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Section 1
Ancillarity
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Ancillarity

• Ghosh, Reid, & Fraser (2010)1: “... statistics with distributions not dependingon the model parameters.”
• Little (1989)2: “let X and Y be random variables with joint distribution thatfactorizes in the form

p(x, y | θ, φ) = p(x | y, θ)p(y | φ),

then Y contains no information about θ and is called an ancillary statistic3. ”

• Formally, the two disagree!
• the latter, i.e., “statistics with distributions not depending on the modelparameters of interest” is used.

1Ghosh, Malay, N. Reid, and D. A. S. Fraser. "Ancillary statistics: A review." Statistica Sinica (2010): 1309-1332.2Little, Roderick JA. "Testing the equality of two independent binomial proportions." The American Statistician 43.4(1989): 283-288.3Cox, D. R., and D. Hinkley. "Chapman and Hall." Theoretical Statistics (1974).
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Examples of ancillary statistics

• The baseball example
• The horticulturist example
• A regression example
• The 2x2 table!

© Zheng Gao 5



Examples of ancillary statistics: baseball batting

• Observer tries to determine batter’s ability by
• ... observing N ∼ Poi(λ) number of at-bats,
• ... record the number of hits X ∼ Binom(p,N).

In this case,
• N is the ancillary statistic since
• ... its distribution does not depend on p,
• ... although it does provide information on the accuracy of p̂.
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Examples of ancillary statistics: the horticulturist

• Observer tries to determine the probability of red flowers by
• ... observing N ∼ Binom(φ, 4) plants which has flowered,
• ... record the number of red flowers X ∼ Binom(p,N).

In this case,
• N is, again, the ancillary statistic since
• ... its distribution does not depend on p,
• ... although it, again, provides information on the accuracy of p̂.
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Examples of ancillary statistics: regression

• Determine β with n observations from the model
Y ∼ F, (X|Y, β) ∼ Yβ + ε.

(reversed X and Y to match notations from before)
• ... OLS estimate

β̂ = (Y′Y)−1Y′X = (Y′Y)−1Y′(Xβ + ε)

= β +

∑
i yiεi∑
i y2

i

d
= N

(
β,

1∑
i y2

i

)
.

• ... How do you perform inference on β?

Most of us (I think!) would perform conditional inference, i.e., width of CIdepends on Y.
• Y is ancillary since/if
• ... its distribution does not depend on β,
• ... Y provides information only on the accuracy of β̂.

Although there was an argument for unconditional inference, if we interpret the relationship as only alinear approximation to the conditional expectations.
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Examples of ancillary statistics: 2× 2 tables

• Determine if there is an association (OR = µ11µ22
µ21µ12 = 1) using N (constant)

observations from a multinomial model
(n11, n12, n21, n22) ∼ Multinomial(N, (µ11, µ12, µ21, µ22)).

n11 n12 n1
n21 n22 n2
m1 m2 N

We now show that one of the marginals, say, (n1, n2), is ancillary.
• Re-parameterize

φ = µ11 + µ12, p1 = µ11
µ11 + µ12 , p2 =

µ21
µ21 + µ22 .

• so that
(n11, n12, n21, n22) ∼ Multinomial(N, (φp1, φ(1−p1), (1−φ)p2, (1−φ)(1−p2))).

© Zheng Gao 9
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Examples of ancillary statistics: 2× 2 tables

Denote the re-parameterized model
(n11, n12, n21, n22) ∼ Multinomial(N, (φ, p1, p2)).

The likelihood function is
p((n11, n12, n21, n22)|(φ, p1, p2))

=

(
N

n11, n12, n21, n22

)
(φp1)n11(φ(1− p1))n12((1− φ)p1)n21((1− φ)(1− p1))n22

=

(
N

n11, n12, n21, n22

)
× (p1)n11(1− p1)n1−n11pn211 (1− p1)n2−n21 × φn1(1− φ)n2

=C(x, y)× p((n11, n21)︸ ︷︷ ︸
x

| (n1, n2)︸ ︷︷ ︸
y

, (p1, p2)︸ ︷︷ ︸
θ

)× p((n1, n2)︸ ︷︷ ︸
y

|φ)

Recall the definition of ancillarity...
• “let X and Y be random variables with joint distribution that factorizes in theform

p(x, y | θ, φ) = p(x | y, θ)p(y | φ),
then Y contains no information about θ and is called an ancillary statistic. ”
• ... therefore, n1 and n2 are ancillary (for any functionals of (p1, p2))!
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Section 2
Why ancillarity? (spoiler: conditionality principle)
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Conditional inference: What is conditional inference?

Conditionality principle (Birnbaum 1962): When the experiment E can bedescribed as a mixture of several component experiments Ey where y is anancillary statistic, inference (about the parameter) in the following twosituations should be the same:
• Observing (x, y).
• Observing x from the component experiment Ey.

In other words:
• Whatever experiment that didn’t happen doesn’t count.
• We only care about the conditional distribution p(x|y).

Example:
• Testing for β = 1 in the regression example with just 1 sample

Y ∼ N(0, 3), (X|Y, β) ∼ N(Yβ, 1).
• Marginally,

X ∼ N(0, 4).

© Zheng Gao 12
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Conditional inference: example

Rejection region based on
• Cond. dist. p(x|y, β).

• Marginal dist. p(x|β).
• Cond. dist. p(x|z, β),where Z = 1[X < 0].
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Conditional inference

• All procedures have calibrated levels, marginally. That is,
P[rejection |β = 1] = α.

However,

• Cond. on ancillary statistics seem to yield more “reasonable” procedures.
• Not all conditioning is good, as the third example clearly demonstrates.

Question

• What does it mean to be more “reasonable”??
Answer

• I don’t know...
One possible explanation (see also, Fraser (2004)4):
• Robustness against model misspecification: even when we get thedistribution of y wrong, the test can still be used.

Still, conditionality principle is a principle, not an explanation, not a theorem.

4Fraser, Donald AS. "Ancillaries and conditional inference." Statistical Science 19.2 (2004): 333-369.
© Zheng Gao 14
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Section 3
Association tests in 2x2 tables
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Examples of ancillary statistics: 2× 2 tables

n1 and n2 are ancillary (in the multinomial model).
• The same is (trivially) true for product binomial model.
• ... and the hypergeometric model.

The C principle — should you choose to accept it — says that we shouldcondition on one of the marginals.

However, conditioning a both margins may still be controversial, since
• (n1, n2) and (m1,m2) are not jointly ancillary!
• (m1,m2) is only approximately ancillary,
• ... i.e., “carries little information about the OR”5 (whatever that means,statements are vague, though quantifiable.).

5Little, Roderick JA. "Testing the equality of two independent binomial proportions." The American Statistician 43.4(1989): 283-288.
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Two (three, four) schools of thought

1. Condition on one margin, or none! — Pearson’s chi-square, Barnard’s CSM,Yule’s, Student, Welch’s t-tests, etc.
2. Condition on two margins — Fisher’s exact test (approx. by Yates)
3. ... the dark side (topic for another day: likelihood principle, Bayesianism).

© Zheng Gao 17



Section 4
Conservativeness of Fisher’s Exact test?
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Why is Fisher’s exact test “conservative” then?

Discreteness.
• The data was discrete to start with.
• Exacerbated by conditioning.

© Zheng Gao 19



Why is Fisher’s exact test “conservative” then?
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Section 5
Should we care?
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Asymptotic equivalence

“Well-known” asymptotic “equivalence” of these tests

• in what sense?
• Level, i.e., P[type I error]?
• Power, i.e., 1− P[type II error]?

Answers more scarce than I believed.
What is large sample, anyway? Are sample sizes in modern application largeenough?
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A modern genetic application

Genetic compositions (at p genomic locations) are compared between n1 casesand n2 controls, using association tests on 2× 2 tables.
Variant A Variant BCases n11 n12 n1Controls n21 n22 n2

m1 m2 N

• N from 1,000s to 500,000. Imbalance in n1, n2 is typically not that bad.

Geneticists are worried about “rare variants”, or low variant counts (small m1).
• When m1 is small, asymptotics doesn’t apply
• Pearson’s chi-square, etc. fail to control for type I error.
• Barnard’s CSM Test (1945) may work! (idk if anyone uses it...)
• Most people run logistic regressions, afaik.
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“Rare-variants”

... is typically defined as a fraction of the number of subjects N, say ε = 0.5%.

(Single SNP-based) association tests are not performed if m1 < εN.
• Doesn’t make much sense — one could always apply Fisher’s exact test,because it is exact.
• The threshold for “rare-variant” is better defined as the “minimum

calibration number6” — the smallest m1 (and m2) such that rejection regionis non-empty at the specified level α (so that it is meaningful to performtests).
• Idea appeared in Sec 10 of Yates (1984)7. I wasn’t aware...

Some properties of this “minimum calibration number”:
• The MCN depends on the ancillary marginal (n1, n2), a lot. And therefore...
• One could overcome the curse of rare variants by choosing appropriatedesigns!
• See a demo here: https://power.stat.lsa.umich.edu/u-pass/

My point: finite-sample applicability of the tests is still very much a problem!

6Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in geneticassociation studies, Bioinformatics (2019)7Yates, Frank. "Tests of significance for 2× 2 contingency tables." Journal of the Royal Statistical Society: Series A(General) 147.3 (1984): 426-449.
© Zheng Gao 24
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Thank you!

Questions and Comments
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