To C or not to C

Conditioning in association tests

Zheng Gao
gaozheng@umich.edu

Table of contents

(1) Ancillarity
(2) Why ancillarity? (spoiler: conditionality principle)
(3) Association tests in 2×2 tables
4) Conservativeness of Fisher's Exact test?
(5) Should we care?

Section 1

Ancillarity

Ancillarity

- Ghosh, Reid, \& Fraser (2010)¹: "... statistics with distributions not depending on the model parameters."
- Little (1989) ${ }^{2}$: "let X and Y be random variables with joint distribution that factorizes in the form

$$
p(x, y \mid \theta, \phi)=p(x \mid y, \theta) p(y \mid \phi),
$$

then Y contains no information about θ and is called an ancillary statistic ${ }^{3}$."

[^0]
Ancillarity

- Ghosh, Reid, \& Fraser (2010)¹: "... statistics with distributions not depending on the model parameters."
- Little (1989) ${ }^{2}$: "let X and Y be random variables with joint distribution that factorizes in the form

$$
p(x, y \mid \theta, \phi)=p(x \mid y, \theta) p(y \mid \phi),
$$

then Y contains no information about θ and is called an ancillary statistic ${ }^{3}$."

- Formally, the two disagree!

[^1]
Ancillarity

- Ghosh, Reid, \& Fraser (2010)¹: "... statistics with distributions not depending on the model parameters."
- Little (1989) ${ }^{2}$: "let X and Y be random variables with joint distribution that factorizes in the form

$$
p(x, y \mid \theta, \phi)=p(x \mid y, \theta) p(y \mid \phi),
$$

then Y contains no information about θ and is called an ancillary statistic ${ }^{3}$."

- Formally, the two disagree!
- the latter, i.e., "statistics with distributions not depending on the model parameters of interest" is used.

[^2]
Examples of ancillary statistics

- The baseball example
- The horticulturist example
- A regression example
- The 2×2 table!

Examples of ancillary statistics: baseball batting

- Observer tries to determine batter's ability by
- ... observing $N \sim \operatorname{Poi}(\lambda)$ number of at-bats,
- ... record the number of hits $X \sim \operatorname{Binom}(p, N)$.

Examples of ancillary statistics: baseball batting

- Observer tries to determine batter's ability by
- ... observing $N \sim \operatorname{Poi}(\lambda)$ number of at-bats,
- ... record the number of hits $X \sim \operatorname{Binom}(p, N)$.

In this case,

- N is the ancillary statistic since
- ... its distribution does not depend on p,
- ... although it does provide information on the accuracy of \hat{p}.

Examples of ancillary statistics: the horticulturist

- Observer tries to determine the probability of red flowers by
- ... observing $N \sim \operatorname{Binom}(\phi, 4)$ plants which has flowered,
- ... record the number of red flowers $X \sim \operatorname{Binom}(p, N)$.

Examples of ancillary statistics: the horticulturist

- Observer tries to determine the probability of red flowers by
- ... observing $N \sim \operatorname{Binom}(\phi, 4)$ plants which has flowered,
- ... record the number of red flowers $X \sim \operatorname{Binom}(p, N)$.

In this case,

- N is, again, the ancillary statistic since
- ... its distribution does not depend on p,
- ... although it, again, provides information on the accuracy of \hat{p}.

Examples of ancillary statistics: regression

- Determine β with n observations from the model

$$
Y \sim F, \quad(X \mid Y, \beta) \sim Y \beta+\epsilon .
$$

(reversed X and Y to match notations from before)

- ... OLS estimate

$$
\begin{aligned}
\widehat{\beta} & =\left(Y^{\prime} Y\right)^{-1} Y^{\prime} X=\left(Y^{\prime} Y\right)^{-1} Y^{\prime}(X \beta+\epsilon) \\
& =\beta+\frac{\sum_{i} y_{i} \epsilon_{i}}{\sum_{i} y_{i}^{2}} \stackrel{\mathrm{~d}}{=} \mathrm{N}\left(\beta, \frac{1}{\sum_{i} y_{i}^{2}}\right) .
\end{aligned}
$$

- ... How do you perform inference on β ?

Examples of ancillary statistics: regression

- Determine β with n observations from the model

$$
Y \sim F, \quad(X \mid Y, \beta) \sim Y \beta+\epsilon
$$

(reversed X and Y to match notations from before)

- ... OLS estimate

$$
\begin{aligned}
\widehat{\beta} & =\left(Y^{\prime} Y\right)^{-1} Y^{\prime} X=\left(Y^{\prime} Y\right)^{-1} Y^{\prime}(X \beta+\epsilon) \\
& =\beta+\frac{\sum_{i} y_{i} \epsilon_{i}}{\sum_{i} y_{i}^{2}} \stackrel{\mathrm{~d}}{=} \mathrm{N}\left(\beta, \frac{1}{\sum_{i} y_{i}^{2}}\right) .
\end{aligned}
$$

- ... How do you perform inference on β ?

Most of us (I think!) would perform conditional inference, i.e., width of Cl depends on Y.

- Y is ancillary since/if
- ... its distribution does not depend on β,
- ... Y provides information only on the accuracy of $\hat{\beta}$.

Although there was an argument for unconditional inference, if we interpret the relationship as only a linear approximation to the conditional expectations.

Examples of ancillary statistics: 2×2 tables

- Determine if there is an association ($\mathrm{OR}=\frac{\mu_{11} \mu_{22}}{\mu_{21} \mu_{12}}=1$) using N (constant) observations from a multinomial model

$$
\left(n_{11}, n_{12}, n_{21}, n_{22}\right) \sim \operatorname{Multinomial}\left(N,\left(\mu_{11}, \mu_{12}, \mu_{21}, \mu_{22}\right)\right)
$$

$$
\begin{array}{cc|c}
n_{11} & n_{12} & n_{1} \\
n_{21} & n_{22} & n_{2} \\
\hline m_{1} & m_{2} & N
\end{array}
$$

Examples of ancillary statistics: 2×2 tables

- Determine if there is an association ($\mathrm{OR}=\frac{\mu_{11} \mu_{22}}{\mu_{21} \mu_{12}}=1$) using N (constant) observations from a multinomial model

$$
\begin{gathered}
\left(n_{11}, n_{12}, n_{21}, n_{22}\right) \sim \operatorname{Multinomial}\left(N,\left(\mu_{11}, \mu_{12}, \mu_{21}, \mu_{22}\right)\right) \\
\qquad \begin{array}{cc|c}
n_{11} & n_{12} & n_{1} \\
n_{21} & n_{22} & n_{2} \\
\hline m_{1} & m_{2} & N
\end{array}
\end{gathered}
$$

We now show that one of the marginals, say, $\left(n_{1}, n_{2}\right)$, is ancillary.

- Re-parameterize

$$
\phi=\mu_{11}+\mu_{12}, \quad p_{1}=\frac{\mu_{11}}{\mu_{11}+\mu_{12}}, \quad p_{2}=\frac{\mu_{21}}{\mu_{21}+\mu_{22}} .
$$

- so that

$$
\left(n_{11}, n_{12}, n_{21}, n_{22}\right) \sim \operatorname{Multinomial}\left(N,\left(\phi p_{1}, \phi\left(1-p_{1}\right),(1-\phi) p_{2},(1-\phi)\left(1-p_{2}\right)\right)\right)
$$

Examples of ancillary statistics: 2×2 tables

Denote the re-parameterized model

$$
\left(n_{11}, n_{12}, n_{21}, n_{22}\right) \sim \operatorname{Multinomial}\left(N,\left(\phi, p_{1}, p_{2}\right)\right)
$$

The likelihood function is

$$
\begin{aligned}
& p\left(\left(n_{11}, n_{12}, n_{21}, n_{22}\right) \mid\left(\phi, p_{1}, p_{2}\right)\right) \\
= & \binom{N}{n_{11}, n_{12}, n_{21}, n_{22}}\left(\phi p_{1}\right)^{n_{11}}\left(\phi\left(1-p_{1}\right)\right)^{n_{12}}\left((1-\phi) p_{1}\right)^{n_{21}}\left((1-\phi)\left(1-p_{1}\right)\right)^{n_{22}}
\end{aligned}
$$

Examples of ancillary statistics: 2×2 tables

Denote the re-parameterized model

$$
\left(n_{11}, n_{12}, n_{21}, n_{22}\right) \sim \operatorname{Multinomial}\left(N,\left(\phi, p_{1}, p_{2}\right)\right)
$$

The likelihood function is

$$
\begin{aligned}
& p\left(\left(n_{11}, n_{12}, n_{21}, n_{22}\right) \mid\left(\phi, p_{1}, p_{2}\right)\right) \\
= & \binom{N}{n_{11}, n_{12}, n_{21}, n_{22}}\left(\phi p_{1}\right)^{n_{11}}\left(\phi\left(1-p_{1}\right)\right)^{n_{12}}\left((1-\phi) p_{1}\right)^{n_{21}}\left((1-\phi)\left(1-p_{1}\right)\right)^{n_{22}} \\
= & \binom{N}{n_{11}, n_{12}, n_{21}, n_{22}} \times\left(p_{1}\right)^{n_{11}}\left(1-p_{1}\right)^{n_{1}-n_{11}} p_{1}^{n_{21}}\left(1-p_{1}\right)^{n_{2}-n_{21}} \times \phi^{n_{1}}(1-\phi)^{n_{2}}
\end{aligned}
$$

Examples of ancillary statistics: 2×2 tables

Denote the re-parameterized model

$$
\left(n_{11}, n_{12}, n_{21}, n_{22}\right) \sim \operatorname{Multinomial}\left(N,\left(\phi, p_{1}, p_{2}\right)\right)
$$

The likelihood function is

$$
\begin{aligned}
& p\left(\left(n_{11}, n_{12}, n_{21}, n_{22}\right) \mid\left(\phi, p_{1}, p_{2}\right)\right) \\
= & \binom{N}{n_{11}, n_{12}, n_{21}, n_{22}}\left(\phi p_{1}\right)^{n_{11}}\left(\phi\left(1-p_{1}\right)\right)^{n_{12}}\left((1-\phi) p_{1}\right)^{n_{21}}\left((1-\phi)\left(1-p_{1}\right)\right)^{n_{22}} \\
= & \binom{N}{n_{11}, n_{12}, n_{21}, n_{22}} \times\left(p_{1}\right)^{n_{11}}\left(1-p_{1}\right)^{n_{1}-n_{11}} p_{1}^{n_{21}}\left(1-p_{1}\right)^{n_{2}-n_{21}} \times \phi^{n_{1}}(1-\phi)^{n_{2}} \\
= & C(x, y) \times p(\underbrace{\left(n_{11}, n_{21}\right)}_{x} \mid \underbrace{\left(n_{1}, n_{2}\right)}_{y}, \underbrace{\left(p_{1}, p_{2}\right)}_{\theta}) \times p((\underbrace{\left(n_{1}, n_{2}\right)}_{y} \mid \phi)
\end{aligned}
$$

Examples of ancillary statistics: 2×2 tables

Denote the re-parameterized model

$$
\left(n_{11}, n_{12}, n_{21}, n_{22}\right) \sim \operatorname{Multinomial}\left(N,\left(\phi, p_{1}, p_{2}\right)\right)
$$

The likelihood function is

$$
\begin{aligned}
& p\left(\left(n_{11}, n_{12}, n_{21}, n_{22}\right) \mid\left(\phi, p_{1}, p_{2}\right)\right) \\
= & \binom{N}{n_{11}, n_{12}, n_{21}, n_{22}}\left(\phi p_{1}\right)^{n_{11}}\left(\phi\left(1-p_{1}\right)\right)^{n_{12}}\left((1-\phi) p_{1}\right)^{n_{21}}\left((1-\phi)\left(1-p_{1}\right)\right)^{n_{22}} \\
= & \binom{N}{n_{11}, n_{12}, n_{21}, n_{22}} \times\left(p_{1}\right)^{n_{11}}\left(1-p_{1}\right)^{n_{1}-n_{11}} p_{1}^{n_{21}}\left(1-p_{1}\right)^{n_{2}-n_{21}} \times \phi^{n_{1}}(1-\phi)^{n_{2}} \\
= & C(x, y) \times p(\underbrace{\left(n_{11}, n_{21}\right)}_{x} \mid \underbrace{\left(n_{1}, n_{2}\right)}_{y}, \underbrace{\left(p_{1}, p_{2}\right)}_{\theta}) \times p(\underbrace{\left(n_{1}, n_{2}\right)}_{y} \mid \phi)
\end{aligned}
$$

Recall the definition of ancillarity...

- "let X and Y be random variables with joint distribution that factorizes in the form

$$
p(x, y \mid \theta, \phi)=p(x \mid y, \theta) p(y \mid \phi)
$$

then Y contains no information about θ and is called an ancillary statistic. "

- ... therefore, $\mathbf{n}_{\mathbf{1}}$ and \mathbf{n}_{2} are ancillary (for any functionals of $\left(p_{1}, p_{2}\right)$)!

Section 2

Why ancillarity? (spoiler: conditionality principle)

Conditional inference: What is conditional inference?

Conditionality principle (Birnbaum 1962): When the experiment E can be described as a mixture of several component experiments E_{y} where y is an ancillary statistic, inference (about the parameter) in the following two situations should be the same:

- Observing (x, y).
- Observing x from the component experiment E_{y}.

Conditional inference: What is conditional inference?

Conditionality principle (Birnbaum 1962): When the experiment E can be described as a mixture of several component experiments E_{y} where y is an ancillary statistic, inference (about the parameter) in the following two situations should be the same:

- Observing (x, y).
- Observing x from the component experiment E_{y}.

In other words:

- Whatever experiment that didn't happen doesn't count.
- We only care about the conditional distribution $p(x \mid y)$.

Conditional inference: What is conditional inference?

Conditionality principle (Birnbaum 1962): When the experiment E can be described as a mixture of several component experiments E_{y} where y is an ancillary statistic, inference (about the parameter) in the following two situations should be the same:

- Observing (x, y).
- Observing x from the component experiment E_{y}.

In other words:

- Whatever experiment that didn't happen doesn't count.
- We only care about the conditional distribution $p(x \mid y)$.

Example:

- Testing for $\beta=1$ in the regression example with just 1 sample

$$
Y \sim \mathrm{~N}(0,3), \quad(X \mid Y, \beta) \sim \mathrm{N}(Y \beta, 1) .
$$

- Marginally,

$$
X \sim \mathrm{~N}(0,4) .
$$

Conditional inference: example

Rejection region based on

- Cond. dist. $p(x \mid y, \beta)$.

Conditional inference: example

Rejection region based on

- Cond. dist. $p(x \mid y, \beta)$.
- Marginal dist. $p(x \mid \beta)$.

Conditional inference: example

Rejection region based on

- Cond. dist. $p(x \mid y, \beta)$.
- Marginal dist. $p(x \mid \beta)$.
- Cond. dist. $p(x \mid z, \beta)$, where $Z=\mathbb{1}[X<0]$.

Conditional inference

- All procedures have calibrated levels, marginally. That is,

$$
\mathbb{P}[\text { rejection } \mid \beta=1]=\alpha .
$$

However,

[^3]
Conditional inference

- All procedures have calibrated levels, marginally. That is,

$$
\mathbb{P}[\text { rejection } \mid \beta=1]=\alpha .
$$

However,

- Cond. on ancillary statistics seem to yield more "reasonable" procedures.
- Not all conditioning is good, as the third example clearly demonstrates.

[^4]
Conditional inference

- All procedures have calibrated levels, marginally. That is,

$$
\mathbb{P}[\text { rejection } \mid \beta=1]=\alpha .
$$

However,

- Cond. on ancillary statistics seem to yield more "reasonable" procedures.
- Not all conditioning is good, as the third example clearly demonstrates.

Question

- What does it mean to be more "reasonable"??

[^5]
Conditional inference

- All procedures have calibrated levels, marginally. That is,

$$
\mathbb{P}[\text { rejection } \mid \beta=1]=\alpha .
$$

However,

- Cond. on ancillary statistics seem to yield more "reasonable" procedures.
- Not all conditioning is good, as the third example clearly demonstrates.

Question

- What does it mean to be more "reasonable"??

Answer

- I don't know...

[^6]
Conditional inference

- All procedures have calibrated levels, marginally. That is,

$$
\mathbb{P}[\text { rejection } \mid \beta=1]=\alpha
$$

However,

- Cond. on ancillary statistics seem to yield more "reasonable" procedures.
- Not all conditioning is good, as the third example clearly demonstrates.

Question

- What does it mean to be more "reasonable"??

Answer

- I don't know...

One possible explanation (see also, Fraser (2004) ${ }^{4}$):

- Robustness against model misspecification: even when we get the distribution of y wrong, the test can still be used.

Still, conditionality principle is a principle, not an explanation, not a theorem.

[^7]Section 3

Association tests in $\mathbf{2 x} 2$ tables

Examples of ancillary statistics: 2×2 tables

n_{1} and n_{2} are ancillary (in the multinomial model).

- The same is (trivially) true for product binomial model.
- ... and the hypergeometric model.

The C principle - should you choose to accept it - says that we should condition on one of the marginals.

[^8]
Examples of ancillary statistics: 2×2 tables

n_{1} and n_{2} are ancillary (in the multinomial model).

- The same is (trivially) true for product binomial model.
- ... and the hypergeometric model.

The C principle - should you choose to accept it - says that we should condition on one of the marginals.

However, conditioning a both margins may still be controversial, since

- $\left(n_{1}, n_{2}\right)$ and $\left(m_{1}, m_{2}\right)$ are not jointly ancillary!
- $\left(m_{1}, m_{2}\right)$ is only approximately ancillary,
- ... i.e., "carries little information about the OR"5 (whatever that means, statements are vague, though quantifiable.).

[^9]
Two (three, four) schools of thought

1. Condition on one margin, or none! - Pearson's chi-square, Barnard's CSM, Yule's, Student, Welch's t-tests, etc.
2. Condition on two margins - Fisher's exact test (approx. by Yates)
3. ... the dark side (topic for another day: likelihood principle, Bayesianism).

Section 4

Conservativeness of Fisher's Exact test?

Why is Fisher's exact test "conservative" then?

Discreteness.

- The data was discrete to start with.
- Exacerbated by conditioning.

Why is Fisher's exact test "conservative" then?

TABLE 2
Relative frequencies of the 362×2 tables generated by samples from two binomial distributions, $n_{1}=n_{2}=5, \mathbf{p}=1 / 2$, classified by values of the m_{1}, m_{2} margin

$p_{1}-p_{2}$	m_{1}, \dot{m}_{2} margin											Total	Overall probability
	10, 0	9, 1	8,2	7, 3	6,4	5,5	4,6	3,7	2, 8	1,9	0,10		
-1.0						1						1	0.001
-0.8					$\begin{array}{r} 5 \\ (0.024) \end{array}$	(0.004)	$\begin{gathered} 5 \\ (0.024) \end{gathered}$					10	0.010
-0.6				$\begin{gathered} 10 \\ (0.083) \end{gathered}$		$\begin{array}{r} 25 \\ (0.099) \end{array}$		$\begin{gathered} 10 \\ (0.083) \end{gathered}$				45	0.044
-0.4			$\begin{gathered} 10 \\ (0.222) \end{gathered}$		$\begin{gathered} 50 \\ (0.238) \end{gathered}$		$\begin{gathered} 50 \\ (0.238) \end{gathered}$		$\begin{gathered} 10 \\ (0.222) \end{gathered}$			120	0.117
-0.2		$\begin{gathered} 5 \\ (0.5) \end{gathered}$		$\begin{gathered} 50 \\ (0.417) \end{gathered}$		$\begin{gathered} 100 \\ (0.397) \end{gathered}$		$\begin{array}{r} 50 \\ (0.417) \end{array}$		$\begin{gathered} 5 \\ (0.5) \end{gathered}$		210	0.205
0.0	$\begin{gathered} 1 \\ (1.0) \end{gathered}$		$\begin{gathered} 25 \\ (0.556) \end{gathered}$		$\begin{gathered} 100 \\ (0.476) \end{gathered}$		$\begin{gathered} 100 \\ (0.476) \end{gathered}$		$\begin{gathered} 25 \\ (0.556) \end{gathered}$		$\begin{gathered} 1 \\ (1.0) \end{gathered}$	252	0.246
+0.2		$\begin{gathered} 5 \\ (0.5) \end{gathered}$		$\begin{array}{r} 50 \\ (0.417) \end{array}$		$\begin{gathered} 100 \\ (0.397) \end{gathered}$		$\begin{gathered} 50 \\ (0.417) \end{gathered}$		$\begin{gathered} 5 \\ (0.5) \end{gathered}$		210	0.205
+0.4			$\begin{gathered} 10 \\ (0.222) \end{gathered}$		$\begin{array}{r} 50 \\ (0.238) \end{array}$		$\begin{gathered} 50 \\ (0.238) \end{gathered}$		$\begin{gathered} 10 \\ (0.222) \end{gathered}$			120	0.117
+0.6				$\begin{gathered} 10 \\ (0.083) \end{gathered}$		$\begin{array}{r} 25 \\ (0.099) \end{array}$		$\begin{gathered} 10 \\ (0.083) \end{gathered}$				45	0.044
+0.8					$\begin{array}{r} 5 \\ (0.024) \end{array}$		$\begin{array}{r} 5 \\ (0.024) \end{array}$					10	0.010
+1.0						$\begin{gathered} 1 \\ (0.004) \end{gathered}$						1	0.001
Total	1	10	45	120	210	252	210	120	45	10	1	1024	1.000

The first column contains the single table $(5,0 ; 5,0)$, the second the two tables $(4,1 ; 5,0),(5,0 ; 4,1)$, etc. The figures in parentheses are the elements of the hypergeometric distribution for given values of the m_{1}, \dot{m}_{2} margin.

Section 5

Should we care?

Asymptotic equivalence

"Well-known" asymptotic "equivalence" of these tests

Asymptotic equivalence

"Well-known" asymptotic "equivalence" of these tests

- in what sense?
- Level, i.e., $\mathbb{P}[$ type I error]?
- Power, i.e., 1 - $\mathbb{P}[$ type II error]?

Answers more scarce than I believed.

Asymptotic equivalence

"Well-known" asymptotic "equivalence" of these tests

- in what sense?
- Level, i.e., $\mathbb{P}[$ type I error]?
- Power, i.e., 1 - $\mathbb{P}[$ type II error]?

Answers more scarce than I believed.
What is large sample, anyway? Are sample sizes in modern application large enough?

A modern genetic application

Genetic compositions (at p genomic locations) are compared between n_{1} cases and n_{2} controls, using association tests on 2×2 tables.

	Variant A	Variant B	
Cases	n_{11}	n_{12}	n_{1}
Controls	n_{21}	n_{22}	n_{2}
	m_{1}	m_{2}	N

- N from 1,000 s to 500,000 . Imbalance in n_{1}, n_{2} is typically not that bad.

A modern genetic application

Genetic compositions (at p genomic locations) are compared between n_{1} cases and n_{2} controls, using association tests on 2×2 tables.

	Variant A	Variant B	
Cases	n_{11}	n_{12}	n_{1}
Controls	n_{21}	n_{22}	n_{2}
	m_{1}	m_{2}	N

- N from 1,000 s to 500,000 . Imbalance in n_{1}, n_{2} is typically not that bad.

Geneticists are worried about "rare variants", or low variant counts (small m_{1}).

- When m_{1} is small, asymptotics doesn't apply
- Pearson's chi-square, etc. fail to control for type I error.
- Barnard’s CSM Test (1945) may work! (idk if anyone uses it...)
- Most people run logistic regressions, afaik.

"Rare-variants"

... is typically defined as a fraction of the number of subjects N, say $\epsilon=0.5 \%$.

[^10]
"Rare-variants"

... is typically defined as a fraction of the number of subjects N, say $\epsilon=0.5 \%$. (Single SNP-based) association tests are not performed if $m_{1}<\epsilon N$.

[^11]
"Rare-variants"

... is typically defined as a fraction of the number of subjects N, say $\epsilon=0.5 \%$.
(Single SNP-based) association tests are not performed if $m_{1}<\epsilon N$.

- Doesn't make much sense - one could always apply Fisher's exact test, because it is exact.

[^12]
"Rare-variants"

... is typically defined as a fraction of the number of subjects N, say $\epsilon=0.5 \%$.
(Single SNP-based) association tests are not performed if $m_{1}<\epsilon N$.

- Doesn't make much sense - one could always apply Fisher's exact test, because it is exact.
- The threshold for "rare-variant" is better defined as the "minimum calibration number ${ }^{6 "}$ - the smallest $m_{1}\left(\right.$ and $\left.m_{2}\right)$ such that rejection region is non-empty at the specified level α (so that it is meaningful to perform tests).

[^13]
"Rare-variants"

... is typically defined as a fraction of the number of subjects N, say $\epsilon=0.5 \%$.
(Single SNP-based) association tests are not performed if $m_{1}<\epsilon N$.

- Doesn't make much sense - one could always apply Fisher's exact test, because it is exact.
- The threshold for "rare-variant" is better defined as the "minimum calibration number ${ }^{6 "}$ - the smallest $m_{1}\left(\right.$ and $\left.m_{2}\right)$ such that rejection region is non-empty at the specified level α (so that it is meaningful to perform tests).
- Idea appeared in Sec 10 of Yates (1984) ${ }^{7}$. I wasn't aware...

[^14]
"Rare-variants"

... is typically defined as a fraction of the number of subjects N, say $\epsilon=0.5 \%$.
(Single SNP-based) association tests are not performed if $m_{1}<\epsilon N$.

- Doesn't make much sense - one could always apply Fisher's exact test, because it is exact.
- The threshold for "rare-variant" is better defined as the "minimum calibration number ${ }^{6 "}$ - the smallest $m_{1}\left(\right.$ and $\left.m_{2}\right)$ such that rejection region is non-empty at the specified level α (so that it is meaningful to perform tests).
- Idea appeared in Sec 10 of Yates (1984)7. I wasn't aware...

Some properties of this "minimum calibration number":

- The MCN depends on the ancillary marginal $\left(n_{1}, n_{2}\right)$, a lot. And therefore...

[^15]
"Rare-variants"

... is typically defined as a fraction of the number of subjects N, say $\epsilon=0.5 \%$.
(Single SNP-based) association tests are not performed if $m_{1}<\epsilon N$.

- Doesn't make much sense - one could always apply Fisher's exact test, because it is exact.
- The threshold for "rare-variant" is better defined as the "minimum calibration number ${ }^{6 "}$ - the smallest $m_{1}\left(\right.$ and $\left.m_{2}\right)$ such that rejection region is non-empty at the specified level α (so that it is meaningful to perform tests).
- Idea appeared in Sec 10 of Yates (1984)7. I wasn't aware...

Some properties of this "minimum calibration number":

- The MCN depends on the ancillary marginal $\left(n_{1}, n_{2}\right)$, a lot. And therefore...
- One could overcome the curse of rare variants by choosing appropriate designs!
- See a demo here: https://power.stat.Isa.umich.edu/u-pass/

[^16]
"Rare-variants"

... is typically defined as a fraction of the number of subjects N, say $\epsilon=0.5 \%$.
(Single SNP-based) association tests are not performed if $m_{1}<\epsilon N$.

- Doesn't make much sense - one could always apply Fisher's exact test, because it is exact.
- The threshold for "rare-variant" is better defined as the "minimum calibration number ${ }^{6 "}$ - the smallest m_{1} (and m_{2}) such that rejection region is non-empty at the specified level α (so that it is meaningful to perform tests).
- Idea appeared in Sec 10 of Yates (1984)7. I wasn't aware...

Some properties of this "minimum calibration number":

- The MCN depends on the ancillary marginal $\left(n_{1}, n_{2}\right)$, a lot. And therefore...
- One could overcome the curse of rare variants by choosing appropriate designs!
- See a demo here: https://power.stat.Isa.umich.edu/u-pass/

My point: finite-sample applicability of the tests is still very much a problem!

[^17]
Thank you!

Questions and Comments

[^0]: ${ }^{1}$ Ghosh, Malay, N. Reid, and D. A. S. Fraser. "Ancillary statistics: A review." Statistica Sinica (2010): 1309-1332.
 ${ }^{2}$ Little, Roderick JA. "Testing the equality of two independent binomial proportions." The American Statistician 43.4 (1989): 283-288.
 ${ }^{3}$ Cox, D. R., and D. Hinkley. "Chapman and Hall." Theoretical Statistics (1974).

[^1]: ${ }^{1}$ Ghosh, Malay, N. Reid, and D. A. S. Fraser. "Ancillary statistics: A review." Statistica Sinica (2010): 1309-1332.
 ${ }^{2}$ Little, Roderick JA. "Testing the equality of two independent binomial proportions." The American Statistician 43.4 (1989): 283-288.
 ${ }^{3}$ Cox, D. R., and D. Hinkley. "Chapman and Hall." Theoretical Statistics (1974).

[^2]: ${ }^{1}$ Ghosh, Malay, N. Reid, and D. A. S. Fraser. "Ancillary statistics: A review." Statistica Sinica (2010): 1309-1332.
 ${ }^{2}$ Little, Roderick JA. "Testing the equality of two independent binomial proportions." The American Statistician 43.4 (1989): 283-288.
 ${ }^{3}$ Cox, D. R., and D. Hinkley. "Chapman and Hall." Theoretical Statistics (1974).

[^3]: ${ }^{4}$ Fraser, Donald AS. "Ancillaries and conditional inference." Statistical Science 19.2 (2004): 333-369.

[^4]: ${ }^{4}$ Fraser, Donald AS. "Ancillaries and conditional inference." Statistical Science 19.2 (2004): 333-369.

[^5]: ${ }^{4}$ Fraser, Donald AS. "Ancillaries and conditional inference." Statistical Science 19.2 (2004): 333-369.

[^6]: ${ }^{4}$ Fraser, Donald AS. "Ancillaries and conditional inference." Statistical Science 19.2 (2004): 333-369.

[^7]: ${ }^{4}$ Fraser, Donald AS. "Ancillaries and conditional inference." Statistical Science 19.2 (2004): 333-369.

[^8]: ${ }^{5}$ Little, Roderick JA. "Testing the equality of two independent binomial proportions." The American Statistician 43.4 (1989): 283-288.

[^9]: ${ }^{5}$ Little, Roderick JA. "Testing the equality of two independent binomial proportions." The American Statistician 43.4 (1989): 283-288.

[^10]: ${ }^{6}$ Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies, Bioinformatics (2019)
 ${ }^{7}$ Yates, Frank. "Tests of significance for 2×2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

[^11]: ${ }^{6}$ Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies, Bioinformatics (2019)
 ${ }^{7}$ Yates, Frank. "Tests of significance for 2×2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

[^12]: ${ }^{6}$ Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies, Bioinformatics (2019)
 ${ }^{7}$ Yates, Frank. "Tests of significance for 2×2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

[^13]: ${ }^{6}$ Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies, Bioinformatics (2019)
 ${ }^{7}$ Yates, Frank. "Tests of significance for 2×2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

[^14]: ${ }^{6}$ Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies, Bioinformatics (2019)
 ${ }^{7}$ Yates, Frank. "Tests of significance for 2×2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

[^15]: ${ }^{6}$ Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies, Bioinformatics (2019)
 ${ }^{7}$ Yates, Frank. "Tests of significance for 2×2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

[^16]: ${ }^{6}$ Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies, Bioinformatics (2019)
 ${ }^{7}$ Yates, Frank. "Tests of significance for 2×2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

[^17]: ${ }^{6}$ Z Gao, J Terhorst, C Van Hout, S Stoev, U-PASS: unified power analysis and forensics for qualitative traits in genetic association studies, Bioinformatics (2019)
 ${ }^{7}$ Yates, Frank. "Tests of significance for 2×2 contingency tables." Journal of the Royal Statistical Society: Series A (General) 147.3 (1984): 426-449.

