Lattice Properties of Oriented Exchange Graphs

Al Garver (joint with Thomas McConville)

Positive Grassmannians: Applications to integrable systems and super Yang-Mills scattering amplitudes

July 28, 2015

Outline

- Oriented exchange graphs
- 2 Torsion classes
- Biclosed subcategories
- Application: maximal green sequences

Let Q be a finite, connected quiver without loops or 2-cycles whose vertices are $[n] := \{1, 2, ..., n\}$.

Let Q be a finite, connected quiver without loops or 2-cycles whose vertices are $[n] := \{1, 2, ..., n\}$.

Definition

Given a quiver Q, the **framed quiver** (resp. **coframed quiver**) of Q, denoted \widehat{Q} (resp. \widecheck{Q}), is formed by

- (i) adding a **frozen vertex** i' for each vertex i in Q
- (ii) adding an arrow $i \to i'$ (resp. $i \leftarrow i'$) for each vertex i in Q.

Example

$$Q = 1 \stackrel{2}{\longleftarrow} 3 \quad \hat{Q} = 1 \stackrel{1'}{\longleftarrow} 3' \quad \check{Q} = 1 \stackrel{2'}{\longleftarrow} 3' \quad \check{Q} = 1 \stackrel{Z}{\longleftarrow} 3' \quad \check{Q} = 1$$

Let $\operatorname{Mut}(\hat{Q})$ denote the set of quivers mutation-equivalent to \hat{Q} .

Let $\operatorname{Mut}(\hat{Q})$ denote the set of quivers mutation-equivalent to \hat{Q} .

Definition

A nonfrozen vertex of i of $\overline{Q} \in \operatorname{Mut}(\widehat{Q})$ is green (resp. red) if all arrows between frozen vertices of \overline{Q} and i point away from (resp. toward) i.

Example

$$Q = 1 \stackrel{2}{\longleftarrow} 3 \quad \hat{Q} = 1 \stackrel{1'}{\longleftarrow} 3' \quad \check{Q} = 1 \stackrel{2'}{\longleftarrow} 3' \quad \check{Q} = 1 \stackrel{Z}{\longleftarrow} 3' \quad \check{Q} = 1$$

Let $\operatorname{Mut}(\widehat{Q})$ denote the set of quivers mutation-equivalent to \widehat{Q} .

Definition

A nonfrozen vertex of i of $\overline{Q} \in \operatorname{Mut}(\widehat{Q})$ is **green** (resp. **red**) if all arrows between frozen vertices of \overline{Q} and i point away from (resp. toward) i.

Theorem (Derksen-Weyman-Zelevinsky, "Sign Coherence")

Each nonfrozen vertex i of $\overline{Q} \in Mut(\widehat{Q})$ is either green or red.

Let $\operatorname{Mut}(\widehat{Q})$ denote the set of quivers mutation-equivalent to \widehat{Q} .

Definition

A nonfrozen vertex of i of $\overline{Q} \in \operatorname{Mut}(\widehat{Q})$ is green (resp. red) if all arrows between frozen vertices of \overline{Q} and i point away from (resp. toward) i.

Theorem (Derksen-Weyman-Zelevinsky, "Sign Coherence")

Each nonfrozen vertex i of $\overline{Q} \in Mut(\widehat{Q})$ is either green or red.

Definition

A maximal green sequence of Q is a sequence $\mathbf{i} = (i_1, \dots, i_k)$ of mutable vertices of \hat{Q} where

(i) for all $j \in [k]$ vertex i_j is **green** in $\mu_{i_{j-1}} \circ \cdots \circ \mu_{i_1}(\widehat{Q})$ and

Let $\operatorname{Mut}(\widehat{Q})$ denote the set of quivers mutation-equivalent to \widehat{Q} .

Definition

A nonfrozen vertex of i of $\overline{Q} \in \operatorname{Mut}(\widehat{Q})$ is green (resp. red) if all arrows between frozen vertices of \overline{Q} and i point away from (resp. toward) i.

Theorem (Derksen-Weyman-Zelevinsky, "Sign Coherence")

Each nonfrozen vertex i of $\overline{Q} \in Mut(\widehat{Q})$ is either green or red.

Definition

A maximal green sequence of Q is a sequence $\mathbf{i} = (i_1, \dots, i_k)$ of mutable vertices of \hat{Q} where

- (i) for all $j \in [k]$ vertex i_j is green in $\mu_{i_{j-1}} \circ \cdots \circ \mu_{i_1}(\widehat{Q})$ and
- (ii) all vertices in $\mu_{i_k} \circ \cdots \circ \mu_{i_1}(\widehat{Q})$ are **red**.

Definition (Brüstle-Dupont-Pérotin)

The **oriented exchange graph** of Q, denoted $\overrightarrow{EG}(\widehat{Q})$, is the directed graph with vertices the elements of $\operatorname{Mut}(\widehat{Q})$ and edges $\overline{Q}_1 \longrightarrow \mu_k \overline{Q}_1$ if and only if k is green in \overline{Q}_1 .

The oriented exchange graph of $Q = 1 \rightarrow 2$ has maximal green sequences (1,2) and (2,1,2).

Goal: Understand the global structure of oriented exchange graphs using representation theory.

Goal: Understand the global structure of oriented exchange graphs using representation theory.

Related work on the structure of oriented exchange graphs

• Ordered exchange graphs [Brüstle-Yang 2014]

Goal: Understand the global structure of oriented exchange graphs using representation theory.

Related work on the structure of oriented exchange graphs

- Ordered exchange graphs [Brüstle-Yang 2014]
- Semi-invariants for quiver representations
 [Igusa-Orr-Todorov-Weyman 2009], [Chindris 2011],
 [Brüstle-Hermes-Igusa-Todorov 2015]

Goal: Understand the global structure of oriented exchange graphs using representation theory.

Related work on the structure of oriented exchange graphs

- Ordered exchange graphs [Brüstle-Yang 2014]
- Semi-invariants for quiver representations [Igusa-Orr-Todorov-Weyman 2009], [Chindris 2011], [Brüstle-Hermes-Igusa-Todorov 2015]
- Scattering diagrams [Gross-Hacking-Keel-Kontsevich 2014], [Muller 2015]

Goal: Understand the global structure of oriented exchange graphs using representation theory.

Related work on the structure of oriented exchange graphs

- Ordered exchange graphs [Brüstle-Yang 2014]
- Semi-invariants for quiver representations [Igusa-Orr-Todorov-Weyman 2009], [Chindris 2011], [Brüstle-Hermes-Igusa-Todorov 2015]
- Scattering diagrams [Gross-Hacking-Keel-Kontsevich 2014], [Muller 2015]
- Cambrian lattices [Reading 2006] and frameworks for cluster algebras [Reading-Speyer 2015, 2015, 2015]

Goal: Understand the global structure of oriented exchange graphs using representation theory.

Related work on the structure of oriented exchange graphs

- Ordered exchange graphs [Brüstle-Yang 2014]
- Semi-invariants for quiver representations [Igusa-Orr-Todorov-Weyman 2009], [Chindris 2011], [Brüstle-Hermes-Igusa-Todorov 2015]
- Scattering diagrams [Gross-Hacking-Keel-Kontsevich 2014], [Muller 2015]
- Cambrian lattices [Reading 2006] and frameworks for cluster algebras [Reading-Speyer 2015, 2015, 2015]

Our work is based on ideas developed in [Brüstle-Yang 2014] and [Reading 2006].

Theorem (Brüstle-Yang)

Let Q be mutation-equivalent to a Dynkin quiver. Then $\overrightarrow{EG}(\hat{Q}) \cong tors(\Lambda)$ where $\Lambda = \Bbbk Q/I$ is the cluster-tilted (or Jacobian) algebra associated to Q.

Proposition (Brüstle-Yang)

Let Q be mutation-equivalent to a Dynkin quiver. Then $\overrightarrow{EG}(\hat{Q}) \cong tors(\Lambda)$ where $\Lambda = \Bbbk Q/I$ is the cluster-tilted (or Jacobian) algebra associated to Q.

Proposition (Brüstle-Yang)

Let Q be mutation-equivalent to a Dynkin quiver. Then $\overrightarrow{EG}(\widehat{Q}) \cong tors(\Lambda)$ where $\Lambda = \mathbb{k}Q/I$ is the cluster-tilted (or Jacobian) algebra associated to Q.

$tors(\Lambda) := torsion classes of \Lambda ordered by inclusion$

Let Λ be a finite dimensional \mathbb{k} -algebra. Then a full, additive subcategory \mathcal{T} of Λ -mod is a **torsion class** of Λ if it is

Proposition (Brüstle-Yang)

Let Q be mutation-equivalent to a Dynkin quiver. Then $\overrightarrow{EG}(\widehat{Q}) \cong tors(\Lambda)$ where $\Lambda = \mathbb{k}Q/I$ is the cluster-tilted (or Jacobian) algebra associated to Q.

$tors(\Lambda) := torsion classes of \Lambda ordered by inclusion$

Let Λ be a finite dimensional k-algebra. Then a full, additive subcategory \mathcal{T} of Λ -mod is a **torsion class** of Λ if it is

a) **extension closed**: if $X, Y \in \mathcal{T}$ and one has an exact sequence $0 \to X \to Z \to Y \to 0$, then $Z \in \mathcal{T}$,

Proposition (Brüstle-Yang)

Let Q be mutation-equivalent to a Dynkin quiver. Then $\overrightarrow{EG}(\hat{Q}) \cong tors(\Lambda)$ where $\Lambda = kQ/I$ is the cluster-tilted (or Jacobian) algebra associated to Q.

$tors(\Lambda) := torsion classes of \Lambda ordered by inclusion$

Let Λ be a finite dimensional k-algebra. Then a full, additive subcategory \mathcal{T} of Λ -mod is a **torsion class** of Λ if it is

- a) **extension closed**: if $X, Y \in \mathcal{T}$ and one has an exact sequence $0 \to X \to Z \to Y \to 0$, then $Z \in \mathcal{T}$,
- *b*) **quotient closed** : if $X \in \mathcal{T}$ and one has a surjection $X \rightarrow Z$, then $Z \in \mathcal{T}$.

Example $(Q = 1 \xrightarrow{\alpha} 2)$

The cluster-tilted algebra associated to Q is $\Lambda = kQ$.

Example $(Q = 1 \xrightarrow{\alpha} 2)$

The cluster-tilted algebra associated to Q is $\Lambda = \mathbb{k}Q$. The Auslander-Reiten quiver of Λ -mod $\simeq \operatorname{rep}_{\mathbb{k}}(Q)$ is

$$\Gamma(\Lambda\text{-mod}) = \mathbb{k} \xrightarrow{1} \mathbb{k}$$

$$0 \xrightarrow{0} \mathbb{k} \mathbb{k} \xrightarrow{0} 0.$$

Example $(Q = 1 \xrightarrow{\alpha} 2)$

The cluster-tilted algebra associated to Q is $\Lambda = \mathbb{k}Q$. The Auslander-Reiten quiver of Λ -mod $\simeq \operatorname{rep}_{\mathbb{k}}(Q)$ is

$$\Gamma(\Lambda\text{-mod}) = \underbrace{\mathbb{k} \xrightarrow{1} \mathbb{k}}_{0 \xrightarrow{0} \mathbb{k}} \underbrace{\mathbb{k} \xrightarrow{0} 0}.$$

We use $\Gamma(\Lambda\text{-mod})$ to describe the torsion classes of Λ .

$tors(\Lambda) := torsion$ classes of Λ ordered by inclusion

A full, additive subcategory \mathcal{T} of Λ -mod is a **torsion class** of Λ if it is

- *a*) **extension closed** : if $X, Y \in \mathcal{T}$ and one has an exact sequence $0 \to X \to Z \to Y \to 0$, then $Z \in \mathcal{T}$,
- b) quotient closed : $X \in \mathcal{T}$ and $X \rightarrow Z$ implies $Z \in \mathcal{T}$.

$tors(\Lambda) := torsion$ classes of Λ ordered by inclusion

A full, additive subcategory \mathcal{T} of Λ -mod is a **torsion class** of Λ if it is

- *a*) **extension closed** : if $X, Y \in \mathcal{T}$ and one has an exact sequence $0 \to X \to Z \to Y \to 0$, then $Z \in \mathcal{T}$,
- b) quotient closed : $X \in \mathcal{T}$ and $X \rightarrow Z$ implies $Z \in \mathcal{T}$.

The partially ordered set $tors(\Lambda)$ is a **lattice** (i.e. any two torsion classes $\mathcal{T}_1, \mathcal{T}_2 \in tors(\Lambda)$ have a **join** (resp. **meet**), denoted $\mathcal{T}_1 \vee \mathcal{T}_2$ (resp. $\mathcal{T}_1 \wedge \mathcal{T}_2$)).

The partially ordered set $tors(\Lambda)$ is a **lattice** (i.e. any two torsion classes $\mathcal{T}_1, \mathcal{T}_2 \in tors(\Lambda)$ have a **join** (resp. **meet**), denoted $\mathcal{T}_1 \vee \mathcal{T}_2$ (resp. $\mathcal{T}_1 \wedge \mathcal{T}_2$)).

Lemma

Let Λ *be a finite dimensional* \mathbb{k} *-algebra and let* $\mathcal{T}_1, \mathcal{T}_2 \in tors(\Lambda)$. Then

The partially ordered set $tors(\Lambda)$ is a **lattice** (i.e. any two torsion classes $\mathcal{T}_1, \mathcal{T}_2 \in tors(\Lambda)$ have a **join** (resp. **meet**), denoted $\mathcal{T}_1 \vee \mathcal{T}_2$ (resp. $\mathcal{T}_1 \wedge \mathcal{T}_2$)).

Lemma

Let Λ *be a finite dimensional* \mathbb{k} -algebra and let $\mathcal{T}_1, \mathcal{T}_2 \in tors(\Lambda)$. Then

- i) $\mathcal{T}_1 \wedge \mathcal{T}_2 = \mathcal{T}_1 \cap \mathcal{T}_2$,
- ii) $\mathcal{T}_1 \vee \mathcal{T}_2 = \mathcal{F}ilt(\mathcal{T}_1, \mathcal{T}_2)$ where $\mathcal{F}ilt(\mathcal{T}_1, \mathcal{T}_2)$ consists of objects X with a filtration $0 = X_0 \subset X_1 \subset \cdots \subset X_n = X$ such that X_j/X_{j-1} belongs to \mathcal{T}_1 or \mathcal{T}_2 . [G.–McConville]

The partially ordered set $tors(\Lambda)$ is a **lattice** (i.e. any two torsion classes $\mathcal{T}_1, \mathcal{T}_2 \in tors(\Lambda)$ have a **join** (resp. **meet**), denoted $\mathcal{T}_1 \vee \mathcal{T}_2$ (resp. $\mathcal{T}_1 \wedge \mathcal{T}_2$)).

Lemma

Let Λ *be a finite dimensional* \mathbb{k} -algebra and let $\mathcal{T}_1, \mathcal{T}_2 \in tors(\Lambda)$. Then

- i) $\mathcal{T}_1 \wedge \mathcal{T}_2 = \mathcal{T}_1 \cap \mathcal{T}_2$,
- ii) $\mathcal{T}_1 \vee \mathcal{T}_2 = \mathcal{F}ilt(\mathcal{T}_1, \mathcal{T}_2)$ where $\mathcal{F}ilt(\mathcal{T}_1, \mathcal{T}_2)$ consists of objects X with a filtration $0 = X_0 \subset X_1 \subset \cdots \subset X_n = X$ such that X_j/X_{j-1} belongs to \mathcal{T}_1 or \mathcal{T}_2 . [G.–McConville]

Goal: Realize $tors(\Lambda)$ as a **quotient** of a lattice with nice properties so that $tors(\Lambda)$ will inherit these nice properties.

Example

A lattice quotient map $\pi_{\downarrow}:L\to L/\!\!\sim$ is a surjective map of lattices.

Now we assume that Q is mutation-equivalent to $1 \to 2 \to \cdots \to n$ or is an oriented cycle.

Now we assume that Q is mutation-equivalent to $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$ or is an oriented cycle.

$\mathcal{BIC}(Q) := \text{biclosed subcategories of } \Lambda\text{-mod ordered by inclusion}$

A full, additive subcategory \mathcal{B} of Λ -mod is **biclosed** if

a) $\mathcal{B} = \operatorname{add}(\bigoplus_{i=1}^k X_i)$ for some set of indecomposables $\{X_i\}_{i=1}^k$ (here $\operatorname{add}(\bigoplus_{i=1}^k X_i)$ consists of objects $\bigoplus_{i=1}^k X_i^{m_i}$ where $m_i \ge 0$),

Now we assume that Q is mutation-equivalent to $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$ or is an oriented cycle.

$\mathcal{BIC}(Q) := \text{biclosed subcategories of } \Lambda\text{-mod ordered by inclusion}$

A full, additive subcategory \mathcal{B} of Λ -mod is **biclosed** if

- a) $\mathcal{B} = \operatorname{add}(\bigoplus_{i=1}^k X_i)$ for some set of indecomposables $\{X_i\}_{i=1}^k$ (here $\operatorname{add}(\bigoplus_{i=1}^k X_i)$ consists of objects $\bigoplus_{i=1}^k X_i^{m_i}$ where $m_i \ge 0$),
- b) \mathcal{B} is **weakly extension closed**: if $0 \to X_1 \to X \to X_2 \to 0$ is an exact sequence where X_1, X_2, X are indecomposable and $X_1, X_2 \in \mathcal{B}$, then $X \in \mathcal{B}$,
- b^*) \mathcal{B} is **weakly extension coclosed**: if $0 \to X_1 \to X \to X_2 \to 0$ is an exact sequence where X_1, X_2, X are indecomposable and $X_1, X_2 \notin \mathcal{B}$, then $X \notin \mathcal{B}$.

Theorem (G.– McConville)

Let
$$\mathcal{B} = add(\bigoplus_{i=1}^k X_i) \in \mathcal{BIC}(Q)$$
 and let

$$\pi_{\downarrow}(\mathcal{B}) := add(\bigoplus_{j=1}^{\ell} X_{i_j} : X_{i_j} \twoheadrightarrow Y \implies Y \in \mathcal{B}).$$

Biclosed subcategories

Theorem (G.– McConville)

Let $\mathcal{B} = add(\bigoplus_{i=1}^k X_i) \in \mathcal{BIC}(Q)$ and let

$$\pi_{\downarrow}(\mathcal{B}) := add(\bigoplus_{i=1}^{\ell} X_{i_i} : X_{i_i} \twoheadrightarrow Y \implies Y \in \mathcal{B}).$$

Then $\pi_{\perp}: \mathcal{BIC}(Q) \to tors(\Lambda)$ is a lattice quotient map.

Example

Let

$$Q(3) := \frac{\alpha}{1 - \gamma} \frac{2}{3}.$$

Then $\Lambda = \mathbb{k}Q(3)/\langle \beta\alpha, \gamma\beta, \alpha\gamma \rangle$.

Example

Theorem (G.–McConville)

If Q is mutation-equivalent to $1 \to 2 \to \cdots \to n$ or if Q is an oriented cycle, $\overrightarrow{EG}(\widehat{Q})$ is a **polygonal lattice** whose **polygons** are of the form

Theorem (G.–McConville)

If Q is mutation-equivalent to $1 \to 2 \to \cdots \to n$ or if Q is an oriented cycle, $\overrightarrow{EG}(\widehat{Q})$ is a **polygonal lattice** whose **polygons** are of the form

Corollary (Conjectured by Brüstle-Dupont-Pérotin for any quiver Q)

If Q is mutation-equivalent to $1 \to 2 \to \cdots \to n$ or if Q is an oriented cycle, the set of lengths of the maximal green sequences of Q is of the form $\{\ell_{min}, \ell_{min} + 1, \dots, \ell_{max} - 1, \ell_{max}\}$ where

 $\ell_{min} := length \ of \ the \ shortest \ maximal \ green \ sequence \ of \ Q,$

 $\ell_{max} := length \ of \ the \ longest \ maximal \ green \ sequence \ of \ Q.$

Thanks!

