The Arithmetic Geometry of Resonant Rossby Wave Triads

Gene Kopp

University of Michigan
http://www-personal.umich.edu/~gkopp/
AMS Fall Central Sectional Meeting
University of St. Thomas
October 29, 2016

Part One: Rossby Waves and Resonance

Rossby Waves

- Atmospheric Rossby waves on Earth are large-scale meanders in high-altitude winds. They are a major influence on the weather.

Rossby Waves

- Mathematically, Rossby waves are solutions to the Charney-Hasegawa-Mima equation (CHME)...

$$
\frac{\partial}{\partial t}(\Delta \psi-F \psi)+\beta \frac{\partial \psi}{\partial x}+[\psi, \Delta \psi]=0
$$

Rossby Waves

- Mathematically, Rossby waves are solutions to the Charney-Hasegawa-Mima equation (CHME)...

$$
\frac{\partial}{\partial t}(\Delta \psi-F \psi)+\beta \frac{\partial \psi}{\partial x}+[\psi, \Delta \psi]=0
$$

- with periodic boundary conditions.

Rossby Waves

- Mathematically, Rossby waves are solutions to the Charney-Hasegawa-Mima equation (CHME)...

$$
\frac{\partial}{\partial t}(\Delta \psi-F \psi)+\beta \frac{\partial \psi}{\partial x}+[\psi, \Delta \psi]=0
$$

- with periodic boundary conditions.
- The same PDE and boundary conditions describe drift waves in plasma in a tokamak.

Number theory and differential equations

- Why does number theory appear in physics and differential equations?

Number theory and differential equations

- Why does number theory appear in physics and differential equations?
- Periodic boundary conditions

Number theory and differential equations

- Why does number theory appear in physics and differential equations?
- Periodic boundary conditions
- Example from quantum mechanics: Bohr's hydrogen atom. Integral number of modes for the electron.

Number theory and differential equations

- Why does number theory appear in physics and differential equations?
- Periodic boundary conditions
- Example from quantum mechanics: Bohr's hydrogen atom. Integral number of modes for the electron.
- On a circle, wavenumber $=2 \pi /$ (frequency) is an integer. On a torus, wavenumbers are a vector in \mathbb{Z}^{2}.

Number theory and differential equations

- Why does number theory appear in physics and differential equations?
- Periodic boundary conditions
- Example from quantum mechanics: Bohr's hydrogen atom. Integral number of modes for the electron.
- On a circle, wavenumber $=2 \pi /$ (frequency) is an integer. On a torus, wavenumbers are a vector in \mathbb{Z}^{2}.
- In the β-plane model of Rossby waves, there is a zonal (east/west) wavenumber a and a meridional (north/south) wavenumber b.

Resonances of Rossby Waves

- Under certain physical conditions (large β), exact resonances of triples of Rossby waves dominate the behavior of the system. This is a theorem of Yamada and Yoneda [YY].

Resonances of Rossby Waves

- Under certain physical conditions (large β), exact resonances of triples of Rossby waves dominate the behavior of the system. This is a theorem of Yamada and Yoneda [YY].
- The problem of finding resonant triads has been widely studied, and there are standard analytical methods.

Resonances of Rossby Waves

- Under certain physical conditions (large β), exact resonances of triples of Rossby waves dominate the behavior of the system. This is a theorem of Yamada and Yoneda [YY].
- The problem of finding resonant triads has been widely studied, and there are standard analytical methods.
- Bustamante and Hayat [BH] were the first to classify these triads algebraically, and they give a much quicker algorithm for enumerating them.

Resonances of Rossby Waves

- Under certain physical conditions (large β), exact resonances of triples of Rossby waves dominate the behavior of the system. This is a theorem of Yamada and Yoneda [YY].
- The problem of finding resonant triads has been widely studied, and there are standard analytical methods.
- Bustamante and Hayat [BH] were the first to classify these triads algebraically, and they give a much quicker algorithm for enumerating them.
- We [K] give a new algebraic classification and an even quicker algorithm.

Part Two: Application of Number Theory

Resonance Equation

For a wavenumber vector $(a, b) \in \mathbb{Z}^{2}$, the angular frequency is given by the dispersion relation

$$
\omega(a, b)=-\frac{\beta a}{a^{2}+b^{2}} .
$$

Resonance Equation

For a wavenumber vector $(a, b) \in \mathbb{Z}^{2}$, the angular frequency is given by the dispersion relation

$$
\omega(a, b)=-\frac{\beta a}{a^{2}+b^{2}}
$$

A resonant triad consists of wavenumbers $(a, b),(x-a, y-b)$, and (x, y), satisfying the equation

$$
\begin{aligned}
\omega(a, b)+\omega(x-a, y-b) & =\omega(x, y) \\
\frac{a}{a^{2}+b^{2}}+\frac{x-a}{(x-a)^{2}+(y-b)^{2}} & =\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

Resonance Equation

For a wavenumber vector $(a, b) \in \mathbb{Z}^{2}$, the angular frequency is given by the dispersion relation

$$
\omega(a, b)=-\frac{\beta a}{a^{2}+b^{2}} .
$$

A resonant triad consists of wavenumbers $(a, b),(x-a, y-b)$, and (x, y), satisfying the equation

$$
\begin{aligned}
\omega(a, b)+\omega(x-a, y-b) & =\omega(x, y) \\
\frac{a}{a^{2}+b^{2}}+\frac{x-a}{(x-a)^{2}+(y-b)^{2}} & =\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

Resonance Equation

$$
x\left(a^{2}+b^{2}\right)\left(a^{2}+b^{2}-2 a x-2 b y\right)=a\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}-2 a x-2 b y\right)
$$

Resonance Equation

- The resonance equation defines a degree five surface $X \subset \mathbb{P}^{3}$.
- Call $C(a, b)$ the curve defined by the resonance equation for fixed $(a, b) \in \mathbb{Z}$. This curve is defined over \mathbb{Z}, and $C(a, b)_{\mathbb{Q}}$ is the fiber of the map

$$
\begin{aligned}
X & \rightarrow \mathbb{P}^{1} \\
{[a: b: x: y] } & \mapsto[a: b] .
\end{aligned}
$$

Resonance Equation

$$
x\left(a^{2}+b^{2}\right)\left(a^{2}+b^{2}-2 a x-2 b y\right)=a\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}-2 a x-2 b y\right)
$$

Results

Theorem

X is birational to \mathbb{P}^{2} over \mathbb{Q}.
A generically one-to-one rational parametrization is given.

Results

Theorem

X is birational to \mathbb{P}^{2} over \mathbb{Q}.

A generically one-to-one rational parametrization is given.

Theorem

For $(a, b) \in \mathbb{Z}, C(a, b)$ is birational to an elliptic curve with torsion $\mathbb{Z} / 2 \mathbb{Z}$ and rank ≥ 1, except when $a=0$ or $b=0$.

As a corollary, for any (a, b) with $a b \neq 0$, we can find $C(a n, b n)$ with arbitrarily many integer points.

Birational Equivalence of X with \mathbb{P}^{2}

A rational parametrization $\mathbb{P}^{2} \rightarrow X,[s: t: u] \mapsto[a: b: x: y]$

$$
\left[\begin{array}{l}
a \\
\ddot{b} \\
\ddot{\ddot{x}} \\
\ddot{y} \\
y
\end{array}\right]=\left[\begin{array}{c}
s^{3} t(s-2 u) \\
s\left(-s^{2} u(s-2 u)+\left(t^{2}+u^{2}\right)\left(t^{2}-2 s u+u^{2}\right)\right) \\
t\left(t^{2}+u^{2}\right)\left(t^{2}-2 s u+u^{2}\right) \\
\left(t^{2}+u^{2}\right)\left(-s^{2}(s-2 u)+u\left(t^{2}-2 s u+u^{2}\right)\right)
\end{array}\right]
$$

Its rational inverse $X \rightarrow \mathbb{P}^{2},[a: b: x: y] \mapsto[s: t: u]$.

$$
\left[\begin{array}{c}
s \\
\ddot{t} \\
\ddot{.} \\
u
\end{array}\right]=\left[\begin{array}{c}
a^{2}+b^{2} \\
b x-a y \\
a x+b y
\end{array}\right]
$$

A Fibration by Elliptic Curves

- The real points of $C(a, b)$ form a smooth closed loop, so there are finitely many integer points.

A Fibration by Elliptic Curves

- The real points of $C(a, b)$ form a smooth closed loop, so there are finitely many integer points.
- $C(a, b)$ is genus one, unless $[a: b]=[0: 1],[\pm i: 1],[\pm 2 i: 1]$, in which cases it is genus zero.

A Fibration by Elliptic Curves

- The real points of $C(a, b)$ form a smooth closed loop, so there are finitely many integer points.
- $C(a, b)$ is genus one, unless $[a: b]=[0: 1],[\pm i: 1],[\pm 2 i: 1]$, in which cases it is genus zero.
- $C(a, b)$ has two (non-real) singularities. We normalize the curve to obtain a smooth model, and convert to Weierstrass form.

Weierstrass form of smooth model of $C(a, b)$

$$
W^{2}=Z^{3}+\left(a^{2}-2 b^{2}\right) Z^{2}+\left(a^{2}+b^{2}\right)^{2} Z
$$

A Fibration by Elliptic Curves

- There are four "trivial" integer points on $C(a, b)$, giving rise to zonal resonances and unstable single-wave "resonances."

Weierstrass form of smooth model of $C(a, b)$

$$
W^{2}=Z^{3}+\left(a^{2}-2 b^{2}\right) Z^{2}+\left(a^{2}+b^{2}\right)^{2} Z
$$

A Fibration by Elliptic Curves

- There are four "trivial" integer points on $C(a, b)$, giving rise to zonal resonances and unstable single-wave "resonances."
- The point $(0,0)$ is taken to the identity of this elliptic curve. $T=(a, b)$ has order $2, P=(0,2 b)$ has infinite order, and

$$
(a,-b)=P+T
$$

Weierstrass form of smooth model of $C(a, b)$

$$
W^{2}=Z^{3}+\left(a^{2}-2 b^{2}\right) Z^{2}+\left(a^{2}+b^{2}\right)^{2} Z
$$

Computational Power

- How might all this algebraic geometry help us with mathematical modeling?

Computational Power

- How might all this algebraic geometry help us with mathematical modeling?
- Plug triples of integers into our parametrization and clear common factors to enumerate all triads.
- While we don't yet have good bounds on how long it will take to enumerate all triads up to a given wavenumber bound, in practice we have enumerated all 463×24 triads-more than found in the literature-up to wavenumber 5000 in 80 minutes on a MacBook Pro.

Computational Power

- How might all this algebraic geometry help us with mathematical modeling?
- Plug triples of integers into our parametrization and clear common factors to enumerate all triads.
- While we don't yet have good bounds on how long it will take to enumerate all triads up to a given wavenumber bound, in practice we have enumerated all 463×24 triads-more than found in the literature-up to wavenumber 5000 in 80 minutes on a MacBook Pro.
- We've also enumerated the first few resonant wavevectors with zonal group velocity zero: $(n, \pm n)$ for integers n in the sequence 13, 229, 3277, 504613, 155870857, 34589637433, 58803854910601, (This computation took a trivial amount of time.)

Thank you!

Thank you to the organizers!

Kopp, G. The arithmetic geometry of resonant Rossby wave triads. Submitted, 2016. arxiv:1605.04637.

Definition of the Wavenumber Set

Wavenumber Set

$$
\begin{aligned}
\Lambda & :=\left\{(a, b) \in \mathbb{Z}^{2}: C(a, b) \text { has a non-trivial integer point }\right\} . \\
\Lambda_{\text {new }} & :=\left\{(a, b) \in \mathbb{Z}^{2}: C(a, b) \text { has a new non-trivial integer point }\right\} .
\end{aligned}
$$

Definition of the Wavenumber Set

Wavenumber Set

$$
\begin{aligned}
\Lambda & :=\left\{(a, b) \in \mathbb{Z}^{2}: C(a, b) \text { has a non-trivial integer point }\right\} . \\
\Lambda_{\text {new }} & :=\left\{(a, b) \in \mathbb{Z}^{2}: C(a, b) \text { has a new non-trivial integer point }\right\} .
\end{aligned}
$$

- non-trivial $(x, y) \in C(a, b): x \neq 0$ and $x-a \neq 0$.
- new: $\operatorname{gcd}(a, b, x, y)=1$.

Plot of the Wavenumber Set $\Lambda_{\text {new }}$

M. Bustamante and U. Hayat. Complete classification of discrete resonant Rossby/drift wave triads on periodic domains. Commun. Nonlinear Sci. Numer. Simulat, 18: 2402-2419, 2013.
D. Coumou, J. Lehmann, and J. Beckmann. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science, 348(6232): 324-327, 2015.
A. Kartashov and E. Kartashova. Discrete exact and quasi-resonances of Rossby/drift waves on β-plane with periodic boundary conditions. Preprint, arXiv:1307.8272v1, 2013.
N. Kishimoto and T. Yoneda. A number theoretical observation of a resonant interaction of Rossby waves. Preprint, arXiv:1409.1031v1, 2014.
G. Kopp. The arithmetic geometry of resonant Rossby wave triads. Submitted, 2016. arxiv:1605.04637.
V. Petoukhov, S. Rahmstorf, S. Petri, and H. Schellnhuber. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proceedings of the National Academy of Sciences, 110(14): 5336-5341, 2013.
M. Yamada and T. Yoneda. Resonant interaction of Rossby waves in two-dimensional flow on a β-plane. Physica D, 245: 1-7, 2013.

