To C or not to C

Conditioning in association tests

Zheng Gao gaozheng@umich.edu

Table of contents

- 1 Ancillarity
- 2 Why ancillarity? (spoiler: conditionality principle)
- 3 Association tests in 2x2 tables
- 4 Conservativeness of Fisher's Exact test?
- 5 Should we care?

Section 1

Ancillarity

Ancillarity

- Ghosh, Reid, & Fraser (2010)¹: "... statistics with distributions not depending on the model parameters."
- Little (1989)²: "let X and Y be random variables with joint distribution that factorizes in the form

$$p(x, y \mid \theta, \phi) = p(x \mid y, \theta)p(y \mid \phi),$$

then Y contains no information about θ and is called an ancillary statistic³. "

¹Ghosh. Malay, N. Reid, and D. A. S. Fraser. "Ancillary statistics: A review." Statistica Sinica (2010): 1309-1332.

²Little, Roderick JA. "Testing the equality of two independent binomial proportions." The American Statistician 43.4 (1989): 283-288.

³Cox, D. R., and D. Hinkley. "Chapman and Hall." Theoretical Statistics (1974).

Ancillarity

- Ghosh, Reid, & Fraser (2010)¹: "... statistics with distributions not depending on the model parameters."
- Little (1989)²: "let X and Y be random variables with joint distribution that factorizes in the form

$$p(x, y \mid \theta, \phi) = p(x \mid y, \theta)p(y \mid \phi),$$

then Y contains no information about θ and is called an ancillary statistic³. "

· Formally, the two disagree!

¹Ghosh. Malay, N. Reid, and D. A. S. Fraser. "Ancillary statistics: A review." Statistica Sinica (2010): 1309-1332.

²Little, Roderick JA. "Testing the equality of two independent binomial proportions." The American Statistician 43.4 (1989): 283-288.

³Cox, D. R., and D. Hinkley. "Chapman and Hall." Theoretical Statistics (1974).

Ancillarity

- Ghosh, Reid, & Fraser (2010)¹: "... statistics with distributions not depending on the model parameters."
- Little (1989)²: "let X and Y be random variables with joint distribution that factorizes in the form

$$p(x, y \mid \theta, \phi) = p(x \mid y, \theta)p(y \mid \phi),$$

then Y contains no information about θ and is called an ancillary statistic³. "

- · Formally, the two disagree!
- the latter, i.e., "statistics with distributions not depending on the model parameters of interest" is used.

¹Ghosh. Malay, N. Reid, and D. A. S. Fraser. "Ancillary statistics: A review." Statistica Sinica (2010): 1309-1332.

²Little, Roderick JA. "Testing the equality of two independent binomial proportions." The American Statistician 43.4 (1989): 283-288.

³Cox, D. R., and D. Hinkley. "Chapman and Hall." Theoretical Statistics (1974).

Examples of ancillary statistics

- The baseball example
- The horticulturist example
- A regression example
- The 2x2 table!

Examples of ancillary statistics: baseball batting

- Observer tries to determine batter's ability by
- ... observing $N \sim Poi(\lambda)$ number of at-bats,
- ... record the number of hits $X \sim \text{Binom}(p, N)$.

Examples of ancillary statistics: baseball batting

- Observer tries to determine batter's ability by
- ... observing $N \sim Poi(\lambda)$ number of at-bats,
- ... record the number of hits $X \sim \text{Binom}(p, N)$.

In this case,

- N is the ancillary statistic since
- ... its distribution does not depend on p,
- ... although it does provide information on the accuracy of p̂.

Examples of ancillary statistics: the horticulturist

- Observer tries to determine the probability of red flowers by
- ... observing $N \sim \text{Binom}(\phi, 4)$ plants which has flowered,
- ... record the number of red flowers $X \sim \text{Binom}(p, N)$.

Examples of ancillary statistics: the horticulturist

- Observer tries to determine the probability of red flowers by
- ... observing $N \sim \text{Binom}(\phi, 4)$ plants which has flowered,
- ... record the number of red flowers $X \sim \text{Binom}(p, N)$.

In this case,

- N is, again, the ancillary statistic since
- ... its distribution does not depend on p,
- ... although it, again, provides information on the accuracy of p̂.

Examples of ancillary statistics: regression

• Determine β with n observations from the model

$$Y \sim F$$
, $(X|Y,\beta) \sim Y\beta + \epsilon$.

(reversed X and Y to match notations from before)

... OLS estimate

$$\widehat{\beta} = (Y'Y)^{-1}Y'X = (Y'Y)^{-1}Y'(X\beta + \epsilon)$$
$$= \beta + \frac{\sum_{i} y_{i} \epsilon_{i}}{\sum_{i} y_{i}^{2}} \stackrel{d}{=} N\left(\beta, \frac{1}{\sum_{i} y_{i}^{2}}\right).$$

• ... How do you perform inference on β ?

Examples of ancillary statistics: regression

• Determine β with n observations from the model

$$Y \sim F$$
, $(X|Y,\beta) \sim Y\beta + \epsilon$.

(reversed X and Y to match notations from before)

... OLS estimate

$$\widehat{\beta} = (Y'Y)^{-1}Y'X = (Y'Y)^{-1}Y'(X\beta + \epsilon)$$
$$= \beta + \frac{\sum_{i} y_{i} \epsilon_{i}}{\sum_{i} y_{i}^{2}} \stackrel{d}{=} N\left(\beta, \frac{1}{\sum_{i} y_{i}^{2}}\right).$$

• ... How do you perform inference on β ?

Most of us (I think!) would perform conditional inference, i.e., width of CI depends on Y.

- Y is ancillary since/if
- ... its distribution does not depend on β ,
- ... Y provides information only on the accuracy of $\hat{\beta}$.

Although there was an argument for unconditional inference, if we interpret the relationship as only a linear approximation to the conditional expectations.

• Determine if there is an association (OR = $\frac{\mu_{11}\mu_{22}}{\mu_{21}\mu_{12}}$ = 1) using N (constant) observations from a multinomial model

$$(n_{11}, n_{12}, n_{21}, n_{22}) \sim \text{Multinomial}(N, (\mu_{11}, \mu_{12}, \mu_{21}, \mu_{22})).$$

$$\begin{array}{c|cccc}
n_{11} & n_{12} & n_1 \\
n_{21} & n_{22} & n_2 \\
\hline
m_1 & m_2 & N
\end{array}$$

• Determine if there is an association (OR = $\frac{\mu_{11}\mu_{22}}{\mu_{21}\mu_{12}}$ = 1) using N (constant) observations from a multinomial model

$$(n_{11}, n_{12}, n_{21}, n_{22}) \sim \text{Multinomial}(N, (\mu_{11}, \mu_{12}, \mu_{21}, \mu_{22})).$$

$$\begin{array}{c|cccc}
n_{11} & n_{12} & n_1 \\
n_{21} & n_{22} & n_2 \\
\hline
m_1 & m_2 & N
\end{array}$$

We now show that one of the marginals, say, (n_1, n_2) , is ancillary.

Re-parameterize

$$\phi = \mu_{11} + \mu_{12}, \quad p_1 = \frac{\mu_{11}}{\mu_{11} + \mu_{12}}, \quad p_2 = \frac{\mu_{21}}{\mu_{21} + \mu_{22}}.$$

so that

$$(n_{11}, n_{12}, n_{21}, n_{22}) \sim \text{Multinomial}(N, (\phi p_1, \phi(1-p_1), (1-\phi)p_2, (1-\phi)(1-p_2))).$$

Denote the re-parameterized model

$$(n_{11}, n_{12}, n_{21}, n_{22}) \sim \text{Multinomial}(N, (\phi, p_1, p_2)).$$

The likelihood function is

$$\begin{split} & p((n_{11}, n_{12}, n_{21}, n_{22}) | (\phi, p_1, p_2)) \\ = & \binom{N}{n_{11}, n_{12}, n_{21}, n_{22}} (\phi p_1)^{n_{11}} (\phi (1 - p_1))^{n_{12}} ((1 - \phi) p_1)^{n_{21}} ((1 - \phi) (1 - p_1))^{n_{22}} \end{split}$$

Denote the re-parameterized model

$$(n_{11}, n_{12}, n_{21}, n_{22}) \sim \text{Multinomial}(N, (\phi, p_1, p_2)).$$

The likelihood function is

$$\begin{split} & p((n_{11}, n_{12}, n_{21}, n_{22}) | (\phi, p_1, p_2)) \\ &= \binom{N}{n_{11}, n_{12}, n_{21}, n_{22}} (\phi p_1)^{n_{11}} (\phi (1 - p_1))^{n_{12}} ((1 - \phi) p_1)^{n_{21}} ((1 - \phi) (1 - p_1))^{n_{22}} \\ &= \binom{N}{n_{11}, n_{12}, n_{21}, n_{22}} \times (p_1)^{n_{11}} (1 - p_1)^{n_1 - n_{11}} p_1^{n_{21}} (1 - p_1)^{n_2 - n_{21}} \times \phi^{n_1} (1 - \phi)^{n_2} \end{split}$$

Denote the re-parameterized model

$$(n_{11}, n_{12}, n_{21}, n_{22}) \sim \text{Multinomial}(N, (\phi, p_1, p_2)).$$

The likelihood function is

$$\begin{split} & p((n_{11},n_{12},n_{21},n_{22})|(\phi,p_1,p_2)) \\ &= \binom{N}{n_{11},n_{12},n_{21},n_{22}} (\phi p_1)^{n_{11}} (\phi (1-p_1))^{n_{12}} ((1-\phi)p_1)^{n_{21}} ((1-\phi)(1-p_1))^{n_{22}} \\ &= \binom{N}{n_{11},n_{12},n_{21},n_{22}} \times (p_1)^{n_{11}} (1-p_1)^{n_1-n_{11}} p_1^{n_{21}} (1-p_1)^{n_2-n_{21}} \times \phi^{n_1} (1-\phi)^{n_2} \\ &= C(x,y) \times p(\underbrace{(n_{11},n_{21})}_{x} | \underbrace{(n_1,n_2)}_{y}, \underbrace{(p_1,p_2)}_{\theta}) \times p(\underbrace{(n_1,n_2)}_{y} | \phi) \end{split}$$

Denote the re-parameterized model

$$(n_{11}, n_{12}, n_{21}, n_{22}) \sim \text{Multinomial}(N, (\phi, p_1, p_2)).$$

The likelihood function is

$$\begin{split} & p((n_{11}, n_{12}, n_{21}, n_{22}) | (\phi, p_1, p_2)) \\ &= \binom{N}{n_{11}, n_{12}, n_{21}, n_{22}} (\phi p_1)^{n_{11}} (\phi (1 - p_1))^{n_{12}} ((1 - \phi) p_1)^{n_{21}} ((1 - \phi) (1 - p_1))^{n_{22}} \\ &= \binom{N}{n_{11}, n_{12}, n_{21}, n_{22}} \times (p_1)^{n_{11}} (1 - p_1)^{n_1 - n_{11}} p_1^{n_{21}} (1 - p_1)^{n_2 - n_{21}} \times \phi^{n_1} (1 - \phi)^{n_2} \\ &= C(x, y) \times p(\underbrace{(n_{11}, n_{21})}_{x} | \underbrace{(n_1, n_2)}_{y}, \underbrace{(p_1, p_2)}_{y}) \times p(\underbrace{(n_1, n_2)}_{y} | \phi) \end{split}$$

Recall the definition of ancillarity...

 "let X and Y be random variables with joint distribution that factorizes in the form

$$p(x, y \mid \theta, \phi) = p(x \mid y, \theta)p(y \mid \phi),$$

then Y contains no information about θ and is called an ancillary statistic. "

• ... therefore, n_1 and n_2 are ancillary (for any functionals of (p_1, p_2))!

Section 2

Why ancillarity? (spoiler: conditionality principle)

Conditional inference: What is conditional inference?

Conditionality principle (Birnbaum 1962): When the experiment E can be described as a mixture of several component experiments E_y where y is an ancillary statistic, inference (about the parameter) in the following two situations should be the same:

- Observing (x, y).
- Observing x from the component experiment E_y .

Conditional inference: What is conditional inference?

Conditionality principle (Birnbaum 1962): When the experiment E can be described as a mixture of several component experiments E_y where y is an ancillary statistic, inference (about the parameter) in the following two situations should be the same:

- Observing (x, y).
- Observing x from the component experiment E_y .

In other words:

- Whatever experiment that didn't happen doesn't count.
- We only care about the conditional distribution p(x|y).

Conditional inference: What is conditional inference?

Conditionality principle (Birnbaum 1962): When the experiment E can be described as a mixture of several component experiments E_y where y is an ancillary statistic, inference (about the parameter) in the following two situations should be the same:

- Observing (x, y).
- Observing x from the component experiment E_y .

In other words:

- Whatever experiment that didn't happen doesn't count.
- We only care about the conditional distribution p(x|y).

Example:

• Testing for $\beta=1$ in the regression example with just 1 sample

$$Y \sim N(0,3), \quad (X|Y,\beta) \sim N(Y\beta,1).$$

· Marginally,

$$X \sim N(0, 4)$$
.

Conditional inference: example

Rejection region based on

• Cond. dist. $p(x|y, \beta)$.

Conditional inference: example

Rejection region based on

- Cond. dist. $p(x|y, \beta)$.
- Marginal dist. $p(x|\beta)$.

Conditional inference: example

Rejection region based on

- Cond. dist. $p(x|y, \beta)$.
- Marginal dist. $p(x|\beta)$.
- Cond. dist. $p(x|z, \beta)$, where $Z = \mathbb{1}[X < 0]$.

All procedures have calibrated levels, marginally. That is,

$$\mathbb{P}[\text{rejection} \,|\, \beta = 1] = \alpha.$$

However,

⁴Fraser, Donald AS. "Ancillaries and conditional inference." Statistical Science 19.2 (2004): 333-369.

All procedures have calibrated levels, marginally. That is,

$$\mathbb{P}[\text{rejection} \mid \beta = 1] = \alpha.$$

However,

- Cond. on ancillary statistics seem to yield more "reasonable" procedures.
- Not all conditioning is good, as the third example clearly demonstrates.

⁴Fraser, Donald AS. "Ancillaries and conditional inference." Statistical Science 19.2 (2004): 333-369.

All procedures have calibrated levels, marginally. That is,

$$\mathbb{P}[\text{rejection} \mid \beta = 1] = \alpha.$$

However,

- Cond. on ancillary statistics seem to yield more "reasonable" procedures.
- Not all conditioning is good, as the third example clearly demonstrates.

Question

• What does it mean to be more "reasonable"??

© Zheng Gao

⁴Fraser, Donald AS. "Ancillaries and conditional inference." Statistical Science 19.2 (2004): 333-369.

All procedures have calibrated levels, marginally. That is,

$$\mathbb{P}[\text{rejection} \mid \beta = 1] = \alpha.$$

However,

- Cond. on ancillary statistics seem to yield more "reasonable" procedures.
- Not all conditioning is good, as the third example clearly demonstrates.

Question

• What does it mean to be more "reasonable"??

Answer

I don't know...

⁴Fraser, Donald AS. "Ancillaries and conditional inference." Statistical Science 19.2 (2004): 333-369.

All procedures have calibrated levels, marginally. That is,

$$\mathbb{P}[\text{rejection} \mid \beta = 1] = \alpha.$$

However,

- Cond. on ancillary statistics seem to yield more "reasonable" procedures.
- Not all conditioning is good, as the third example clearly demonstrates.

Question

What does it mean to be more "reasonable"??

Answer

I don't know...

One possible explanation (see also, Fraser $(2004)^4$):

 Robustness against model misspecification: even when we get the distribution of y wrong, the test can still be used.

Still, conditionality principle is a principle, not an explanation, not a theorem.

⁴Fraser, Donald AS. "Ancillaries and conditional inference." Statistical Science 19.2 (2004): 333-369.

Section 3

Association tests in 2x2 tables

 n_1 and n_2 are ancillary (in the multinomial model).

- The same is (trivially) true for product binomial model.
- ... and the hypergeometric model.

The C principle — should you choose to accept it — says that we should condition on one of the marginals.

⁵Little, Roderick JA. "Testing the equality of two independent binomial proportions." The American Statistician 43.4 (1989): 283-288.

 n_1 and n_2 are ancillary (in the multinomial model).

- The same is (trivially) true for product binomial model.
- ... and the hypergeometric model.

The C principle — should you choose to accept it — says that we should condition on one of the marginals.

However, conditioning a both margins may still be controversial, since

- (n_1, n_2) and (m_1, m_2) are not jointly ancillary!
- (m_1, m_2) is only approximately ancillary,
- ... i.e., "carries little information about the OR" (whatever that means, statements are vague, though quantifiable.).

⁵Little, Roderick JA. "Testing the equality of two independent binomial proportions." The American Statistician 43.4 (1989): 283-288.

Two (three, four) schools of thought

- Condition on one margin, or none! Pearson's chi-square, Barnard's CSM, Yule's, Student, Welch's t-tests, etc.
- 2. **Condition on two margins** Fisher's exact test (approx. by Yates)
- 3. ... the dark side (topic for another day: likelihood principle, Bayesianism).

Section 4

Conservativeness of Fisher's Exact test?

Why is Fisher's exact test "conservative" then?

Discreteness.

- The data was discrete to start with.
- Exacerbated by conditioning.

Why is Fisher's exact test "conservative" then?

Relative frequencies of the 36 2 \times 2 tables generated by samples from two binomial distributions, $n_1 = n_2 = 5$, p = 1/2, classified by values of the m_1 , m_2 margin

			m_1	m_1 , m_2 margin									
$p_1 - p_2$	10,0	9, 1	8, 2	7, 3	6, 4	5,5	4, 6	3, 7	2, 8	1,9	0, 10	Total	Overall probability
-1.0						1						1	0.001
0.8					5 (0.024)	(0.004)	5 (0.024)					10	0.010
0.6				10 (0.083)	(0.024)	25 (0.099)	(0.024)	10 (0.083)				45	0.044
0.4			10 (0.222)	,	50 (0.238)	,,	50 (0.238)	, ,	10 (0.222)			120	0.117
0.2		5 (0.5)		50 (0.417)		100 (0.397)		50 (0.417)		5 (0.5)		210	0.205
0.0	(1.0)		25 (0.556)		100 (0.476)		100 (0.476)		25 (0.556)		(1.0)	252	0.246
0.2		5 (0.5)		50 (0.417)		100 (0.397)		50 (0.417)		5 (0.5)		210	0.205
0.4			10 (0.222)		50 (0.238)		50 (0.238)		10 (0.222)			120	0.117
0.6				10 (0.083)		25 (0.099)		10 (0.083)				45	0.044
0.8					(0.024)		(0.024)					10	0.010
1.0						(0.004)						1	0.001
otal	1	10	45	120	210	252	210	120	45	10	1	1024	1.000

The first column contains the single table (5,0;5,0), the second the two tables (4,1;5,0), (5,0;4,1), etc. The figures in parentheses are the elements of the hypergeometric distribution for given values of the m_1, m_2 margin.

Section 5

Should we care?

Asymptotic equivalence

"Well-known" asymptotic "equivalence" of these tests

Asymptotic equivalence

"Well-known" asymptotic "equivalence" of these tests

- in what sense?
- Level, i.e., ℙ[type I error]?
- Power, i.e., $1 \mathbb{P}[\text{type II error}]$?

Answers more scarce than I believed.

Asymptotic equivalence

"Well-known" asymptotic "equivalence" of these tests

- in what sense?
- Level, i.e., P[type I error]?
- Power, i.e., $1 \mathbb{P}[\text{type II error}]$?

Answers more scarce than I believed.

What is large sample, anyway? Are sample sizes in modern application large enough?

A modern genetic application

Genetic compositions (at p genomic locations) are compared between n_1 cases and n_2 controls, using association tests on 2×2 tables.

	Variant A	Variant B	
Cases	n ₁₁	n ₁₂	n_1
Controls	n ₂₁	n ₂₂	n_2
	m_1	m_2	Ν

• *N* from 1,000s to 500,000. Imbalance in n_1 , n_2 is typically not that bad.

A modern genetic application

Genetic compositions (at p genomic locations) are compared between n_1 cases and n_2 controls, using association tests on 2×2 tables.

	Variant A	Variant B	
Cases	n ₁₁	n ₁₂	n_1
Controls	n ₂₁	n ₂₂	n_2
	m_1	m_2	Ν

• N from 1,000s to 500,000. Imbalance in n_1 , n_2 is typically not that bad.

Geneticists are worried about "rare variants", or low variant counts (small m_1).

- When m₁ is small, asymptotics doesn't apply
- Pearson's chi-square, etc. fail to control for type I error.
- Barnard's CSM Test (1945) may work! (idk if anyone uses it...)
- Most people run logistic regressions, afaik.

... is typically defined as a fraction of the number of subjects N, say $\epsilon = 0.5\%$.

 $^{^6}$ Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies, Bioinformatics (2019)

⁷Yates, Frank. "Tests of significance for 2× 2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

... is typically defined as a fraction of the number of subjects N, say $\epsilon=0.5\%$. (Single SNP-based) association tests are not performed if $m_1<\epsilon N$.

⁶Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies. Bioinformatics (2019)

⁷Yates, Frank. "Tests of significance for 2× 2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

... is typically defined as a fraction of the number of subjects N, say $\epsilon=0.5\%$. (Single SNP-based) association tests are not performed if $m_1<\epsilon N$.

 Doesn't make much sense — one could always apply Fisher's exact test, because it is exact.

⁶Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies. Bioinformatics (2019)

⁷Yates, Frank. "Tests of significance for 2× 2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

... is typically defined as a fraction of the number of subjects N, say $\epsilon=0.5\%$. (Single SNP-based) association tests are not performed if $m_1<\epsilon N$.

- Doesn't make much sense one could always apply Fisher's exact test, because it is exact.
- The threshold for "rare-variant" is better defined as the "minimum calibration number⁶" the smallest m_1 (and m_2) such that rejection region is non-empty at the specified level α (so that it is meaningful to perform tests).

⁶Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies. Bioinformatics (2019)

⁷Yates, Frank. "Tests of significance for 2× 2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

... is typically defined as a fraction of the number of subjects N, say $\epsilon=0.5\%$. (Single SNP-based) association tests are not performed if $m_1<\epsilon N$.

- Doesn't make much sense one could always apply Fisher's exact test, because it is exact.
- The threshold for "rare-variant" is better defined as the "minimum calibration number⁶" the smallest m_1 (and m_2) such that rejection region is non-empty at the specified level α (so that it is meaningful to perform tests).
- Idea appeared in Sec 10 of Yates (1984)⁷. I wasn't aware...

⁶Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies, Bioinformatics (2019)

⁷Yates, Frank. "Tests of significance for 2× 2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

... is typically defined as a fraction of the number of subjects N, say $\epsilon=0.5\%$. (Single SNP-based) association tests are not performed if $m_1<\epsilon N$.

- Doesn't make much sense one could always apply Fisher's exact test, because it is exact.
- The threshold for "rare-variant" is better defined as the "minimum calibration number⁶" the smallest m_1 (and m_2) such that rejection region is non-empty at the specified level α (so that it is meaningful to perform tests).
- Idea appeared in Sec 10 of Yates (1984)⁷. I wasn't aware...

Some properties of this "minimum calibration number":

• The MCN depends on the ancillary marginal (n_1, n_2) , a lot. And therefore...

⁶Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies, Bioinformatics (2019)

⁷Yates, Frank. "Tests of significance for 2× 2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

... is typically defined as a fraction of the number of subjects N, say $\epsilon = 0.5\%$. (Single SNP-based) association tests are not performed if $m_1 < \epsilon N$.

- Doesn't make much sense one could always apply Fisher's exact test, because it is exact.
- The threshold for "rare-variant" is better defined as the "minimum calibration number" the smallest m_1 (and m_2) such that rejection region is non-empty at the specified level α (so that it is meaningful to perform tests).
- Idea appeared in Sec 10 of Yates (1984)⁷. I wasn't aware...

Some properties of this "minimum calibration number":

- The MCN depends on the ancillary marginal (n_1, n_2) , a lot. And therefore...
- One could overcome the curse of rare variants by choosing appropriate designs!
- See a demo here: https://power.stat.lsa.umich.edu/u-pass/

⁶Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies, Bioinformatics (2019)

⁷ Yates, Frank. "Tests of significance for 2× 2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

... is typically defined as a fraction of the number of subjects N, say $\epsilon=0.5\%$.

(Single SNP-based) association tests are not performed if $m_1 < \epsilon N$.

- Doesn't make much sense one could always apply Fisher's exact test, because it is exact.
- The threshold for "rare-variant" is better defined as the "minimum calibration number" the smallest m_1 (and m_2) such that rejection region is non-empty at the specified level α (so that it is meaningful to perform tests).
- Idea appeared in Sec 10 of Yates (1984)⁷. I wasn't aware...

Some properties of this "minimum calibration number":

- The MCN depends on the ancillary marginal (n_1, n_2) , a lot. And therefore...
- One could overcome the curse of rare variants by choosing appropriate designs!
- See a demo here: https://power.stat.lsa.umich.edu/u-pass/

My point: finite-sample applicability of the tests is still very much a problem!

⁶Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies, Bioinformatics (2019)

⁷Yates, Frank. "Tests of significance for 2× 2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

Thank you!

Questions and Comments