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Abstract

Time-series cross-section (TSCS) data are prevalent in political science, yet many distinct
challenges presented by TSCS data remain under-addressed. We focus on how dependence
in both space and time complicates estimating either spatial or temporal dependence, dy-
namics, and effects. Little is known about how modeling one of temporal or cross-sectional
dependence well while neglecting the other affects results in TSCS analysis. We demonstrate
analytically and through simulations how misspecification of either temporal or spatial de-
pendence inflates estimates of the other dimension’s dependence and thereby induces biased
estimates and tests of other covariate effects. We therefore recommend the spatiotemporal au-
toregressive distributed lag (STADL) model with distributed lags in both space and time as an
effective general starting-point for TSCS model-specification. We illustrate with two example
reanalyses, and provide R code to facilitate researchers’ implementation—from automation
of common spatial-weights matrices (W) through estimated spatiotemporal effects/response
calculations—for their own TSCS analyses.
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Introduction

Stimson (1985) introduced political science to the promise and peril of ‘regression in space and

time,’ heralding a boom in research utilizing space-time data. In the 35+ years since, panel and

time-series cross-section (TSCS) data have come to dominate quantitative empirical analyses in

political science. Figure 1 illustrates with yearly counts of keyword text-identified TSCS articles

appearing in American Political Science Review, American Journal of Political Science, and Jour-

nal of Politics from 1980 to 2019.1 In recent years, 2012-2019, at least 201 articles, nearly 1 of

every 8, contained TSCS data-analysis, yet very few of these analyses of data in ‘space and time’

seem to meaningfully consider both temporal and spatial dependence.

Our manual review of these 201 TSCS articles found only 94 model temporal dependence

directly, via the inclusion of time-lags;2 only about 23 model spatial dependence directly, using

spatial lags;3 and merely 12, less than 6%, model both temporal and spatial dependence directly.

The dearth of TSCS studies directly addressing space and time is especially problematic because,

as we will demonstrate, proper accounting of both is crucial for accurate estimation of, and valid

inference regarding, spatiotemporal dynamics and covariate effects as well.

Applied researchers are not alone in neglecting to address spatial and temporal dependence

jointly; many of the unique statistical challenges of TSCS data-analysis remain un- or under-

addressed in methodological research too. In particular, inadequate attention has been paid to

the methodological challenges presented in modeling spatial-temporal dependence in TSCS data.

Current understandings of the problems arising from neglecting temporal or spatial/cross-unit

dependence derive from considerations of one-way time-serial or cross-sectional data or stylized

two-way TSCS data, with dependence assumed in only one dimension. As a result, researchers

have largely borrowed strategies from time-serial or spatial-statistical methods designed for uni-

1. Of the 7336 total articles, we counted those containing keyword roots time-series cross-section, panel-data, or
TSCS. The Appendix details these and further textual analyses (Cook, Hays, and Franzese 2022).

2. Of the rest, 75 use time-indicator, time-trend, and/or differencing strategies, 16 use some other strategy (e.g.,
time-period random-effects), with some overlap, and 16 seem to employ no address of temporal correlation at all.

3. Of the rest, 118 use only some unit fixed-effect strategy, 6 use some spatial random-effect strategy, 23 apply
clustered or panel-corrected standard-error adjustment, leaving 31 with no apparent address of spatial association.
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Figure 1: Count of articles using TSCS data in the ‘Top-3’ general PS journals, 1980-2019

dimensional data, with little consideration to two-dimensional spatial-temporal dependence, and

its implications for diagnostics, specification, estimation, and inference.4

We show that when both spatial and temporal dependence are present, as in most real-world

TSCS data, a more complex set of relationships manifests because temporal and spatial depen-

dence are necessarily related, and, therefore, cannot generally be safely considered separately.

Consequently, one cannot simply import strategies from time-series or cross-sectional analysis,

but instead must directly confront the time-series-cross-sectional nature of the data, i.e., address

both time and space. Failing to do so will bias estimates of all dependence parameters, which in

turn will induce biases also in estimates of the other covariates’ coefficients and their dynamic and

total effects; and such mismodeled spatiotemporal dependence thereby also compromises standard

diagnostic tests used to guide model specification. To list briefly our conclusions, as demonstrated

analytically and in simulation below: inadequate address of spatial or temporal dependence (1) bi-

ases the estimated coefficients on both temporal and spatial lags, with the better-specified process

4. Some do briefly mention issues of two-dimensional dependence (e.g., Beck and Katz 1995, Wilson and Butler
2007, Franzese and Hays 2007, Beck and Katz 2011), but previous analyses generally consider only one-way models
that address time-serial or cross-sectional dependence in data that assume away the other dimension of dependence
or that assume one dimension can be adequately addressed orthogonally to the emphasized other dimension, which
we show does not generally hold, and none explore the issues emphasized here.

This paper emphasizes proper simultaneous specification of temporal and spatial dependence, i.e., on the dimen-
sion, space and/or time, of (inter)dependence in TSCS data. Cook, Hays, and Franzese (2020) instead emphasizes
proper specification of the source of (primarily) spatial interdependence, i.e., in y, X, and/or ε.
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overestimated and the less-well-specified underestimated; which (2) induces omitted-variable bias

in other covariates’ coefficient-estimates; and these biased dependence parameters and covariate

coefficients combine to bias (3) the estimated spatiotemporal effects and (4) the diagnostic and

specification tests derived from them. In sum, therefore, careful specification of both temporal and

spatial dependence is essential for accurate estimates and valid inferences in TSCS data-analysis.

Furthermore, far from being a purely methodological exercise, crucial political-science sub-

stance is at stake in thusly modeling well both the temporal and spatial processes inherent in

TSCS data. Consider, for instance, the well-known ‘development and democracy’ (Lipset 1959)

and ‘democratic dominoes’ (Starr 1991) propositions. We know that more-developed political-

economies are more likely to become, and far more likely to remain, democracies (Przeworski et

al. 2000; Robinson 2006), indicating temporal dependence. We also know that democracy clusters

spatially: “. . . the probability that a randomly chosen nation would be a democracy is about 0.75

if a majority of its neighbors are democracies, but only 0.14 if a majority of its neighbors are

non-democracies” (Gleditsch and Ward 2006), suggesting spatial dependence. However, simply

knowing outcomes persist in time or cluster in space is insufficient for model specification, as

one must determine the source of the observed spatial or temporal dependence. Spatiotempo-

ral patterns may arise from spatiotemporal dependence in the outcome itself, spatial spillovers

or temporal ‘spillforwards’ in the observed covariates, spatiotemporal dependence in the unob-

served/unmodeled residual, or any combination thereof (see Cook, Hays, and Franzese 2020).

These different sources correspond to very different theories of our phenomena of interest, mo-

tivate distinct empirical models, and imply substantively importantly different effects. Consider

again our development-and-democracy example; temporal dependence may be present because:

(1) democracies persist because accumulating experience with democracy reinforces its institution-

alization (i.e., autodependence in the outcome); (2) economic development causes democracy con-

temporaneously and economic development persists or (3) past economic development produces

present democracy (i.e., spill-forwards in covariates); and/or (4) some unobserved/unmodeled

covariate of democracy, culture perhaps, persists or has a persistent effect on democracy (i.e.,

serial dependence in the residuals). Analogously, the observed spatial association or clustering
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of democracy may arise because: (1) economic development causes democracy and development

clusters spatially (i.e., spatial clustering in observed covariates); (2) developed or underdeveloped

neighbors spur democracy at home (i.e., spillovers in covariates); (3) clustering through unob-

served/unmodeled external or foreign factors (i.e., clustered unobservables or spatially correlated

errors);5 and/or (4) foreign democracy directly influences domestic democracy, as argued in the

democratic dominoes literature (i.e., contagion or interdependence).

Empirically distinguishing between these theoretically competing sources of spatial or tempo-

ral dependence is difficult, even confining attention to a single dimension, time or space, because

spatial or temporal lags of one type–e.g., spatial lags of the outcome–have power against alter-

native spatial processes–e.g., spatial spillovers in covariates.6 The empirical distinction is further

complicated in TSCS data, as dependence processes modeled in one dimension, say: spatial, will

have power against dependence processes in the other dimension, temporal, and vice versa. For

example, if democracies are both serially autodependent (persist in time) and spatially interdepen-

dent (contagious) for the reasons given above, then any omitted spatial lag of the outcome would

also be serially autodependent, and any omitted temporal lag would also be spatially interdepen-

dent. As a result, the included or better-modeled one of the dependence processes would have

power against the other omitted or poorer-modeled process, and so suffer omitted-variable bias.

This is why researchers must jointly model the spatiotemporal process: when both spatial and

temporal dependence are present, obtaining accurate estimates of one dimension of dependence

while neglecting the other is impossible.

Accurately distinguishing and estimating both spatial and temporal dependence is also essential

for obtaining good estimates and tests of ‘the effect of x on y’, even if researchers have little interest

in theoretically understanding the spatiotemporal process itself. First, since the spatiotemporal

processes of the outcome y and of the included x’s are generally related, any failure to sufficiently

5. Conceptually, spatial dependence in unobservables or errors can also arise from clustering, spillovers, and/or
contagion, but the specific modality of unobserved dynamics in unobserved factors is difficult to discern empirically.

6. The order of the dependencies, i.e., the number of temporal or spatial lags, is also important but not a focus
here (nor in (Cook, Hays, and Franzese 2020)). Time periodization of most TSCS data-analyses in political science
is annual, and at that coarse temporal granularity first-order time-lags seem to suffice in most applications. Multiple
spatial-lag models bring greater complications, also not discussed here (see Hays, Kachi, and Franzese 2010).
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model spatiotemporal autodependence will bias covariate coefficient-estimates on which tests of

causal-effect existence rely. Second, in the presence of spatiotemporal lags of outcomes and/or

covariates, the coefficients on x alone are not the sought ‘effect of x on y’. As Franzese and Hays

(2007, 2008a, 2008b) and Cook, Hays, and Franzese (2020) show, different forms of spatiotemporal

dependence imply substantively importantly different effects, meaning how outcomes, y, respond

across units over time to hypothetical or counterfactual ‘shocks’ in covariates, dx.7 Temporal

and/or spatial dependence in outcomes y are autoregressive processes, which imply geometrically

fading dynamics and long-run steady-state multipliers. For example, a democratization event

in one country at some time propagates forward in time infinitely, fading geometrically, and

reverberates around through neighboring countries, and then neighbors of neighbors, and neighbors

of neighbors’ neighbors, and so on infinitely, again fading geometrically. This is the distinct from

the effects of x on y if the spatiotemporal dependence arises instead from spatial spillovers or

temporal ‘spill-forwards’ in x, where shocks only affect directly adjacent neighbors or periods, or

spatiotemporal autoregression in the unobserved or unmodeled errors, where shocks in x only affect

the specific unit-time shocked. Thus, good estimates of how development affects democracy, to

continue our example, will require proper specification of both spatial and temporal dependencies.

Our suggested Spatio-Temporal Autoregressive Distributed Lag (STADL) model, which fol-

lows on and builds from Elhorst (2001, 2014), spans these dependence source and dimension

possibilities—i.e., the STADL nests within it most common spatial, temporal, and spatiotemporal

specifications—enabling proper address of both spatial and temporal dependence and therefore

valid statistical tests and good substantive estimates of spatiotemporal dynamic effects, making

the STADL an effective starting point for researchers’ TSCS data-analyses.

Spatial, Temporal, and Spatiotemporal Dependence

Spatial and temporal dependence have received considerable attention elsewhere, separately,

including by political scientists (e.g., Box-Steffensmeier et al. 2014, Franzese and Hays 2007,

7. As in Franzese (2020), we define effects ≡ dy
dx , and not just as impulses≡ ∂y

∂x = βx.
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2008a), so readers likely have some familiarity with both the statistical importance and the prac-

tical challenges of accounting for dependence in political-science TSCS data. Accordingly, this

section is brief in reviewing these conventional separate understandings of spatial and temporal

dependence, focusing primarily on identifying and modeling the source(s) of this dependence. We

then demonstrate that spatial and temporal dependencies are necessarily intertwined and there-

fore spatiotemporal dependence is best considered jointly simultaneously. The next section offers

the STADL as a practical and effective strategy for doing so.

Spatial Dependence

Cross-sectional or spatial dependence—meaning ‘nearby’ units have more- or less-similar re-

alizations than expected by chance alone—will manifest whenever multiple units are observed in

non-random samples. For instance, with nearby defined geographically, mappings of almost any

variable, e.g. the level of democracy, will exhibit geospatial clustering of so-called ‘hotspots’ or

‘coldspots’. As previously noted, however, such spatial dependence can arise by several subtly

but substantively importantly distinct reasons: common traits among spatially-proximate units,

exogenous spillovers in covariates across units, interdependence/contagion in outcomes between

units; and/or due to clustering, spillovers, or interdependence in unobservables.8 Whether by clus-

tering, spillovers, or contagion, we can expect spatial (cross-unit) dependence to manifest across

the entire substantive range of political science—intergovernmental diffusion of policies and in-

stitutions among nations or subnational jurisdictions (e.g., Graham, Shipan, and Volden 2013);

international diffusion of democracy (e.g., Starr 1991); parties’, representatives’, and citizens’ votes

and other behaviors in legislatures and elections (e.g., Kirkland 2011; Tam Cho and Fowler 2010;

Baybeck and Huckfeldt 2002); interdependence in globalization studies (e.g., Simmons and Elkins

2004); contextual/neighborhood effects in microbehavioral research (e.g., Huckfeldt and Sprague

8. We sidestep here issues of spatial-unit aggregation, i.e. the MAUP: Modifiable Areal Unit Problem (Fothering-
ham and Wong 1991), which are similar to, but more complex than, the more-familiar issue of temporal granular-
ity/aggregation affecting time-serial dependence (Stram and Wei 1986; Freeman 1989). We also do not emphasize
crucial specification issues regarding W, the matrix of relative connectivity or distance between the units, i.e. the
network, by which spatial association manifests (see, e.g., Franzese and Hays 2008b; Neumayer and Plümper 2016).
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1987); wars, coups, riots, civil wars, revolutions, terrorism (e.g., Buhaug and Gleditsch 2008)—and

many more. Indeed, interdependence across units is a defining characteristic of the social sciences,

where its study is prominent also in geography and environmental sciences; in regional, urban,

and real-estate economics; in public health and epidemiology; in education, psychology, sociology,

and social-psychology; and beyond.

Spatial dependence, in short, is everywhere, empirically and theoretically. Applied researchers

almost always, perhaps unknowingly, account for some clustering in regression models simply

through the inclusion of exogenous covariates, which are also often spatially clustered. We call

this clustering in observed covariates and note that its corresponding model is nonspatial (NON):

yit=xitβββ+εit.9 Insofar as these spatially clustered x are omitted or are inadequate to account

all of the spatial dependence in the dependent variable, the remainder will manifest as spatially

correlated errors, as anything omitted from the systematic component is shunted to the residual

component. As shown elsewhere (Franzese and Hays 2007, 2008a), left unaddressed, such spatial

dependence risks inefficiency at best and typically bias as well.

Often, though, additional sources of spatial correlation—correlated unobservables, exogenous

spillovers, and/or outcome interdependence—are also present. When other manifest sources are

omitted, including spatially correlated x regressors not only fails to fully address spatial depen-

dence, but can actually further compromise our understanding of the data-generating process.

These included x have power against the unmodeled spatial processes, which biases their coef-

ficient estimates following the familiar omitted-variable bias (OVB) formula and logic (Franzese

and Hays 2007, 2008a). Accordingly, political scientists have increasingly sought to model these

other spatial processes directly also, using the workhorse models of spatial econometrics—spatial-

error model (SEM), spatially-lagged x model (SLX), and spatial-lag (of y) model (SAR)—each

of which assumes and reflects a single additional source of cross-unit dependence—correlated un-

observables, exogenous spillovers, and outcome interdependence, respectively—via an additional

modeling device, the spatial lag, to bring ‘neighboring’ values of εεε, x, or y into the model. A brief

9. We assume linear-additive separable mean and stochastic component here solely for ease of exposition.
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summary of these models will help familiarize concepts and notation.

Each of these spatial models, and indeed any spatial analysis whatsoever, must begin with

specifying the connectivity or spatial-weights matrix, W, a N×N matrix with elements wij re-

flecting the relative connection, tie, distance, or potential influence, from unit j to unit i. This

pre-specification of W is primary to any spatial analysis (Neumayer and Plümper 2016), being

essential for everything from preliminary descriptives and diagnostics through model specification

and estimation to effects calculation. Any relational data (e.g., trade, alliance co-membership) can

undergird W, and theory and substance should always be paramount in this indispensable foun-

dational step of spatial analysis. Absent strong theory, though, researchers often use geographic

proximity since geography correlates with so many other potential bases for interconnection (e.g.,

economic interchange, cultural and linguistic similarities, and flows of people and information).10

Different specifications of W allow researchers to study alternative substantive/theoretical

bases of cross-unit relations.11 The researcher defines the relevant concept of space and metric of

distance for her application—again, geographic distance or contiguity is convenient and powerful

default, and will be ours here—and then usually normalizes this W in some way to ease interpre-

tation, reduce dependence on scale factors, ensure the invertibility of the spatial multiplier, etc.

The most-common row normalization divides each wij by the row-sum
∑

jwij, which makes spatial

lags equal to weighted averages and thereby facilitates direct interpretation of lag coefficients.12

With W specified and normalized, it then pre-multiplies a vector—ε, x, or y—to produce so-called

spatial lags—Wε, Wx, or Wy, which are weighted averages of neighbors’ errors, covariates, or

outcomes—for use in preliminary measures and tests of spatial correlation, in specification and

estimation of spatial models, and in interpretation of spatial effects.

10. Given uncertainty over the relevant ties/network, a Bayesian Model-Averaging approach to estimating W
simultaneously with a model of its effect seems promising (Juhl 2020).

11. While misspecified W necessarily reduces the accuracy and power of spatial-association tests/measurements
and spatial-model estimates, research shows the consequences of errors in W are often less severe than feared
(LeSage and Pace 2014) and clearly better than ignoring spatial dependence outright (Betz, Cook, and Hollenbach
2020).

12. Some other common normalizations include spectral or min-max, which have other convenient properties.
Neumayer and Plümper (2016) further discuss W specification and normalization issues, the most important being
that the choice of whether and how to normalize crucially affects the substantive interpretation of the lag variable
and its coefficient.
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Quickly reviewing the baseline spatial models: the spatial error model (SEM) assumes spa-

tially autocorrelated residuals, which are orthogonal to the included regressors. Spatial-error

processes result in non-spherical error variance-covariance matrices and consequently inefficient

OLS estimates with incorrect standard errors, but coefficient estimates remain unbiased. In the

democracy-development example, spatial error dependence may occur due to unmodeled country-

specific determinants of democracy, e.g., cultural/historical legacies (Acemoglu et al. 2008), or

from unmodeled spatially-correlated heterogeneity across countries in the effect of development

on democracy. Formally, the SEM model is:13

y = xβ + u, with u = λWu + ε (1)

with W the N×N connectivity matrix defined above and λ the strength of spatial autocorrelation

propagated in this predetermined pattern, W.

Next, cross-unit spillovers or externalities in exogenous observed factors (regressors, x) can

also produce spatial dependence in outcomes. In our democracy-development example, exogenous

spillovers occur if economic development in a country influences, not only its own democracy,

but that of neighboring countries as well, perhaps via development spurring the emergence of

transnational advocacy networks as Keck and Sikkink (1998) propose. Alternatively, conflict or

public health in neighboring countries, xj, may influence democratic emergence or stability at

home, yi. The spatial-lag x or SLX model captures exogenous spillovers like these:

y = xβ + Wxθ + εεε. (2)

Here, the spatial lag of regressor, Wx, introduces neighboring (as per W) values of xj ̸=i into the

model for yi.14 With x exogenous, Wx is too, so SLX models can be estimated efficiently by OLS,

with θ̂ giving the strength of these exogenous spatial spillovers. Halleck Vega and Elhorst (2015)

and Wimpy, Whitten, and Williams (2021) offer further discussions of SLX.

Finally, where theory and/or substance indicate interdependence or contagion in outcomes, a

13. This SEM assumes spatial-autoregressive errors, though moving-average (spillover) or spatial-hierarchical
(clustered) versions also exist. The distinctions are not easily discerned empirically, being unobserved processes in
unobserved factors. Fortunately, the distinctions are also immaterial to effects as defined here.

14. To simplify exposition, we use a single covariate and lag; the generalization to multiple covariates and lags is
straightforward. Wimpy, Whitten, and Williams (2021) discuss several advantages of this general SLX model.
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process autoregressive in y like the increasingly widely-used SAR model is called for:

y = ρWy + xβ + εεε. (3)

This spatial-lag y model may be most familiar to readers, having quickly become the dominant

model of applied spatial work. In the democracy-development example, Starr’s ‘Democratic Domi-

noes’ notion implicates such spatial autoregression directly: democracy is contagious; neighboring

democracies cause democracy at home. Mechanisms for causal contagion could be suasion, diplo-

macy, foreign policy, or demonstration effects: being surrounded by democracies could reveal much

to domestic actors about the workings, requisites, benefits and costs of democracy (Elkink 2011).

The key substantive differences of spatial-autoregressive processes compared to the alterna-

tive sources are its aforementioned exponentially reverberating dynamic and steady-state effects.

The key methodological difference is that the spatial-lag, Wy, being other units’ outcomes, is

an endogenous regressor. Thus, consistent estimation of SAR models requires instrumental vari-

ables (spatial two-stage least-squares or generalized method-of-moments) or systems maximum-

likelihood (spatial-ML). We suspect SAR’s popularity among these single-source spatial mod-

els owes, first, to its substantive resonance in political science, where outcomes are often social

and/or strategic behaviors wherein some units’ outcomes/choices directly influence others’ out-

comes/choices. Second, the other single-source models imply that clustering or spillovers occur

only in observed/modeled or only in unobserved/unmodeled components, which seems generally

less plausible than that dependence would operate in both as in SAR.15

In any case, these single-source models can be combined in whatever pairs may be substan-

tively/theoretically implicated.16 If one expects spillovers in observed covariates (SLX) and in

unobserved features (SEM), but not necessarily to the same extent or autoregressively as SAR

implies, this SLX+SEM combination gives the so-called Spatial Durbin Error Model (SDEM):

y = xβ + Wxθ + u, with u = λWu + ε. (4)

15. SAR does impose equal, autoregressive processes in observed and unobserved components, though, which may
seem restrictive; multiple-source models relax this restriction.

16. Even the three-source model is estimable, albeit with great fragility, being identified by functional-form
differences across the lag-y, lag-x, and lag-ε processes (Elhorst 2014; Cook, Hays, and Franzese 2020).
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These multi-source models are advantageous in that they allow researchers to simultaneously

account for alternative spatial processes, here exogenous spatial spillovers and spatial error au-

tocorrelation. This is significant because spatial-model specifications often have power against

incorrect alternative spatial processes: SAR, SLX, or SEM lag-coefficients or tests will pick up

unmodeled SLX, SEM, or SAR processes.17 As a consequence, modeling one source of spatial

dependence (e.g., SAR) while neglecting others (e.g., SEM) risks inaccurate estimates of the in-

cluded dependence parameter. Researchers are therefore advised to condition on these potential

alternative processes when performing diagnostic tests (Anselin et al. 1996) or specifying their

empirical models (Cook, Hays, and Franzese 2020). Below we build on this, demonstrating that in

TSCS data not only do different spatial models have power against alternative spatial processes,

but alternative temporal processes as well. This motivates our suggested STADL model, which

combines multiple dependence sources across both spatial and temporal dimensions.

Temporal Dependence

Many readers may be more familiar with the time-series analogs to the spatial processes/models

just described, owing to discussions in Keele and Kelly (2006) and elsewhere, so we will be very

brief here. As with space, temporal dependence or serial correlation may arise from four sources:

yt may correlate with yt−1 simply because exogenous covariates x correlate over time, because

unobserved/unmodeled factors ε exhibit serial correlation, because past values of xt−s have lagged

effects on current outcomes yt, and/or because past outcomes yt−s themselves continue to shape

current outcomes yt, i.e. outcomes are persistent, exhibit inertia. Also as with space, these alter-

native sources correspond to distinct substantive/theoretical processes and model specifications.

Identical to the nonspatial model is the static model, yt=xtβ+εt; here, democracy exhibits se-

rial correlation simply because the exogenous-covariate development does. The SEM analog is the

classic serially correlated errors (SCE) model, yt=xtβ+ut with ut=δut−1+εt,18 which reflects per-

17. Rüttenauer (2019) and Cook, Hays, and Franzese (2020) explore the similarities and differences among these
alternative specifications in the purely spatial (cross-sectional) context.

18. As before, we proceed with first-order, i.e. one-period, lags for expositional simplicity (see note 6).
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sistence in unobserved/unmodeled factors, such as cultural-historical legacies, perhaps. The finite

distributed-lag (FDL) model, yt=xtβ+xt−1γ+εt, corresponds to the SLX model; substantively this

would reflect that past development directly affects present democracy, perhaps through long-term

structural changes whose impact materializes later. Finally, in the temporal autoregressive out-

come process, i.e. the lagged-dependent-variable (LDV) model, yt=ϕyt−1+xtβ+εt, past democracy

directly influences present democracy, a persistent or inertial process, which here substantively may

reflect democratic institutionalization wherein experience with democracy itself yields increasingly

entrenched or consolidated democracy (Alexander 2001; Diamond 1994). Again in parallel with

the spatial context, effects of x on y in the static or SCE model are static: dyt
dxt

=β and dys
dxt

=0 ∀ s ̸=t;

whereas effects are dynamic in the FDL and LDV models, decaying discretely and persisting only

to the lag-length order in FDL models but persisting infinitely with exponential/geometric decay,

implying long-run steady-state (LRSS) multipliers, 1
1−ϕ

, and cumulative LRSS effects, 1
1−ϕ
· dx · β,

in the autoregressive LDV model.19

Spatiotemporal Dependence

With readers (re)familiarized with the base temporal and spatial dependence models/processes,

we turn next to illustrating how these spatial and temporal dependencies are necessarily related.

Start with the simple static/nonspatial linear-regression model, now indexed by unit i and time t:

yit = β0 + β1xit + uit, (5)

except here assume that some residual dependence may result from omitted yi,t−1, yj,t, or both:

uit = ϕyyi,t−1 + ρy

N∑
n=1

wijyj ̸=i,t + εit, with εit ∼ N(0, σ2), (6)

19. Also analogously (see note 21), the question of the ‘effect of x on y’ in temporally dynamic contexts requires
more precise statement of both the hypothetical/counterfactual, dx, and the effect, dy, refining to specify dx when?,
in what period(s) is x ‘shocked’?, and dy when?, in what period(s) do we want to know the response of y thereto?
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where
∑N

n=1 wijyj ̸=i,t is the scalar representation of spatial-lag y presented above in matrix form:

Wy. Furthermore, let x be stochastic, exogenous, and follow its own spatiotemporal process:

xit = ϕxxi,t−1 + ρx

N∑
n=1

wijxj ̸=i,t + eit, with eit ∼ N(0, σ2). (7)

Given all standard regression assumptions otherwise, we now walk through the relationship be-

tween spatial and temporal dependence (also depicted visually in Figures 2-5).

x y
β

Figure 2: Static Relationship

First, restricting both ϕy=0 and ρy=0 produces i.i.d. residuals uit, so the nonspatial, static

equation (5) depicted in Figure 2 fully accurately models the relationship of x to y. Relaxing

one restriction, say ϕy ̸=0, but keeping the other, ρy=0, induces time-serial dependence in the

residuals u, which biases β̂ in the static model if ϕx ̸=0. This situation, depicted in Figure 3, is

textbook omitted-variable bias (OVB)—with Cov(xt, yt−1) increasing in ρx—and is easily remedied

by including time-lagged y (LDV model) as commonly done. Similarly, freeing ρy ̸=0 while keeping

ϕy=0 also threatens OVB in the static model. Again, OVB arises if x has dependence in the same

dimension as y, here if ρx ̸=0 as depicted in Figure 4, so that Cov(xi, yj )̸=0, and the simple remedy,

increasingly common in applied work, adds spatial-lag y to form the spatially dynamic SAR model.

xt yt

xt−1 yt−1

β

β

ϕx ϕy

Figure 3: Time-serial Dependence

This is all familiar: with single-dimensional dependence, purely cross-sectional/spatial or time-

serial modeling suffices. However, if both ϕy ̸=0 and ρy ̸=0 as in Figure 5 so that both temporal and

spatial dependence manifest, researchers must model dependence in both dimensions adequately.
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xi yi

xj yj
β

β
ρx ρy

Figure 4: Cross-Sectional Dependence

Omitting/mismodeling spatial dynamics, e.g., will leave residual time-serial correlation because

the omitted/mismodeled spatial-lag yjt is serially correlated with yj,t−1 which in turn exhibits that

same omitted/mismodeled spatial relation to the included time-lag yi,t−1. Symmetrically, failing

to model temporal dynamics adequately will leave spatial autocorrelation, as the missed aspect of

the past, yi,t−1, has the same spatial relation to yj,t−1 as does yit to the included spatial-lag, yjt.

xi,t yi,t

xi,t−1 yi,t−1

xj,t yj,t

xj,t−1 yj,t−1
β

β

β

β

ϕx

ϕx

ϕy

ϕy

ρx

ρx

ρy

ρy

Figure 5: Space-Time Dependence

To see that spatiotemporal dependence causes bias (OVB) when only one of spatial or temporal

dependence is modeled, consider the spatiotemporal-lag model: yt=βxt+ρWyt+ϕyt−1+εεεt (which

is also equation (20)), as depicted in Figure 5. If the truth is (20), but one omits ϕyt−1 to estimate

SAR or omits ρWyt to estimate LDV, then OVB arises if ρϕCov(Wyt,yt−1) ̸=0. This covariance

is necessarily nonzero because spatial dependence implies Wyt←→yt and temporal dependence

implies yt−1−→yt, so yt−1−→yt←→Wyt, meaning that Cov(Wyt,yt−1)=Cov(f(yt),yt−1) ̸=0.

The sign and magnitude of these OVB can be seen in Achen (2000)’s derivation of the biased ϕ̂y
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and β̂ in an LDV model when additional, unmodeled dynamics ϕe remain in the residual:

plim ϕ̂y = ϕy +

[
ϕeσ

2

(1− ϕeϕy)s2

]
, (8)

plim β̂ =

[
1− ϕxg

1− ϕxϕy

]
β, (9)

where s2=σ2
yt−1,x

and g=plim(ϕ̂y)−ϕy (see also Keele and Kelly 2006). As Achen (2000) notes,

any ϕe>0 inflates ϕ̂y and attenuates β̂ estimates; and, as just proven, any unmodeled spatial

dependence necessarily produces precisely these same conditions since yi,t=ϕyyi,t−1+xi,tβ+ui,t =⇒

yj,t=ϕyyj,t−1+xj,tβ+uj,t. Therefore, any ρy ̸=0 produces ϕe>0 and ‘Achen’s LDV-bias’ manifests.

By the usual OVB logic, it follows also that omission or underestimation of ρy induces primarily

overestimation (inflation bias) of ϕ̂y, being the coefficient on the included regressor most related to

the omitted/mismeasured Wy, and those two biases in turn induce partially compensatory bias

of β̂x, with the resultant direction depending on whether the spatial or temporal dependence in x

is stronger and resembles more-closely those dependencies in y.

These biases arise because, in TSCS analysis with temporal dependence modeled but spatial

dependence excluded, for instance, the factor among the included that is most like the omit-

ted “today’s democracy abroad”—say German democracy today, yj,t, as omitted explanator of

French democracy today, yi,t—is “yesterday’s democracy at home”, i.e. French democracy yes-

terday, time-lagged yi,t−1. Intuitively, this is because insofar as, “Germany yesterday” relates

to “France yesterday”—spatial dependence is present—and “Germany yesterday” relates to “Ger-

many today”—temporal dependence is also present, so the omitted “Germany today” relates to

the included “France yesterday”. Of course, all of the analogous holds also in the other direction,

regarding the omission or relatively inadequate address of temporal dependence.20

In sum, even if Stimson’s (1985) ‘inherent’ temporal autocorrelation is accurately modeled,

misspecification of the spatial dynamics sets off a chain of biases: the primary attenuation bias (or

20. In practice, given the typically greater strength of temporal than of spatial dependence, omitted spatial fac-
tors’ relation to included temporal factors is usually by far the strongest of the OVB formula’s partial correlations,
meaning inadequate address of spatial dependence induces largest inflation biases on temporal-dependence param-
eters and secondary induced biases in other covariate coefficients. Conversely, included or better specified spatial
dependence being typically considerably weaker than omitted or more-poorly specified temporal dependence, and
the temporal persistence of other exogenous covariates being likewise stronger than their spatial association, the
OVB biases of temporal-dependence misspecification tend to be more-evenly distributed across included parameters.
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‘zeroing’ if omitted) of ρy, induces overestimation/inflation bias (OVB) of ϕy, which biases combine

to induce misestimation of βx, usually attenuation since temporal dependence is generally stronger

than spatial. Naturally, these biased coefficient estimates mean any related causal-inference tests

are biased too, as are estimates of the dynamic and total causal effects of x on y. Specifically

regarding effect estimates: typically, the initial ‘impulses’ from x to y (βx) are underestimated

and the spatiotemporal dynamics misconstrued as ‘too-persistent’ if spatial dependence is the

mismodeled process, and conversely initial impulses overestimated and spatiotemporal dynamics

‘too-contagious’ if temporal dependence is the mismodeled process. In either case, long-run steady-

state effect estimates are biased also.

Given that inadequate address of spatiotemporal dependence will bias inferential tests and esti-

mates of coefficients, dynamics, and steady-state effects, even researchers for whom spatiotemporal

dynamics and dependencies are nuisance cannot neglect their careful attention. Furthermore, these

biases induced by relative neglect of spatial or, less commonly, temporal dependence are of central

substantive-theoretical importance as well. In our development-and-democracy terms, relative in-

adequacy in addressing spatial dependence—inadequate account in the model that, and by what

process, democracy clusters—yields estimates that imply inaccurately greater temporal persistence

of democracy, e.g. an overestimate of democratic-institutionalization and -consolidation effects.

If democratic persistence derives from a temporally autoregressive process as such arguments im-

ply, this overestimated temporal dependence will mean smaller immediate-impact estimates, i.e.

smaller β̂x, with slower decay and so larger long-run-steady-state multipliers in other covariates’

effects on democracy. Beyond these misestimated dynamic and steady-state effects, the biased β̂x

means that hypothesis tests about the effects of x on y will be biased too, likely increasing false

negatives (failure to reject when should).21

Applied researchers also commonly deploy unit and/or period fixed-effects to ‘account for’

spatial or temporal dependence. Unit or period dummies or random effects do address particular

21. Notice also that, in spatiotemporally dynamic contexts, the usual statement of the causal estimand, ‘the effect
of x on y’ is itself underspecified. For the question to be fully enunciated given spatiotemporal interdependence, we
need to ask about ‘the effect of x when? and where? on y when? and where? ’.
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forms of spatiotemporal dependence (Elhorst 2014), but often fail to adequately capture the spa-

tiotemporal dependence typically present in TSCS data. Unit indicators absorb long-run, fixed or

constant, spatial clustering in outcomes, plus any other time-invariant unmodeled unit-specific fac-

tors. However, these captured ‘effects’ are additive mean-shifts, time-invariant clustering, and not

autoregressive or distributed-lag in form. Unit-specific ‘effects’ also cannot account time-varying

unmodeled effects, such as evolving spatially clustered sociocultural or institutional factors. Analo-

gously, period fixed-effects/time-dummies account for spatially-invariant, uniform shocks common

across all units. These too are fixed, additive mean-shifts, and so cannot well-account autoregres-

sive or distributed-lag processes, or unit or regional variation in clustered additive shocks, such as

influences diffusing among members of regional organizations.

Finally, given the substantively and statistically critical importance of adequately addressing

spatiotemporal dependence, researchers will want to conduct appropriate and effective specification

testing. In principle, one can conduct specification searches from ‘specific-to-general’, starting with

sparse spatiotemporal models and determining, using Lagrange-Multiplier (LM) tests, whether to

add spatiotemporal-lag terms, or ‘general-to-specific’ (Hendry 1995), starting with a more-general

specification and using Wald or likelihood-ratio (LR) tests to decide whether some spatiotemporal-

lag terms may safely be omitted. However, in practice in this context, LM tests of underspecified

models will have power against incorrect alternatives (Anselin 1988): for example, LM tests may

reject the nonspatial model indicating missing spatial-lag y (SAR) or spatial-lag error (SEM) when

actually temporal dependence is the missing/poorly-specified process. LM tests can be adjusted

using cross-partial gradients of the fuller-specification likelihood to prevent such false/misleading

rejections, but these robust-LM tests (Anselin et al. 1996) as-yet exist for very few combinations of

spatiotemporal processes. Instead, we suggest the (first-order) Spatio-Temporal Autoregressive-

Distributed-Lag (STADL) model, as a convenient and effective more-general starting point (see

note 6), and ‘testing down’. Researchers can ‘test down’ using either Wald tests or fit statistics

and loss-of-fit tests, such as likelihood and LR tests (Juhl 2021), or R2 and F -tests of ∆R2, which

fit-testing may be preferred given that Wald-testing can be sensitive to reparameterization.22

22. Juhl (2021) shows Wald tests of alternative equivalent specifications can yield different results, and so argues
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Perhaps better still, researchers can use Akaike or Bayesian-Schwartz Information Criteria (AIC

or BIC) fit statistics, which penalize more appropriately for degrees of freedom consumed/excess

paramterization than do LR or F and also enable non-nested model comparison, the latter being

particularly important given the many alternative models contained within STADL to compare.

In summary, as we will further demonstrate by simulation and in reanalyses of real-world appli-

cations below, TSCS analyses that relatively neglect spatial (temporal) dependence will estimate

greater temporal (spatial) dependence than actually present, and correspondingly misestimate

spatiotemporal dynamic and cumulative effects, and so yield biased tests and erroneous inferences

regarding substantive-theoretical propositions. The more-general STADL model offers effective

alternative for applied TSCS analyses.

The STADL Model

The workhorse cross-sectional and time-serial models from spatial and time-series econometrics

were introduced above. To review compactly, the baseline spatial-econometric models correspond

to the different potential sources for observed spatial association: nonspatial models (NON) for

spatially clustered exogenous covariates (including fixed-effects), spatial error (SEM) for clustering

in unobservables, spatially lagged covariates (SLX) for exogenous spillovers/externalities, and

spatial-lag/spatial-autoregressive (SAR) models for endogenous contagion/interdependence:

Clustered Covariates = NON : yt = xtβ + εεεt, with xt spatially correlated (10)

Clustered Unobservables = SEM : yt = xtβ + ut, with ut = λWut + εεεt (11)

Spillovers/Externalities = SLX : yt = xtβ +Wxtθ + εεεt (12)

Interdependence/Contagion = SAR : yt = ρWyt + xtβ + εεεt (13)

strongly for LR testing which is insensitive to such reparameterization. We agree, but would also note that Wald
and LR tests rely on different estimates: parameters and standard errors versus likelihood fit. Researchers may
have greater confidence in one or the other, such as when using ‘robust standard errors’, which usage indicates
lesser confidence in likelihood or fit. In any case, LM testing upward is clearly dominated.
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Vectors yt, xt, and εεεt are N×1; the matrix W is N×N . Notice, crucially, that ‘the effect of x’

differs importantly across these models/sources/processes. With clustered exogenous covariates

(NON ), dyit
dxit

=β, and dyjs
dxit

=0 ∀ j ̸=i, s̸=t. Likewise with spatial dependence confined to the orthog-

onal unobserved component (SEM ), the effect of x on y is merely dyit
dxit

=β, and dyjs
dxit

=0 ∀ j ̸=i, s̸=t.

In both of these models, with respect to the effect of x on y: “What happens in France stays in

France”. With exogenous externalities, i.e. in the spatial distributed-lag model (SLX ), “What

happens in France spills over into Germany (and France’s other first-order neighbors according

to W),” and the story ends there: dy=W · dxt · θ + dxt · β. Notice that both the hypotheti-

cal/counterfactual, dxt, and the effect, dyt, are vectors, not scalars: with spatial spillovers, the

effect of x differs depending on which units are ‘shocked’ and these effects manifest not only in yi

of the shocked unit(s) but also in their first-order neighbors.23 In the spatial-autoregressive (SAR)

model corresponding to interdependent/contagious contexts, “What happens in France also influ-

ences Germany and France’s other neighbors, which in turn influence their neighbors, including

France, which influences those neighbors’ neighbors’ neighbors, including Germany again, and so

on,” with the effect of dxt on yt reverberating outward and back thusly in an exponentiating series:

dyt = ( I︸︷︷︸
self

+ ρW︸︷︷︸
neighbors

+ ρ2W2︸ ︷︷ ︸
neighbors’ neighbors

+ ρ3W3︸ ︷︷ ︸
neighs’ neighs’ neighs

+ ρ4W4︸ ︷︷ ︸
neighbors4

+ . . .) · dxt · β

=

(
∞∑

m=0

ρmWm

)
· dxt · β = (I− ρW)−1︸ ︷︷ ︸

spatial multiplier

· dxt︸︷︷︸
shock

· β︸︷︷︸
impulse

(14)

Again, insofar as researchers omit or misspecify the spatial-dependence process, say Wy, ρ is

underestimated (ρ̂=0 if omitted), and the OVB formula and intuition implies inflated β̂ββ, with

those biases distributed proportionately across the β̂x according to those x’s partial association

with the misspecified/omitted Wy, meaning larger induced biases will accrue to the β̂x whose x

cluster spatially more similarly to the pattern implied by W.

The time-series analogs, also first-order, are compactly expressed using the lag operator, Lsyt ≡

yt−s ∀t>s, or the matrix equivalent, Lyt (see note 26), as the serially correlated errors (SCE), finite

23. Higher-order SLX models capture neighbor-of-neighbor, etc., effects (Whitten, Williams, and Wimpy 2021).
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distributed lag (FDL), and lagged dependent variable (LDV) models, along with the static model

(StM) with serially correlated exogenous covariates, including time-period fixed-effects:

StM : yt = xtβ + ut, with xt serially correlated (15)

SCE : yt = xtβ + ut, with ut = δLut + εεεt (16)

FDL : yt = xtβ + Lxtγ + εεεt (17)

LDV : yt = ϕLyt + xtβ + εεεt (18)

Notice again the dynamics, or lack thereof, of the effects of x on y in these time-series models.

In the static and serially correlated errors models, the effect of xt is confined to yt; there are

no temporal dynamics: dyt
dxt

=β and dys
dxt

=0 ∀ s ̸=t. In distributed-lag or autoregressive processes,

contrarily, and again paralleling the spatial case, we need first specify dx when? and expand

our question about the effect on y when?. In the distributed-lag case, the effects of x simply spill

forward the number of periods equal to the lag-order, dyt=L · dxt ·β, and are completely dissipated

beyond that: dyt+s

dxt
=0 ∀ s>p. Temporally autoregressive processes, finally, imply exponentiating

decay for temporary shocks, or decaying accumulation for permanent shocks, of long-run steady-

state effects going forward infinitely in time, like so:

dy∞︸︷︷︸
LRSS

response

= βdx︸︷︷︸
period 0

+ ϕβdx︸ ︷︷ ︸
period 1

+ϕ2βdx︸ ︷︷ ︸
period 2

+ϕ3βdx︸ ︷︷ ︸
period 3

+...=
∞∑
s=0

ϕsβdx︸ ︷︷ ︸
if 0<ϕ<1, ⇒

=

(
1

1− ϕ

)
︸ ︷︷ ︸
LR multiplier

× β︸︷︷︸
impulse

× dx︸︷︷︸
perm.
shock

(19)

From these differing expressions of the ‘effects of x on y’ implied by the range of possible spatial

and temporal processes, one can see how omissions or misspecifications of either temporal or

spatial dependence will yield inaccurate tests and estimates of the substantive effects of interest.

Given this critical substantive and statistical importance of allowing the estimation model to

express the spatiotemporal dependence inherent to TSCS data in the manner that it manifests,

we suggest a combined spatiotemporal autoregressive-distributed-lag (STADL) model of order

(sy0, sx0, se0; ty1, tx1, te1), where the s or t indicate spatial or temporal lag, the y, x, e indicate

which terms are lagged, and the superscript indicates the temporal order of the lag.24 We rec-

24. For multiple spatial-weights matrices, W, the s can be subscripted numerically or mnemonically; likewise,
x can be subscripted in cases where only some regressors X are lagged. Researchers writing for audiences more-
familiar with ADL and/or spatial notation, could use SAR/SLX/SEM+ADL(p,q) notation instead.
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ommend labeling only the terms actually used, so STADL(sy0, ty1) would indicate a first-order

spatiotemporal-lag model:

yt = ρWyt + ϕLyt + xtβ + εεεt, (20)

while the general version of the STADL(typ, txq, ter, syP , sxQ, sxR) is

Myt = Fxt +Aεεεt, (21a)

M ≡
(
I− ϕ1L− ...− ϕpL

p − ρ0W − ...− ρP−1W
P−1
)
, (21b)

F ≡
(
Iβ + Lγ1 + ...+ Lqγq +Wθ0 + ...+WQ−1θQ−1

)
, (21c)

A ≡
(
I− δ1L− ...− δrL

r − λ0W − ...− λR−1W
R−1
)−1

. (21d)

where M, F, A are the space-time filters of the outcome, predictors, and residuals, respectively.25

We express a first-order STADL conveniently for interpretation of spatiotemporal effects as:

y = ϕLy + ρWy + xβ + Lxγ +Wxθ + (I− δL− λW)−1εεε, (22a)

y = (I− ϕL− ρW)−1 (xβ + Lxγ +Wxθ + (I− δL− λW)−1 εεε
)
. (22b)

where I, L, and W are NT×NT ; y, x, and εεε are NT×1; and L creates a one-period time-lag of

variables it premultiplies.26 Recall that in spatiotemporal analyses of ‘the effect of x’, one must

specify which units are shocked and when—this is the ‘treatment’—and, correspondingly, the

responses or ‘effects’ will be across all units over all time-periods as determined by the spatiotem-

poral process given in W and L. In time-series analysis, one must specify when shock dx occurs,

and the default shocks are temporary, a one-period shock—dx=+1 in period t0 with x reverting

to its previous level thereafter—and permanent—dx=+1 in time t0 with the higher x persisting

infinitely. In spatial analysis, one must specify where dx occurs, and the analogous defaults are

dx=+1 in one unit and dx=+1 in all units. In space-time analysis, the combined spatial and

25. Although not a focus here, the STADL model can also easily incorporate recursive spatial processes (Anselin
2001) with time-lagged spatial lags (TLSL) (Drolc, Gandrud, and Williams 2021). Like yi,t−1 or Wx, TLSLs are
pre-determined in the system of equations, meaning they can be treated as exogenous regressors. For interpretation,
the W in equation (22) for TLSL will have its nonzero wij in the off-diagonal elements of the lower block first-minor.

26. Spatiotemporal TSCS analyses order the data as all N units in period 1, all N units in period 2, ... L’s N×N
first block has all-0 elements, reflecting the omitted N first-period observations. All other elements are 0 too, except
the diagonal of the lower block first-minor (the N×N blocks immediately below the N×N block prime-diagonal);
those prime-diagonal elements of the lower block-minor are all 1.
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temporal defaults yield four default shocks: {unit-i or all-units}×{1-period or permanent}.27

A convenient way to express equation (22) for differentiation by x to track responses over time

across all units to some series of hypothetical/counterfactual shocks in N units over T periods, is

to create a NT×1 vector, dx, containing the desired spatiotemporal series of shocks:

dy = (I− ϕL− ρW)−1 · (Iβ + Lγ +Wθ) · dx. (23)

The NT×1 vector dy gives the response across all N units period-by-period to this series of shocks.

So, for instance, the 1-period, 1-unit default shock is a 1 in that unit’s row of the first N×1 vector

and 0 elsewhere. The 1-unit permanent shock repeats this N×1 vector down T periods. The

all-units 1-period shock starts with an N×1 vector of ones, and all subsequent elements are 0.

The all-units permanent shock is an NT×1 vector of ones. Beyond these defaults, any set of

substantive hypothetical/counterfactual shocks across units over time that researchers may wish

to consider may simply be entered as that dx. Indeed, multiple columns of hypothetical shocks can

be offered and responses calculated at once, with say NT×N matrices dX and dY. We suggest

N columns here to facilitate the scalar summaries of spatial effects that LeSage and Pace (2009)

call impacts. Working in a single-period cross-section, they suggest a set of shocks across units

given by the N×N identity matrix, which corresponds to shocking each unit alone, i.e., the 1-unit

default shock, one at a time, column-by-column. For TSCS data, the other T -1 N×N blocks

are all-zeros for the 1-period shock, and the IN repeats over all T for the permanent shock. In

a cross-section, the average of the diagonal elements of the N×N dY gives LeSage and Pace’s

average direct effect (ADE) of unit on itself, inclusive of spatiotemporal feedback, and the sum

of the off-diagonal elements divided by N gives their average indirect effects (AIE), a summary

of the spillover effects. With dX just the identity matrix IN , it may be dropped from equation

27. Notice the ambiguity that arises here surrounding comparable treatments and effects in static models versus
in temporally, spatially, and spatiotemporally dynamic models/processes: in static-nonspatial models, all of x’s
effects incur exclusively in the unit-time shocked; in spatiotemporal models, contrarily, xit has effects also in unit-
times j ̸=i, s̸=t. Thus, in comparison to the static case, and to empirical realism, the hypothetical of a one-unit
or one-period dX shock radically understates both a typical ‘treatment’ and a typical ‘effect’ of x because the
spatiotemporal model correctly distributes the total impact of dX on dY across space and time, whereas the static
model incorrectly aggregates those unit-time differentiated relationships into one summary relation. By the same
token, hypothetical all-unit permanent dX shocks overstate both a realistic dX and the static-model dx effect
estimates. Perhaps most realistic, and what static-model estimates would be approximating, with bias due to
misspecifcation, would be a dX that followed its empirical spatiotemporal average in the sample.
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(23) and the elements of the multiplier times coefficients matrices may simply be summed and

averaged in these ways as LeSage and Pace (2009) do.

Long-run steady-state (LRSS) responses in all N units to some permanent N×1 set of shocks,

dx, is found by returning to equation (22a), setting yt−1=yt and xt−1=xt by definition of LRSS,

to obtain:

dy = (I− ϕI− ρW)−1(Iβ + Iγ +Wθ) · dx. (24)

Note both the shocks/treatments dx and responses/effects dy reference all N×1 units i.28

STADL models can be estimated via maximum-likelihood (or Bayesian) methods, with likeli-

hoods (posteriors) given in Elhorst (2001) (and LeSage and Pace 2009) and maximization detailed

in Anselin (1988).29,30 Even previous works that discuss spatiotemporal models and their estima-

tion have neither discussed or derived analytically as above, nor evaluated through simulation as

next, the biases from omitting or mismodeling one of the dependence dimensions in estimates of

the other dependence parameters, the covariate coefficients, and the dynamic and total effects.

Monte Carlo Analysis of Dynamic TSCS Models

Our Monte Carlo analyses demonstrate that the biases shown analytically above are of sub-

stantively important magnitudes in spatiotemporal TSCS data with properties designed to be

representative of common political-science application contexts.

Given the combinatorically vast number of STADL-model variations—26 = 64 first-order mod-

els alone—we focus on evaluating the two currently most-widely used in political science: LDV

28. I and W in equation 24 are N×N ; implicitly, some long-run, permanently operant, W must be set.
29. Instrumental-variables estimators exist for some, but not all, STADL model variations as well.
30. As with the 3-source spatial model (see note 16), the 3-source temporal and STADL models are identified,

but frailly, when all 3 sources are included (e.g., an unrestricted first-order STADL model). Given this, researchers
will want to use design (Gibbons and Overman 2012) or theory (Cook, Hays, and Franzese 2020) to restrict some
spatial and temporal parameters ex ante. In Cook, Hays, and Franzese (2020), we suggest that researchers should
generally consider including terms capturing spillovers in the mean component (either Wy or Wx) plus spatial
error autocorrelation. Similarly, a time-series model including a time-lagged outcome and a correction for serially
correlated errors would be robust to the concerns of Achen (2000). Taken together, we believe applied researchers
with TSCS will be well served by including outcome lags (Wy and Ly) or covariate lags (Wx and Lx)—whichever
is best motivated by their theory—and spatial and temporal error lags (Wεεε and Lεεε).
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and SAR, i.e. STADL(ty1) and STADL(sy0). LDV and SAR model performance under various

forms of temporal or spatial dependence is well known, but we know little as-yet about how either

one-way model performs under spatiotemporal dependence in both dimensions. We therefore gen-

erate data from a STADL(sy0, ty1), i.e., the first-order spatiotemporal autoregressive model, with

the exogenous covariate x also following a STADL(sy0, ty1) process, for realism and so induced

biases will manifest in entirely β̂:

yt = ϕyyt−1 + ρyWyt + xtβ + εεεy, (25a)

xt = ϕxxt−1 + ρxWxt + εεεx, (25b)

with x0, εεεy, and εεεx drawn independent standard-normal. To focus comparisons, we fix several

conditions across all simulations: N=50 and T=20, giving balanced panels with common sampling

dimensions (e.g., U.S. states over 20 years); W generated as k-nearest-neighbor binary-contiguity

(k=5), row-normalized based on xy-coordinate locations for each unit drawn U(0, 100); and param-

eters β=2, ϕx=0.6, and ρx=0.3. We vary the strength of temporal, ϕy, and spatial, ρy, dependence

in the outcome y (further design details in the Appendix).31

0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3
ρY

φ̂ 
−

φ

φY

0
0.1
0.2
0.3
0.4
0.5

Figure 6: LDV Performance with Spatial Dependence — Bias in ϕ̂y

31. The Appendix reports results with a first-order spatiotemporal autoregressive error, i.e. STADL(se0, te1),
DGP, so as to explore the performance of commonly used outcome-lag models, LDV and SAR, and our STADL
model, under spatiotemporal error autocorrelation. Results indicate the LDV and SAR models produce biased
estimates under spatiotemporal error autocorrelation, whereas STADL performs well under all conditions.
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Figure 7: LDV Performance with Spatial Dependence — Bias in β̂

Figures 6 and 7 present simulation results for the LDV-model estimates. Figure 6 shows that

temporal-lag coefficient-estimate ϕ̂y suffers inflation bias for all true spatial-lag coefficients ρy>0,

with the bias magnitude increasing in both ρy and ϕy. Even when ϕy=0, substantial bias obtains—

ϕ̂y reaches 0.18 at the modest maximum spatial dependence considered here: ρy=.3—and this bias

grows as ϕy increases, the very condition making account of temporal dependence more important.

The intuition is simple: the modeled temporal dependence can partially compensate for the missing

(or, by extension, mismodeled) spatial dependence, in omitted-variable-bias fashion.

While the strength of temporal dependence is important in itself, researchers often have greater

interest in β̂, for testing and for estimating the ‘effects’ of covariates x. Figure 7 shows how the in-

flated ϕ̂y estimate generally attenuates the β̂ estimate, with this induced attenuation bias also quite

sizable and increasing in ρy and ϕy. This is striking given that, with ρy>0 and Cov(x,Wy)>0,

textbook discussion on omitting the spatial lag indicates inflationary OVB in β̂. The opposite

obtains here because that textbook inflationary bias manifests so strongly in ϕ̂y as to induce a

countervailing deflationary bias in β̂, underscoring how conventional understandings from single-

dimensional analyses do not extend straightforwardly to TSCS contexts.32

32. The nearly monotonically negative bias in β̂ seen in Figure 7 is the resultant of a direct positive OVB of
ρy×Reg(Wy on x | Ly) and a negative bias induced in compensation for the direct OVB in ϕ̂y. The net of these
competing biases in β̂ can manifest differently than seen in 7 depending on W and parameter values (See Appendix).
Beyond these biases in β̂ and ϕ̂y, their standard errors are also notably off: average reported s.e. for β̂ considerably
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Furthermore, the unmodeled spatial dependence also undermines standard LM tests for serial

correlation in the LDV-model estimation residuals, producing an unacceptably high false-positive

rate, meaning that using ‘remaining residual autocorrelation’ to assess the adequacy of the LDV

in addressing dependence will fail to guide specification properly (see Appendix).

In sum, with spatiotemporal dependence, LDV underestimates the ‘impulse’ effect of xt, ∂yt
∂xt

=β,

but overestimates ϕy. As such, researchers may wonder how well these biases offset in long-run

steady-state effect-estimates. In the LDV, the LRSS effect on unit i of permanent dxi, is:

dyi,ss
dxi

=
β

1− ϕy

and
dyi,ss
dxj

= 0 ∀j ̸=i, (26)

while the contemporaneous spatial steady-state effects of one-unit dx on y in the SAR model are:

dy

dx
= (I− ρW)−1β, (27)

which is an N×N matrix of the effects, column-by-column, of dxi in that column-unit i on y

in all units. Thus, the single estimated LRSS effect of x on y from the LDV, or any other

nonspatial model, is not even in the correct dimensionality of the spatial effects (plural) of dx on

dy. As emphasized above, spatial dynamics imply changes in x in any unit have effects across

all connected units, and changes in x in different units have different effects because units are

differently connected to each other. LeSage and Pace’s (2009) average direct effects (ADE) scalar

summary of the average across i of dxi

dyi
, inclusive of spatial dynamics, can be obtained, but even

the ADE will not compare closely to the LDV’s LRSS, because the LDV’s temporal dynamics are

quite imperfect substitutes for SAR’s spatial dynamics.

The correctly spatiotemporal dynamic and LRSS effects of dX in the general first-order STADL,

inclusive of both spatial and temporal dynamics and feedback, are given in Equations 23 and 24.

Their simplifications to this STADL(sy0, ty1) model are:

STADL(sy0, ty1) LRSS Effects: dY = (I− ϕI− ρW)−1 · dX · β, (28a)

STADL(sy0, ty1) Dynamic Effects: dY = (I− ϕL− ρW)−1 · dX · β. (28b)

As explained above, for shocks to one unit at a time, column-by-column, dX is the N×N identity

overstate the standard deviation of β̂, and yet, given the large biases in β̂, the estimated 95% confidence intervals
never bound the true value in our simulations, i.e. coverage is zero.
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matrix, IN , in the LRSS-effects equation (28a), and, in the dynamic-effects equation (28b), dX

is that IN stacked vertically T times for permanent shocks, and only in the first N×N block for

1-period shocks. Each (N×1) column of the resulting dY in (28a) gives the LRSS effects in all N

units to shocking the column-unit. In (28b), these N×N blocks of effects in dY evolve period-by-

period T times vertically. The scalar summaries of LRSS or period-by-period ADE and AIE are

found by averaging across the N×N effects-block’s diagonals or over all its off-diagonal elements

as before. Given all this, clearly, even if the LDV model accurately recovered the LRSS ADE—we

will show it does not—it would still produce biased estimates of these unit-specific responses.

Figures 8 and 9 illustrate all this, for single-unit shocks under one set of conditions: ϕy = 0.5

and ρy = 0.3. Figure 8 compares the N marginal period-by-period incremental response paths, i.e.,

impulse-response functions, a.k.a. the responses to temporary (1-period) shocks, using (28b) of (i)

the true STADL model: N grey thinner response-lines, and heavier black response-line average;

(ii) the estimated LDV model: one dashed response-line; and (iii) the estimated static-model:

one dotted response-line.33 Labeled ‘Direct’ are effects of shocks to unit i on outcomes in unit i;

’Indirect’ are summed responses in units j ̸= i to shocks in unit i; and ‘Total’ sums Direct and In-

direct. Figure 9 plots the analogous cumulative response paths to permanent single-unit shocks.34

As shown analytically above, the LDV substantially underestimates the contemporaneous effect

for all N units, and it overestimates the temporal persistence, giving incorrectly slower decay.

Thus, the LDV estimates one smaller, but more-persistent, effect, than the true STADL’s hetero-

geneous, larger, quicker-decaying correct effects. The LDV also overestimates (underestimates)

the cumulative LRSS direct (total) effect at 6.41, to which it arrives more slowly, compared to the

average cumulative LRSS direct effect of 4.39 and total effect of 10.0 from the correct STADL,

to which the STADL responses arrive more quickly. The static model, meanwhile, radically over-

states direct (and total) contemporaneous effect, and badly mischaracterizes (and understates) the

33. To compare the LDV and static models against the true results, we use the STADL response paths generated
from the generating process (i.e., β = 2, ϕ = 0.5, and ρ = 0.3). However, using the estimated STADL response paths
would produce effectively identical results as it is an unbiased estimator of these paramaters (i.e., E[β̂] = 2.0009,
E[ϕ̂] = 0.5003, E[ρ̂] = 0.2996). See the Appendix for greater detail.

34. The responses to all-unit shocks differ only for spatially aware models, and follow the same patterns as seen
in Figures 8 and 9, at roughly N times greater scale.
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direct (and total) cumulative effects. In sum, even on average—i.e., disregarding the unit-specific

variation—the LDV model performs poorly, and the static nonspatial model very poorly.
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Figure 8: Response-Path Estimates of LDV Model with Spatial Dependence

Note: dotted line = Static, dashed line = LDV, grey lines = STADL unit-by-unit, black line = STADL average
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Note: dotted line = Static, dashed line = LDV, grey lines = STADL unit-by-unit, black line = STADL average

The analogous explorations of SAR-model estimation-performance shows (Figure 10) the ex-

pected inflation bias in ρ̂y when temporal dependence is present but unmodeled. When ϕy=0.5,

for example, the ρ̂y estimates from the SAR model average more than 2 times(!) the true value of

ρy. As researchers more-commonly attach theoretic importance to their spatial-dependence speci-

fications than to temporal dependence—selecting connectivity matrices to test competing theories

of diffusion, e.g.—this is per se more substantively concerning than in the LDV case. Researchers

interested in evaluating spatial theories must attend equally highly carefully to accurately mod-

eling temporal dynamics. Even with spatial processes well-specified, the W and spatial-lag terms

correct and well-measured in the model, failing to adequately address temporal dependence can

produce wildly inaccurate understandings of the spatial processes actually operating in the data.35

35. The Appendix shows that, as with the LDV estimation-model case above, average reported standard errors
in SAR applied to STADL(s0y, t1y) exceed actual standard deviations of coefficient estimates across simulation
trials and yet 95% confidence intervals rarely contain true coefficient values; whenever ρy ̸=0 and ϕy ̸=0, coverage
probabilities are far below 95%, due to the coefficient-estimate bias.
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Figure 10: SAR Performance with Temporal Dependence — Bias in ρy

Regarding β̂, Figure 11 reveals the expected inflationary bias from failing to model temporal

dependence, and this bias increases in the unmodeled ϕy. However, this bias does not also increase

with ρy. Why? First, temporal dependence often, as in our simulation, far exceeds spatial depen-

dence. As such, the inflationary bias in β̂ from the unmodeled temporal dynamics weighs more

heavily against the downward bias from overestimated ρ̂y than in the reverse scenario. Second,

our simulation parameters, again realistically, set x also to manifest greater temporal than spatial

dependence: ϕx=0.6 vs ρx=0.3. Thus, the correlation between xi,t and yi,t−1, and so the bias from

omitting the latter, is greater than the bias induced by overestimating ρ̂y and the correlation of

xi,t and yj,t.36

Although the β̂ estimate is inflated in proportion solely to the temporal-dependence misspec-

ification, that bias plus the inflation bias also in ρ̂y seriously compromises the effects estimates.

Recall that in spatial-autoregressive models, as in all models beyond the purely linear-additive

and separable, the effect of x on y is not β, which is merely the pre-spatial impulse, but instead

the effects are given by equations (23) and (24). For scalar summaries of these multidimensional

effects, we use the average-direct and average-indirect effects, ADE and AIE, described above.

Comparing the values estimated by the incorrect SAR to those from the true STADL, we find

36. The Appendix verifies this: reversing the strengths of the dependencies in x to ϕx=0.3 and ρx=0.6, the relative
magnitude of the bias in β̂ is reduced, and the extent of the bias is affected more acutely by the level of ρ.
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Figure 11: SAR Performance with Temporal Dependence — Bias in β

that SAR overestimates the single-unit-shock responses, SAR ADE=3.96 vs. STADL ADE=2.03,

and radically overestimates the AIE, SAR AIE=6.76 vs. STADL AIE=0.82, and so the average

total effects (ATE), SAR ATE=10.72 vs STADL ATE=2.85. Furthermore, despite the absence of

temporal dynamics from the estimation model, the long-run steady-state (LRSS) total effects are

also overestimated: SAR LRSS ATE=10.72 vs. STADL LRSS ATE=10.

Empirical Reanalyses

To demonstrate the importance of modeling spatiotemporal dependence appropriately in ap-

plied TSCS data-analysis, we conduct two brief reanalyses of prominent recent studies. First,

we revisit Acemoglu et al. (2008) to evaluate empirically the development–democracy connection,

our running illustration. Particularly apt for our purposes, they include temporal autoregressive

dependence, and fixed unit and period effects, but otherwise neglect spatial dependence. Second,

we analyze data from Lührmann, Marquardt, and Mechkova (2020), who develop several new

country-year indices of vertical, horizontal, and diagonal political accountability, plus an overall

accountability index. The article focuses on demonstrating the content, convergent, and construct

validity of these measures, but includes analyses of accountability and infant morality in which
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they account for spatial dependence and include fixed unit and period effects while omitting au-

toregressive temporal dependence. These reanalyses also nicely parallel our simulation studies:

one models temporal dependence while relatively neglecting spatial dependence; the other models

spatial dependence while relatively neglecting temporal dependence.

Reanalysis of Acemoglu et al. (2008) on Development and Democracy

Acemoglu et al.’s main finding is that the otherwise robust positive relation of economic devel-

opment with democratization disappears with country fixed-effects included. Table 1 reports five

models using their data to regress Polity IV Democracy on lagged real GDP per capita (RGDPpc),

plus various combinations of fixed effects and autoregressive lags, with column (4) replicating their

main two-way-fixed-effects regression. The results starkly highlight how these specification choices

affect one’s analysis and inferences.

Table 1: Reanalysis of Development and Democracy in Acemoglu et al. (2008)

Dependent variable: Democracy (Polity IV)
(1) (2) (3) (4) (5)

Lagged RGDP Per Capita 0.237∗∗∗ 0.228∗∗∗ −0.011 -0.006 0.053∗∗∗

(0.01) (0.01) (0.027) (.027) (.0.008)
Temporal Lag 0.449∗∗∗ 0.746∗∗∗

(.034) (0.021)
Spatial Lag 0.134∗∗ 0.164∗∗∗ 0.040 0.092∗∗

(0.06) (0.058) (0.050) (0.043)

Observations 854 854 854 854 854
Fixed Country Effects No No Yes Yes No
Fixed Year Effects No Yes Yes Yes Yes
LL -162.48 -129.62 253.20 345.07 247.24
DoF (Parameters) 850 (4) 842 (12) 709 (145) 709 (145) 841 (13)
BIC 351.96 340.45 472.35 302.09 -406.74

Note: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01

The column (1) model includes a spatial lag created with a row-standardized nearest-neighbor

weights matrix (auto-generated by our tscsdep R package). With this spatial autoregression the

only spatiotemporal dependence in model (1), the positive and significant spatial-lag coefficient

may be an overestimate. Column (2) adds fixed year-effects. Since democracy trends globally
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over the sample period, this addition greatly improves model fit: log-likelihood increases over 30%

(-162.34 to -129.62) and BIC decreases from 351.7 to 340.2. The coefficient estimates are affected

only slightly, but notably ρ̂ becomes larger and more-significant.

Column (3) adds country fixed-effects, and column (4) replaces the spatial lag with a tem-

poral lag, the latter replicating Acemoglu et al.’s Table 3, column 2. These results reflect the

main takeaway from their analysis: the statistical significance of the RGDPpc coefficient-estimate

disappears with country fixed-effects added. The spatial-lag coefficient also becomes insignificant

in column (3), with the country fixed-effects apparently absorbing sizable time-invariant spatial

clustering in both RGDPpc and democracy. The impact on model fit, however, is less clear. LL

improves greatly, but the BIC fit statistic, which penalizes for over-parameterizing the model and

over-fitting the sample, gets much worse, increasing almost 40% (340.2 to 472.3). Scholars can

reasonably disagree about the model-selection implications of these comparisons, but BIC strongly

indicates that the LL improvement from the country dummies does not merit the 133 degrees of

freedom they consume.

Acemoglu et al.’s column (4) model improves on (2) and (3) in terms of both coefficient signif-

icance and model fit, underscoring the crucial importance of temporally autoregressive dynamics

in democratic development. The final column (5) presents results from the model with by far

the best BIC (-406.6) and LL close to model (3) despite 132 fewer estimated parameters. The

Likelihood Ratio test of Model (5), which includes both temporal and spatial lag, and period

fixed-effects, versus Model (3) yields a Chi-Squared statistic of 12.06, which with 132 degrees of

freedom overwhelmingly fails to reject: p ≈ 1.0. The STADL(s0y, t1y) plus time dummies model is

therefore overwhelmingly preferred by our model-selection criteria. The coefficients on RGDPpc,

the temporal lag, and the spatial lag are all statistically significant. The comparison of the

STADL(s0y, t1y) plus time dummies (5) with Acemoglu et al.’s temporally autoregressive two-way

fixed-effects model (4) is similar to the comparison of the models in columns (3) and (2): the

inclusion of country fixed-effects leads to a significant improvement in LL, but if we penalize for

over-parameterizing and over-fitting, the BIC concludes emphatically that the LL increase does
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not remotely justify the cost in parsimony terms (consumed degrees of freedom).

Comparing the coefficient estimates across these models also nicely illustrates in real-data

application the conclusions drawn above in our analytics and simulations. Failing to include

a temporal lag in model (2) results in larger estimates of ρ̂ and β̂ relative to model (5), where

temporal dependence is directly accounted. This parallels our simulations’ findings that SAR (here

model 2) suffers inflation bias in ρ̂ and β̂ when temporal dependence is present but unmodeled.

In the simulations, the SAR model ρ̂ averaged about twice the true STADL ρ; similarly here, ρ̂

from model (5) is 0.091, whereas model (2) ρ̂ is roughly 1.8 times larger at 0.167.

This also has substantively important implications for how development is estimated to affect

democracy across space and time. The positive, significant temporal-lag and spatial-lag coeffi-

cients in our preferred model (5) indicate that development effects on democracy in one country

at one time reverberate autoregressively both forward in time and across countries in space. We

can calculate summaries of these average short-run (first-period) and long-run direct, indirect, and

total effects (ADE, AIE, ATE) as shown in equations 28a and 28b. Using model (5) coefficient-

estimates, a one-unit single-country shock to RGDPpc has contemporaneous ADE of +0.053 on

democracy in that same country, AIE of +0.005 on democracy in other countries, for a combined

ATE of +0.058. The respective long-run cumulative estimates are LRSS ADE=+0.209, LRSS

AIE=+0.021, LRSS ATE=+0.230. These differ considerably from model (2), where the estimated

effects have no temporal dynamics and are instead instantaneous at ADE=+0.237, AIE=+0.036,

and ATE=+0.273. These latter static SAR-model estimated effects might seem not too dissim-

ilar from the long-run effects from spatiotemporally dynamic STADL model (5)—differences of

ADE +.028≈13%, AIE +.015≈71%, and ATE=+.043≈19%—the effects from model (2) incur

immediately and fully, so the same-country, same-period effects from a change in development on

democracy is ADE=+0.053 in model (5) versus ADE=+0.237 in model (2), more than a four-fold

(≈447%) difference.

In short, the choice of spatiotemporal model dramatically affects one’s conclusions both of

whether and of how development relates to democracy.
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Reanalysis of Lührmann et al. (2020) on Accountability and Infant Mortality

In their recent APSR article, Lührmann, Marquardt, and Mechkova (2020) demonstrate con-

struct validity for their overall index of political accountability (in part) by verifying its negative

correlation with infant-mortality rates. They estimate four time-series-cross-sectional regressions,

both in isolation and in combination with alternative measures of accountability taken from the

World Bank and Freedom House. We reanalyze one of their primary regressions: MODEL 1 in

Figure 8. The model includes the new overall accountability index and a large set of controls,

including country and year fixed-effects as some account of spatial and temporal dependence, plus

a regional-average infant-mortality variable. This regional-average variable is actually a kind of

spatial lag, being the average dependent-variable among regional neighbors, but it is treated as

an exogenous regressor. Beyond the time-period indicators, temporal dependence and dynamics

are not modeled.

The country indicators account for fixed (long-run) additive spatial clustering in the outcome,

infant mortality rates. Fixed here means constant over the entire sample period (1960-2010). Ad-

ditive means the clustering manifests as a single mean-shift, as opposed to a multiplicative effect

on some observed or unobserved covariate or an autoregressive spatially dynamic process. The

regional-average variable, which instead gives a spatial-autoregressive process, accounts for poten-

tial time-varying (long-run) spatial clustering. If there are multiple regional equilibria over time

(e.g., Southeast Asia 1961-1980; Southeast Asia 1981-2000; Southeast Asia 2001-2010), though,

the regional-average spatial-lag cannot account for this. Country fixed-effects cannot either.

The year fixed-effects can account for ‘short-run’ (unique year-by-year) common shocks that

are global in scope. Again, these are additive: some mean-shift each year that is common across all

countries. The same infant-mortality shock, equal to that year’s single time-dummy coefficient,

hits every country. Year fixed-effects cannot account for common shocks that are regional or

otherwise sub-global in nature: e.g., an infant-mortality shock specific to Southeast Asia. If the

relevant regions or groups of countries were known pre-analysis, regional-period shock indicators

(e.g., Southeast Asia 1987) could be included in regression models, but the relevant spatiotemporal
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units are rarely known, and this strategy quickly overloads degrees of freedom.

An alternative strategy to account for regional common shocks is to add spatial lags in first

differences to regression models. Because spatial lags represent autoregression in space—countries

influence first, second and third (etc.) order neighbors with geometrically decaying impact—they

provide a certain flexibility with respect to identifying the geographical boundaries of shocks that

regional indicators do not. The spatial-weights matrix could connect k-nearest neighbors, e.g.,

around each country (automatically generated using tscsdep), whereas regions must be pre-

identified for indicator-variable strategies. Spatial lags are also more parsimonious than regional-

period indicators because a single spatial-lag defines a ‘neighborhood’ for every sample-unit.

More generally, in STADL models, time-differenced right-hand-side variables produce only

‘short-run’ effects in left-hand-side outcomes, whereas regressors in levels produce long-run effects

through temporal multipliers. Lührmann et al.’s MODEL 1 includes a de facto endogenous spatial

lag in the regional averages, which, for our reanalysis purposes, we will retain as an (erroneously)

exogenous regressor and will assume to reasonably proxy the true spatial-dependence process.

MODEL 1 also includes country and year fixed-effects, but no temporal dynamics, a stark omission

given that infant-mortality rates are highly persistent temporally. We also think heterogeneous

regional infant-mortality shocks are highly plausible. Therefore, we add to our reanalysis model a

temporal lag and a time-differenced nearest-neighbor spatial-lag:

yit = xitβ + ϕyit−1 + ρwi∆yt + fi + gt + εit, (29)

with yit being infant mortality in unit i in year t, xit a 1×k vector of exogenous covariates for unit-

year it, β a k×1 vector of coefficients, ρ the spatial-lag coefficient, wi unit-i’s 1×N vector of spatial

weights on units j, ∆yt the time-t N×1 vector of differenced outcomes, fi a fixed unit-effect, gt

a fixed period-effect, and εit an i.i.d. disturbance for unit-time it. Some algebraic manipulation

rewrites this with a differenced outcome (more-convenient for expressing the likelihood):

∆yit = xitβ + (ϕ− 1)yit−1 + ρwi∆yt + fi + gt + εit. (30)

While the regional-average variable (treated as exogenous still for comparability) incorporates

some spatial dependence, its coefficient is likely overestimated because temporal dependence, likely
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very high in infant mortality, is omitted, beyond the year-effects—which year-effects, due to re-

gional concentration in infant-mortality shocks, likely miss considerable spatiotemporal depen-

dence also. Our analyses above suggest that the unfortunate consequence of this mis-estimation

of the spatiotemporal dependence is that Lührmann, Marquardt, and Mechkova may have under-

estimated the strength of their political-accountability measure’s relationship to infant mortality.

Table 2 column 1 replicates their original results. Then, with tscsdep, we create a nearest-

neighbor spatial weights matrix and estimate the spatiotemporal-autoregressive STADL(sy0, ty1)

model incorporating spatially and temporally lagged dependent-variable regressors, reported in

the second column. The LRSS effects37 of each covariate x in xit are given in the third column.

Comparing the implicit spatial steady-state implied by the regional-average variable in the original

regression, which ignores temporal (autoregressive) dynamics, with our estimate of the spatial

steady-state effect, we estimate that the former overstates the extent of spatial dependence by

nearly 44% in this comparison. More simply and starkly, comparing the first and third columns,

we estimate that the spatiotemporal LRSS effect of Lührmann et al.’s political accountability on

infant mortality rates (−9.500) is more than double the ‘effect’ they reported (β̂=− 4.339), which

mostly ignores these important spatial and temporal dynamic dependencies. In column 4 (model

3), we drop the country dummies from model 2. In contrast with the analysis in Table 1, we find

that the inclusion of country fixed-effects here leads to unambiguous improvement in model-fit by

either LL or BIC. Model 2 is clearly the preferred model among this set.

Conclusion

This paper considers the implications of the multidimensional dependence, dynamics in both

space and time, that typically manifests in TSCS data. With both spatial and temporal depen-

dence present, we have shown that modeling dependence in only one dimension while neglecting

the other biases estimates of all dependence parameters, usually resulting in inflation bias in the

37. These LRSS use only the temporal multiplier as Lührmann, Marquardt, and Mechkova do not interpret their
implicit spatial-lag regional-average as such and our added spatial lag is in changes, not levels.
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Table 2: Reanalysis of the Accountability / Infant Mortality Regression
in Lührmann, Marquardt, and Mechkova (2020)

Dependent variable: Infant Mortality

(1) (2) LRSS (3) LRSS

Accountability −4.339∗∗∗ −0.190∗∗∗ −9.500 0.095∗∗∗ 5.588
(0.350) (0.038) (0.001)

Foreign aid −0.048 0.016∗∗∗ 0.800 0.010∗∗∗ 0.588
(0.031) (0.003) (0.001)

GDP/capita (ln) −10.551∗∗∗ 0.797∗∗∗ 39.85 0.071∗∗ 4.176
(0.771) (0.086) (.036)

Economic Growth 0.035 −0.019∗∗∗ -0.950 −0.022∗∗∗ -1.294
(0.023) (0.003) (0.003)

Resource dependence 0.040∗ 0.013∗∗∗ 0.650 0.008∗∗∗ 0.471
(0.022) (0.002) (0.002)

Economic inequality −0.072∗∗ 0.006 0.300 0.001 0.059
(0.031) (0.003) (0.002)

Population (ln) −17.743∗∗∗ 0.706∗∗∗ 35.30 0.014 0.824
(1.606) (0.178) (.015)

Urbanization −0.125∗∗∗ 0.023∗∗∗ 1.150 -0.006∗∗∗ -0.353
(0.023) (0.003) (.001)

Political violence 0.332∗∗∗ −0.016 −0.800 −0.006 -0.353
(0.128) (0.014) (.011)

Communist 0.387 −0.746 -8.750 0.151 8.882
(1.620) (0.175) (0.115)

Infant mortality 0.646∗∗∗ 0.009∗∗∗ 0.450 0.010∗∗∗ 0.588
(regional average) (0.020) (0.002) (.001)
Political corruption index −3.400∗ −0.254 -12.70 −0.374∗∗∗ -22.00

(1.902) (0.206) (.094)
Temporal Lag (Level) -0.020∗∗∗ -0.017∗∗∗

(0.002) (0.001)
Spatial Lag (Difference) 0.033∗ 0.223∗∗∗

(0.020) (0.019)

Observations 4,354 4,312 4,312
Dependent Variable Level Diff. Diff.
Fixed Country Effects Yes Yes No
Fixed Year Effects Yes Yes Yes
LL -15466.54 -5809.74 -6656.38
DoF (Parameters) 4149 (205) 4105 (207) 4251 (61)
BIC 32659.1 13351.9 13823.3

Note: ∗p<0.1;∗∗ p < 0.05;∗∗∗ p < 0.01
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parameter(s) of the included or better-specified dimension. Not only does this risk misunder-

standings about whether the observed spatiotemporal patterns are due to temporal or spatial

dependence, it can also threaten researchers’ ability to effectively discriminate between competing

sources of dependence—dependent outcomes, covariates, or unobservables—along either dimen-

sion. These biases in the dependence-parameter estimates also induce biases in the covariate

coefficient estimates. With these dependence-parameter and covariate-coefficient estimates both

biased, spatiotemporal-dynamic and long-run-steady-state effects are biased too, as are hypoth-

esis tests and inferences made using these estimates. Furthermore, we demonstrate that these

estimation biases with dependence in both space and time differ from those considered heretofore

in textbook treatments of temporal or spatial dependence alone. For example, usually omitted

spatial interdependence results in partially offsetting inflationary bias in the covariate coefficients.

However, we showed that in TSCS analyses, if a time-lagged outcome is included in the model,

then the inflationary bias from the omitted spatial lag will primarily manifest in this temporal lag,

and that in turn induces partially offsetting attenuation in the covariate coefficients. Thus, re-

searchers’ previous methodological understandings, which derived from single-dimensional studies,

can sometimes provide poor guide when analyzing TSCS data.

Given these concerns, we propose that researchers instead use a spatiotemporal model, the

first-order STADL, as an effective starting point that nests many of the most-widely used space-

time specifications in political science (e.g., the first-order LDV, ADL, SAR, SDM) and combi-

nations thereof. We suggested that beginning with this more-general STADL specification and

using model-restriction tests and goodness-of-fit statistics to guide model refinement reduces the

risk of unmodeled dynamics, and so of biased estimation and invalid inferences. While estimating

these models is not significantly more difficult than single-dimensional analogs, interpretation of

the results raises considerable challenges, because the meanings of both βx and the calculation

of dy
dx

changes for different STADL models. Therefore, we have discussed at length the varieties

of spatiotemporally dynamic effects different STADL specifications entail. To better enable re-

searchers to adopt the strategies presented here, we developed R package tscsdep (see Appendix

for detail; GitHub to download https://github.com/judechays/STADL) to automate construction
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of common weights matrices, W, including for unbalanced panels, estimation of the first-order

STADL model, and calculation of STADL dynamic and LRSS effects.

We see several priorities for expanding upon our recommended STADL approach for TSCS

data analysis. First, we have not addressed the topic of order specification, focusing instead

on source specification. Second, we did not raise the possibility of overfitting STADL models

to sample idiosyncrasies. Finally, we have not discussed the implications of measurement error,

particularly with respect to W, in spatiotemporally interdependent data. We believe effective

approaches to these challenges extend naturally from time-series and spatial econometrics. For

instance, autocorrelation and partial autocorrelation (AC, PAC) functions used to guide time-series

order specification might be extended to spatiotemporal AC and PAC functions. Likewise, cross-

validation and out-of-sample performance are the gold-standard safeguards against overfitting

and are similarly extendable to spatiotemporal TSCS contexts. On measurement error, various

Bayesian strategies of model averaging (Juhl 2020) and/or combining measurement and estimation

models seem most promising to us. These projects head our research agenda going forward.
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