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By assuming a distribution for the sul~ect weights in a diagonal metric (INDSCAL) multidimen- 
sional scaling model, the subiect weights become random effects. Including random effects in multidi- 
mensional scaling models offers several advantages over traditional diagonal metric models such as those 
fitted by the INDSCAL, ALSCAL, and other nmltidimensional scaling programs. Unlike traditional mod- 
els, the number of parameters does not increase with the number of subjects, and, because the distribution 
of the subject weights is modeled, the construction of linear models of the subject weights and the testing 
of those models is immediate. Here we define a random effecls diagonal metric multidimensional scaling 
model, give computational algorithms, describe our experiences with these algorithms, and provide an 
example illustrating the use of the model and algorilhms. 
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1. Random Effects Diagonal Metric Multidimensional Scaling Models 

Multidimensional scaling analysis estimates the coordinates of a set of n objects in a r di- 
mensional space given only a measure (observed with error) of the distances between the objects. 
The dimensionality of the space, r,  is specified by the model. In the models considered here, the 
distance measurements, called dissimilarities, are obtained from a sample of m subjects. The ob- 
served data are denoted by Ylj, where I = 1 . . . . .  m indexes subjects, and j = 1 . . . . .  Nt indexes 
distances between pairs of stimuli. The Ylj are usually not distances in the strict sense, but are 
thought to satisfy the various properties required of distance measures. Supposing that there are 
n stimuli, a maximum of N = n(n + 1)/2 dissimilarities on each subject are possible, but only 
a subset of these need to be measured for estimation, i.e., Nl < N. 

Here we are concerned with the diagonal metric (also called the individual differences or 
INDSCAL) model first proposed by Caroll and Chang (1970). Let xik denote the coordinates 
for i = 1 . . . . .  n stimuli in a k = 1 . . . . .  r dimensional space, and call the matrix X = (Xik) 
the configuration matrix. The diagonal metric model assumes that the expected distance between 
stimulus i and stimulus j for individual I is given as 

dlij = (k=~ltOlk(Xik--Xjk)2) 1/2 

In this model the subject weights, u;lk, account liar variability between individuals--each indi- 
vidual gives different weight to each of the r dimensions. 
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In many analyses, a random sample of subjects is obtained. In this case, conditional upon 
the observed subjects, a traditional analysis computes estimates using least squares or maximum 
likelihood methods. In contrast, in the random effects models we propose, the subject weights are 
considered to be a sample from a distribution of subject weights, and unconditional maximum 
likelihood estimates are computed. In other words, we treat the subject weights as random coef- 
ficients. The inclusion of these random coefficients in the diagonal metric model yields the same 
benefits as are obtained by incorporating random coefficients into linear (or nonlinear) regression 
models (see, e.g., Davidian & Giltinan, 1995), including: 

• a single model that combines the distribution of the dissimilarities with the distribution of the 
subject weights, 

• model-based estimates of the variance components - - the  parameters associated with the vari- 
ances of the subject weights, 

• the ability to make inferences regarding the subject weights in the sampled population, 
• avoidance of overfitting of individual subject weights by smoothing of the estimates, 
• the ability to "borrow strength" from all individuals and thus obtain better estimates for an 

individual even when only a few data points are observed on the individual, and 
• the ability to linearly model and make inferences about the subject weights based upon pre- 

dictors collected on each individual. 

In the next section we describe the model. We then describe three algorithms that compute 
maximum likelihood estimates using one of two models for the distribution of the random effects. 
These two models are: (a) a "parametric" model in which the random effects are assumed to be 
multivariate normal, and (b) a "nonparametric" model  in which the distribution of the random 
effects is left completely unspecified. The final three sections illustrate how these algorithms 
perform. 

2. A Random Coefficient Diagonal  Metric Model  

To avoid subscripting problems, in the following we let dlj = E(yl j )  be the expected value 
of dissimilarity j measured on individual I. Then for functions vl 1 ( j )  and v~2 ( j )  taking the index 
j = 1 , . . . ,  Nl into the set of integers from 1 to n, the dissimilarity is a measure of the distance 
between objects vll ( j )  and vl2(j)  for the l-th subject. This allows us to use double subscripts dlj 
(and Ylj, etc.) in place of more unwieldy triple subscripts such as dl~k = d l ,  l~ll (j), 1~12 (j). 

Conditional upon the subject weights for individual I (denoted by a vector, wl = (wlk)) and 
the configuration matrix X, we utilize the same assumptions as in the conditional models and 
assume independent and identically distributed random measurement errors e~j such that 

= @ + ezj, 

where E(elj ]wl, X) = 0 and Var(elj ]wl, X) = a 2. Also as in a conditional analysis, to make the 
estimates identifiable, translation of the columns of X is fixed by assuming that the mean of each 
column of X is zero, and the scale of the columns of X and W is fixed by the restriction that the 
~2 norm of each column in X is constant, that is, ~ i = 1  x~j) 1/2 = n for j = 1, . .  r .  In our 
algorithms we sometimes use simpler (to implement) restrictions in the initial estimation, but the 
final estimates are always standardized as above. 

In some diagonal metric model  programs (e.g., ALSCAL,  see Takane, Young, & de Leeuw, 
1977) the scale restrictions are placed on the subject weights rather than on the configuration 
matrix. We specifically avoid restricting the subject weight es t imates- - la ter  we will assume a 
distribution for the (log of the) subject weights, and restrictions on the subject weight estimates 
would severely limit the possible distributions we could consider (in particular, this would elim- 
inate the multivariate normal distribution). 
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Let Yl = (Ylj) denote the column vector of length Nl of dissimilarities on subject l, let 
dl = (dlj) denote the corresponding vector of expected dissimilarities, and let el = (eli) denote 
the vector of measurement errors for subject I. Notice that this notation allows a different number 
of observations on each subject. 

Re-expressing our assumptions in vector notation, we have E(ellX, wl) = 0, and Cov(ell 
X, wl) = ~2 | .  Although, for simplicity, we have chosen a simple covariance structure ~ 2 |  for 
the measurement errors, in principle this can be generalized to arbitrary covariance structures 
~e (~) for parameter vector ~.  For example, Ramsay (1982) considers more general covariance 
structures in which the measurement error depends upon the stimuli, and covariance structures 
that permit correlations between observations on a single subject (e.g., repeated measures) may 
be desirable. 

Models  that condition upon the observed subjects yield diagonal metric models such as the 
INDSCAL model. Extending the conditional model  so that inferences regarding the population 
of subjects may be made, consider the vector of subject weights, wl. The subject weights are, 
in fact, random coeff icients--each randomly sampled subject brings a new random vector of 
subject weights from some unknown distribution. Modeling this distribution, we assume a linear 
model for log wl such that 

logwl  = Ul16 + Vlyl ,  

where UI and VI are known design matrices, 16 is a vector of unknown parameters, and y~ is 
a random vector with mean zero and covariance structure ~;(0) that depends upon a vector of 
unknown parameters 0. Then E(log wl) = U116, while the covariance matrix for log wl is given 
by D(0)  = VI~;(0)V F. Initially we assume a multivariate normal distribution for y, but later 
this assumption is extended to include other distributions. The log of the subject weights are 
modeled (rather than the subject weights) to avoid negative subject weights in the estimation. It 
is also possible to model the subject weights directly using wl = Ul16 + Vlyl ,  but in this case it 
may be necessary to eliminate the possibil i ty of negative subject weights. 

As an example of where linear models predicting the subject weights might be useful, con- 
sider a wine tasting example discussed by Clarkson and Gentle (1986). In this example subjects 
were asked to give dissimilarities for nine types of Cabernet Sauvignon wine. On the day of 
measurement one individual had a cold, and in the subsequent diagonal metric analysis, this in- 
dividual gave zero weight to one of the derived dimensions. Utilizing "cold" as a predictor, a 
linear model for the subject weight is possible, logo~ll = /?o + ul/?2 + Vii, where ul is zero or 
one depending upon whether or not the / - th  subject has a cold, and where g~l is a random effect 
giving the derivation of the subject weight on the / - th  subject from the linear model. Inclusion 
of the predictor permits l ikelihood ratio tests for its statistical importance, and also allows better 
prediction of the subject weights when considering new subjects. The impact of the presence of a 
cold on the subject weight for one dimension also suggests that the dimension in question may be 
related to a sense of smel l - -us ing  linear model  predictors for the subject weights may facilitate 
the interpretation of the derived dimensions. 

Because the log of the subject weights are modeled, the linear model in log wl is interpreted 
as decomposing wl into its multiplicative parts. In this case, the predictors have a multiplicative 
effect on the subjects '  interpretation of any dimension. Thus, supposing that E log Wll = 0.36 - 
0.47Ulb then the expected subject weights are given by EWll = exp(0.36)exp(--0.47Ull)  = 
1.433 exp(--0.47Ull) .  This means that we expect a subjects with Ull = 1 to experience distances 
along dimension 1 that are e x p ( - 0 . 4 7 )  = 0.625 the length of subject with Ull = 0. 

It is also possible to linearly model  the elements in the coordinate matrix Xik SO that, for 
example, we might have Xik = Z i k ~  for fixed parameters ~ and known predictor matrix Zik.  
However, in this paper we will assume that the configuration matrix is constant over all indi- 
viduals. Linear models on the configuration matrix parameters may be more relevant in multidi- 
mensional unfolding, where the primary source of variation between individuals is in the subject 
ideal points, which may also be modeled as random effects. 
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Linear models for predicting multidimensional scaling parameters such as log w/ and Xik 
are not n e w ~ a r r o l l ,  Pruzansky, & Kruskal (1980; see also Carroll, DeSoete, & Pruzansky 
1989); de Leeuw and Heiser (1980); Bloxom (1978); Bentler and Weeks (1978) and others have 
proposed multidimensional scaling models with linearly constrained parameters. They do not 
include random effects in these models. Notice that linearly constrained parameters are qualita- 
tively different from the linear models in our random effects models. Rather than restricting the 
subject weights, the linear models we propose restrict the expected values of the (log) subject 
weights (as in regression analysis). The subject weights themselves are free to vary about these 
expected values as specified by the distribution of the random effects. This use of predictors al- 
lows us to reduce the variances of the (log) subject weights (the variance components) given the 
predictor and allows us to better predict subject weights for new subjects. In a constrained model, 
if the subject weights do not fall in the constrained subspace, the model is not valid. 

In multivariate normal models the covariance structure of the random effects, ~;(0), must 
be specified. In our examples, because of its simplicity and ease of implementation, we assume a 
diagonal covariance structure in which 1~(0) is a diagonal matrix with diagonal elements ~@. In 
principle other covariance structures are possible. For example, one might use ~;(0) = c~ I  for 
scalar parameter c~, or ~;(0) = L L  T for arbitrary lower triangular matrix L. 

In a conditional model each subject weight is a parameter, and thus the number of pa- 
rameters must increase as the number of subjects increases. An important improvement of the 
(parametric) random effects model is that it eliminates an undesirable characteristic: the number 
of parameters is fixed and does not increase with increasing sample size. Because the number 
of parameters is much smaller, we would expect fewer identifiability problems, though showing 
this is beyond the scope of this paper. 

2.1. Summary 

Summarizing, we model the intra-individual variation as 

Yl = d l  + el 

E(ellX, wl) = 0, and 

Cov(el IX, wl) = ~r2I 

just as in the conditional case, while the inter-individual variation has model 

logwl = Ul/3 + Vlyl, 

w h ~ e  

"y~ ~ N(O, ~(0) ) .  

This model can be generalized by specifying a more general covariance structure for 

Cov(ez IX, wl), 

by specifying a different structure for Z(0) ,  by changing the distribution of 3% or by changing 
the model for log wl = Ul/3 + Vly! to include different predictors in Ul, or alternative parame- 
terizations for the random effects "gl. 

By modeling the subject weights as random variables, we more accurately represent the data 
because: (a) the subject weights are, in fact, random effects if a random sample of subjects is 
obtained, (b) the use of random subject weights implies that the observations on each subject are 
correlated, a more reasonable assumption that the assumption of independence most often used 
in conditional models, (c) random effects models allow direct, maximum likelihood, estimation 
of the variances of the random effects, and (d) we obtain a better estimate of the expected subject 
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weight on each subject (given the model) because we can "borrow strength" from all subjects 
when estimating each subject weight, and because we can predict the subject weights in terms 
of a linear model of predictors. As in the linear mixed effects models, the random effects model 
estimates we propose shrink the subject specific estimates toward the expected mean subject 
weight. For linear mixed effects models, these estimates are the best linear unbiased estimates 
(BLUR see, e.g., Davidian & Giltinan 1995). 

2.2. Interval Data  

Generalization of the diagonal metric model to dissimilarities that are "interval" (rather 
than "ratio") variables is straightforward. In this case a constant vector ~l must be added to the 
dissimilarity so that y~ + ~ (rather than y~) is the distance measurement. We assume that the ~ 
varies from subject to subject, and, because we are considering random effect models, we further 
assume that ~l is composed of both a random and a fixed component, that is, that ~l ----/3 ~ + "l'~, 
where/3 ~ is fixed and where the population mean of the random effects "g~ is zero. 

Notice that our models have assumed that the random errors are associated with the dis- 
tances (i.e., that Yl + o~l = d l  +el ) .  It is also common to assume that the random errors are added 
to the logarithm or to the square of the distances, that is, to assume that log(y l+  o~l) = log(dl)+el  
or that (Yl + o~l) 2 = d~ + el. It is relatively easy to generalize the present model to other parame- 
terizations. The transformation that is typically preferred is one that yields additive measurement 
errors. 

3. Maximum Likelihood Estimation 

The parameters to be estimated are given by ~ = (X,/3.0, c~2), where X is the configura- 
tion matrix, /3 is a vector of parameters that model the mean of the log of the subject weights 
such that E(log wl) = Uli{I, 0 is a vector of parameters associated with the distribution of the 
random effects, g(. 10), and c~ 2 is the variance of the measurement error. Depending on the dis- 
tribution assumed for the random effects, several estimation algorithms are available. In each 
algorithm, initial estimates may be obtained as appropriately standardized conditional diagonal 
metric model estimates. 

We begin by giving an expression for the likelihood. Let 

N/ 
f (y l lX,  c ~2,/3, "gl) = I - I  f ( Y l j l X ,  ~ r2, II, "gl) 

j = l  

denote the conditional distribution for the vector of dissimilarities on individual I given the ran- 
dom effects "gl and the parameters (X, c~ 2,/3), and let g('g[ O) denote the marginal distribution of 
the random effects. Then the marginal distribution of the dissimilarities is obtained as the integral 
of the joint distribution of y and "g with respect to % 

f(yl[~I t) = f f (y l [X,  ~r 2,/3, "g)g( 'g[0)d 'g  = f f(Yl, ,g[~It)d'g, 

where "g is vector valued. The log-likelihood contribution for the l-th subject is given by 
~ ('gl[~I t) = log f (yll~It), and the log-likelihood is ~(yl~It) = ~ i m l  ~(yll~It). 

The source of the difficulty in computing maximum likelihood estimates is in integrating the 
joint distribution to obtain g(yl/~It). Analytic integration is not generally possible and numerical 
quadrature is not efficient because a multidimensional integral (often of dimension 5 or more) is 
involved. In the following we discuss three maximum likelihood algorithms, beginning with an 
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algorithm that utilizes a linear approximation to the log likelihood, then move to a Monte Carlo 
EM algorithm, and finally discuss a nonparametric algorithm. 

3.1. The Linearization Algorithm 

Assume that both f (y/IX, ~2, l[I, ,1/) and g(Yl O) are multivariate normal. Then our model is 
a nonlinear mixed effects model, and a popular estimation algorithm uses a linear approximation 
to the likelihood that was first suggested by Sheiner, Rosenberg, and Melmon (1972) and later 
refined by Lindstrom and Bates (1990). Here we use algorithms developed by Pinheiro and Bates 
(1995) and available as the nlme function in S-PLUS. Expressing the distances dl = h(yl) as a 
function of the random effects Yl, and expanding around the mode of the posterior distribution 
of Yl (denoted by y[) ,  we have 

Yl = dl + el = h(yl)  + el 

Oh (y~) ,) 
h (y[ )  + ~ ~,z=~, (yl - Yl + el 

= h ( y ? )  - Z ~ ( y ?  - t ~ )  + Z~(y~ - t ~ )  + e ~ ,  

where Zl is the matrix of partial derivatives of h('gl) with respect to "gl evaluated at "g[, Zl = 
ah(,/,)/a,/,l~,=~;. Because, by assumption,/xy = O, the final equation above is identical to a 
linear components of variance model in which 

and 

E(D) ~ h ( y / )  - Zly? ,  

Fl = Cov(yD ~ o-2I + ZI]~(O)Z F. 

Given initial estimates, Davidian and Giltinan (1995, p. 167) describe this algorithm as a 
generalized least squares procedure with the following two steps: 

1. Estimate (X,/3, 0, ~2) as the minimizing values of the approximate marginal log-likelihood 
for the random effects. For our models this log-likelihood is 

m 

g0I,) = ~-~ log Irzl + (yz - h ( y [ )  - Zzy? ) r rF l (yz  - h (y[ )  - Zzy[),  
/ = 1  

2. 

where the y [ ' s  are fixed. The parameters/3 and X as well as the random effects "g[ are fixed 
at their current values when computing Fz. This is a components of variance problem. 
Obtain new estimates X,/3,  and the random effects "g[ by minimizing the generalized least 
squares criterion 

m 
~-~log I~(0)1 + y r ~ ( 0 )  yz + Nl logs  -2 + Irl - h(Yl)l 2 

6-2 
/ = 1  

Here the elements of ~ ( 0 )  and S -2 are fixed. If  a check for convergence indicates that 
convergence has been reached, stop. Otherwise, go to Step 1. 

The configuration matrix X estimated in steps one and two must satisfy location and scale 
restrictions to make the problem identifiable. When iterating, we fix the location by fixing the last 
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row in X, 2nk, k = 1 . . . . .  r. To fix the scale, we fix one additional element in each column of X. 
This second element is chosen such that the absolute difference between the two fixed elements 
in the column is maximum. At convergence, we standardize as described earlier. 

This algorithm uses sequential optimization and separately optimizes over two sets of "pa- 
rameters". Such algorithms can exhibit linear convergence properties unless the asymptotic cor- 
relation between the two sets of parameters is nearly zero. In our limited experience for mul- 
tidimensional scaling problems, we have seen examples in which convergence was quite slow 
requiring fifty iterations or more, but on most problems the algorithm converged in ten or fewer 
iterations, and used (comparatively) little computer time. 

A recent paper by Demidenko (1997) shows that the linearization algorithm estimates are 
not consistent as the number of subjects increases without bound when the number of obser- 
vations per subject remains small and fixed. Lack of consistency makes these estimates less 
appealing. Even so, the algorithm produces reasonable estimates quickly, and thus will often be 
preferred. Many other approximate likelihood estimates are possible, including estimates using 
alternative linear expansions and estimates based upon the Laplace approximation (Vonesh & 
Chinchilli, 1997). 

3.2. The MCEM Algorithm 

Recently Geyer (1996; Geyer & Tompson, 1992; McCulloch, 1997; McLachlan & Krish- 
nan, 1997; Tanner, 1996; Wei & Tanner, 1990) has provided a maximum likelihood algorithm 
based upon the Monte Carlo integration of the likelihood using a Monte Carlo EM algorithm. 
Though computationally intense, this Markov Chain Monte Carlo method generally converged 
in a reasonable length of computer time. In Monte Carlo integration the multidimensional inte- 
grals that are required in the marginal density for y and its derivatives are approximated as the 
average function value evaluated over a randomly generated sample of the integration variable. 
Here the Metropolis-Hastings algorithm was used in generating the Monte Carlo sample on each 
subject. 

Rather than maximizing the log-likelihood directly, a ratio of probability densities is used. 
Let f ( y l ~ )  denote the density for the l-th subject and let ~ be a known vector of parameters 
chosen to be close to the maximum likelihood estimates ~ .  Then the derivation of the function 
to be optimized is given as follows: 

f(YllW) = f f(Yl, y l W ) d y  

= f(yl[@) f f (y l ,  ,g[~It) 
f (y l  [@)f  ('g[yl, @) f ('g[yl, @) d'g 

= f(Yl[@) f f(Yl, ,g[~It) f('g[Yl, @) d'g, 
f(Yl, ,y[~t~) 

where f(Yl[@) is an unknown constant, W is the vector of all parameters, f(Yl, "I'[W) is the 
joint distribution of the dissimilarities Yl and the random effects "g given the parameters, and 
f('YlYl, ~t~) is the posterior distribution of the random effects "it given the parameters ~ and 
the dissimilarities Yl. Because closed form solutions for the integral are not usually known, the 
marginal density f(Yl [@) cannot usually be computed. Rather, we use Monte Carlo integration 
in the E-step to evaluate the logarithm of the density ratio, Q l 0It, @) = log{ f (yl ~It)/f (yl [~It)}, 
where the Monte Carlo sample, '],j, j = 1 . . . . .  M, is obtained from the distribution f('g[Yl, ~It) 
using a Metropolis-Hastings algorithm. Then 

f(Yl[@) f(Yl, "glj[~It) " j = l  
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The approximation can be made as accurate as desired by increasing M (though very large 
M may be required). Differentiating under the integral sign, the gradient and Hessian for 
log f (Yt [wit) can also be closely approximated. Letting g(Yz [~It) denote the first partial derivative 
of log f (YI I ~I~) with respect to wit, and letting g'(Yt + Rt) denote the second partial derivatives 
(and letting g(D, 'YIW) and ~'(Yl, 3'1 ~I~) denote similar partial derivatives for the joint density), 
then the gradient is given by 

f f(y;,yl,P)i(y;, Tixp)f(Tly ' ~ )  dT 
f (yi,'glq~') g; = g ( y ; l ~ )  = 

f ;(y;,rl'Pl f(TlYz, ~ )  dT f (yi,'yl~P " ) 

~ - 1  IIy;,3,;jl~) 
f(y;, 3,;j I'I') 

while the Hessian is given by 

f f(y;,~,l,I,) {{'(y;, ,g[~) + (g(Yl, y]~))2} f (y ly ,  ~ ) d y  
Hz = g'(Yzl~) = f(y;,Tl~') _ (~(y/lXit))2 

f f(Y;'"/l~It) f(TlYz, ~ )  dy  
f (y;,~[x[Lr) 

~M J(r;,~;jl~) {?(y;, 3,;jl'I') + (i(y;, 3,;jl'I')) 2} 
~, j = l  f(yl,TUl(lg) _ (~.(yiiXi~))2" 

~ M _ I  f(Y;'Y;J I~p) 
f(Y~ ,'FU I ~ )  

Given Q(~ ,  ~ )  = ~ ;  Q;(Xp" ~'), the gradient, g = ~ ;  g; and the ttessian, H = ~ ;  H;, 
a Newton-Raphson algorithm with step-halving is used to compute the maximum likelihood 
estimates. Alternatively, an empirical Hessian can be computed from the individual gradients, 
I:I = ~ ;  g;gf, and a quasi-Newton method based upon this (or another) ttessian estimate can be 
used. Notice that when an empirical Hessian is used, the number of subjects must be greater than 
the number of parameters in the model. 

Because the distribution f ('yly;, ~ )  is complicated, the Metropolis-Hastings algorithm (see 
Gilks, Richardson, & Spiegelhalter, 1996) is used to generate a Markov sample of random de- 
viates "g;j. In this algorithm, the sequence of deviates 5';j form a Markov chain (rather than a 
simple random sample), and we must rely upon the Ergodic theorem (rather than the strong law 
of large numbers) to ensure convergence of our approximate integrals, gradient, and Hessian. In 
our implementation we use a multivariate normal proposal distribution centered at 3,[ and with 
variance-covariance matrix given by the Hessian of the logarithm of the posterior distribution, 
log f ('I'IYz, ~ ) .  

3.2.1. Computational Algorithm 

Given the initial estimates, the MCEM algorithm proceeds as follows: 

1. Given the current estimates ~k ,  use a quasi-Newton algorithm (Gay, 1983) to estimate the 
modes, "g[, and Hessians, H('y/), of the log posterior distributions, log('glyz, xI~k). 

2. Set ~ = R ~k. Generate a Metropolis sample of Ylj's for the parameters ~ for each subject I. 
Set Q(~k, ~ )  = O. 

3. Set k = k + 1. Use the Metropolis sample to compute the gradient and Hessian of Q(XIt, ~ ) ,  
and compute the Newton-Raphson direction, dk = --Hk-lgk. Use step-halving to find the 
maximum ce < 1 such that Q(XI ~k + C~dk, Rt) > Q(xitk-1, ~ ) ,  and take a step xItk+l = 
~Itk + C~dk. 
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4. Test to see if a new Metropolis sample is necessary. If  a new sample is necessary, go back to 
Step 1, otherwise, test for convergence, if convergence has been reached, stop, otherwise, go 
to Step 3. 

To lessen the computational burden, we begin the iterations using only twenty-five Monte 
Carlo replicates for each subject in Step 1. When "convergence" (the change in the value Q (-, .) is 
small) with twenty-five replicates is reached in Step 4, we continue the algorithm with four times 
the number of  replicates and a tighter convergence criterion. Proceeding in this manner, we stop 
the algorithm when convergence at a given number, Mo, of  replicates has been obtained. Here Mo 
is chosen because of  computational cost or because it yields a reasonably good approximation of  
the likelihood. 

It is theoretically possible to compute maximum likelihood estimates based upon a single, 
very large Metropolis sample and thus never return to Step 1. There are two reasons to avoid 
this: (a) it is computationally more efficient to begin with small sample sizes, and then increase 
the sample size as the precision in the estimates increases, as was discussed above, and (b) as 
the iterations proceed, the initial sample (based upon ~ k )  becomes further removed from the 
current estimates, ~ .  As this occurs, the variability in the quadrature approximations increases, 
so that larger sample sizes are required. To avoid unnecessarily large sample sizes, whenever the 
function Q(~It, ~It) is greater than a constant value ~o, we restart in Step 1 with a new Metropolis 
sample. Because Q(., .) is the log of a likelihood ratio, we use the number of subjects as our 
initial value for r~o. Values that depend upon percentiles of the Chi-squared distribution might be 
preferred. 

Because the Metropolis algorithm is used to generate the Markov sample, it is relatively 
easy to replace the multivariate distribution assumed for the random effects with a more general 
distribution. In particular, we have utilized a multivariate 7' distribution in which the degrees of 
freedom, v, is also estimated. 

3.3. The Nonparametric Algorithm 

Instead of a multivariate normal distribution, in the nonparametric model the distribution 
of the random effects is left completely unspecified. In this case, Mallet (1986) shows that the 
maximum likelihood estimates of the random effects distribution, g (Yl 0), is discrete with at most 
r points (where r _< m and m is the number of subjects). That is, 

r 

g( 'ylo)  = ~-~'Ck~('}'k), 
k = l  

where 3(yk) is the Dirac delta function placing point mass at Yk with probability rk, and where 
0 = (Yk, rk). Given this form for the random effects distribution, computing exact integrals to 
obtain the marginal likelihood is straightforward since the likelihood contribution becomes 

g(y,l~) = log f(y , l~)  = log f f(y, lX, a2, /3, y)g(ylO)dy= f f(y,, yl'~)dy, 
t" 

= log } -~e f (y~ IX ,  o -2/3,  ~,e). 
k = l  

Notice that the random effect distribution introduces parameters re and Yk, SO that the number of  
these parameters may increase with the number of  observed subjects. Also notice the similarities 
of  the parameters in this likelihood with the conditional model likelihood. 

Here the rk provide the prior probabilities for each of  the points Yk. The posterior proba- 
bilities are given as 

r k f  (yl, IX, a 2,/3, 'Ye) 
Klk ~ Z r  

i=1 "ci f (Yll x, a2, /3, Ti)" 
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Here tel,: is the probability that the l-th subject has random effects "gk given the vector Yl. In our 
experience, different subjects tend to have posterior probability near 1.0 on one of the xlk'S, with 
the remaining xlk'S near zero. Observations placing significant weights on the same Yk can be 
thought of as a cluster of observations. 

An EM-like algorithm can be used to optimize the likelihood. The parameters rk are es- 
timated during the "E" step, while the remaining parameters in the model (X, cN, 13, "ge) are 
estimated during the "M" step. The algorithm we use is adapted from algorithms discussed by 
Aitkin and Aitkin (1996), Aitkin (1996), Davidian and Giltinan (1995), Mallet (1986), Schu- 
mitzky (1991), Laird (1978), and in other references. To speed convergence of the EM algo- 
rithm, we use conjugant gradient acceleration methods discussed by Jamshidian and Jennrich 
(1993, 1997). 

3.3.1. Computational Algorithm 

Given the initial estimates for the 3'k, the algorithm proceeds as follows: 

1. Standardize the current estimates of Yk to a mean of zero while simultaneously translating 
the model intercepts. This has no effect on the log-likelihood, but it helps to uniquely identify 
the estimates. 

2. Compute the prior probabilities ~+1.  Let ~ = (X, cN, 13). Then these are computed as 

^C ^ C  .~+1 = __1 r/: f(yl[~I t , y~) 
F ~C ^ C m l=l ~ s = l  s f(Yl[ ~It , "gs c) 

where c indicates the estimates on iteration c. 
3. For each k, compute y~+l by maximizing the log-likelihood with respect to Yk. We use a 

quasi-Newton algorithm (Gay, 1983). 
4. Check to see if any max [y~+l _ y~+l[ < e for k ~ j .  Merge any vectors y~+l satisfying this 

criterion. 
5. Optimize the likelihood with respect to the remaining model parameters ~It = (X, 13, ~r2). We 

use a quasi-Newton algorithm (Gay, 1983). 
6. Check for convergence (maximum change in all parameters is sufficiently small). If  conver- 

gence has not been reached, go to Step 2, otherwise go on to the next step. 
7. Verify that no additional vectors Yk can be added to the random effects distribution. If  r equals 

m, no more vectors can be added. Otherwise, maximize with respect to y the function 

m 
qS,/(y) = ~ f ( Y l l ~ ,  Y) 

l=l ~ = 1  Z'sf(Yll~, Ys) 

. 

Let ~, denote this maximum. If qS~,(~,) is within e2 of m, no further Yk can be added. In this 
case, proceed to the next step. Otherwise, add the point ~, to the set of yk'S, and go back to 
Step 1. 
Standardize the estimated '~'k'S to a mean of zero while simultaneously translating the model 
intercepts. 

Other similar EM based algorithms omit Step 7 (discussed in Davidian & Giltinan, 1995), 
but we find that we occasionally add random effect vectors in this step, and thus find it to be 
important. 

Steps 3 and 5 could be combined, but this would result in an optimization problem with a 
very large number of parameters. Separate optimization seems to work as well, though its impact 
on the conjugant gradient acceleration is not known. 
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It is usually the case that r < m vectors "Yk are required to optimize the likelihood, especially 
when the number of observations on each subject is small. This can yield a model  similar to 
the CLASCAL model of Winsberg and De Soete (1993) in that the usual effect is to combine 
subjects into a smaller set of classes, where the number of classes is determined by the data. 
Indeed, for fixed r ,  the likelihoods are identical. Notice that in the random effects model  r is not 
fixed and will, in fact, increase with the number of subjec ts - - the  random effects model makes no 
assumptions about "latent classes". However, if  the random subject weights do indeed belong to 
one of a few latent classes, then the nonparametric algorithm has a good chance of finding them. 

3.4. Relationship With Other Models 

Aside from the CLASCAL model and the constrained models mentioned above, DeSarbo, 
Howard, and Jedidi (1991) propose a mixture model  for two-way dominance data, called the 
MULTICLUS model, which clusters the subjects into groups while simultaneously performing 
a multidimensional scaling analysis. This model is not so closely associated with the models 
proposed here, but, as with the CLASCAL model, a mixture of distributions is used. Notice 
that the random effects distribution used in our models can be generalized to include mixture 
distributions. A mixture of normals might be important, for example, when the subject weights 
depend upon an unobserved predictor or when outliers are present in the data. 

Mixture distributions are also common in multidimensional unfolding. In particular, the 
GENFOLD2 model (see DeSarbo & Rao, 1984) is a multidimensional unfolding model that 
includes linear restrictions on the configuration and ideal point matrices. Moreover, Wedel and 
DeSarbo (1996) include latent classes in the GENFOLD2 model. As in the CL A SCA L  model, 
the main difference of the Wedel and DeSarbo model and the random effects model we propose 
is that we are dealing with random effects, not latent classes. Moreover, we allow linear models 
for predicting the (expected log) subject weights. The restrictions imposed by the GENFOLD2 
models are qualitatively different from the linear models we use, as is discussed above. 

4. Algori thm Verification 

Before considering an example involving real data, we first verify that the algorithms are 
working correctly, and also illustrate the estimates that might be expected, by fitting a Monte 
Carlo data set generated from known population values. For this example we consider the popu- 
lation configuration matrix given in Table 1. 

The model for the subject weights includes one predictor, un = xl, for each dimension. 
This predictor is 1.0 for five of the subjects, while for the remaining five subjects the predictor 
is 2.0. The subject weights are generated according to models log wl = /3o + /31xl  + "g where 
the coefficients/3 and the variances of the "g's are given in Table 2 on lines labeled "Population". 
Here the Y~i are independently generated according to a normal distribution with a mean of zero 
and with equal standard deviations of 0.25. The measurement error standard deviations are also 
0.25. 

Using this model, forty-five measurements comparing all pairs of the ten stimuli were ob- 
tained on each of 10 subjects. In generating these measurements, first the subject weights for 
each subject were computed using the S-Plus (StatSci, 1993) pseudo-random normal generator. 
Given these subject weights, the model distances between the pairs of stimuli were computed, 
and pseudo-random normal measurement errors were added to the computed distances to obtain 
the subject observation. 

Maximum likelihood estimates for these data were computed using the three algorithms. 
Differences between the population values and the Monte Carlo algorithm estimates of the con- 
figuration are indicated by the letter "m" in Figure 1. Points indicated by the letter "1" in Fig- 
ure 1 refer to differences between the linearization algorithm and the population values, while 
points indicated by the letter "n" refer to the corresponding differences for the nonparametric 



36 PSYCtlOMETRIKA 

TABLE 1. 
Artificial data configuration matrix 

X 

1 2 3~ 

1 -2 .24 0 0 

2 0 0 0 

3 2.24 0 0 

4 0 -2 .54  0 

5 0 0.85 0 

6 0 1.69 0 

7 0 0 - 2  

8 0 0 - 1  

9 0 0 2 

10 0 0 1 

algorithm. The linearization algorithm estimates are closest to the population values, followed 
by the Metropolis algorithm, with the nonparametric algorithm giving estimates that differed 
most from the population values in this example. Clearly all three algorithms did a good job of 
recovering the configuration matrix, however, since the maximum of all of the deviations is small 
(0.2). 
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FIGURE 1. 
Algorithm verification. Plots of the differences between the configuration matrix estimates and the population values; 
m-MCEM algorithm, n-Nonparametric Algorithm; 1-1inearization algorithm. 
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TABLE 2. 
Linear model and variance component parameters 

37 

1 2 3 

Estimates a /~01 /~11 a l l  /~02 /~12 a22 /~03 /~13 a33 

Population 0.250 3.00 0.250 0.250 2.00 0.500 0.250 1.00 0.750 0.250 
Linear 0.246 3.44 0.016 0.025 2.30 0.245 0.033 1.34 0.570 0.027 
MCEM 0.246 3.45 0.022 0.255 2.23 0.244 0.243 1.34 0.571 0.246 
NP 0.241 3.44 0.022 2.31 0.239 1.35 0.562 

Comparing the sums of squared differences between the various configuration matrix esti- 
mates with the population values, the smallest sums of squared differences, 0.00976, is obtained 
by the linearization algorithm, while the MCEM algorithm yielded 0.0282, and the nonpara- 
metric algorithm yielded 0.0815. It is, perhaps, not surprising that the nonparametric algorithm 
yielded the largest d i f fe rences- -  it is most able to adapt to the individual subject weights. Al l  
three sums of squared differences are acceptably small, however. 

The estimates for the linear model parameters, the standard deviation of the measurement 
error, and the estimates for the variance components are given in Table 2. While  these estimates 
are not as close to their true values as the configuration matrix estimates, note that there are 
only ten subjects, not a large number of degrees of freedom for each linear regression. Standard 
errors for these coefficients were not computed, but in a simple linear regression with the same 
design matrix, coefficients, and residual standard error as are used here, the standard errors are 
0.250 and 0.158 for the slope and intercept, respectively. The estimates here are well within what 
would be expected in a simple linear regression analysis. The variance components from the 
linearization algorithm are all too small. In general, the variance component estimates obtained 
from the linearization algorithm will be poor. The MCEM algorithm clearly does much better at 
estimating these variance components.  

In this example we have a single predictor, x. Often, one will not know which predictors 
to include in the linear model  for the subject weights. Because these are all maximum likeli- 
hood procedures, l ikelihood ratio tests and AIC/BIC statistics can be used to compare models, 
and thus to select an appropriate model. A potential problem is the correlation between the vari- 
ance components and the linear mode l s - -mode l  selection is complicated by the fact that random 
effects models can compensate for deletion of predictors by increasing the variances of the ran- 
dom effects. One thus needs to consider both the reduction in the l ikelihood and the reduction 
in the variances of the random effects, when deciding whether or not a predictor belongs in the 
model. This is discussed further below. A further complication in the MCEM algorithm is that 
the l ikelihood is not computed directly, so that l ikelihood ratios must be used. 

5. Cola Example 

We now turn to an example with real data. Consider data collected on ten students on the 
distances between ten cola drinks. These data were originally collected by Schiffman in unpub- 
lished work at Duke University in 1977, and appear in Schiffman, Reynolds, & Young (1981), 
whose analyses were based upon many conditional models. The ten subjects were asked to pro- 
vide all 45 possible dissimilarities comparing the taste of ten brands of decarbonated, warm soda. 
Using the conditional model estimates as the initial estimates, we analyzed this data set using the 
three random effects algorithms described above, and assuming a diagonal covariance structure 
for the random effects. The data has a single predictor, PTC, that is zero or one depending upon 
whether or not the subject can taste the chemical "PTC". PTC tasters respond to diet drinks as 
being bitter, non-tasters do not. Consistent with the number of dimensions used by other authors, 
we used a three-dimensional solution for all models. In practice, the number of dimensions in 
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TABLE 3. 
SAS estimales for the conditional model 

X 

1 2 3~ 

1 -0.99 0.65 -1.28 

2 0.81 0.74 -0.93 

3 0.54 -1 .30 1.18 

4 0.94 -1.43 -1.31 

5 1.25 0.46 0.39 

6 0.54 0.31 1.50 

7 -0.94 -1.58 -0.77 

8 -1.41 0.01 1.17 

9 0.69 1.38 0.11 

10 -1.41 0.75 -0.05 

W 

1 2 3"~ 

1 11.15 7.95 8.12 

2 4.45 12.04 8.94 

3 5.95 13.54 9.24 

4 12.46 6.15 8.23 

5 14.36 2.13 6.15 

6 13.76 2.72 6.30 

7 8.24 12.25 11.49 

8 7.08 8.12 7.18 

9 12.25 6.55 7.73 

10 6.40 11.16 8.76 

a model may not be known. In this case AIC and BIC statistics may be used to determine the 
number of dimensions, or the number of dimensions can be determined from conditional model  
fits of the data. 

For comparison, we fit a conditional model using the SAS MDS procedure (SAS, 1988). The 
SAS procedure MDS options were chosen for a metric model that, except for the random effects, 
was otherwise identical to the models :fitted by our algorithms. This required us to set SAS option 
"Level" to "ABSOLUTE",  set the "Condition" option to "MATRIX", set the "Formula" to "1", 
and set the "Fit" option to 1. The fitted configuration matrix and subject weights from this model 
are given in Table 3. Notice that the SAS model makes no use of the predictor. 

We fit linear random effects models log Wlk = l%k + /3lkUl + "Ylk, where /~0k is an inter- 
cept for the k-th log subject weight,/~lk is the slope, ul is the predictor "PTC", and "glk is the 
random effect for the k-th log subject weight. The linearization (nlme) algorithm required only 
two (outer) iterations (using the default convergence criteria), the MCEM algorithm required 28 
iterations, and the nonparametric algorithm required 41 iterations. The EM algorithm used in the 
nonparametric estimates can be quite slow to converge, though generally the total cpu time is 
much less than for the MCEM algorithm. 

To conserve space we only give the configuration matrix and subject weight estimates for 
the linearization algorithm in Table 4. The estimates and standard errors in this table reflect rela- 
tionships that are also observed in the conditional solution, and in the other algorithms as well. 
The standard errors are computed using standard asymptotic methods based upon the inverse of 
the Hessian matrix. Table 5 gives the estimates for the other model  parameters, while Figure 2 
plots the differences between the estimated configuration matrices and the SAS model estimates, 
and Figure 3 plots these same differences for the subject weight matrices. 

Table 6 gives the sums of squared differences between the configuration matrix estimates 
from the various algorithms (the configuration matrix estimates are normalized to be as similar 
as possible). Sums of squared differences between the subject weights "estimates" are given in 
parenthesis (because the nonparametric model  does not associate subject weights with individu- 
als, the sums of squared differences are not given). For the MCEM and linearization algorithm, 
the subject weight "estimates" are taken as the modes of the posterior distribution of the ran- 
dom effects given the data. In this example, the SAS and the nonparametric configuration matrix 
estimates are most similar (sums of squared differences of 0.025), with the MCEM estimates 
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TABLE 4. 
Estimates from the parametric model, linearizalion algorithm. Standard errors are displayed in parentheses 

X W 

1 2 3~ 

1 --1.16 (.12) 0.74 (.33) --1.34 (.15) 

2 0.86 (.13) 0.72 (.29) -1 .22 (.17) 

3 0.62 (.14) --0.40 (.34) 1.6(i) (.09) 

4 0.64 (.15) --2.06 (.16) --(i).79 (.31) 

5 1.11 (.08) 0.37 (.19) 0.18 (.15) 

6 0.61 (.13) 0.77 (.27) 1.15 (.16) 

7 -0 .89 (.11) --1.69 (.11) --0.14 (.31) 

8 -1.28 (.11) 0.20 (.32) 1.33 (.12) 

9 0.96 (.10) 0.68 (.21) -0.59 (.17) 

10 -1.47 (.08) 0.66 (.20) -0,18 (.14) 

1 2 3 ~ 

1 12.09 6.02 7.73 

2 5.03 7.58 9.83 

3 6.95 9.06 9.40 

4 12.87 4.64 8.29 

5 14.56 2.68 5.33 

6 14.03 2.87 5.97 

7 8.96 8.85 11.03 

8 7.21 7.31 6.57 

9 12.43 4.28 8.75 

10 7.31 8.33 8.18 
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and the linearization algorithm configuration matrix estimates the least similar to the SAS model 
estimates, and also somewhat unsimilar with one another. These results can be explained by the 
fact that the nonparametric and the conditional SAS estimates place the fewest restrictions on the 
subject weights while the linearizatio:n :model and MCEM algorithm estimates shrink the random 
effect estimates toward zero, the mean of the multivariate normal distribution. 

Standard asymptotic normal theory tests and confidence intervals can be computed for the 
coefficients estimated in the various algorithms. For example, consider/~ll .  In the linearization 
algorithm, the asymptotic standard error estimate of this slope, computed from the inverse of the 
Hessian of  the log-likelihood, is 10.8. This gives an asymptotic standard normal score of  z = 
0.64/10.8 = 0.059 for the test that the slope is zero, clearly not a significant value. Likelihood 
ratio tests on the coefficients are also possible: performing the same test using likelihood ratios, 
we fit the model in which the "PTC" predictor lbr log wll is omitted. This gives log-likelihood 
-904 .6249,  slightly larger than the log-likelihood when the "PTC" term is included (this is 
possible only because the linearization algorithm uses an approximation to the likelihood). This 
test also reveals that the "PTC" effect is not significant in the linearization algorithm. 

It is also possible to test the hypothesis that the variance of  a random effect is zero. This is 
accomplished by fitting a model in which the random effect is not included, and then performing 
the usual l ikelihood ratio test. For example, to test that Ho: Crl~ = 0 versus the alternative that 
Hi" c~121 > 0, we first fit a model in which log wll = [3Ol +/31iul  (and all Ytl = 0). This gives 
log-l ikelihood of  - 907.18. Then the l ikelihood ratio test statistic is computed as 2 x ( -904 .72  + 

qS~B LE 5. 
Linear model and variance component parameters 

1 2 3 

Estimates a £(@) flO1 fill  0-11 f102 ill2 0"22 f103 ill3 0"33 

Linear 1 .81  904.72 3.61 0.64 0.13 5.13 -0 .74 0.10 4.72 -0.22 0.11 
MCEM 1.87 2.37 0.69 0.00 4.91 -1.10 0.00 4.49 -0.04 0.00 
NP 1.77 -480.77 3.02 0.87 6.11 -1.60 4.45 -0.33 
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TABLE 6. 
Sums of squared differences between the configuration (and subject weights) matrices for the estimates 
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SAS Linear MCEM Nonparametric 

SAS 3.8601 (79.2819) 3.0931 (89.1881) 0.0253 
Linear 1.2266 (142.8892) 3.9556 
MCEM 3.1444 

907.18) = 4.92. This statistic, statistically significant, is asymptotically distributed according to 
the chi-squared distribution with one degree of freedom. 

A test that the f l l l  coefficient is zero for the MCEM algorithm is given as z = 0.69/0.114 = 
6.05. Unlike the linearization algorithm, this value is clearly significant. On the other hand, after 
accounting for differences in the subject weights due to the predictor, the estimate of the vari- 
ance component er11 is zero. This results in a model  in which the subject weights on dimension 
1 are entirely predicted by the ability to taste "PTC". Differences between the linearization and 
MCEM algorithms can be explained, in part, by the approximate l ikelihood used in the lineariza- 
tion algorithm. In addition, one must also consider collinearity between the variance component 
Cql and the parameter fl11. The approximation used in the linearization algorithm places less 
emphasis on the slope fl11, which adds variability in the random effects Y11; thus, while f i l l  
is not significantly different from zero, the variance component 6-11 is significant. The MCEM 
likelihood, on the other hand, emphasizes the effect of the predictor so that f i l l  is significantly 
different from zero, while the 6-11 = 0. This illustrates an important aspect of including predic- 
tors in a m o d e l - - t h e y  can reduce the variance of the random subject weights. Continuing, we 
fit an MCEM model in which the PTC predictors was omitted. In this new model, 6-11 = 0.24 
with standard error estimated (obtained from a generalized inverse of the Hessian) of 0.066. This 
yields Z = 0.24/0.066 = 3.61 in a test that Ho: Cql = 0, clearly significant at the 5 percent 
level. 

Likelihood ratio tests are also possible when the MCEM algorithm is used, though the log- 
l ikelihood cannot be computed directly. Rather, l ikelihood ratio tests are computed through the 
function Q (Rt, ~t) .  For example, to test the hypothesis Ho: Rt = Rto against the alternative that 
Hi :  ~I t ~ ~Ito, the statistic X 2 = 2 Q(XIt, Rto) can be used. This is a l ikelihood ratio statistic, and 
has degrees of freedom equal to the number of parameters fixed by the null hypothesis. 

In the nonparametric algorithm, only 4 (out of a possible 10) points "gk were utilized in the 
estimated distribution of the random effects. These are given in Table 7, along with the estimated 
posterior probabilities. The posterior probabilities in this table indicate four clusters with obser- 
vation numbers as follows: {1, 4, 9}, {2, 3, 5, 6, 10}, {8}, {7}. It is important to note that these 
clusters are obtained from the random effec ts - - the  effect of the predictor PTC has already been 
accounted for in the linear model. 

TABLE 7. 
Random effect and posterior probability estimates from the nonparametric model 

(×) 

1 2 3 ~ 

1 -0.30 1.00 0.22 

2 -0.15 -0.06 -0.01 

3 0.20 -0.03 0.24 

4 -0.01 -0.45 -0.17 

Posterior Probabilities 

1 2 3 4 5 6 7 8 9 10 

1.00 0.0 0.0 1.00 0.0 0.0 0.0 0.0 1.00 0.0 

0.0 1.00 0.98 0.0 0.89 0.96 0.04 0.01 0.0 0.99 

0.0 0.0 0.0 0.0 0.11 0.04 0.0 0.99 0.00 0.01 

0.0 0.0 0.02 0.0 0.0 0.0 0.96 0.0 0.0 0.0 
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6. Discussion 

We proposed a mixed effects multidimensional scaling model with parametric and nonpara- 
metric distributions for the random effects, provided three fitting algorithms, and gave an ex- 
ample analysis. We believe that in many situations the subject weights in diagonal metric models 
are most appropriately modeled as random effects. As discussed in the Introduction, there are 
many benefits to the random effects approach. Perhaps the main benefit is that the model corre- 
sponds to what has been measured--the subject weights are random effects. Another significant 
benefit is that the (logarithm of the) subject weights can be modeled as a linear function of pre- 
dictors, providing the possibility for hypothesis testing on the subject weights simultaneous to 
the estimation of the configuration and subject weight matrices. Up until now, the standard ap- 
proach to hypothesis testing has been to estimate the subject weight matrix using a conditional 
technique and then treating the subject weights as a dependent variable in a subsequent anal- 
ysis. This "two-step" procedure, though not always inappropriate, especially when the number 
of observation per subject is large, is inefficient, and leads to questionable significance levels 
(since the distributions of the subject weights is not known), allows overfitting of individual sub- 
ject weights, and is known to be biased (Vonesh & Chinchilli, 1997). The ability offered by the 
proposed random effects models to test hypotheses on subject weights in a unified and direct 
manner will be useful to researchers. We believe that the benefits of random effects multidimen- 
sional scaling models outweigh the extra computational burden involved in fitting them. 

Because random effects models require one to model the distribution of the subject weights, 
misspecification of this distribution becomes possible, as do "outliers" in the random effects. 
Outliers, for example, the individual with a cold in the wine study discussed earlier in the paper, 
are not possible in conditional models, because the subject weights in these models are fixed 
parameters to be estimated separately for each subject. Outlying observations are often the most 
important observations, so the introduction of the possibility of outliers should not necessarily 
detract from random effects models. One way to model the random effects that adapts to this 
new class of "outliers" is to fit a model for the mean that is able to adjust appropriately to 
each subject, for example, B-spline predictors might be used. Another possibility is to assume 
a mixture distribution for the random effects. One such mixture is discussed by Davidian and 
Giltinan (1995). These, and other alternatives, will be considered in more detail in a future paper. 
Finally, an alternative that also eliminates the possibility of misspecification of the distribution 
of the random effects, is to use the nonparametric model. 

References 

Aitkin, M. (1996). A general maximum likelihood analysis of overdispersion in generalized linear models. Statistics and 
Computing, 6, 251-262. 

Aitkin, M., & Aitkin, I. (1996). A hybrid EM/Gauss-Newton algorithm for maximum likelihood in mixture distributions. 
Statistics and Computing, 6, 127-130. 

Bentler, EM., & Weeks, D.G. (1978). Restricted multidimennsional scaling models. Journal of Mathematical Psychol- 
ogy, 17, 138-151. 

Bloxom, B. (1978). Constrained multidimensional scaling in N spaces. Psychometrika, 43, 397-408. 
Carroll, J.D., & Chang, J.J. (1970). Analysis of individual differences in multidimensional scaling via an n-way general- 

ization of the "Eckart-Young" decomposition. Psychometrika, 35, 283-319. 
Carroll, J.D., De Soete, G., & Pruzansky, S. (1989). An evaluation of five algorithms for generating an initial estimate 

for SINDSCAL. Journal of  Classification, 6, 105-119. 
Carroll, J.D., Pruzansky, S., & Kruskal, J.B. (1980). CANDELINC: A general approach to multidimensional analysis of 

many-way arrays with linear constraints on the parameters. Psychometrika, 45, 3-21. 
Claxkson, D.B., & Gentle, J.E. (1986). Methods for multidimensional scaling. In David M. Allen (Ed.), Proceedings of  

the 17th Symposium on the Interface (pp. 185-192). Amsterdam: Elsevier. 
Davidian, M., & Giltinan, D. (1995). Nonlinear models for repeated measures data. New York: Chapman and Hall. 
de Leeuw, J., & Heiser, W.J. (1980). Multidimensional scaling with restrictions on the configuration. In ER. Krishnaiah 

(Ed.), Multivariate analysis (Vol. V, pp. 501-522). Amsterdam, The Netherlands: North-Holland. 
Demidenko, E. (1997). Asymptotic properties of nonlinear mixed effects models in large samples. In T.G. Gregoire, 

D.R. Brillinger, EJ. Diggle, E. Russek-Cohen, W.G. Warren, & R.D. Wolfinger (Eds.), Modelling longitudinal and 
spatially correlated data: Methods, applications, and future directions (pp. 49-62). New York, NY: Springer-Verlag. 



D O U G LAS B. C L A R K S O N  A ND RICHARD G O N Z A L E Z  43 

DeSarbo, W.S., Howard, D.J., & Jedidi, K. (1991). MUI.TICLUS: A new method for simultaneously performing multi- 
dimensional scaling and cluster analysis. Psychometrika, 78, 121-136. 

DeSarbo, W.S., & Rao, V.R. (1984). Genfold2: A set of models and algorithn~s for the general unfolding analysis of 
reference/dominance data. Journal of  Classification, 1, 147-186. 

Gay, D.M. (1983). Algorithm 611. Subroutines for unconstrained minimization using a model/trust-region approach. 
ACM Transactions on Mathematical Software, 9, 503-524. 

Geyer, C.J. (1996). Estimation and optimization of functions. In W.R. Gilks, S. Richardson, & D.J. Splegelhalter (Eds.), 
Markov Chain Monte Carlo inpractice (pp. 241-258). New York: Chapman and Hall. 

Geyer, C.J., & Thompson, E.A. (1992). Constrained Monte Carlo maximum likelihood for dependent data. Journal o f  
the Royal Statistical Society, Series B, 54, 657-699. 

Giltcs, V~:R., Richardson, S., & Spiegelhalter, D. J. (1996). Imroducing Marov Chain Monte Carlo. In W.R. Gilks, S. 
Richardson, & D.J. Splegelhalter (Eds.), Markov Chain Monte Carlo in practice (pp. 1-19). New York: Chapman 
and Hall. 

Jamshidian, M., & Jennrich, R.I. (1993). Coniugate gradient acceleration of the EM algorithm. Journal o f  the American 
Statistical Association, 88, 221-228. 

Jamshidian, M., & Jennrich, R.I. (1997). Acceleration of the EM algorithm using quasi-Newton methods. Manuscript 
submitted for publication. 

Laird, N.M. (1978). Nonparametric maximum likelihood estimates of a mixing distribution. Journal o f  the American 
Statistical Association, 73, 805-811. 

Lindstrom, M.J., & Bates, D.M. (1990). Nonlinear mixed effects models for repeated measures data. Biometrics, 46, 
673-687. 

Mallet, A. (1986). A maximum likelihood estimation method for random coefficient regression models. Biometrika, 73, 
645-656. 

McCulloch, C.E. (1997). Maximum likelihood algorithms for generalized linear models. Journal of  the American Statis- 
tical Association, 92, 162-170. 

McLachlan, G.J., & Krishnan, T. (1997). The EM algorithm and extensions. New York: John Wiley & Sons. 
Pinheiro, J.C., & Bates, D.M. (1995). Mixed effects models, methods, aim classes for  S aml S-Plus (Report No. 89). 

Madison, Wisconsin: University of Wisconsin, Madison. 
Ramsay, J.O. (1982). Some statistical approaches to multidimensional scaling data. Journal of the Royal Statistical 

Society, Series B, 45, 285-312. 
SAS Institute. (1988). SAS language guide. Caxy, North Carolina: Author. 
Schiffman, S.S., Reynolds, M.L., & Young, EW. (1981). Introduction to multidimensional scaling: Theory, methods, and 

applications. New York: John Wiley and Sons. 
S chumitzky, A. (1991). Nonparametric EM algoritms for estimating prior distribntions. Applied Mathematics and Com- 

putations, 45, 143-157. 
Sheiner, L.B., Rosenberg, B., & Melmon, K.L. (1972). Modeling of individual pharmacokinetics for computer aided 

drug dosing. Computers and Biomedical Research, 5,441-459. 
StatSci, A Division of MathSoft. (1993). S-Plus reference manual (Vo/. I). Seattle, WA: Author. 
Takane, Y., Young, F.W., & de Leeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An alter- 

nating least squares method with optimal scaling properties. Psychometrika, 42, 7-67. 
Tanner, M.A. (1996). Tools for statistical inference: Methods for  the exploration of posterior distributions and likelihood 

functions. New York: Springer-Verlag. 
Vonesh, E.E, & Chinchilli, V.M. (1997). Linear and nonlinear models'for the analysis of repeated measurements. New 

York: Marcel Dekker. 
Wedel, M., & DeSarbo, W.S. (1996). An exponential-family multidimensional scaling mixture methodology. Journal of  

Business and Economic" Statistics, 14, 447-459. 
Wei, G.C.G., & Tanner, M.A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data 

augmentation algorithm. Journal of  the American Statistical Association, 85, 699-704. 
Winsberg, S., & De Soete, G. (1993). A latent class approach to fitting the weigthed Euclidean model, CLASCAL. 

Psychometrika, 58, 315-330. 
Manuscript received 2 MAR 1998 
Final ve~:sion received 14 JUL 1999 


