Chapter 7 of
 Data Analysis for Experimental Design

Rich Gonzalez

August 23, 2009

1 Pairwise Tests

1.1 Bonferroni

The Bonferroni does not require a separate command because as described in the text one merely changes the Type I error criterion.

1.2 Tukey Test

The Tukey test is easy to run in R. It takes as argument the output from the $\operatorname{aov}()$ command (see R notes for Chapter 6). For the following I'm using the data with 5 groups from Chapter 6 (which is different than what appears in Chapter 7).

```
group <- c(rep (1,8), rep (2,8), rep (3,8), rep(4,8), rep (5,8))
data <- c(16, 18, 5, 12, 11, 12, 23, 19, 16, 7, 10, 4, 7, 23, 12, 13, 2,
    10, 9, 13, 11, 9, 13, 9, 5, 8, 8, 11, 1, 9, 5, 9, 7, 11, 12, 9, 14, 19, 16, 24)
group <- factor(group)
output <- aov(data~group)
summary(output)
TukeyHSD(output)
    diff lwr upr p adj
2-1 -3.0 -10.06753766 4.0675377 0.7397203
```

```
3-1 -5.0 -12.06753766 2.0675377 0.2715178
4-1 -7.5 -14.56753766 -0.4324623 0.0329680
5-1 -0.5 -7.56753766 6.5675377 0.9995988
3-2 -2.0 -9.06753766 5.0675377 0.9246855
4-2 -4.5 -11.56753766 2.5675377 0.3729049
5-2 2.5 -4.56753766 9.5675377 0.8458204
4-3 -2.5 -9.56753766 4.5675377 0.8458204
5-3 4.5 -2.56753766 11.5675377 0.3729049
5-4 7.0 -0.06753766 14.0675377 0.0532717
```


2 Scheffe'

To my knowledge full use of Scheffe in R would require some programming. There is a plotting tool that uses Scheffe intervals in the CAR library.

I'll illustrate the use of R programming and its versatility. There are ways of working directly from the aov() output object rather than typing the actual numerical values, but I want to keep things relatively straightforward so the reader can see each step.

For the following I'm using the data with 5 groups from Chapter 6 (which is different than what appears in Chapter 7).

```
#you specify alpha level and degrees of freedom error
alpha.criterion <- . }9
dferror <- 36
#compute group means
groupmeans <- by(data,group,mean)
k <- length(groupmeans)
#calculate F
F <- qf(alpha.criterion, k-1, dferror)
tprime <- sqrt( (k-1)*F)
tempdiff <- matrix(0,k*(k-1)/2,5)
#nested for loops to compute all possible pairwise differences; store in
#matrix tempdiff
counter <- 1
for (i in 1:(k-1))
    for (j in (i+1):k) {
tempdiff[counter,1] <- i
tempdiff[counter,2] <- j
```

```
tempdiff[counter,3] <- groupmeans[i]
tempdiff[counter,4] <- groupmeans[j]
tempdiff[counter,5] <- (groupmeans[i]-groupmeans[j])/se
counter <- counter+1
}
dimnames(tempdiff) <- list(NULL,c("group i", "group j", "mean i",
    "mean j", "normalized diff"))
print(tempdiff)
print(paste("test statistic to beat (absolute value): ",
    round(tprime,3),sep=""))
```

	group i group j mean i mean j normalized diff				
$[1]$,	1	2	14.5	11.5	3.8461538
$[2]$,	1	3	14.5	9.5	6.4102564
$[3]$,	1	4	14.5	7.0	9.6153846
$[4]$,	1	5	14.5	14.0	0.6410256
$[5]$,	2	3	11.5	9.5	2.5641026
$[6]$,	2	4	11.5	7.0	5.7692308
$[7]$,	2	5	11.5	14.0	-3.2051282
$[8]$,	3	4	9.5	7.0	3.2051282
$[9]$,	3	5	9.5	14.0	-5.7692308
$[10]$,	4	5	7.0	14.0	-8.9743590
$[1]$ "test statistic to beat: $3.945 "$					

