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Oriented exchange graphs

Let Q be a finite, connected quiver without loops or 2-cycles whose
vertices are [n] := {1,2,...,n}.
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Oriented exchange graphs

Let Q be a finite, connected quiver without loops or 2-cycles whose
vertices are [n] := {1,2,...,n}.

Definition

Given a quiver Q, the framed quiver (resp. coframed quiver) of Q,
denoted Q (resp. Q) is formed by

(i) adding a frozen vertex i’ for each vertex i in Q

(ii) adding an arrow i — i’ (resp. i < i’) for each vertex i in Q.
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Oriented exchange graphs

Let Mut(@) denote the set of quivers mutation-equivalent to @
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Oriented exchange graphs

Let Mut(@) denote the set of quivers mutation-equivalent to @

A nonfrozen vertex of i of Q € Mut(@) is (resp. red) if all
arrows between frozen vertices of Q and i point away from (resp.
toward) i.
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Oriented exchange graphs

Let Mut(@) denote the set of quivers mutation-equivalent to Q.

Definition

A nonfrozen vertex of i of 0 € Mut(Q) is (resp. red) if all
arrows between frozen vertices of Q and i point away from (resp.
toward) i.

Theorem (Derksen-Weyman-Zelevinsky, “Sign Coherence")

Each nonfrozen vertex i of Q € Mut(Q) is either orred.
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| A

Definition

A maximal green sequence of Q is a sequence i = (i1, ..., i) of
mutable vertices of Q where
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(i) forall j € [k] vertex i; is inp;,_, o+ op;(Q)and
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Oriented exchange graphs

Let Mut(@) denote the set of quivers mutation-equivalent to Q.

Definition

A nonfrozen vertex of i of 0 € Mut(Q) is (resp. red) if all
arrows between frozen vertices of Q and i point away from (resp.
toward) i.

Theorem (Derksen-Weyman-Zelevinsky, “Sign Coherence")

Each nonfrozen vertex i of Q € Mut(Q) is either orred.

| A

Definition

A maximal green sequence of Q is a sequence i = (i1, ..., i) of
mutable vertices of Q where

(i) forall j € [k] vertex i; is inp_, o opy () and

(ii) all vertices in p;, o - - - o p;, (Q) are red.
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Oriented exchange graphs

Definition (Briistle-Dupont-Pérotin)

The oriented exchange graph of Q, denoted E_é(@), is the directed
graph with vertices the elements of Mut(Q) and edges Q; — 110,
if and only if k is green in Q.
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The oriented exchange graph of Q = 1 — 2 has maximal green sequences
(1,2) and (2,1,2).
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Torsion classes

Goal: Understand the global structure of oriented exchange graphs
using representation theory.
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Torsion classes

Goal: Understand the global structure of oriented exchange graphs
using representation theory.

Related work on the structure of oriented exchange graphs

@ Ordered exchange graphs [Briistle-Yang 2014]

@ Semi-invariants for quiver representations
[Igusa-Orr-Todorov-Weyman 2009], [Chindris 2011],
[Briistle-Hermes-Igusa-Todorov 2015]

@ Scattering diagrams [Gross-Hacking-Keel-Kontsevich 2014],
[Muller 2015]

@ Cambrian lattices [Reading 2006] and frameworks for cluster
algebras [Reading-Speyer 2015, 2015, 2015]




Torsion classes

Goal: Understand the global structure of oriented exchange graphs
using representation theory.

Related work on the structure of oriented exchange graphs

@ Ordered exchange graphs [Briistle-Yang 2014]

@ Cambrian lattices [Reading 2006]

Our work is based on ideas developed in [Briistle-Yang 2014] and
[Reading 2006].
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Torsion classes

Theorem (Briistle- Yang)

Let Q be mutation-equivalent to a Dynkin quiver. Then
EG(Q) = tors(A) where A = kQ/I is the cluster-tilted (or Jacobian)
algebra associated to Q.
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Torsion classes

Proposition (Briistle- Yang)

Let Q be mutation-equivalent to a Dynkin quiver. Then
EG(Q) = tors(\) where A = kQ/I is the cluster-tilted (or Jacobian)
algebra associated to Q.

tors(A) := torsion classes of A ordered by inclusion

Let A be a finite dimensional k-algebra. Then a full, additive
subcategory 7 of A-mod is a torsion class of A if it is
a) extension closed : if X, Y € 7 and one has an exact sequence
0>X—>Z—>Y—>0,thenZeT,
b) quotient closed : if X € 7 and one has a surjection
X —»Z,thenZeT.
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Torsion classes

Example (Q = | — 2)

The cluster-tilted algebra associated to Q is A = kQ.
The Auslander-Reiten quiver of A-mod ~ rep, (Q) is

T'(A-mod) k—k
-mo = -
L/ \
0%k k -2 0.
We use I'(A-mod) to describe the torsion classes of A.




Torsion classes

Example (Q = 1 — 2)

N

tors(A) := torsion classes of A ordered by inclusion

A full, additive subcategory 7 of A-mod is a torsion class of A if it is
a) extension closed : if X, Y € 7 and one has an exact sequence
0>X—>Z—>Y—>0,thenZeT,
b) quotient closed : X € 7 and X —» Z implies Z € T.
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Torsion classes

Example (Q = 1 — 2)

tors(A)
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tors(A) := torsion classes of A ordered by inclusion

A full, additive subcategory 7 of A-mod is a torsion class of A if it is
a) extension closed : if X, Y € 7 and one has an exact sequence
0>X—>Z—>Y—0,thenZeT,
b) quotient closed : X € 7 and X — Z implies Z € 7.




Torsion classes

The partially ordered set tors(A) is a lattice (i.e. any two torsion
classes 71, 7> € tors(A) have a join (resp. meet), denoted 77 v 7>

(resp. Ti A T2))-

14/31



Torsion classes

The partially ordered set tors(A) is a lattice (i.e. any two torsion
classes 71, 7> € tors(A) have a join (resp. meet), denoted 77 v 7>
(resp. Ti A T2).

Lemma
Let A be a finite dimensional k-algebra and let T, T, € tors(\). Then

14/31



Torsion classes

The partially ordered set tors(A) is a lattice (i.e. any two torsion
classes 71, 7> € tors(A) have a join (resp. meet), denoted 77 v 7>
(resp. Ti A T2).

Lemma

Let A be a finite dimensional k-algebra and let T, T, € tors(\). Then
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Torsion classes

The partially ordered set tors(A) is a lattice (i.e. any two torsion
classes 71, 7> € tors(A) have a join (resp. meet), denoted 77 v 7>
(resp. Ti A T2).

Lemma

Let A be a finite dimensional k-algebra and let T, T, € tors(\). Then
) TinT,=TinT,
iit) T v Tr = Filt(Th, T2) where Filt(Ti, T2) consists of objects X
with a filtration 0 = Xg < X; < --- < X,, = X such that X;/Xj_,
belongs to T or Tr. [G.—McConville]

Goal: Realize tors(A) as a quotient of a lattice with nice properties
so that tors(A) will inherit these nice properties.
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Torsion classes

Example

A lattice quotient map 7| : L — L/~ is a surjective map of lattices.
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Biclosed subcategories

Now we assume that Q is mutation-equivalenttol — 2 — --- — nor
is an oriented cycle.
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Now we assume that Q is mutation-equivalenttol — 2 — --- — nor
is an oriented cycle.

BZIC(Q) := biclosed subcategories of A-mod ordered by inclusion

A full, additive subcategory B of A-mod is biclosed if
a) B =add(®X;) for some set of indecomposables {X;}¢_,
(here add(@®¥_,X;) consists of objects ®F_ X" where m; > 0),
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Biclosed subcategories

Now we assume that Q is mutation-equivalenttol — 2 — --- — nor
is an oriented cycle.

BZIC(Q) := biclosed subcategories of A-mod ordered by inclusion

A full, additive subcategory B of A-mod is biclosed if

a) B =add(®X;) for some set of indecomposables {X;}¢_,
(here add(@®¥_,X;) consists of objects ®F_ X" where m; > 0),

b) B is weakly extension closed: if 0 - X; - X — X, — O1is
an exact sequence where X1, X, X are indecomposable and
X1,X, € B, then X € B,

b*) B is weakly extension coclosed: if 0 > X; - X — X, —» 0

is an exact sequence where X1, X», X are indecomposable and
X1,X> ¢ B, then X ¢ B.

16/31



Biclosed subcategories

Example (Q = 1 -5 2)
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Biclosed subcategories

Example (Q = 1 — 2)
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Theorem (G.— McConville)

Let B = add(&®F_,X;) € BIC(Q) and let

m (B) := add(@leX,-j : X, »Y = YebB).

’
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Biclosed subcategories

Example (Q = 1 — 2)
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Theorem (G.— McConville)

Let B = add(&®F_,X;) € BIC(Q) and let

m (B) := add(@leX,-j : X, »Y = YebB).

Then 7| : BIC(Q) — tors(A) is a lattice quotient map.

’
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Application: maximal green sequences

Example
Let
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Application: maximal green sequences

Example

The maximal green sequences of Q(3) are connected by polygonal
flips.
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Application: maximal green sequences

Example
The maximal green sequences of Q(3) are connected by polygonal

flips.
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Application: maximal green sequences

Example
The maximal green sequences of Q(3) are connected by polygonal

flips.
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Application: maximal green sequences

Example
The maximal green sequences of Q(3) are connected by polygonal
flips.
\O o o L] o /O' ‘\0 L] o o o o
\\‘\o o O/(




Application: maximal green sequences

Example
The maximal green sequences of Q(3) are connected by polygonal
flips.
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Application: maximal green sequences
Example

The maximal green sequences of Q(3) are connected by polygonal
flips.

s

[ ] L]
° o °
o o o o ° o
L] o
o ° o o o o o
<\ o o /
o o ° o o o o
L] o o e L] o] o e
o o o
o]




Application: maximal green sequences

Example

The maximal green sequences of Q(3) are connected by polygonal
flips.
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Application: maximal green sequences

Example

The maximal green sequences of Q(3) are connected by polygonal
flips.
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Application: maximal green sequences

Example

The maximal green sequences of Q(3) are connected by polygonal
flips.
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Application: maximal green sequences

Example

The maximal green sequences of Q(3) are connected by polygonal
flips.
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Application: maximal green sequences

Theorem (G.—McConville)

If Q is mutation-equivalent to 1 — 2 — --- — nor if Q is an oriented
cycle, EG(Q) is a polygonal lattice whose polygons are of the form
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Application: maximal green sequences

Theorem (G.—McConville)

If Q is mutation-equivalent to 1 — 2 — --- — nor if Q is an oriented
cycle, EG(Q) is a polygonal lattice whose polygons are of the form

Corollary (Conjectured by Briistle-Dupont-Pérotin for any quiver Q)

If Q is mutation-equivalent to 1 — 2 — --- — nor if Q is an oriented
cycle, the set of lengths of the maximal green sequences of Q is of the
Jorm {luin, bin + 1, . . gy — 1, Lypay } where

Lin = length of the shortest maximal green sequence of Q,

Uax := length of the longest maximal green sequence of Q.
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