovered in this article.

Analysis of ERP data

We first outline how ERPs are traditionally generated,
collected, and analyzed. This outline has been adapted
from several manuals, including ERPLAB (Lopez-
Calderon & Luck, 2014), Cohen (2014), Keil et al.
(2014), and Luck (2014), to reflect the standard
accepted pipeline for ERP analysis. We will use this
protocol throughout the remainder of this article.

1. Collect data in a continuous stream using EEG,
coding the time of stimulus onset for each trial,
the trial condition, electrode, and any other
important events such as correct or incorrect
response and response onset.

2. Clean data:
a. Filter data to remove long-term trends or

drift (for more information on filters, see
Cook & Miller, 1992).

b. Remove or correct artifacts (such as eye
blinks, sneezes, coughs, etc.) using, for
example, regression or ICA (see Keil et al.,
2014, p. 6, for a full list and references).

c. Re-reference data (optional). Standard refer-
ences are a mastoid or the average of all sen-
sors. The choice of reference electrode can be
impactful (Dien, 1998), but can be leveraged
to explore spatial relationships (Joyce &
Rossion, 2005).

d. Epoch the continuous data to create single-
trial EEG segments (e.g., from �200 to
þ800ms relative to stimulus onset).

e. Baseline each trial so that reported voltages
are relative to voltages prior to the key stimu-
lus or response onset.

3. Average the single-trial EEG epochs (by taking
the average at each time point) to create single-
subject averaged ERP (AERP) waveforms for each
condition of interest. Typically, each channel is
treated separately. To avoid confusion with the
averaging done in the next step, we refer to the
waveform that results from this step as the AERP,

in keeping with McGillem and Aunon (1987).
Averaging is done here to gain a higher signal-to-
noise ratio, by averaging out the variability of
individual trials (Cohen, 2014).
a. Some researchers take difference waves to

compare two conditions (see, e.g., Kutas &
Hillyard, 1980).

b. Low-pass filters may be applied here. Low-
pass filters attenuate high-frequency signals
in order to increase the signal-to-noise ratio,
in much the same way that averaging over
trials smooths out the waveform.

4. Using a prespecified window to isolate the com-
ponent of interest, calculate the summary measure
(such as maximum or average) for each condi-
tion-level AERP for each individual. Thus, each
subject is typically assigned a single-value sum-
mary measure for each condition-level AERP.

5. Perform an ANOVA for group-level analysis; this
could be a between-subjects, within-subjects or
mixed ANOVA depending on experimen-
tal design.
a. Corrections such as Greenhouse-Geisser may

be used for omnibus tests in the case of
within-subjects analyses depending on
assumptions made about the error covariance
matrix (Jennings, 1987).

In this article, we focus on Steps 3, 4, and 5 to
examine how use of the maximum or the average as a
summary statistic of the AERP influences the statis-
tical properties of hypothesis testing in Step 5. Thus,
we extend the previous work of Clayson et al. (2013)
by examining the effect on hypothesis testing and
coverage probability. One of the most common tools
for processing and analyzing ERP data is a MATLAB
toolbox called ERPLAB (Lopez-Calderon & Luck,
2014). ERPLAB implements initial processing steps
such as computing the AERP (Step 3) and summary
measures (Step 4). Statistical analyses (Step 5) are
completed in a separate statistical software of the
user’s choosing. Luck (2014) argues that the order of
operations will not impact final results, so we also dis-
cuss whether the underlying distributions are invariant
to reordering—particularly, of Steps 3 and 4.

Comparison of metrics: an example

To illustrate the potential differences in results based
on either the maximum or the average, we examine a
single component on a single channel in an ERP
study. Reproducible code is available (Nielsen &
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Gonzalez, 2019). We selected data from a publicly-
available data set described by Zhang, Begleiter,
Porjesz, and Litke (1997). The original study focused
on ERP responses to paired images displayed in
sequence that either matched or did not match. We
retain the 42 control participants who provided com-
plete ERP recordings following two task conditions—
S1, in which the first picture is displayed on a com-
puter screen, and S2 non-match (referred to here as
simply “S2”), in which the second picture is displayed
and does not match the first image. Time zero in each
ERP recording corresponds to the beginning of the
300-ms image presentation and the next image does
not appear until after the ERP recording ends. As a
result of the study design, the S1 condition is more
common (12–56 trials per person, mean ¼ 44.0 trials)
and S2 more rare (10–30 trials per person, mean ¼
21.83 trials). The unequal number of trials in the two
conditions turns out to be critical as we will show.
The data has been baselined and referenced to Cz
after being recorded with a bandpass filter between
0.02 and 50Hz, and we do not conduct any additional
filtering. We assume that all trials containing artifacts
have been removed in the publicly-available data. We
elected to study a positive component near 250ms
using a window from 200 to 300ms and the Cpz elec-
trode for purely illustrative purposes.

A common presentation is to plot the AERP wave-
forms averaged across subjects, so that the two condi-
tions can be compared qualitatively. Figure 2 shows
the responses to the two conditions. To create this fig-
ure we followed standard procedure and first averaged
each timepoint over all trials for each condition
within person, and then averaged over people (to pro-
duce a “grand average” waveform).

Figure 2 shows differences in the two conditions
over the majority of the one-second average record-
ing, beginning at stimulus onset. In particular, the

common S1 condition has, on average, lower voltage
throughout the area of interest (near 250ms). It is dif-
ficult to tell if this difference is significant or not
because this type of plot has no representation of the
underlying trial-to-trial and across-subjects variabil-
ities. Instead, the plot shows the stability of the aver-
aged process over time. The component of interest, a
positive deflection centered near 250ms, is visible in
Figure 2. There is a potentially overlapping compo-
nent in the S1 condition, and possibly the S2 condi-
tion as well, that may be contaminating the signal,
particularly on the right side of the window.

Table 1 shows the values for the maximum and
average voltages for each condition in our window of
interest (200–300ms post-stimulus) based on grand
average AERPs in Figure 2 and highlights two import-
ant details. First, the maximum is greater than the
average within each condition. This will always be the
case because mathematically the maximum is as large
or larger than the average in any set of values. The
table also confirms what is visible in Figure 2: in the
window of interest, the rarer S2 condition has larger
amplitude than the S1 condition as measured by both
metrics. This table, like Figure 2, does not provide
information about the trial-to-trial and across-subjects
variabilities in the underlying data.

To test if the difference is statistically significant,
we can perform a paired t-test using the summary
measures. We have 2 summary measures for each of
42 participants, and thus can measure across-subjects
variability of the differences controlling for intrasub-
ject association between the two conditions and per-
form a significance test. However, we lose the ability
to isolate trial-to-trial intrasubject variability due to
the AERP in Step 3. Table 2 shows the results of the 2
paired t-tests for the maximum and average.

We can see that the maximum and average yield
different p-values and significance test results at
a ¼ :05. However, we do not know which test is cor-
rect. What are some of the contributing factors that
might lead to the disparities in these statistical tests?

First, not only will the metrics take different values,
but when viewed as random quantities, they will have
different underlying distributions. To investigate this,
we derive properties of the underlying distributions
and pairwise differences of these quantities using rea-
sonable assumptions for the ERP context. The

Figure 2. Grand average waveforms comparing experimental
conditions (N¼ 42).

Table 1. Comparison of maximum and average amplitudes
from grand-averaged waveforms (N¼ 42).

Maximum Average

S1 (common) condition 1.7149 1.1419
S2 non-match (rare) condition 2.2109 1.4883
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distributions of the two summary measures may also
be differentially influenced by noise. In the across-
subjects grand average AERPs in Figure 2, there are a
few small spikes that create local maxima outside the
window of interest. These are much more frequent,
including inside the window of interest, and dramatic
in the within-person waveforms, but they are attenu-
ated by the additional averaging step used for plotting.
The spikes, artifacts from the variability of each trial,
allow for occasional large values for the maximum.
This can have a major impact on statistical tests. To
obtain a large difference within person for the max-
ima, only one large spike in a condition’s AERP is
needed, whereas a large difference in the average
requires a more systematic difference in the two con-
ditions throughout the window of interest. Filtering
may reduce such spikes. We investigate the impact of
noise on the performance of these summary measures.

Second, there may be latency differences in the
timing of the component of interest at the individual
level. The procedure for analyzing ERP amplitudes
implicitly assumes that no latency difference exists
between conditions. A latency difference might mean
that the window location is not optimized for both
metrics. A small miscalculation on the window loca-
tion may not have a major effect on the maximum
(or adaptive mean, discussed later) because as long as
the peak of the component is in the window, these
measures will be unaffected. The average, however,
will change with small adjustments of the window.
For example, if the component is symmetric and hill-
shaped, we would want the window to be centered on
the peak to find the largest value for the average. We
can infer from Figure 2 that moving the window to
the right would result in larger values for the average
in the S1 condition, but perhaps not in the S2 condi-
tion. Also, a smaller window will yield larger values
for the average in this case, but not for the maximum.
Luck (2014) makes different recommendations for
window size based on the chosen summary metric.
He suggests using larger windows when assessing the
maximum than when assessing the average due to the
increasing risk of missing the peak amplitude with
smaller windows, with a minimum window size of
50ms for the average to ensure that high-frequency
noise is attenuated. We will explore and discuss this
rationale in more detail later in the article.

Third, the unequal trial counts in the two condi-
tions may have influenced the relative performance
and efficiency of these two summary measures. We
know that unequal sample sizes in comparison groups
can lead to misleading results if standard error calcu-
lations are not weighted properly, and small compari-
son groups can lead to the statistical test being
underpowered. In the current example, trial counts
are on average 44 per participant for the common S1
condition and less than 22 for the rarer S2 condition.
Because we compute each subject’s AERP to remove
noise, the unequal trial count may be leading to
unequal variances in the summary measures that
ultimately impact test results.

Fourth, while the single observation nearest the
time when the true maximum occurs may have nega-
tive noise, the dense sampling that is standard for
ERP research will lead to several observations being
collected near the true maximum; we can expect one
or more of these to have positive noise. The value
near the maximum with positive noise will be identi-
fied as the sample maximum—thus, the sample max-
imum can be expected to be positively biased. The
average value, however, will not be subject to
this bias.

We next review some relevant distributional theory
and then discuss the potential factors listed above
using both theory and simulation results.

Distributional theory of summary metrics

We use statistical theory to explore the asymptotic
distributions and convergence rates of the summary
metrics as they relate to ERP null hypothesis testing.
In most ERP studies, ANOVAs are used to compare
groups or conditions of interest on summary meas-
ures for each subject—such as the average or max-
imum. To simplify our analyses, we will focus on the
simple two-condition version of repeated-measures
ANOVA, the paired t-test. These tests carry several
assumptions. For example, the differences are assumed
to be normally distributed. It is not intuitively obvious
if this assumption is met when testing maxima in this
context and distribution theory can provide insight.
We also consider how variance differences between
summary metrics come about and how they will
impact statistical tests.

One assumption is necessary to simplify the explor-
ation of underlying distributions. Throughout this sec-
tion, we assume that observations in a given time
window are independent and identically distributed
(IID). While observations of an EEG recording are

Table 2. Comparison of t-tests for maximum and average
across conditions.
Test Results

Paired t-test for maximum t(41) ¼ �3.013, d ¼ �0.831, p¼ 0.004
Paired t-test for average t(41) ¼ �1.501, d ¼ �0.346, p¼ 0.141
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clearly not temporally independent, the maximum and
average do not make use of the temporal ordering of
the data so we proceed under the assumption of inde-
pendence. We assume that each time point has noise
that is produced in a consistent way, as a combination
of human physiology and the EEG equipment. Thus
the observations are treated as identically distributed.
Because to compute the AERP we first average at each
time point over all trials for a condition (we further
assume that the sampling rate is exact to simplify this
step), we invoke the central limit theorem so the ori-
ginal distribution of the individual time points does
not matter. Under the central limit theorem, each
point along the AERP is normally distributed with
variance proportional to the amount of noise present
in the data. Further, the difference of two normals is
also distributed normal, a convenient property when
constructing tests of differences between means.

In ERP studies, there are several sample size deci-
sions—each of which may impact results on top of
the choice of summary metric. The number of data
points m retained for study in a single trial is deter-
mined by the window size and the sampling rate, as
described in Equation (1).

m ¼ bðwindow duration in secondsÞ�
ðsampling rate in HzÞc (1)

For example, if our window is two-tenths of a
second and we use a 256Hz sampling rate, m¼ 51.
Further, the sample size contributing to each point
along the AERP is dependent on the number of trials,
n. These seemingly small choices can have substantial
impact downstream, when we are depending on
asymptotic results.

The distributional theory for the average is simple.
The central limit theorem shows that the sum, and
thus the average, of m IID observations tends toward
a normal distribution as m tends to infinity. The rate
of convergence is generally stated to be 1ffiffiffi

m
p , and if the

original distribution is already close to normal (as
should be the case, because we first average over tri-
als), only a small m is needed to make statistical tests
with a normal distributional assumption reasonable.
These rules of thumb can be explored more thor-
oughly by using the Berry–Esseen theorem.

The Berry–Esseen theorem helps us to estimate the
sample size m needed for reasonable convergence
when using the central limit theorem. The distance
between F, the cumulative density function (CDF) of
the IID samples in the AERP, and a normal distribu-
tion is bounded:

D � Cq
r3

ffiffiffiffi
m

p , (2)

where q is E½jX1j3�, the third absolute moment, r is
the standard deviation of F, and C is a constant less
than .56 (Shevtsova, 2011) and greater than .41
(Esseen, 1956). The theorem gives an upper bound on
the distance, i.e., it gives the worst-case scenario of
the distance from normality. The two main elements
that affect this upper bound are the sampling rate, m,
and the ratio q=r3, which is impacted by the sym-
metry and variability of the distribution of observa-
tions in the AERP window of interest.

Asymptotic theory shows that averages within a
window will approach a normal distribution that
meets the distributional assumptions of t-tests and
ANOVAs. Equation (3) describes the asymptotic result
for the expected value of the average summary meas-
ure from the central limit theorem.

Xm
i¼1

Xi

m
� N

Xm
i¼1

xi
m
,
s2

m

 !
(3)

Here, s describes the standard error of the AERP,
which will depend on the inter-trial variability, the
intra-trial variability, and the number of trials. Thus,
the variance of the average summary measure depends
on within and between trial variability. This walk-
through of the distributional theory shows how the
average summary measure is impacted by various ele-
ments of the study design and ERP signal.

The distributional theory for the maximum is not
as simple. Just as the central limit theorem is used to
characterize the asymptotic distribution of sample
means, the Fisher–Tippett–Gnedenko theorem (also
known as the extreme value theorem) provides the
asymptotic distribution of the sample maximum. The
Fisher–Tippett–Gnedenko theorem states that, if the
distribution of the maximum converges, it must con-
verge to one of three distributions: Gumbel, Frechet,
or Weibull (Fisher & Tippett, 1928; Gnedenko, 1943).
These three distributions have been generalized as
special cases of the generalized extreme value (GEV)
distribution. The theorem does not guarantee conver-
gence or give criteria for convergence, but we will
assume convergence for simplicity. Because we first
compute the AERP over trials in the ERP context,
each time point in the window should asymptotically
have a normal distribution. Gnedenko (1943) showed
that the maximum of a series of IID standard normal
distributions follows a Gumbel distribution, which has
a PDF given by
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1
b
e
� x�l

b þ e
�x�l

b

� �

with l denoting the location parameter and b is pro-
portional to the standard deviation. Both parameters
can be expected to vary based on characteristics of the
subject-level AERP and specification of the window
of interest.

If we want to compare the maximum Mm1 from
one condition with the maximum Mm2 of another
condition, and we assume that the scale parameter (b)
is the same for each underlying distribution, we can
use the result that the difference of two Gumbel-dis-
tributed random variables with the same variance fol-
lows a logistic distribution. In other words, when we
test that the location parameters for the two trials are
equal, the null distribution of Mm1�Mm2 follows logis-
tic(0, b) (Arnold, 1992; Gumbel, 1958).

The logistic and normal distributions are similar
(Balakrishnan, 2013) but not identical. The logistic
distribution is slightly more peaked and has slightly
wider tails than the normal distribution (Chew, 1968).
While the Berry–Esseen theorem gives convergence
rates to normality, there is not equivalent theory to
suggest a convergence rate for the convergence to
Gumbel (and thus, of the differences to logistic).
However, we can already see that many of the same
elements will impact the maximum as did the average,
but in different ways.

The order of operations for simplifying ERPs is
important. If our methodology involved taking the
summary measure in each trial before averaging over
all trials in each condition for each person, then the
central limit theorem, the Berry–Esseen theorem, and
normality would all hold regardless of the summary
measure and we might expect thedownstream test
results to be similar. Under the current protocol, only
the average is unaffected by reordering Steps 3 and 4,
assuming equal sample sizes or proper weighting of
observations in an unbalanced design.

Simulating data from an ERP component

We now turn to a series of simulations to explore
various design and analysis decisions that were raised
when reviewing the standard analytic steps in ERP
research and potential explanations for the different
inferential results between the mean and the max-
imum in the example paired t-tests presented earlier
in the article. Reproducible code for all simulations
and figures in this section is available (Nielsen &
Gonzalez, 2019). This simulation allows for careful

exploration of single aspects of ERP studies because
the true results are known and all other aspects are
held fixed. In addition to comparing the mean and
the maximum we also include the hybrid measure
briefly mentioned in the introduction. This hybrid
method, sometimes referred to as the adaptive mean,
was investigated alongside the maximum and average
by Clayson et al. (2013). The hybrid measure identi-
fies the maximum amplitude in the window for the
condition, then takes an average of the 5 points sur-
rounding and including this peak. Only points in the
window are used. Because of the way it is constructed,
the hybrid measure should converge to normal or
logistic faster than the maximum converges, but not
as fast as the average does, so one might expect it to
perform between the two measures. Indeed, Clayson
et al. (2013) found this to be the case. However, some
users seem to think that it will outperform both
because it seemingly avoids the known pitfalls
of both.

The simulation focuses on only one ERP compo-
nent, for one channel (which we assume to be
recorded relative to a reference). We make the
assumption that our simulated data reflect ERP data
that have been acceptably filtered for the protocol
described in this article—that is, as much irrelevant
noise as possible has been removed. To achieve a hill-
shaped component, we use a normal kernel. The
choice of normal kernel has been used by Helwig
(2015) as a way to recreate visual-stimuli ERP wave-
forms based on data from several studies. Helwig’s
eegsim function in the eegkit package in R uses a pre-
specified voltage weight for each channel and multi-
plies the functional form of a normal kernel by this
weight to simulate ERP components. We generalize
this process by defining the voltage vi at each time (in
seconds post-stimulus) ti as:

vi ¼ He�Wðti�LÞ2 (4)

where H determines the height of the component, W
determines the width, and L is the latency of the peak
of the component relative to stimulus presentation.
This shape returns to 0 on either side of the hill-
shaped component. Thus we can assume that the
baselining step has already been performed and there
are no overlapping components.

We account for variability in the timing of ERP
components and allow for individual differences for
each subject j in terms of both the height of the wave-
form and the latency. Trial variability for each trial k
is modeled similarly. Thus, voltages are generated as
follows for each trial in the study:
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vijk ¼ ðH þ hj þ hkÞe�Wðti�ðLþljþlkÞÞ2 þ zi:

This formulation is consistent with a random
effects model allowing for heterogeneity over trial k
and subject j in the height and latency. The model
also includes random noise at each time point of each
trial, zi. We assume that noise at a specific time point
is what remains after filtering and is a function of the
equipment and overall human physiology rather than
being related to the subject or condition.

This simulation design allows for variation at each
of the levels of the naturally-occurring hierarchy, but
has been designed to exclude interactions across these
levels. For example, as described below, the distribu-
tion of trial-level height and latency hk and lk are not
related to the person j.

We focus on Type I and Type II error rates for a
study in which 20 participants experience two condi-
tions that produce effects on the component being
studied, such as a go/no-go task. This sample size was
selected to reflect typical ERP studies (e.g., the mid-
point of the sample sizes in the meta analysis by
Umbricht and Krljes (2005)). Type I errors, or false
positives, can lead to incorrect claims of differences
between groups or conditions. To investigate the Type
I error rate, we simulate 10,000 studies, in which all
trials are generated using the same values, but are
labeled as belonging to two separate conditions. We
then follow the testing protocol presented earlier and
report the proportion of times the two conditions
yield significantly different results (p � .05) for each
summary measure. The simulation sets the known

population values as follows. The true height H is set
at 5 to reflect a peak amplitude of 5 microvolts. This
value sets the scale of the vertical axis, and is thus
arbitrary. W is fixed throughout the study at 200 (i.e.,
a component width of approximately 200ms) because
the width of the component is not generally of inter-
est in ERP studies. The latency, or time of peak amp-
litude, L is set to .300 for a component that is
centered at 300ms. Thus, all voltages are generated
from the following equation for Type I error assess-
ment:

vijk ¼ ð5þ hj þ hkÞe�200ðti�ð:300þljþlkÞÞ2 þ zi: (5)

Polich and Kok (1995) explore many sources of
P300 amplitude and latency variability, at both the
trial and subject level. Our parameter values through-
out this simulation are selected to generate data with
variability within the range of these effects that would
often be averaged over in an ERP study. Specifically,
subject and trial height adjustments hj and hk�Nð0, 1Þ
reflect amplitude variability at each level, at a scale
appropriate relative to H. The noise at each time
point, zi, also impacts the recorded amplitude.
Throughout the simulations, zi�Nð0, 1Þ unless other-
wise stated. We explored smaller values for the vari-
ance of zi, which resulted in smoother waveforms at
the trial level, and found only one case where this
parameter impacted error rates. Because low-pass fil-
tering data is typically done to reduce noise and
smooth waveforms (Luck, 2014), we anticipate similar
findings would hold if we were to conduct a similar
study of low-pass filters. Unless otherwise stated, lj
and lk�Nð0, 0:100Þ to reflect the substantial variability
in latency at the subject and trial levels. We explore
the impact of this latency variability on amplitude
estimates at several points throughout the simula-
tion study.

We use a similar approach to investigate Type II
errors. Trials labeled as condition 1 are generated
from Equation (5). A second condition, in which the
true population amplitude is lower (3 lV instead of 5)
and the peak latency is slightly later (350ms instead
of 300, again following Polich & Kok, 1995), is
described in Equation (6). The subject and trial level
variables are specified as before.

vijk ¼ ð3þ hj þ hkÞe�200ðti�ð:350þljþlkÞÞ2 þ zi: (6)

The Type II error rate reflects the proportion of
times a true difference fails to be found (i.e., p > .05)
using the given experimental design.

There are additional variables manipulated in the
simulation that reflect aspects of the study design that

Figure 3. Example of simulated data from 1 trial
per condition.
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are under the control of the researcher. For example,
the sampling rate (measured in Hz, or observations
per second) will determine the time points ti at which
data are available. We assume that the time points are
equally spaced, start at stimulus onset, and extend to
one second to produce m samples; that is, if we simu-
lated at 4Hz, we would have m¼ 5 samples at
ti ¼ f0, :25, :5, :75, 1g. The sampling rate is 256Hz
unless it is specifically being investigated. We also
vary the number of trials per condition, n. This value
is fixed at 30 when not otherwise stated. The remain-
ing element that is varied is the size and location of
the window used to calculate the summary statistic
(either maximum or average). A window from 250 to
350ms is the default. The number of subjects in the
study is assumed to be fixed at 20 throughout. We
assume for simplicity that no trials are dropped from
the study.

Figure 3 shows examples of two simulated trials
from the same participant for different conditions.
The stated parameter values are sampled randomly
from the distributions described above to produce
underlying height and latency values for each trial,
and the sampling rate is 256Hz. Each timepoint is
subject to IID noise, zi�Nð0, 1Þ.

The results of the simulations are organized into
three subsections. The first subsection focuses on the
impact of latency across window locations and widths,
the second subsection examines the role of noise and
the number of trials on Type I and Type II error
rates, and the third subsection focuses on the role of
the sampling rate on Type I and Type II error rates.
We also used this simulation framework to conduct

checks on the distributional properties, such as
whether the maximum follows the Gumbel distribu-
tion and whether differences between two peak ampli-
tude measures are approximately normally distributed
(i.e., whether the normal does a reasonable job of
approximating the logistic). These simulation results
support the underlying distributional theory so will
not be presented here.

The impact of latency across window locations
and widths

A latency difference in the timing of the component
of interest between conditions may impact results. In
this section, we start by exploring the impact of vari-
ability in latency—both between-subjects and trial-to-
trial (i.e., within-subjects)—over a range of window
specifications. We then consider the case with actual
differences in the true latency L and how this impacts
tests of the amplitude. We assume that only the amp-
litude is of interest and explore how error rates differ
depending on the researcher’s specifications for win-
dow width and location.

Relatively little research has examined issues of
window specification and latency jointly though some
articles examine them separately. For example, Luck
(2014) recommends a narrower window when work-
ing with the average than the maximum, with a width
of around 50ms for the average. Picton et al. (2000)
emphasize that increased variability in latencies will
lead to smaller amplitude estimates due to the averag-
ing step. However, we have not seen these elements of
an ERP study discussed together.

Figure 4. Type I error rates as window centering varies, conditions differ on component location but not amplitude.
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We start by examining Type I error rates across
different window sizes, then window locations, com-
paring these results for two possible variances defined
by the variables lj and lk. Using Equation (5), we
simulate 10,000 studies in which 20 participants
experience 30 trials each in two conditions where the
null hypothesis is true—no differences exist in either
the amplitude or the latency. We find that the choice
of window width and location does not matter. The
Type I error rate remains near .05 and the Type II
error rate near 0, whether the variability in latencies is
high (sd ¼ .100) or low (sd ¼ .020). This is promising
because so far we have only added noise to a variable
that is not of interest.

Next, we introduce signal by considering the case
where amplitudes between the two conditions do not
differ, but latencies do. In this simulation, H¼ 5 for
both conditions, but L ¼ .300 for condition 1 and L
¼ .350 for condition 2; that is, condition 2’s true peak
amplitude occurs at 350ms instead of 300. Because
the stated hypotheses and tests concern only ampli-
tude, and component amplitude does not differ across
the two conditions, a significant difference is consid-
ered a Type I error as it would be incorrectly reported
as an amplitude difference. We hold the window
width fixed.

We find that if there is a true latency difference
between the two conditions, the window must be cen-
tered near the midpoint of the two condition peaks to
minimize Type I error rate. Otherwise, the error rate
becomes inflated at a rate relative to the latency vari-
ability. Figure 4(a) shows that in the case where

latency variability is relatively low (i.e.,
lj, lk�Nð0, :020Þ and a true latency difference between
conditions of 50ms), deviations from this ideal can
lead to a rapid inflation of the Type I error rate. This
is likely due to the high signal-to-noise ratio on the
latency difference.

Figure 4(b) shows that when the latency variability
is higher (i.e., lj, lk�Nð0, :100Þ and a true latency dif-
ference between conditions of 50ms), deviations from
the centering ideal again lead to inflation of Type I
error rates, but at a slower rate than when the latency
variability is low.

Regardless of the signal-to-noise ratio, the max-
imum and the hybrid measures are more robust to
errors in window location because any window that
contains both of the true peaks, even if it does not
contain the entirety of both components, will allow
for the correct testing of the amplitude difference
when using these summary measures. This also means
that a wide enough window can overcome a non-ideal
window location for these two measures, but not for
the average. To demonstrate this, we use the same
setup to explore results as the window width expands
from a center at 300ms. Figure 5 shows how larger
window widths interact with this non-ideal choice for
the window center. In Figure 5(a), the maximum and
hybrid maintain Type I error rates near 5% for win-
dows larger than 180ms because the window is large
enough to cover both components consistently due to
the small between-subjects latency variability.
However, when the window is smaller, these max-
imum-based measures miss the later condition’s peak.

Figure 5. Type I error rates as window width varies, window centered at 300ms, conditions differ on component location but
not amplitude.
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The average has a very high error rate, as seen in
Figure 4(a) at 300ms, and a larger window cannot
help it recover. In Figure 5(b), the error rate remains
near 10% for all three measures because the high
latency variability leads to components regularly fall-
ing outside the range of a window of any studied size
centered at 300ms (note the 10% error rate at 300ms
in Figure 4(b)). In this case of high latency variability,
the maximum and hybrid again outperform the aver-
age in large windows, but by a smaller margin.

We next inspect the Type II error rates by making
use of Equation (5) for condition 1 and Equation (6)
for condition 2 so that a component with lesser amp-
litude occurs at 350ms and one with greater ampli-
tude occurs at 300ms. We now investigate how
window location and latency differences may hinder
discovery of this true amplitude difference. Figure 6
reveals additional trends in errors that occur when the
window is not centered at the ideal location. As the
window center is moved to later times, the Type II
error rate rises. This happens because the earlier com-
ponent is being cut off, producing smaller values for
the summary measures than it should and making the
two components seem to have similar amplitudes. As
with the Type I error rate, the average is most sensi-
tive to deviations from ideal specifications, and studies
with smaller between-subjects variability see more
rapid inflations of the error rates due to high signal-
to-noise ratio in both the variable of interest (ampli-
tude) and the variable not of interest (latency). Again,
the hybrid measure tracks almost exactly with the
maximum. The temporary recovery of the Type II

error rate in Figure 6(a) is due to the 2-sided testing
procedure beginning to find that condition 2 (the later
component with lower amplitude) has greater ampli-
tude than condition 1. Because we know the true
data-generating models in this simulation, we know
that these are incorrect findings and have labeled this
region as Type III error. However, in a real ERP study
using ANOVA, this could easily be overlooked and
reported as the opposite result. This underscores the
importance of careful inspection of the grand-aver-
aged waveforms, proper corrections in post-hoc test-
ing in exploratory research, and a solid hypothesis
about the location of the component for confirmatory
research. Figure 6(b) again highlights that high vari-
ability, at least in the variable not of interest, can be
beneficial in this testing setup. Here, the components
in individual trials fall within the window often
enough for the amplitude differences to be detected
over a greater range of window locations. Type II
error rates remain near 0 for the range of window
widths centered at 300ms post-stimulus.

To summarize this subsection: the window size and
location do not matter if the difference between the
two conditions is only amplitude. However, if there is
a true latency difference across conditions, these
choices can be critical. Error rates are higher when
the variability in latency is lower, and maximum-
based measures are more robust to these choices.
These errors could be avoided by using different win-
dows for each condition if there is a known latency
difference, but this difference may be difficult to iden-
tify in practice.

Figure 6. Type II error rates as window location varies.
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Unbalanced designs and trial counts

In ERP research, studies with unbalanced designs
such as those from oddball paradigms like that of
Friedman, Cycowicz, and Gaeta (2001) are common.
However, several articles (Luck, 2010; Thomas, Grice,
Najm-Briscoe, & Williams Miller, 2010) have high-
lighted the dangers of working with unequal trial
counts in ERP studies. In this subsection, we use sim-
ulations to explore the impact of the number of trials
per condition on test results.

As before, we use Equation (5) to simulate 10,000
studies in which 20 participants experience two equiva-
lent conditions, but here we hold the trial count fixed
at 30 for one condition and allow it to vary for the
other condition. Figure 7(a) shows that unbalanced
designs can have dramatic impact. The maximum finds
many more false positives when the number of trials in
the two conditions is not similar, and even the hybrid
measure has increased Type I errors in the most
extreme cases. When we reduce the latency variability
across individuals, a similar trend emerges. However,
the error rates for the maximum are slightly higher
when the latency variability is reduced. Perhaps lower
trial-to-trial variability in the component’s location can
lead the individual waveforms in the condition with
fewer trials to combine to a more-pronounced peak in
that condition (for a visual explanation, see Figure 4.2
in Luck, 2014), leading to a higher amplitude and thus
a significant difference.

Concerns about unequal trial counts in ERP
research are not new. However, a single explanation
has not been established. Polich (1986) and
Luck (2014) argue that as the number of trials

increases, the signal-to-noise ratio increases and the
waveform has fewer distractor peaks as a result of the
larger number of trials being averaged at each time point.
These additional peaks that occur with smaller trial
counts provide more opportunities to find a difference
in the maxima, even when one does not exist. Thomas
et al. (2010) give an alternative explanation in which the
averaging process of Step 3 leads to decreased probability
of obtaining an extreme value at the true peak due to
noise as the number of trials increases.

An additional factor that impacts the signal-to-
noise ratio is the extent of noise in the amplitude of
collected individual timepoints. Figure 7(b) shows the
impact of reducing the variance in noise at each time
point by generating zi�Nð0, 0:5Þ rather than
zi�Nð0, 1Þ. By reducing the noise, we reduce the scale
of the heterogeneity of variance that results from aver-
aging unequal trial counts per condition in Step 3 of
the procedure outlined earlier in this article. Varying
the degree of noise in the simulated data may serve as
a proxy for varying the extent of filtering intended to
remove high-frequency noise, though it is important
to note that filters often have other unintended side
effects (Luck, 2014).

All three metrics yield low Type II error rates in
studies with unbalanced trial counts across conditions,
regardless of the noise zi. This remains true with lower
latency variability. This matches the argument by Luck
(2010) that reducing the trials in one condition will
not increase the Type II error rate. There were a few
errors where the average failed to yield significant dif-
ferences when the trial count in one condition was par-
ticularly low, but even these errors were rare.

Figure 7. Type I error rates in unbalanced designs.
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The simulations in this section suggest that the
maximum may underperform in studies with unbal-
anced designs, particularly when no true difference
exists and data are noisy at the trial level. The hybrid
is more robust, but still has an elevated Type I error
rate in extreme cases. While smaller sample sizes are
generally associated with increased error rates and
results that do not replicate (Button et al., 2013), the
Type I errors we highlight here occur any time the
trial counts in two conditions are unbalanced. Several
possible solutions to this problem have been proposed.
Trials can be thrown out at random from the condi-
tion with a larger trial count (Clayson & Miller,
2017). However, this results in a loss of data. Instead,
the average could be used exclusively when dealing
with unequal sample sizes (Thomas et al., 2010), or a
random effect approach could be used (described in
the discussion). Reducing noise, perhaps via low-pass
filtering, may greatly reduce these Type I errors.

Sampling rates

Another design feature that may affect results is the
sampling rate. Equation (1) describes how the number
of observations being used to calculate the summary
measure is determined by both the window size and
sampling rate. As with the previous subsections, we
simulated 10,000 studies where both conditions were
generated from Equation (5). We repeated this pro-
cedure over a range of feasible sampling rates for
EEG research.

The Type I error rate is stable at .05, with no dif-
ferences between the three summary metrics, as sam-
pling rate varies from relatively low (100Hz) to much
higher than is standard for ERP studies (1000Hz).
Additionally, in our simulation no Type II errors
occur, regardless of summary metric. This suggests
that our simulation was well-powered. These results
hold for high or low latency variability. Some authors
propose that the choice of ERP sampling rate should
be determined by the Nyquist rate (treated in more
detail in Proakis & Manolakis, 1992)—the sampling
rate should be at least double the rate of the phenom-
ena of interest. Because ERP components tend to last
on the order of one tenth of a second, a sampling rate
of at least 20Hz should be adequate. However, there
may be high-frequency noise that needs to be filtered
out, and so the sampling rate should be selected in
order to capture, then filter out, this noise. We do not
explore filters in this study, but do not anticipate that
they will solve the inflated error rates we have uncov-
ered elsewhere in our simulations—instead, they may

introduce additional complexities to the analytic deci-
sion-making process.

Throughout these simulations, we explored proper-
ties of the average, maximum, and hybrid summary
metrics. We highlighted the importance of the win-
dow width and location when there is an unmodeled
latency difference across conditions. We revealed that
unbalanced trial counts lead to inflated Type I error
rates for the maximum and hybrid, but not the aver-
age. We found that sampling rate does not appear to
impact results for these metrics, as long as sampling
rates are within the range of typical EEG equipment.

Discussion and future work

We explored the use of three common summary met-
rics in the context of ERP analysis. The motivating
example demonstrated that summary metrics can yield
contradictory results for statistical tests. We reviewed
theoretical findings, such as extreme value theory, that
become relevant when working with different summary
measures like the maximum. We then used simulations
to explore the differences in Type I and Type II error
rates across several common experimental scenarios.
These simulations revealed a few valuable findings
about the performance of these summary metrics.

Our first major finding is that the choice of win-
dow location is critically important when the condi-
tions have unmodeled latency differences—that is,
when the analyses are concerned only with peak amp-
litude, but there is a systematic difference in the tim-
ing of the component across groups or experimental
conditions. Type I and Type II error rates increase as
the window moves away from ideal placement, and
the error rates increase more rapidly when there is
smaller variability in latency across subjects. The max-
imum and hybrid are more robust to window choice,
and increasing the width of the window can also help
to capture the peak amplitude. These findings under-
score the need for researchers to take steps to confirm
that their test results are not driven by unanticipated
factors. For example, we recommend that researchers
check visualizations for this potential confounder.

A second major finding is that the use of the max-
imum is more likely to lead to a false positive finding
when comparing groups in unbalanced designs, such
as oddball paradigms. We believe this is due to the
unequal amplitude variances that result from first
averaging across trials within person. Error rates are
lower (but still higher than nominal) in cases of
reduced noise. Thus, the recommendation we make is
to use averages when analyzing such studies, and to
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be aware of the potential for false positives when eval-
uating studies with unbalanced designs that make use
of the maximum. Filtering and smoothing procedures
may prove beneficial in this situation.

Overall, we find that each summary metric has
strengths and weaknesses. The hybrid is not, in the
situations we explored, a cure-all method. Anticipated
features in the data, the costliness of particular errors,
or the desired interpretation may need to be stated to
justify the choice of summary metric in the current
analytic paradigm. This conclusion is frustratingly
nonprescriptive, particularly for a problem where con-
sistent methodology recommendations may be needed
for replicating studies. But when one uses multiple
metrics such as fit to theoretical distribution, Type I
error rate, and Type II error rates, one procedure may
not always dominate across all conditions for all met-
rics that one considers. Further, we note that the Type
I error rates are at times quite discrepant from their
nominal values, reaching extreme Type I error rates
of .90 or greater. These findings underscore the need
for detailed methods sections, describing and justify-
ing all choices made between data collection and final
test results. Researchers should also consider making
their data available to others, who may wish to
explore the impact of alternative analytic protocols.

The results of these simulations suggest that we
need a substantial reconceptualization of the pipeline
for ERP analysis. It may not be productive to limit
our analysis to simple summary measures like the
ones studied here. Instead, the solution may be to
develop a new analytic approach.

The current processing steps involve a carefully
ordered process of filtering, averaging over trials, tak-
ing a summary metric, and then conducting statistical
tests. While on the surface each of these steps makes
sense, their statistical properties and performance in
aggregate must also be considered. As we have dis-
cussed, the order of steps 3 and 4 can impact the dis-
tribution of values when working with the maximum
(but not the average). Indeed, many of the substeps
involve nonlinear operations and are thus not
exchangeable. It is well-established (Estes, 1956;
Molenaar, 1987) that the average waveform, or curve,
may not be representative of the individual wave-
forms. A new analytic approach would be most useful
if it avoided these issues of order of operations and
had the flexibility to address the many moving parts
of an ERP study beyond the amplitude.

One option for leveraging the hierarchy of sources
of variability in ERP studies and exploiting the well-
studied shapes of components is to use nonlinear

mixed-effects models (although more general
approaches could be considered as well, e.g.,
Hamaker, Dolan, & Molenaar, 2005). We used the
nonlinear mixed-effects framework, Equation (4), to
generate the simulations; it could be used as an ana-
lytic model as well. The framework has several advan-
tages. The random effects at the trial level would be
capable of addressing sources of trial-to-trial variabil-
ity, such as background noise which may synchronize
to create artificial peaks in the waveform (Yeung,
Bogacz, Holroyd, & Cohen, 2004). Additionally, we
would no longer need to be concerned with the order
of operations during analysis because the entire pro-
cess can be conducted simultaneously. It is not neces-
sary to first average over trials—we can instead
specify the hierarchy of the data (e.g., trials are nested
within conditions, which are nested within individu-
als; or trials are nested within individuals, which are
nested within conditions; or other relations across
multiple channels) and the model-fitting procedure
can accommodate an appropriate weighting and error
structure to address temporal nonindependence. In
this way, the framework can address and model viola-
tions of the IID assumption, such as temporal correla-
tions in the ordered measurements of the EEG signal.
Issues of unbalanced designs (whether from the
experimental design, as a result of artifact rejection, or
a result of focus on particular trials such as trials with
an error response) would no longer be a concern.

More relevant to this article, the nonlinear mixed-
effects model framework provides a mechanism to cir-
cumvent choosing among a set of summary metrics
such as the maximum, average, or hybrid. Instead, we
could make use of the functional shape of a compo-
nent from which we can derive different quantifica-
tions of the waveform while controlling for other
sources of variability. For example, to compare laten-
cies for a given component across groups or condi-
tions, we can fit Equation (4) as a nonlinear mixed-
effects model, constraining L to be in a range near the
anticipated time of the component (such as between
200 and 400 ms post stimulus for a P300). L is then
treated as a fixed-effects term, and the remaining
parameters and their uncertainty are controlled for
when testing L. Further, this approach can directly
model the joint distribution of amplitude and latency.

While the application discussed in this article has
been ERP waveforms, the general point extends to
waveform data from a wide variety of sensors where
researchers are interested in assessing amplitude. We
need a more careful assessment of how simple sum-
mary measures such as average amplitude or
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maximum amplitude in waveform data behave in the
context of the complete statistical model, including
the relevant preprocessing steps to prepare data for
statistical testing. We found that Type I and Type II
error rates varied by summary measure, various prop-
erties of the experimental design (e.g., unequal num-
ber of trials across conditions) and various properties
of the data (such as variability in latency). Given that
the performance of the summary measures varies by
these important design and analytic details, complete
and transparent reporting is important.

As demonstrated in this article a joint effort involv-
ing theoretical analysis and simulation is needed in
order to gain a deeper understanding of the issues,
especially given the many criteria relevant to evaluat-
ing analytic strategies such as bias, Type I error rate
and Type II error rate. The continued assessment of
existing practices and the development of new analytic
models will become increasingly important as
researchers include more sensors in their studies and
collect waveform data from multiple channels.
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