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Oriented exchange graphs

Let Q be a finite, connected quiver without loops or 2-cycles whose
vertices are rns :“ t1, 2, . . . , nu.

Definition
Given a quiver Q, the framed quiver (resp. coframed quiver) of Q,
denoted pQ (resp. qQ), is formed by

(i) adding a frozen vertex i1 for each vertex i in Q

(ii) adding an arrow i Ñ i1 (resp. i Ð i1) for each vertex i in Q.

Example
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Oriented exchange graphs

Let MutppQq denote the set of quivers mutation-equivalent to pQ.

Definition

A nonfrozen vertex of i of Q P MutppQq is green (resp. red) if all
arrows between frozen vertices of Q and i point away from (resp.
toward) i.

Example
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Oriented exchange graphs

Let MutppQq denote the set of quivers mutation-equivalent to pQ.

Definition

A nonfrozen vertex of i of Q P MutppQq is green (resp. red) if all
arrows between frozen vertices of Q and i point away from (resp.
toward) i.

Theorem (Derksen-Weyman-Zelevinsky, “Sign Coherence")

Each nonfrozen vertex i of Q P MutppQq is either green or red.

Definition
A maximal green sequence of Q is a sequence i “ pi1, . . . , ikq of
mutable vertices of pQ where

(i) for all j P rks vertex ij is green in µij´1 ˝ ¨ ¨ ¨ ˝ µi1p
pQq and

(ii) all vertices in µik ˝ ¨ ¨ ¨ ˝ µi1p
pQq are red.
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Oriented exchange graphs

Definition (Brüstle-Dupont-Pérotin)

The oriented exchange graph of Q, denoted ÝÑEGppQq, is the directed
graph with vertices the elements of MutppQq and edges Q1 ÝÑ µkQ1
if and only if k is green in Q1.

1 2

1′ 2′

1 2

1′ 2′

1 2

1′ 2′

1 2

1′ 2′

1 2

1′ 2′

1 2

1′ 2′∼=

µ1

µ2

µ2

µ1

µ2

The oriented exchange graph of Q “ 1 Ñ 2 has maximal green sequences
p1, 2q and p2, 1, 2q.
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Torsion classes

Goal: Understand the global structure of oriented exchange graphs
using representation theory.

Related work on the structure of oriented exchange graphs
Ordered exchange graphs [Brüstle-Yang 2014]

Semi-invariants for quiver representations
[Igusa-Orr-Todorov-Weyman 2009], [Chindris 2011],
[Brüstle-Hermes-Igusa-Todorov 2015]

Scattering diagrams [Gross-Hacking-Keel-Kontsevich 2014],
[Muller 2015]

Cambrian lattices [Reading 2006] and frameworks for cluster
algebras [Reading-Speyer 2015, 2015, 2015]

7 / 31



Torsion classes

Goal: Understand the global structure of oriented exchange graphs
using representation theory.

Related work on the structure of oriented exchange graphs
Ordered exchange graphs [Brüstle-Yang 2014]

Semi-invariants for quiver representations
[Igusa-Orr-Todorov-Weyman 2009], [Chindris 2011],
[Brüstle-Hermes-Igusa-Todorov 2015]

Scattering diagrams [Gross-Hacking-Keel-Kontsevich 2014],
[Muller 2015]

Cambrian lattices [Reading 2006] and frameworks for cluster
algebras [Reading-Speyer 2015, 2015, 2015]

7 / 31



Torsion classes

Goal: Understand the global structure of oriented exchange graphs
using representation theory.

Related work on the structure of oriented exchange graphs
Ordered exchange graphs [Brüstle-Yang 2014]

Semi-invariants for quiver representations
[Igusa-Orr-Todorov-Weyman 2009], [Chindris 2011],
[Brüstle-Hermes-Igusa-Todorov 2015]

Scattering diagrams [Gross-Hacking-Keel-Kontsevich 2014],
[Muller 2015]

Cambrian lattices [Reading 2006] and frameworks for cluster
algebras [Reading-Speyer 2015, 2015, 2015]

7 / 31



Torsion classes

Goal: Understand the global structure of oriented exchange graphs
using representation theory.

Related work on the structure of oriented exchange graphs
Ordered exchange graphs [Brüstle-Yang 2014]

Semi-invariants for quiver representations
[Igusa-Orr-Todorov-Weyman 2009], [Chindris 2011],
[Brüstle-Hermes-Igusa-Todorov 2015]

Scattering diagrams [Gross-Hacking-Keel-Kontsevich 2014],
[Muller 2015]

Cambrian lattices [Reading 2006] and frameworks for cluster
algebras [Reading-Speyer 2015, 2015, 2015]

7 / 31



Torsion classes

Goal: Understand the global structure of oriented exchange graphs
using representation theory.

Related work on the structure of oriented exchange graphs
Ordered exchange graphs [Brüstle-Yang 2014]

Semi-invariants for quiver representations
[Igusa-Orr-Todorov-Weyman 2009], [Chindris 2011],
[Brüstle-Hermes-Igusa-Todorov 2015]

Scattering diagrams [Gross-Hacking-Keel-Kontsevich 2014],
[Muller 2015]

Cambrian lattices [Reading 2006] and frameworks for cluster
algebras [Reading-Speyer 2015, 2015, 2015]

7 / 31



Torsion classes

Goal: Understand the global structure of oriented exchange graphs
using representation theory.

Related work on the structure of oriented exchange graphs
Ordered exchange graphs [Brüstle-Yang 2014]

Semi-invariants for quiver representations
[Igusa-Orr-Todorov-Weyman 2009], [Chindris 2011],
[Brüstle-Hermes-Igusa-Todorov 2015]

Scattering diagrams [Gross-Hacking-Keel-Kontsevich 2014],
[Muller 2015]

Cambrian lattices [Reading 2006] and frameworks for cluster
algebras [Reading-Speyer 2015, 2015, 2015]

Our work is based on ideas developed in [Brüstle-Yang 2014] and
[Reading 2006].
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Torsion classes

Theorem (Brüstle-Yang)
Let Q be mutation-equivalent to a Dynkin quiver. Then
ÝÑEGppQq – torspΛq where Λ “ kQ{I is the cluster-tilted (or Jacobian)
algebra associated to Q.
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Torsion classes

Proposition (Brüstle-Yang)
Let Q be mutation-equivalent to a Dynkin quiver. Then
ÝÑEGppQq – torspΛq where Λ “ kQ{I is the cluster-tilted (or Jacobian)
algebra associated to Q.

torspΛq :“ torsion classes of Λ ordered by inclusion

Let Λ be a finite dimensional k-algebra. Then a full, additive
subcategory T of Λ-mod is a torsion class of Λ if it is
aq extension closed : if X,Y P T and one has an exact sequence

0 Ñ X Ñ Z Ñ Y Ñ 0, then Z P T ,
bq quotient closed : if X P T and one has a surjection

X � Z, then Z P T .
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Torsion classes

Example (Q “ 1 α
ÝÑ 2)

The cluster-tilted algebra associated to Q is Λ “ kQ.

The Auslander-Reiten quiver of Λ-mod » repkpQq is

ΓpΛ-modq “

0 0
ÝÑ k k 0

ÝÑ 0.

k 1
ÝÑ k

, �
::

$$ $$

We use ΓpΛ-modq to describe the torsion classes of Λ.
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Torsion classes

Example (Q “ 1 α
ÝÑ 2)

torspΛq =

torspΛq :“ torsion classes of Λ ordered by inclusion

A full, additive subcategory T of Λ-mod is a torsion class of Λ if it is
aq extension closed : if X,Y P T and one has an exact sequence

0 Ñ X Ñ Z Ñ Y Ñ 0, then Z P T ,
bq quotient closed : X P T and X � Z implies Z P T .
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Torsion classes

Example (Q “ 1 α
ÝÑ 2)

torspΛq = –

1 2

1′ 2′

1 2

1′ 2′

1 2

1′ 2′

1 2

1′ 2′
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µ1
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torspΛq :“ torsion classes of Λ ordered by inclusion
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aq extension closed : if X,Y P T and one has an exact sequence
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bq quotient closed : X P T and X � Z implies Z P T .
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Torsion classes

The partially ordered set torspΛq is a lattice (i.e. any two torsion
classes T1, T2 P torspΛq have a join (resp. meet), denoted T1 _ T2
(resp. T1 ^ T2)).

Lemma
Let Λ be a finite dimensional k-algebra and let T1, T2 P torspΛq. Then

iq T1 ^ T2 “ T1 X T2,
iiq T1 _ T2 “ F iltpT1, T2q where F iltpT1, T2q consists of objects X

with a filtration 0 “ X0 Ă X1 Ă ¨ ¨ ¨ Ă Xn “ X such that Xj{Xj´1
belongs to T1 or T2. [G.–McConville]

Goal: Realize torspΛq as a quotient of a lattice with nice properties
so that torspΛq will inherit these nice properties.
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Torsion classes

Example

A lattice quotient map πÓ : L Ñ L{„ is a surjective map of lattices.

15 / 31



Biclosed subcategories

Now we assume that Q is mutation-equivalent to 1 Ñ 2 Ñ ¨ ¨ ¨ Ñ n or
is an oriented cycle.

BICpQq :“ biclosed subcategories of Λ-mod ordered by inclusion

A full, additive subcategory B of Λ-mod is biclosed if
aq B “ addp‘k

i“1Xiq for some set of indecomposables tXiu
k
i“1

(here addp‘k
i“1Xiq consists of objects ‘k

i“1Xmi
i where mi ě 0),

bq B is weakly extension closed: if 0 Ñ X1 Ñ X Ñ X2 Ñ 0 is
an exact sequence where X1,X2,X are indecomposable and
X1,X2 P B, then X P B,

b˚q B is weakly extension coclosed: if 0 Ñ X1 Ñ X Ñ X2 Ñ 0
is an exact sequence where X1,X2,X are indecomposable and
X1,X2 R B, then X R B.
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Biclosed subcategories

Example (Q “ 1 α
ÝÑ 2)

BICpQq =
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Biclosed subcategories

Example (Q “ 1 α
ÝÑ 2)

πÓ
ÝÑ

Theorem (G.– McConville)

Let B “ addp‘k
i“1Xiq P BICpQq and let

πÓpBq :“ addp‘`j“1Xij : Xij � Y ùñ Y P Bq.

Then πÓ : BICpQq Ñ torspΛq is a lattice quotient map.
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Application: maximal green sequences

Example
Let

Qp3q := 1

2

3.

α ?? β
��

γ
oo

Then Λ “ kQp3q{xβα, γβ, αγy.
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Application: maximal green sequences

Example

The maximal green sequences of Qp3q are connected by polygonal
flips.
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Application: maximal green sequences

Theorem (G.–McConville)
If Q is mutation-equivalent to 1 Ñ 2 Ñ ¨ ¨ ¨ Ñ n or if Q is an oriented
cycle, ÝÑEGppQq is a polygonal lattice whose polygons are of the form

.

Corollary (Conjectured by Brüstle-Dupont-Pérotin for any quiver Q)
If Q is mutation-equivalent to 1 Ñ 2 Ñ ¨ ¨ ¨ Ñ n or if Q is an oriented
cycle, the set of lengths of the maximal green sequences of Q is of the
form t`min, `min ` 1, . . . , `max ´ 1, `maxu where

`min :“ length of the shortest maximal green sequence of Q,

`max :“ length of the longest maximal green sequence of Q.
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Thanks!

π↓
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