Problem 1
Consider the following piecewise defined function
\[
f(x) = \begin{cases}
2x - 4, & -4 < x \leq 1 \\
x - 3, & 1 < x \leq 3 \\
1 - x, & 3 < x < 6
\end{cases}
\]

(a) (3 pts) Sketch the graph of this function

(b) (3 pts) Find the domain and range of this function

Date: September 28, 2010.
Problem 2 (14 points)

In order to gain popularity among students, a brand new on-campus hair salon plans to offer a special promotion. The cost of a haircut, in dollars, at the salon as a function of time, in days since February 10th may be described as

\[
C(t) = \begin{cases}
9, & 0 \leq t \leq 3 \\
9 + t, & 3 < t \leq 8 \\
20, & 8 < t < 28
\end{cases}
\]

(Assume \(t \) takes whole numbers values.)

(a) (3 pts.) If you want them to give them a try, on what date(s) should you have a haircut in order to get the best price?

(b) (2 pts.) How much will a haircut cost on Feb. 18th?

(c) (2 pts.) On what date will a haircut cost 13 dollars?

(d) (3 pts.) The cost of a haircut at least \(A \) dollars \(B \) days into the promotion. Write an expression that describes this sentence using function notation and mathematics symbols only.

(e) (4 pts) Calculate \(C(9) - C(8) \) and interpret its meaning in the context of the problem.
Problem 3
(3 pts). Sketch a graph which is everywhere positive, increasing, and concave up.

Problem 4.
(4 pts.) Let \(P = f(t) \) be the population in millions in year \(t \). Assume this function is invertible. Give the meaning and units of the inverse function.

Problem 5.
(4 Pts). Find the zeros of \(Q(x) = -5x + 2x^2 - 3 \) using the quadratic formula.
Problem 6

(4 Pts). Determine the concavity of the graph of \(f(x) = 4 - x^2 \) between \(x = -1 \) and \(x = 5 \) by calculating average rates of change over intervals of length 2.