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Part One: Rossby Waves and Resonance
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Rossby Waves

Atmospheric Rossby waves on Earth are large-scale
meanders in high-altitude winds. They are a major
influence on the weather.
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Rossby Waves

Mathematically, Rossby waves are solutions to the
Charney-Hasegawa-Mima equation (CHME)...

∂

∂t
(∆ψ − Fψ) + β

∂ψ

∂x
+ [ψ,∆ψ] = 0,

with periodic boundary conditions.
The same PDE and boundary conditions describe drift
waves in plasma in a tokamak.
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Number theory and differential equations

Why does number theory appear in physics and differential
equations?

Periodic boundary conditions
Example from quantum mechanics: Bohr’s hydrogen atom.
Integral number of modes for the electron.
On a circle, wavenumber = 2π/(frequency) is an integer.
On a torus, wavenumbers are a vector in Z2.
In the β-plane model of Rossby waves, there is a zonal
(east/west) wavenumber a and a meridional (north/south)
wavenumber b.
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Resonances of Rossby Waves

Under certain physical conditions (large β), exact
resonances of triples of Rossby waves dominate the
behavior of the system. This is a theorem of Yamada and
Yoneda [YY].

The problem of finding resonant triads has been widely
studied, and there are standard analytical methods.
Bustamante and Hayat [BH] were the first to classify these
triads algebraically, and they give a much quicker algorithm
for enumerating them.
We [K] give a new algebraic classification and an even
quicker algorithm.
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Part Two: Application of Number Theory
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Resonance Equation

For a wavenumber vector (a,b) ∈ Z2, the angular frequency is
given by the dispersion relation

ω(a,b) = − βa
a2 + b2 .
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Resonance Equation

For a wavenumber vector (a,b) ∈ Z2, the angular frequency is
given by the dispersion relation

ω(a,b) = − βa
a2 + b2 .

A resonant triad consists of wavenumbers (a,b), (x − a, y − b),
and (x , y), satisfying the equation

ω(a,b) + ω(x − a, y − b) = ω(x , y)

a
a2 + b2 +

x − a
(x − a)2 + (y − b)2 =

x
x2 + y2
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Resonance Equation

For a wavenumber vector (a,b) ∈ Z2, the angular frequency is
given by the dispersion relation

ω(a,b) = − βa
a2 + b2 .

A resonant triad consists of wavenumbers (a,b), (x − a, y − b),
and (x , y), satisfying the equation

ω(a,b) + ω(x − a, y − b) = ω(x , y)

a
a2 + b2 +

x − a
(x − a)2 + (y − b)2 =

x
x2 + y2

Resonance Equation

x(a2 +b2)(a2 +b2−2ax−2by) = a(x2 +y2)(x2 +y2−2ax−2by)
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Resonance Equation

The resonance equation defines a degree five surface
X ⊂ P3.
Call C(a,b) the curve defined by the resonance equation
for fixed (a,b) ∈ Z. This curve is defined over Z, and
C(a,b)Q is the fiber of the map

X → P1

[a : b : x : y ] 7→ [a : b].

Resonance Equation

x(a2 +b2)(a2 +b2−2ax−2by) = a(x2 +y2)(x2 +y2−2ax−2by)
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Results

Theorem

X is birational to P2 over Q.

A generically one-to-one rational parametrization is given.

Theorem
For (a,b) ∈ Z, C(a,b) is birational to an elliptic curve with
torsion Z/2Z and rank ≥ 1, except when a = 0 or b = 0.

As a corollary, for any (a,b) with ab 6= 0, we can find C(an,bn)
with arbitrarily many integer points.
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Birational Equivalence of X with P2

A rational parametrization P2 → X , [s : t : u] 7→ [a : b : x : y ]


a
..
b
..
x
..
y

 =


s3t(s − 2u)

..
s(−s2u(s − 2u) + (t2 + u2)(t2 − 2su + u2))

..
t(t2 + u2)(t2 − 2su + u2)

..
(t2 + u2)(−s2(s − 2u) + u(t2 − 2su + u2))


Its rational inverse X → P2, [a : b : x : y ] 7→ [s : t : u].


s
..
t
..
u

 =


a2 + b2

..
bx − ay

..
ax + by
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A Fibration by Elliptic Curves

0

P + T

T

P

The real points of C(a,b) form a
smooth closed loop, so there are
finitely many integer points.
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A Fibration by Elliptic Curves

0

P + T

T

P

The real points of C(a,b) form a
smooth closed loop, so there are
finitely many integer points.
C(a,b) is genus one, unless
[a : b] = [0 : 1], [±i : 1], [±2i : 1], in
which cases it is genus zero.
C(a,b) has two (non-real)
singularities. We normalize the
curve to obtain a smooth model, and
convert to Weierstrass form.

Weierstrass form of smooth model of C(a,b)

W 2 = Z 3 + (a2 − 2b2)Z 2 + (a2 + b2)2Z .
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A Fibration by Elliptic Curves

0

P + T

T

P

There are four “trivial” integer points
on C(a,b), giving rise to zonal
resonances and unstable
single-wave “resonances.”
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A Fibration by Elliptic Curves

0

P + T

T

P

There are four “trivial” integer points
on C(a,b), giving rise to zonal
resonances and unstable
single-wave “resonances.”
The point (0,0) is taken to the
identity of this elliptic curve.
T = (a,b) has order 2, P = (0,2b)
has infinite order, and
(a,−b) = P + T .

Weierstrass form of smooth model of C(a,b)

W 2 = Z 3 + (a2 − 2b2)Z 2 + (a2 + b2)2Z .
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Computational Power

How might all this algebraic geometry help us with
mathematical modeling?

Plug triples of integers into our parametrization and clear
common factors to enumerate all triads.
While we don’t yet have good bounds on how long it will
take to enumerate all triads up to a given wavenumber
bound, in practice we have enumerated all 463× 24
triads—more than found in the literature—up to
wavenumber 5000 in 80 minutes on a MacBook Pro.
We’ve also enumerated the first few resonant wavevectors
with zonal group velocity zero: (n,±n) for integers n in the
sequence 13, 229, 3277, 504613, 155870857,
34589637433, 58803854910601, . . .. (This computation
took a trivial amount of time.)
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Thank you!

Thank you to the organizers!

Kopp, G. The arithmetic geometry of resonant Rossby wave
triads. Submitted, 2016. arxiv:1605.04637.
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Definition of the Wavenumber Set

Wavenumber Set

Λ := {(a,b) ∈ Z2 : C(a,b) has a non-trivial integer point}.
Λnew := {(a,b) ∈ Z2 : C(a,b) has a new non-trivial integer point}.

non-trivial (x , y) ∈ C(a,b): x 6= 0 and x − a 6= 0.
new: gcd(a,b, x , y) = 1.
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Plot of the Wavenumber Set Λnew
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