Chapter 7 of Data Analysis for Experimental Design

Rich Gonzalez

August 23, 2009

1 Pairwise Tests

1.1 Bonferroni

The Bonferroni does not require a separate command because as described in the text one merely changes the Type I error criterion.

1.2 Tukey Test

The Tukey test is easy to run in R. It takes as argument the output from the aov() command (see R notes for Chapter 6). For the following I'm using the data with 5 groups from Chapter 6 (which is different than what appears in Chapter 7).

```
group <- c(rep(1,8), rep(2,8), rep(3,8), rep(4,8), rep(5,8))
data <- c(16, 18, 5, 12, 11, 12, 23, 19, 16, 7, 10, 4, 7, 23, 12, 13, 2,
    10, 9, 13, 11, 9, 13, 9, 5, 8, 8, 11, 1, 9, 5, 9, 7, 11, 12, 9, 14, 19, 16, 24)
group <- factor(group)
output <- aov(data~group)
summary(output)
TukeyHSD(output)

diff     lwr    upr  p adj
2-1 -3.0 -10.06753766   4.0675377 0.7397203</pre>
```

2 Scheffe'

To my knowledge full use of Scheffe in R would require some programming. There is a plotting tool that uses Scheffe intervals in the CAR library.

I'll illustrate the use of R programming and its versatility. There are ways of working directly from the aov() output object rather than typing the actual numerical values, but I want to keep things relatively straightforward so the reader can see each step.

For the following I'm using the data with 5 groups from Chapter 6 (which is different than what appears in Chapter 7).

```
#you specify alpha level and degrees of freedom error
alpha.criterion <- .99
dferror <- 36
#compute group means
groupmeans <- by(data,group,mean)
k <- length(groupmeans)</pre>
#calculate F
F <- qf(alpha.criterion, k-1, dferror)</pre>
tprime <- sqrt( (k-1)*F)</pre>
tempdiff <- matrix(0, k*(k-1)/2, 5)
#nested for loops to compute all possible pairwise differences; store in
#matrix tempdiff
counter <- 1
for (i in 1:(k-1))
  for (j in (i+1):k) {
tempdiff[counter,1] <- i</pre>
tempdiff[counter,2] <- j</pre>
```

```
tempdiff[counter,3] <- groupmeans[i]
tempdiff[counter,4] <- groupmeans[j]
tempdiff[counter,5] <- (groupmeans[i]-groupmeans[j])/se
counter <- counter+1
}
dimnames(tempdiff) <- list(NULL,c("group i", "group j", "mean i",
    "mean j", "normalized diff"))
print(tempdiff)
print(paste("test statistic to beat (absolute value): ",
    round(tprime,3),sep=""))
```

	group	i	group	j	mean	i	mean	j	normalized diff
[1,]		1		2	14.	. 5	11.	5	3.8461538
[2,]		1		3	14	. 5	9.	5	6.4102564
[3,]		1		4	14	. 5	7.	0	9.6153846
[4,]		1		5	14	. 5	14.	0	0.6410256
[5,]		2		3	11.	. 5	9.	5	2.5641026
[6,]		2		4	11.	. 5	7.	0	5.7692308
[7,]		2		5	11.	. 5	14.	0	-3.2051282
[8,]		3		4	9.	. 5	7.	0	3.2051282
[9,]		3		5	9.	. 5	14.	0	-5.7692308
[10,]		4		5	7.	. 0	14.	0	-8.9743590
[1] "1	test s	tat	tistic	to	beat	::	3.945	5"	