The Arithmetic Geometry of Resonant Rossby Wave Triads

Gene Kopp

University of Michigan

http://www-personal.umich.edu/~gkopp/

AMS Fall Central Sectional Meeting
University of St. Thomas
October 29, 2016
Part One: Rossby Waves and Resonance
Atmospheric **Rossby waves** on Earth are large-scale meanders in high-altitude winds. They are a major influence on the weather.
Rossby Waves

- Mathematically, Rossby waves are solutions to the Charney-Hasegawa-Mima equation (CHME)...
Rossby Waves

- Mathematically, Rossby waves are solutions to the Charney-Hasegawa-Mima equation (CHME)...

\[\frac{\partial}{\partial t} (\Delta \psi - F \psi) + \beta \frac{\partial \psi}{\partial x} + [\psi, \Delta \psi] = 0, \]

- with periodic boundary conditions.
Rossby Waves

- Mathematically, Rossby waves are solutions to the Charney-Hasegawa-Mima equation (CHME)...

\[\frac{\partial}{\partial t} (\Delta \psi - F\psi) + \beta \frac{\partial \psi}{\partial x} + [\psi, \Delta \psi] = 0, \]

- with periodic boundary conditions.
- The same PDE and boundary conditions describe drift waves in plasma in a tokamak.
Why does number theory appear in physics and differential equations?
Number theory and differential equations

- Why does number theory appear in physics and differential equations?
- Periodic boundary conditions
Why does number theory appear in physics and differential equations?

- Periodic boundary conditions
- Example from quantum mechanics: Bohr’s hydrogen atom. Integral number of modes for the electron.
Number theory and differential equations

- Why does number theory appear in physics and differential equations?
- Periodic boundary conditions
- Example from quantum mechanics: Bohr’s hydrogen atom. Integral number of modes for the electron.
- On a circle, wavenumber $= 2\pi/(\text{frequency})$ is an integer.
 On a torus, wavenumbers are a vector in \mathbb{Z}^2.
Number theory and differential equations

- Why does number theory appear in physics and differential equations?
- Periodic boundary conditions
- Example from quantum mechanics: Bohr’s hydrogen atom. Integral number of modes for the electron.
- On a circle, wavenumber $= 2\pi/(\text{frequency})$ is an integer. On a torus, wavenumbers are a vector in \mathbb{Z}^2.
- In the β-plane model of Rossby waves, there is a zonal (east/west) wavenumber a and a meridional (north/south) wavenumber b.
Under certain physical conditions (large β), exact resonances of triples of Rossby waves dominate the behavior of the system. This is a theorem of Yamada and Yoneda [YY].
Resonances of Rossby Waves

- Under certain physical conditions (large β), exact resonances of triples of Rossby waves dominate the behavior of the system. This is a theorem of Yamada and Yoneda [YY].
- The problem of finding resonant triads has been widely studied, and there are standard analytical methods.
Resonances of Rossby Waves

- Under certain physical conditions (large β), exact resonances of triples of Rossby waves dominate the behavior of the system. This is a theorem of Yamada and Yoneda [YY].
- The problem of finding resonant triads has been widely studied, and there are standard analytical methods.
- Bustamante and Hayat [BH] were the first to classify these triads algebraically, and they give a much quicker algorithm for enumerating them.
Under certain physical conditions (large β), exact resonances of triples of Rossby waves dominate the behavior of the system. This is a theorem of Yamada and Yoneda [YY].

The problem of finding resonant triads has been widely studied, and there are standard analytical methods.

Bustamante and Hayat [BH] were the first to classify these triads algebraically, and they give a much quicker algorithm for enumerating them.

We [K] give a new algebraic classification and an even quicker algorithm.
Part Two: Application of Number Theory
For a wavenumber vector \((a, b) \in \mathbb{Z}^2\), the angular frequency is given by the dispersion relation

\[
\omega(a, b) = -\frac{\beta a}{a^2 + b^2}.
\]
For a wavenumber vector \((a, b) \in \mathbb{Z}^2\), the angular frequency is given by the dispersion relation

\[
\omega(a, b) = -\frac{\beta a}{a^2 + b^2}.
\]

A resonant triad consists of wavenumbers \((a, b), (x - a, y - b)\), and \((x, y)\), satisfying the equation

\[
\frac{a}{a^2 + b^2} + \frac{x - a}{(x - a)^2 + (y - b)^2} = \frac{x}{x^2 + y^2}
\]
Resonance Equation

For a wavenumber vector \((a, b) \in \mathbb{Z}^2\), the angular frequency is given by the dispersion relation

\[
\omega(a, b) = -\frac{\beta a}{a^2 + b^2}.
\]

A resonant triad consists of wavenumbers \((a, b), (x - a, y - b),\) and \((x, y)\), satisfying the equation

\[
\omega(a, b) + \omega(x - a, y - b) = \omega(x, y)
\]

\[
\frac{a}{a^2 + b^2} + \frac{x - a}{(x - a)^2 + (y - b)^2} = \frac{x}{x^2 + y^2}
\]
The resonance equation defines a degree five surface $X \subset \mathbb{P}^3$.

Call $C(a, b)$ the curve defined by the resonance equation for fixed $(a, b) \in \mathbb{Z}$. This curve is defined over \mathbb{Z}, and $C(a, b)_\mathbb{Q}$ is the fiber of the map

$$X \rightarrow \mathbb{P}^1$$

$$[a : b : x : y] \mapsto [a : b].$$

Resonance Equation

$$x(a^2 + b^2)(a^2 + b^2 - 2ax - 2by) = a(x^2 + y^2)(x^2 + y^2 - 2ax - 2by)$$
Theorem

X is birational to \mathbb{P}^2 over \mathbb{Q}.

A generically one-to-one rational parametrization is given.
Theorem

X is birational to \mathbb{P}^2 over \mathbb{Q}.

A generically one-to-one rational parametrization is given.

Theorem

For $(a, b) \in \mathbb{Z}$, $C(a, b)$ is birational to an elliptic curve with torsion $\mathbb{Z}/2\mathbb{Z}$ and rank ≥ 1, except when $a = 0$ or $b = 0$.

As a corollary, for any (a, b) with $ab \neq 0$, we can find $C(an, bn)$ with arbitrarily many integer points.
Birational Equivalence of X with \mathbb{P}^2

A rational parametrization $\mathbb{P}^2 \rightarrow X$, $[s : t : u] \mapsto [a : b : x : y]$

\[
\begin{bmatrix}
a \\ \. \\ b \\ \. \\ x \\ \. \\ y
\end{bmatrix} =
\begin{bmatrix}
s^3 t(s - 2u) \\ \. \\ s(-s^2u(s - 2u) + (t^2 + u^2)(t^2 - 2su + u^2)) \\ \. \\ t(t^2 + u^2)(t^2 - 2su + u^2) \\ \. \\ (t^2 + u^2)(-s^2(s - 2u) + u(t^2 - 2su + u^2))
\end{bmatrix}
\]

Its rational inverse $X \rightarrow \mathbb{P}^2$, $[a : b : x : y] \mapsto [s : t : u]$.

\[
\begin{bmatrix}
s \\ \. \\ t \\ \. \\ u
\end{bmatrix} =
\begin{bmatrix}
a^2 + b^2 \\ \. \\ bx - ay \\ \. \\ ax + by
\end{bmatrix}
\]
The real points of $C(a, b)$ form a smooth closed loop, so there are finitely many integer points.
A Fibration by Elliptic Curves

- The real points of $C(a, b)$ form a smooth closed loop, so there are finitely many integer points.
- $C(a, b)$ is genus one, unless $[a : b] = [0 : 1], [\pm i : 1], [\pm 2i : 1]$, in which cases it is genus zero.
A Fibration by Elliptic Curves

- The real points of $C(a, b)$ form a smooth closed loop, so there are finitely many integer points.
- $C(a, b)$ is genus one, unless $[a : b] = [0 : 1], [\pm i : 1], [\pm 2i : 1]$, in which cases it is genus zero.
- $C(a, b)$ has two (non-real) singularities. We normalize the curve to obtain a smooth model, and convert to Weierstrass form.

Weierstrass form of smooth model of $C(a, b)$

$$W^2 = Z^3 + (a^2 - 2b^2)Z^2 + (a^2 + b^2)^2 Z.$$
There are four “trivial” integer points on $C(a, b)$, giving rise to zonal resonances and unstable single-wave “resonances.”

Weierstrass form of smooth model of $C(a, b)$

$$W^2 = Z^3 + (a^2 - 2b^2)Z^2 + (a^2 + b^2)^2 Z.$$
A Fibration by Elliptic Curves

- There are four “trivial” integer points on $C(a, b)$, giving rise to zonal resonances and unstable single-wave “resonances.”
- The point $(0, 0)$ is taken to the identity of this elliptic curve. $T = (a, b)$ has order 2, $P = (0, 2b)$ has infinite order, and $(a, -b) = P + T$.

Weierstrass form of smooth model of $C(a, b)$

$$W^2 = Z^3 + (a^2 - 2b^2)Z^2 + (a^2 + b^2)^2Z.$$
How might all this algebraic geometry help us with mathematical modeling?
Computational Power

- How might all this algebraic geometry help us with mathematical modeling?
- Plug triples of integers into our parametrization and clear common factors to enumerate all triads.
- While we don’t yet have good bounds on how long it will take to enumerate all triads up to a given wavenumber bound, in practice we have enumerated all 463×24 triads—more than found in the literature—up to wavenumber 5000 in 80 minutes on a MacBook Pro.
How might all this algebraic geometry help us with mathematical modeling?

Plug triples of integers into our parametrization and clear common factors to enumerate all triads.

While we don’t yet have good bounds on how long it will take to enumerate all triads up to a given wavenumber bound, in practice we have enumerated all 463×24 triads—more than found in the literature—up to wavenumber 5000 in 80 minutes on a MacBook Pro.

We’ve also enumerated the first few resonant wavevectors with zonal group velocity zero: $(n, \pm n)$ for integers n in the sequence 13, 229, 3277, 504613, 155870857, 34589637433, 58803854910601, (This computation took a trivial amount of time.)
Thank you to the organizers!

Definition of the Wavenumber Set

Wavenumber Set

\[\Lambda := \{(a, b) \in \mathbb{Z}^2 : C(a, b) \text{ has a non-trivial integer point}\} . \]
\[\Lambda_{\text{new}} := \{(a, b) \in \mathbb{Z}^2 : C(a, b) \text{ has a new non-trivial integer point}\} . \]
Definition of the Wavenumber Set

\[\Lambda := \{(a, b) \in \mathbb{Z}^2 : C(a, b) \text{ has a non-trivial integer point}\} \]

\[\Lambda_{\text{new}} := \{(a, b) \in \mathbb{Z}^2 : C(a, b) \text{ has a new non-trivial integer point}\} \]

- non-trivial \((x, y) \in C(a, b)\): \(x \neq 0\) and \(x - a \neq 0\).
- new: \(\gcd(a, b, x, y) = 1\).
Plot of the Wavenumber Set Λ_{new}

