Modeling and Interpreting Interactions

TAMU Workshop on TSCS Data-Analysis
5-8 July 2011

Robert J. Franzese, Jr.
Professor of Political Science,
The University of Michigan, Ann Arbor
Overview

• Interactions in Pol-Sci: ubiquitous, but should be more
 – In present context, concern re: coefficient heterogeneity is a call for
 interactions—i.e., models of conditional, i.e., context-variant, coefficients.

• From theory to empirical-model specification: Arguments
 that imply interactions (& some that don’t), & how to write.

• Interpretation:
 – Effects = derivatives & differences, not coefficients!
 – Std Errs (etc.): effects vary, so do std errs (etc.)!

• Presentation: Tables & Graphs, & Choosing between equivalent Specifications

• Use & abuse of some common-practice “rules”

• Extensions:
 – Split-sample v. dummy-interaction
 – Common 2nd-moment implications of interactions
 – Interactions with uncertainty = random coefficients = hierarchical...
Interactions in Pol-Sci Research

- Common. ‘96-‘01 *AJPS*, *APSR*, *JoP*:
 - 54% some stat meth (=s.e.’s), of which 24% = interax (so interax ≈ 12.5% or 1/8th total; more if exclude *CP*).
 - (N.b., most rest QualDep & frml thry, not counted, & “thry” in denom) so understate tech nature discipline)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count</td>
<td>% of Tot</td>
<td>Count</td>
</tr>
<tr>
<td>American Political Science Review</td>
<td>279</td>
<td>77%</td>
<td>69</td>
</tr>
<tr>
<td>American Journal Political Science</td>
<td>355</td>
<td>55%</td>
<td>47</td>
</tr>
<tr>
<td>Comparative Politics</td>
<td>130</td>
<td>9%</td>
<td>1</td>
</tr>
<tr>
<td>Comparative Political Studies</td>
<td>189</td>
<td>49%</td>
<td>23</td>
</tr>
<tr>
<td>International Organization</td>
<td>170</td>
<td>25%</td>
<td>9</td>
</tr>
<tr>
<td>International Studies Quarterly</td>
<td>173</td>
<td>40%</td>
<td>10</td>
</tr>
<tr>
<td>Journal of Politics</td>
<td>284</td>
<td>80%</td>
<td>55</td>
</tr>
<tr>
<td>Legislative Studies Quarterly</td>
<td>157</td>
<td>66%</td>
<td>19</td>
</tr>
<tr>
<td>World Politics</td>
<td>116</td>
<td>24%</td>
<td>6</td>
</tr>
<tr>
<td>TOTALS</td>
<td>2446</td>
<td>54%</td>
<td>311</td>
</tr>
</tbody>
</table>
Interactions in Pol-Sci Theory

• Ubiquitous, but our Theories/Substance say should be even more; core classes of argument inherently interactive:

 – **INSTITUTIONAL**: institutions are inherently interactive variables:

 • Institutions funnel, moderate, shape, condition, constrain, refract, magnify, augment, dampen, mitigate political processes that…

 – …translate societal interest-structures into effective political pressures,
 – …&/or pressures into public-policy responses,
 – …&/or policies to outcomes.

 • I.e., they affect *(modify, condition, moderate…)* effects ≡ *interaction.*
Interactions in Pol-Sci Theory

• Views from across institutionalist perspectives:
 – Hall: “institutionalist model => policy more than sum countervailing pressure from soc grps; that press mediated by organizational dynamic.”
 – Ikenberry: “[Political struggles] mediated by inst’l setting where [occur]”
 – Steinmo & Thelen: “inst’s… constrain & refract politics… [effects of] macro-structures magnify or mitigated by intermediate-level inst’s… help us… explain the contingent nature of pol-econ development…”
 – Shepsle: “SIE clearly a move [to] incorporating inst’l features into R-C. Structure & procedure combine w/ preferences to produce outcomes.”
Interactions in Pol-Sci Theory

• Ubiquitous, but our Theories/Substance say should be even more; core classes of argument inherently interactive:
 – **INSTITUTIONAL**: …
 – **STRATEGIC**: actors’ choices (outcomes) conditional upon institutional/structural environ., opportunity set, & (interdep.) other actors’ choices.
 – **CONTEXTUAL**: actors’ choices (outcomes) conditional upon environment, opportunity set, & (interdep.) aggregates of other actors’ choices.
Interactions in Pol-Sci Theory4

• Across subfields:
 – Comparative Politics \textit{examples}:
 • Electoral system & societal structure interact to produce party system.
 • Divided government & polarization retards legislative productivity, \Rightarrow conditional dynamics.
 • Corruption interactive product of institutional & societal structures.
 – International Relations \textit{examples}:
 • System polarity & offense-defense balance \Rightarrow war propensity.
 • Terrorist targeting & counterterrorism responses depend “grievance” & resources
 – American Politics …
Interactions in Pol-Sci Theory

- Political Economy:
 - Electoral & partisan cycles (i.e., effects) depend on political & economic institutional, structural, contextual conditions.

- Political Behavior:
 - Government's institutions shape voter behavior: balancing (Kedar, Alesina); economic voting (Powell & Whitten); etc.

- Legislative Studies:
 - Effects of divided government different in presidential vs. parliamentary systems.

- Political Development:
 - Effect of inequality on democratization depends on cleavage structure.
Theory & Substance: Everyone’s Favorite “Model”

Economics Affects Politics and Society
Politics Affects Economics and Society
Society Affects Politics and Economics

Picture & text seem relate more directly to the “ubiquitous endogeneity” of Society, Economy, & Polity. For “ubiquitous context-conditionality”, think “affects the effects of {Politics, Economics, Society} on {Society, Polity, Economy}.”
Theory & Substance: An Old (& still) Favorite “Model” of Mine

The Cycle ofPolitical Economy

Examples of the Elements at Each Stage:
(A) Interests:
- Sectoral Structure of Economy
- Income Distribution
- Age Distribution
- Trade Openness

Elections:
- Electoral Law
- Voter Participation

Government Formation:
- Fractionalization
- Polarization

(B) Representation:
- Partisanship

Policy:
- Fiscal Policy
- Monetary Policy
- Institutional Adjustment

Government Termination:
- Replacement Risk

(C) Outcomes:
- Unemployment
- Inflation
- Growth
- Sectoral Shift
- Debt
- Institutional Change

Again, the ubiquitous context-conditionality perhaps not fully overtly shown, but implication here that effect factors at each stage tend depend on others at that and other stages.
Theory & Substance:
An Newer Favorite “Model” of Mine

• **Complex Context-Conditionality:**
 – Effect of (almost) everything depends on (almost) everything else.
 – E.g., Principal-Agent Situations
 • If fully principal, \(y_1 = f(X) \); if fully agent, \(y_2 = g(Z) \); institutions: \(0 \leq h(I) \leq 1 \).

\[
y = h(I) f(X) + \{1 - h(I)\} g(Z)
\]

\[
\Rightarrow \frac{\partial y}{\partial x} = h(I) \frac{\partial f(X)}{\partial x}; \quad \frac{\partial y}{\partial z} = -h(I) \frac{\partial g(Z)}{\partial z};
\]

\[
\frac{\partial y}{\partial i} = \frac{\partial h(I)}{\partial i} \left[f(X) - g(Z) \right]
\]
(Complex) Context-Conditionality: (Hallmark of Modern Pol-Sci Theory?)

- Principal-Agent (Shared Control) Situations, for example:
 - If fully principal: \(y_1 = f(X) \);
 - If fully agent: \(y_2 = g(Z) \);
 - Institutions \(
 \Rightarrow \) Monitoring & Enforcement costs principal must pay to induce agent behave as principal would: \(0 \leq h(I) \leq 1 \).
- RESULT:

\[
y = h(I) f(X) + \{1 - h(I)\} g(Z)
\]

\[
\Rightarrow \frac{\partial y}{\partial x} = h(I) \frac{\partial f(X)}{\partial x} ;
\]

\[
\frac{\partial y}{\partial z} = -h(I) \frac{\partial g(Z)}{\partial z} ;
\]

\[
\frac{\partial y}{\partial i} = \frac{\partial h(I)}{\partial i} [f(X) - g(Z)]
\]

...i.e., effect of anything depends on everything else!
Not Every Argument Is an Interactive Argument

• Not Interactive:
 - \(X \) affects \(Y \) through its effect on \(Z \): \(X \Rightarrow Z \Rightarrow Y \)
 • In (political) psychology / behavior, this called mediation. Interaction is called moderation in this literature.
 - \(X \) and \(Z \) affect each other: \(X \Leftrightarrow Z \).
 • I.e., \(X \) and \(Z \) endogenous to each other. Note: irrelevant to Gauss-Markov (OLS is BLUE); merely implies care to what partials (coefficients) mean.
 - \(Y \) depends on \(X \) controlling for \(Z \), or \(Y \) depends on \(X \) & \(Z \):
 \[
 E(Y|X,Z) = f(Z), \quad E(Y|X) = f(Z), \quad Y = f(X,Z)
 \]
 • I.e., e.g., showing outcomes differ across 2×2 of \(X \) & \(Z \) insufficient; issues is difference of differences across rows or down columns.

• Interactive: \textit{Effect of } \(X \) \textit{on } \(Y \) \textit{depends on } \(Z \) (\(\Rightarrow \) converse: Effect of \(Z \) on \(Y \) depends on \(X \)):

\[
\frac{\partial Y}{\partial X} = f(Z) \Leftrightarrow \frac{\partial Y}{\partial Z} = f(X)
\]
From Theory/Substance to Empirical-Model Specification

- Classic Comparative-Politics Example:
 - Societal Fragmentation, S_{Frag}, &
 - Electoral-System Proportionality, D_{Mag},
 - \Rightarrow Effective # Parliamentary Parties: $ENPP$

- “Theory”: $ENPP = f(S_{Frag}, D_{Mag}, \cdot, \varepsilon)$

- Hypotheses:
 \[
 \frac{\partial ENPP}{\partial S_{Frag}} \geq 0, \quad \frac{\partial ENPP}{\partial D_{Mag}} \geq 0
 \]

- Empirical Specification: Lots ways get there...
A Typical Linear-Interactive Specification

- Want linear $f(\cdot)$ w/ these properties; many ways to get there:

$$\begin{align*}
ENPP &= \beta_0 + \beta_1 S\text{Frag} + \beta_2 D\text{Mag} + \varepsilon \\
\frac{\partial ENPP}{\partial S\text{Frag}} &= \beta_1 \rightarrow f(D\text{Mag}) = \alpha_0 + \alpha_1 D\text{Mag} \\
\frac{\partial ENPP}{\partial D\text{Mag}} &= \beta_2 \rightarrow f(S\text{Frag}) = \gamma_0 + \gamma_1 S\text{Frag} \\
\Rightarrow ENPP &= \beta_0 + (\alpha_0 + \alpha_1 D\text{Mag}) S\text{Frag} + (\gamma_0 + \gamma_1 S\text{Frag}) D\text{Mag} + \varepsilon \\
&= \beta_0 + \alpha_0 S\text{Frag} + \alpha_1 D\text{Mag} S\text{Frag} + \gamma_0 D\text{Mag} + \gamma_1 S\text{Frag} D\text{Mag} + \varepsilon \\
&= \beta_0 + \alpha_0 S\text{Frag} + \gamma_0 D\text{Mag} + (\alpha_1 + \gamma_1) S\text{Frag} D\text{Mag} + \varepsilon \\
&= \beta_0 + \beta_{SF} S\text{Frag} + \beta_{DM} D\text{Mag} + \beta_{SFDM} S\text{Frag} D\text{Mag} + \varepsilon \\
\Rightarrow \frac{\partial ENPP}{\partial S\text{Frag}} &= \beta_{SF} + \beta_{SFDM} D\text{Mag} \\
\frac{\partial ENPP}{\partial D\text{Mag}} &= \beta_{DM} + \beta_{SFDM} S\text{Frag}
\end{align*}$$
Interpretation of *Effects*:
Derivatives & Differences, *Not* Coefficients

- Standard Linear Interactive Model:
 \[EN = \beta_0 + \beta_{SF}SF + \beta_{DM}DM + \beta_{SFDM}SF \times DM + \ldots + \varepsilon \]

- Effect of *SFrag* on *ENPP* (is a function of *DMag*):
 \[
 \text{Effect}(SF) \equiv \frac{\partial EN}{\partial SF} = \beta_{SF} + \beta_{SFDM}DM
 \]
 \[\Delta EN = \beta_{SF}\Delta SF + \beta_{SFDM}DM \cdot \Delta SF \]
 \[\equiv \frac{\Delta EN}{\Delta SF} = \beta_{SF} + \beta_{SFDM}DM \]

- Effect of *DMag* on *ENPP* (is *f* of *SFrag*):
 \[
 \text{Effect}(DMag) \equiv \frac{\partial ENPP}{\partial DMag} = \beta_{DM} + \beta_{SFDM}SFrag
 \]
 \[\equiv \Delta ENPP = \beta_{DM}\Delta DM + \beta_{SFDM}SFrag \cdot \Delta DM \]
 \[\equiv \frac{\Delta ENPP}{\Delta DM} = \beta_{DM} + \beta_{SFDM}SFrag \]
Interpretation of *Effects*: NOTES

- “Main Effect” & “Interactive Effect”:
 - For example, $\beta_{SF} = \text{“main effect of SFrag”}$
 -*but* β_{SF} is merely the effect of SFrag at other variable(s) involved in interaction with it=0, so:
 - Other-var(s)=0 may be extreme in the sample, or beyond sample range, or even logically impossible.
 - Other-var(s)=0 substantive meaning of 0 altered by rescaling
 - E.g., by “centering” (centering changes nothing, btw…)
 - Other-var(s)=0 may not have anything substantively main about it
 - Is no Main Effect or separately & Interactive Effect; is just the effect, which conditional, varies:

\[
\text{Effect}(SF) \equiv \frac{\partial EN}{\partial SF} = \beta_{SF} + \beta_{SFDM} DM \quad ; \quad \text{Effect}(DM) \equiv \frac{\partial EN}{\partial DM} = \beta_{DM} + \beta_{SFDM} SF
\]
Interpretation of Effects: NOTES²

\[EN = \beta_0 + \beta_{SF} SF + \beta_{DM} DM + \beta_{SFDM} SF \times DM + \ldots + \varepsilon \]

- COEFFICIENTS ARE NOT EFFECTS. EFFECTS ARE DERIVATIVES &/OR DIFFERENCES.
 - Only in \textit{purely} linear-additive-separable model are they equal because only there do derivatives simply = coefficients.
 - \(\beta_{SF} \) is \textit{not} “effect of SFrag ‘independent of’…” & definitely not its “effect ‘controlling for’…other variable(s) in the interaction”

- Cannot substitute linguistic invention for understanding model’s logic (its simple math)
Interpretation of *Effects*: NOTES3

- Interactions are logically symmetric:
 - For any function, not just lin-add.
 - If argue effect x depends z, must also believe effect z depends x.

- Interactions often have 2nd-moment (variance, i.e., heteroskedasticity) implications too:
 - Larger district magnitudes, $DMag$, are “permissive” elect sys: allow more parties...
 - Fewer *Veto Actors* allow greater policy-change... (both need additional assumpts)

- All of this holds for any type of variable:
 - Measurement: binary, continuous...
 - *Level*: micro or macro; i, j, k, …
Frequent 2nd-Moment Implications Interactions

- **DMag** permissive ele sys: \textit{allows} more parties...

 \[NP = \beta_0 + \beta_1 DM + \varepsilon \; ; \; V(\varepsilon) = f(DM) \; , \; \text{e.g.,} \; \sigma_0 + \sigma_1 DM \]

 - Note: unmodeled interactions look like heteroskedasticity; that’s general, actually. Anything unmodeled gets into \(e^2 \)...

- Few **Veto Actors** \textit{allows} greater policy-change...

\[y = \beta_0 + \beta_1 VP + \varepsilon \; ; \; V(\varepsilon) = f(VP) \; , \; \text{e.g.,} \; \sigma_0 + \sigma_1 VP \]

- I.e., these are Rndm-Coeff \&/or Het-sked Props...
Interpretation of Effects: Standard Errors for Effects

\[ENPP = \beta_0 + \beta_{SF} S\text{Frag} + \beta_{DM} D\text{Mag} + \beta_{SFD} S\text{Frag} D\text{Mag} + \ldots + \varepsilon \]

- Std Errs reported with regression output are for coefficients, not for effects.
 - The s.e. (t-stat, p-level) for \(\hat{\beta}_{SF} \) regards the estimated effect of \(S\text{Frag} \) on \(ENPP \) at \(D\text{Mag}=0 \) (…which is logically impossible).
- Effect of \(x \) depends on \(z \) & v.v. (i.e., which was the point, remember?), so does the s.e.:

\[
\text{Effect}(x) \equiv \frac{\partial y}{\partial x} = \beta_x + \beta_{xz} z \quad \Rightarrow \quad \text{Est.Eff.}(x) \equiv E\left(\frac{\partial y}{\partial x} \right) = \hat{\beta}_x + \hat{\beta}_{xz} z
\]

\[
\text{Est.Var.}\{\text{Est.Eff.}(x)\} \equiv E\left[\text{Var}\left\{ E\left(\frac{\partial y}{\partial x} \right) \right\} \right] = E\left[\text{Var}\left\{ \hat{\beta}_x + \hat{\beta}_{xz} z \right\} \right] = V\left\{ \hat{\beta}_x + \hat{\beta}_{xz} z \right\} = V\left\{ \hat{\beta}_x \right\} + V\left\{ \hat{\beta}_{xz} \right\} \cdot z^2 + 2 \cdot C\left(\hat{\beta}_x, \hat{\beta}_{xz} \right) z
\]

- In words… More Generally:
 \[\text{Var}(x'\hat{\beta}) = x' \left[V(\hat{\beta}) \right] x \]
From Hypotheses to Hypotheses Tests:
Does Y Depend on X or Z?

$$ENPP = \beta_0 + \beta_{SF}S\text{Frag} + \beta_{DM}D\text{Mag} + \beta_{SFDM}S\text{FragDMag} + \ldots + \varepsilon$$

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Mathematical Expression</th>
<th>Statistical test</th>
</tr>
</thead>
<tbody>
<tr>
<td>x affects y, or y is a function of (depends on) x</td>
<td>$y=f(x)$ $\frac{\partial y}{\partial x} = \beta_x + \beta_{xz}z \neq 0$</td>
<td>F-test: $H_0: \beta_x = \beta_{xz} = 0$</td>
</tr>
<tr>
<td>x increases y</td>
<td>$\frac{\partial y}{\partial x} = \beta_x + \beta_{xz}z > 0$</td>
<td>Multiple t-tests: $H_0: \beta_x + \beta_{xz}z \leq 0$</td>
</tr>
<tr>
<td>x decreases y</td>
<td>$\frac{\partial y}{\partial x} = \beta_x + \beta_{xz}z < 0$</td>
<td>Multiple t-tests: $\beta_x + \beta_{xz}z \geq 0$</td>
</tr>
<tr>
<td>z affects y, or y is a function of (depends on) z</td>
<td>$y=g(z)$ $\frac{\partial y}{\partial z} = \beta_z + \beta_{zx}x \neq 0$</td>
<td>F-test: $H_0: \beta_z = \beta_{zx} = 0$</td>
</tr>
<tr>
<td>z increases y</td>
<td>$\frac{\partial y}{\partial z} = \beta_z + \beta_{zx}x > 0$</td>
<td>Multiple t-tests: $H_0: \beta_z + \beta_{zx}x \leq 0$</td>
</tr>
<tr>
<td>z decreases y</td>
<td>$\frac{\partial y}{\partial z} = \beta_z + \beta_{zx}x < 0$</td>
<td>Multiple t-tests: $H_0: \beta_z + \beta_{zx}x \geq 0$</td>
</tr>
</tbody>
</table>
From Hypotheses to Hypotheses Tests:
Is Y’s Dependence on X Conditional on Z & v.v.? How?

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Mathematical Expression</th>
<th>Statistical test</th>
</tr>
</thead>
<tbody>
<tr>
<td>The effect of x on y depends on z</td>
<td>(y = f(xz, \cdot)) (\frac{\partial y}{\partial x} = \beta_x + \beta_{xz} z = g(z)) (\frac{\partial (\partial y/\partial x)}{\partial z} = \frac{\partial^2 y}{\partial x \partial z} = \beta_{xz} = 0)</td>
<td>t-test: (H_0: \beta_{xz} = 0)</td>
</tr>
<tr>
<td>The effect of x on y increases in z</td>
<td>(\frac{\partial (\partial y/\partial x)}{\partial z} = \frac{\partial^2 y}{\partial x \partial z} = \beta_{xz} > 0)</td>
<td>t-test: (H_0: \beta_{xz} \leq 0)</td>
</tr>
<tr>
<td>The effect of x on y decreases in z</td>
<td>(\frac{\partial (\partial y/\partial x)}{\partial z} = \frac{\partial^2 y}{\partial x \partial z} = \beta_{xz} < 0)</td>
<td>t-test: (H_0: \beta_{xz} \geq 0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Mathematical Expression</th>
<th>Statistical Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>seasonality</td>
<td>(y = f(xz, \cdot)) (\frac{\partial y}{\partial z} = \beta_z + \beta_{xz} x = h(x)) (\frac{\partial (\partial y/\partial z)}{\partial x} = \frac{\partial^2 y}{\partial z \partial x} = \beta_{xz} = 0)</td>
<td>t-test: (H_0: \beta_{xz} = 0)</td>
</tr>
<tr>
<td>The effect of x on y increases in x</td>
<td>(\frac{\partial (\partial y/\partial z)}{\partial x} = \frac{\partial^2 y}{\partial z \partial x} = \beta_{xz} > 0)</td>
<td>t-test: (H_0: \beta_{xz} \leq 0)</td>
</tr>
<tr>
<td>The effect of x on y decreases in x</td>
<td>(\frac{\partial (\partial y/\partial z)}{\partial x} = \frac{\partial^2 y}{\partial z \partial x} = \beta_{xz} < 0)</td>
<td>t-test: (H_0: \beta_{xz} \geq 0)</td>
</tr>
</tbody>
</table>

Discussion: Alternative views on how to explore this...

Does Y Depend on X, Z, or XZ?

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Mathematical Expression</th>
<th>Statistical Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>y is a function of (depends on) z, z, and/or their interaction</td>
<td>(y = f(x, z, xz))</td>
<td>F-test: (H_0: \beta_x = \beta_z = \beta_{xz} = 0)</td>
</tr>
</tbody>
</table>
Discussion re: determining if Z conditions effect of X, etc.

- Some suggest need find some Z0 & Z1 (in sample?) for which dY/dX differ significantly:
 - \(dY/dX|_{Z_0} = b_x + b_{xz}Z_0 \), \(dY/dX|_{Z_1} = b_x + b_{xz}Z_1 \)
 - So: \(dY/dX|_{Z_0} - dY/dX|_{Z_1} \)
 - \(= b_x + b_{xz}Z_0 - (b_x + b_{xz}Z_1) = b_{xz}(Z_0 - Z_1) \)
 - Wald test this signif diff zero =>
 - \(= b_{xz}(Z_0 - Z_1)/[\text{var}\{b_{xz}(Z_0 - Z_1)\}]^{.5} \)
 - \(= b_{xz}(Z_0 - Z_1)/[\text{var}\{b_{xz}\}(Z_0 - Z_1)^2]^{.5} \)
 - \(= b_{xz}(Z_0 - Z_1)/[\text{s.e.}\{b_{xz}\}(Z_0 - Z_1)] = b_{xz}/\text{s.e.}\{b_{xz}\} \)
 - I.e., just the standard (Wald) t-test on interactive coeff, and that’s because that coefficient is cross-derivative about which the hypothesis asks!
Use & Abuse of Some Common ‘Rules’

- **Centering to Redress Colinearity Concerns:**
 - Adds no info, so changes *nothing*; no help with colinearity or anything else; only moves substantive content of $x=0, z=0$.
 - Specifically, makes coeff. on x (z), effect when z (x) at sample-mean, the new 0. Do only if aids presentation.

- **Must Include All Components (if $x \cdot z$, then $x \& z$):**
 - Application of Occam’s Razor &/or scientific caution (e.g., greater flexibility to allow linear w/in lin-interax model), but
 - *Not* a logical or statistical requirement.
 - Safer rule than opposite & to check almost always, but
 - *Not* override theory & evidence, esp. if (insofar as strongly) agree to exclude...

- **Pet-Peeve: Linguistic Gymnastics to Dodge the Math**
 - “Main effect, Interactive effect”: *the* effect in model is dy/dx.
 - Discussion of [coefficients & s.e.’s] as if [effects & s.e.’s].
Presentation: Marginal-Effects / Differences Tables & Graphs

- Plot/Tabulate **Effects**, \(dy/dx\), over Meaningful &/or Illuminating Ranges of \(z\), with Conf. Int.’s

\[
d\hat{y} / dx \pm t_{df,p} \sqrt{Var(d\hat{y} / dx)} = \hat{\beta}_x + \hat{\beta}_{xz} z \pm t_{df,p} \sqrt{V(\hat{\beta}_x) + V(\hat{\beta}_{xz})z^2 + 2C(\hat{\beta}_x, \hat{\beta}_{xz})z}
\]

- Explain axes
- Explain shape
- Linear-interax:
 - Will cross 0 & be insig @ 0.
- Rescaling &
 - “main effect”
 - “centering”
 - Max(Asterisks)
Presentation: Expected-Value/Predictions Tables & Graphs

- **Predictions,** $E(y|x,z)$: notice how helpful in matrix form:

 \[
 \hat{y} \pm t_{df,p} \sqrt{Var(\hat{y})} = \\
 \hat{\beta}_0 + \hat{\beta}_x x + \hat{\beta}_z z + \hat{\beta}_{xz} xz \pm t_{df,p} \sqrt{\frac{V(\hat{\beta}_0) + V(\hat{\beta}_x)x^2 + V(\hat{\beta}_z)z^2 + V(\hat{\beta}_{xz})(xz)^2}{1}}
 \]

 \[
 + 2C(\hat{\beta}_0, \hat{\beta}_x)x + 2C(\hat{\beta}_0, \hat{\beta}_z)z + 2C(\hat{\beta}_0, \hat{\beta}_{xz})xz
 \]

 \[
 + 2C(\hat{\beta}_x, \hat{\beta}_z)xz + 2C(\hat{\beta}_x, \hat{\beta}_{xz})x^2z + 2C(\hat{\beta}_z, \hat{\beta}_{xz})xz^2
 \]

- Here’s one place a little matrix algebra would help:

 \[
 \hat{y} \pm t_{df,p} \sqrt{Var(\hat{y})} = \hat{\beta}_0 + \hat{\beta}_x x + \hat{\beta}_z z + \hat{\beta}_{xz} xz \pm t_{df,p} \sqrt{x'\hat{V}(\hat{\beta})x}
 \]

 \[
 = \hat{\beta}_0 + \hat{\beta}_x x + \hat{\beta}_z z + \hat{\beta}_{xz} xz \pm t_{df,p} \sqrt{[1 \ x \ z \ xz][\begin{array}{c}
 \hat{V}(\hat{\beta}_0) \\
 \hat{C}(\hat{\beta}_0, \hat{\beta}_x) \\
 \hat{C}(\hat{\beta}_0, \hat{\beta}_z) \\
 \hat{C}(\hat{\beta}_0, \hat{\beta}_{xz})
 \end{array}]}
 \]

 \[
 \begin{array}{c}
 \begin{array}{c}
 \hat{V}(\hat{\beta}_x) \\
 \hat{C}(\hat{\beta}_x, \hat{\beta}_z) \\
 \hat{C}(\hat{\beta}_x, \hat{\beta}_{xz})
 \end{array} \\
 \begin{array}{c}
 \hat{V}(\hat{\beta}_z) \\
 \hat{C}(\hat{\beta}_z, \hat{\beta}_{xz})
 \end{array} \\
 \hat{C}(\hat{\beta}_z, \hat{\beta}_{xz})
 \end{array}
 \begin{array}{c}
 \begin{array}{c}
 1 \\
 x \\
 z \\
 xz
 \end{array}
 \end{array}
 \]

- Use spreadsheet or stat-graph software (…list coming…)

Slide 27
Presentation:
Choose Illuminating Graphics & Base Cases

• Interpretation same regardless of “type” of interax: *effect* always \(\equiv \frac{dy}{dx}\), but present appropriately:
 - All combos Dummy, Discrete, or Continuous:
 • Dummy-Dummy\(\Rightarrow >4\) (or \(2\#\text{interacting variable}\)) points estimated, so box & whisker or histograms effective
 • Dummy-Continuous or Discrete(*few*)-Continuous\(\Rightarrow >2\) (or \# categories) slopes, so \(E(y|x,z)\) as line or \(dy/dx\) as box & whisker or histograms effective
 • Continuous – Continuous (or DiscMany)\(\Rightarrow \)Effect-lines best or (slices from) contour plot (i.e., slices from 3D)
 - Powers (e.g., \(X & X^2\Rightarrow \text{parabola}\)) viewable as interax w/ self; certain slope shifts too (e.g., \(dy/dx=a\) for \(x<x^0\) & \(b\) for \(x>x^0\) is \(x\) interact w/ dummy for condition)
Presentation²:
Choose Illuminating Graphics & Base Cases

• Interpretation same regardless of “type” of interax: effect always \(\equiv \frac{dy}{dx} \), but present appropriately…

 – Always plot over substantively revealing ranges.

 – Especially with sets of dummies, have several (identical) specification options:

 • (full-set or set-less-1): choose which (\& what base if use set-less-1) to abet presentation \& discussion

 • (overlapping or disjoint): choose to facilitate presentation \& discussion.

 – Scale Effectively: e.g., center only if \& to extent that aids presentation \& discussion (b/c centering does nothing else)
Presentation³: Choose Illuminating Graphics & Base Cases. Examples.

Dummy-Continuous Interaction: could also plot two $\text{E(}\text{Cands}\mid\text{Groups})$ lines, with c.i.’s, effectively.
Presentation: Choose Illuminating Graphics & Base Cases. Examples.

Dummy-Dummy Interaction: could also plot four $E(Supp|\text{gender,party})$ box-whiskers effectively.
Presentation: Choose Illuminating Graphics & Base Cases. Examples.

Presentation: Choose Illuminating Graphics & Base Cases. Examples.

Figure 14. Marginal Effect of Parliamentary Support for Government, Pairwise-Interaction Model, with 90% Confidence Intervals

\[\text{GovDur} = \beta_0 + \beta_{np}NP + \beta_{ps}PS + \beta_{pd}PD + \beta_{nppe}NP \times PS + \beta_{npdp}NP \times PD + \beta_{psdp}PD \times PS + \varepsilon \] [25]
Elaborations, Complications, & Extensions: Sample-Splitting v. (Dummy-)Interacting\(^1\)

- Split-sample (e.g., **unit-by-unit**) ≈ Full-Dum Interax:
 - Subsample by binary (or multinomial, e.g., by-unit in TSCS) category to estimate separately ≈ Include dummy for each category (or set-less-1) & interact each dummy with each \(x\) (and include \(x\) by itself also if set-less-1)
 - Coeff’s same (or equal substantive content if using set-1 dummies).
 - S.E.’s same except \(s^2\) part of OLS’s \(s^2(X'X)^{-1}\) versus \(s_i^2\) for splitting
 - Can make essentially exact by allow \(s_i^2\) (FWLS)
 - Subsample by hi/lo values of some non-nominal regressor is equiv to *nominalizing* the info in that var & dummy-interact
 - I.e., wasting information, when usually have too little (non-parametric or extreme-measurement-error arguments might justify)
 - So usually a bad idea… (*could discuss arg’s for it, under rare circ.*)
Elaborations, Complications, & Extensions: Sample-Splitting v. (Dummy-)Interacting

- Split-sample abets eyeballing, obfuscates statistical analysis, of the main point: the different effects by category.
 - What’s s.e/signif. of $b_{1i}-b_{1j}$? Need:
 \[
 s.e.(b_{1i} - b_{1j}) = \sqrt{V(b_{1i}) + V(b_{1j}) - 2C(b_{1i}, b_{1j})} = \sqrt{V(b_{1i}) + V(b_{1j})}
 \]
 - Luckily, cov=0, but, still, squaring 2 terms, sum, & root in head?
- Can choose full dummy set to mirror the split-sample estimates directly (& report that way, if wish) or the set-less-one to get significance of differences b/w samples directly (in the standard reported t-test)
 - Same thing, so choose form to optimize presentational efficacy.
- One advantage of hierarchical models (random coeff.) is how it affords, naturally, various positions b/w these extremes.
 - E.g., can “borrow strength” across units.
Typical 2nd-Moment Implications of Interactions

- \textit{DMag} permissive ele sys: \textbf{allow} more parties…

 \[NP = \beta_0 + \beta_1 DM + \varepsilon \ ; \ V(\varepsilon) = f(DM) \ , \text{e.g.,} \sigma_0 + \sigma_1 DM \]

- Few \textit{Veto Actors} \textbf{allow} greater policy-change…

\[y = \beta_0 + \beta_1 VP + \varepsilon \ ; \ V(\varepsilon) = f(VP) \ , \text{e.g.,} \sigma_0 + \sigma_1 VP \]

- I.e., these are Rndm-Coeff &/or Het-sked Props…

 \[NP = \beta_0 + \beta_1 DM + \beta_2 SF + \beta_3 DM \times SF + \varepsilon \ ; \ V(\varepsilon) = f(DM) \ , \text{e.g.,} \sigma_0 + \sigma_1 DM \]
Sandwich Estimators

\[EN = \beta_0 + \beta_1 SF + \beta_2 DM + \varepsilon \]

\[\frac{\partial EN}{\partial SF} = \beta_1 = \alpha_0 + \alpha_1 DM + \omega_1 \]

\[\frac{\partial EN}{\partial DM} = \beta_2 = \gamma_0 + \gamma_1 SF + \omega_2 \]

\[\Rightarrow EN = \beta_0 + (\alpha_0 + \alpha_1 DM + \omega_1) SF + (\gamma_0 + \gamma_1 SF + \omega_2) DM + \varepsilon \]

\[= \beta_0 + \alpha_0 SF + (\alpha_1 + \gamma_1) DM \times SF + \gamma_0 DM + \{ \varepsilon + \omega_1 SF + \omega_2 DM \} \]

\[= b_0 + b_1 SF + b_2 DM \times SF + b_3 DM + \varepsilon^* \]

- Notice the compound error term:
 - \(V(\varepsilon^*) \) will not be \(\sigma^2 I \) even if \(\varepsilon \) is, so \(V(b) \) doesn’t reduce to \(\sigma^2(X'X)^{-1} \), so OLS s.e.’s wrong.
 - Be OK on average (unbiased) & in limit (consistent) if element of \(V(\varepsilon^*) \) “orthogonal to \(xx' \)”
 - But def’ly not because \(\varepsilon^* \) includes \(x \) & \(z \), which part of \(X \)!
Sandwich Estimators

\[V(b_{LS}) = (X'X)^{-1}X'[V(\varepsilon + \omega_1 SF + \omega_2 DM)]X(X'X)^{-1} \]

• Brilliant insight of ‘robust’ (i.e., consistent) “sandwich” estimators:
 - Only need formula that accounts relation \(V(\varepsilon^*) \) to “\(X'X \)”, i.e., regressors, squares, & cross-prod’s involved in \(X'[\cdot]X' \)

• ⇒ “, robust” (or, in HM: “, cluster”) can work:

\[V(\varepsilon_i^*)_{RE} = \sigma^2 + \sigma_{\omega_1}^2 x_i^2 + \sigma_{\omega_2}^2 z_i^2 \]

so track \(e^2 \) rel \(xx' \) & \(zz' \) ⇒

White’s heteroskedasticity-consistent s.e.’s:

\[[\cdot] = \frac{1}{n} \sum_{i=1}^{n} e_i^2 x_i x_i' \]
Cross-Level Interactions

• Nothing much different if interactions between variables that vary at different levels (note, e.g., not many subscripts used above):
 – If CLRM assumptions apply, then unbiased, consistent, and efficient.

• Two main issues of concern, though:
 – *Un- or insufficiently modeled* parameter heterogeneity (incl. intercept): can cause bias, if pattern un/insuff. het. relates to \(\mathbf{X} \),
 – Non-spherical error-covariance matrix:
 » An efficiency & proper s.e.’s issue, not bias/consistency.
 » As just seen, surely will arise, & likely in different specific forms depending assumed error-components structure.
 – As before: Effects, their variances, symmetry of interactive propositions, that neither micro- nor macro-level coefficients=effects...all that applies...
Cross-Level Interactions:

\[\text{reg spend L.spend unem left growthpc depratio cdem trade lowwage fdi skand skand_unem} \]

\[
\begin{align*}
\text{spend}_{it} &= \beta_i^0 + \beta_i^l \text{left}_{it} + \ldots + \varepsilon_{it} \\
\beta_i^0 &= \alpha_0 + \alpha_1 \text{skand}_i + u_i^0 \\
\beta_i^l &= \gamma_0 + \gamma_1 \text{skand}_i + u_i^1 \\
\Rightarrow \text{spend}_{it} &= \alpha_0 + \alpha_1 \text{skand}_i + u_i^0 + \gamma_0 \text{left}_{it} \\
&\quad + \gamma_1 \text{left}_{it} \times \text{skand}_i + \text{left}_{it} u_i^1 + \ldots + \varepsilon_{it}
\end{align*}
\]

gathering terms:

\[
\begin{align*}
\text{spend}_{it} &= \alpha_0 + \ldots + \alpha_1 \text{skand}_i + \gamma_0 \text{left}_{it} \\
&\quad + \gamma_1 \text{left}_{it} \times \text{skand}_i + \left(u_i^0 + \text{left}_{it} u_i^1 + \varepsilon_{it} \right)
\end{align*}
\]

\[
\frac{\partial \text{spend}}{\partial \text{left}} = b_{\text{left}} + b_{\text{leftsk}} \text{skand} + u_i^1 \\
\frac{\partial \text{spend}}{\partial \text{skand}} = b_{\text{skand}} + b_{\text{leftsk}} \text{left}
\]

\[
V(\varepsilon_i^*)_{HM} = \sigma_0^2 + \sigma_1^2 x_i x_i' + \sigma_2^2 z_i z_i' \Rightarrow \text{cluster: } [\cdot] = \sum_{j=1}^{n} \left\{ (\sum_{i=1}^{n} e_{ij} x_{ij})' (\sum_{i=1}^{n} e_{ij} x_{ij}) \right\}
\]
From CLRM to Multilevel Model

\[\text{spend}_{it} = \beta_i^0 + \beta_i^l \text{left}_{it} + ... + \varepsilon_{it} \]

\[\beta_i^0 = \alpha_0 + \alpha_1 \text{skand}_i + u_i^0 \]

\[\beta_i^l = \gamma_0 + \gamma_1 \text{skand}_i + u_i^1 \]

- If CLRM assumptions apply, then OLS unbiased, consistent, and efficient.

 - Two main issues of concern:

 - Parameter heterogeneity: (see pictures on next slide)

 - systematic &/or stochastic (fixed v. rndm intercpt/coeff)

 - can cause bias if pattern unmodeled hetero relates to \(X \),

 - Non-spherical error cov-mat: an efficiency & proper s.e.’s issue, not a bias/consistency one

 - But “mere inefficiency” can be serious.

 - And accurate std err’s very important.
From the CLRM to HLM

- Examples of parameter heterogeneity that covaries w/ x values, so bias:

 - Note: FE v. RE both theoretically could cause bias if cov w/ x, but latter identified by orthogonality assumption, as we’ll see.
From the CLRM to RE Model

• Arbitrary R.E. Model: Odd that std. lin-interact model:
 - Assumes know \(y = f(X) + \text{error} \): \(y_i = \beta_0 + \beta_x x_i + \beta_z z_i + \beta_{xz} x_i z_i + \varepsilon_i \)
 - But \(\frac{dy}{dx} = f(z) \) w/o error!: \(\frac{dy}{dx} = \beta_x + \beta_{xz} xz \)
 - So, try:

\[
\begin{align*}
y & = \beta_0 + \beta_1 x + \beta_2 z + \varepsilon^0 \\
\frac{dy}{dx} & \equiv \beta_1 = \alpha_0 + \alpha_1 z + \varepsilon^1 \\
\frac{dy}{dz} & \equiv \beta_2 = \gamma_0 + \gamma_1 x + \varepsilon^2 \\
\Rightarrow y & = \beta_0 + \left(\alpha_0 + \alpha_1 z + \varepsilon^1 \right) x + \left(\gamma_0 + \gamma_1 x + \varepsilon^2 \right) z + \varepsilon^0 \\
& = \beta_0 + \alpha_0 x + \gamma_0 z + (\alpha_1 + \gamma_1) xz + (\varepsilon^0 + \varepsilon^1 x + \varepsilon^2 z)
\end{align*}
\]

 - \(\Rightarrow \) std. lin-interact...except compound error-term...

• Hierarchical/Multilevel/Mixed-Effect Model: Same model, except \(x_{ij} \) & \(z_j \), & specifically: \(\varepsilon^* = \varepsilon_{ij}^0 + \varepsilon_{ij}^1 x_{ij} + \varepsilon_{ij}^2 z_j \)
 - So also std lin-interact, but w/ diff compound-error structure

• These also called “error-component” models
From CLRM to Hierarchical Model

- Std. HLM: Same model, except \(x_{ij} \), \(z_j \), \(\mathcal{E} \)
 - So a std. lin-interact too, but with different compound-error stochastic properties.

\[
\text{spend}_{it} = \beta_i^0 + \beta_i^l \text{left}_{it} + \ldots + \varepsilon_{it}
\]

\[
\beta_i^0 = \alpha_0 + \alpha_1 \text{skand}_i + u_i^0
\]

\[
\beta_i^l = \gamma_0 + \gamma_1 \text{skand}_i + u_i^1
\]

\[
\Rightarrow \text{spend}_{it} = \alpha_0 + \alpha_1 \text{skand}_i + u_i^0 + \gamma_0 \text{left}_{it} + \gamma_1 \text{left}_{it} \times \text{skand}_i + \text{left}_{it} u_i^1 + \ldots + \varepsilon_{it}
\]

Gathering terms:

\[
\text{spend}_{it} = \alpha_0 + \ldots + \alpha_1 \text{skand}_i + \gamma_0 \text{left}_{it} + \gamma_1 \text{left}_{it} \times \text{skand}_i + \left(u_i^0 + \text{left}_{it} u_i^1 + \varepsilon_{it} \right)
\]

\[
\Rightarrow \frac{\partial \text{spend}}{\partial \text{left}} = b_{left} + b_{lfisk} \text{skand} + u_i^1 \quad \& \quad \frac{\partial \text{spend}}{\partial \text{skand}} = b_{skand} + b_{lfisk} \text{left}
\]
Properties of OLS under HLM Conditions

• Properties of OLS Estimates of Linear-Interaction Model if truly RE/HLM:

\[y = \beta_0 + \beta_x x + \beta_z z + \beta_{xz} xz + (\varepsilon^0 + \varepsilon^1 x + \varepsilon^2 z) = X\beta + (\varepsilon^0 + \varepsilon^1 x + \varepsilon^2 z) \]

• So, OLS coeff. est.'s still differ from truth by \(A\varepsilon^* \):

\[\hat{\beta}_{LS} = (X'X)^{-1} X'y = (X'X)^{-1} X'[X\beta + (\varepsilon^0 + \varepsilon^1 x + \varepsilon^2 z)] \]
\[= (X'X)^{-1} X'X\beta + (X'X)^{-1} X'(\varepsilon^0 + \varepsilon^1 x + \varepsilon^2 z) = \beta + (X'X)^{-1} X'\varepsilon^* \]

• So, OLS coeff. est.'s unbiased & consistent:

\[E(\hat{\beta}_{LS}) = E[\beta + (X'X)^{-1} X'\varepsilon^*] = E[\beta + (X'X)^{-1} X'(\varepsilon^0 + \varepsilon^1 x + \varepsilon^2 z)] \]
\[= \beta + (X'X)^{-1} X'E(\varepsilon^0 + \varepsilon^1 x + \varepsilon^2 z) = \beta + (X'X)^{-1} X'[E(\varepsilon^0) + E(\varepsilon^1)x + E(\varepsilon^2)z] \]
\[= \beta + (X'X)^{-1} X'[0 + E(\varepsilon^1)x + E(\varepsilon^2)z] = \beta + (X'X)^{-1} X'[0 + 0 + 0] = \beta. \quad Q.E.D. \]

- Note: only works for models w/ additively separable stochastic component; not necessarily for others (e.g., logit/probit)
Properties of OLS under HLM Conditions

• But, OLS s.e.’s will be wrong; not \(s^2(X'X)^{-1} \), but:

\[
V \left(\hat{\beta}_{LS} \right) = V \left[\beta + (X'X)^{-1} X' \varepsilon^* \right] \\
= V[\beta] + V \left[(X'X)^{-1} X' \varepsilon^* \right] + 2C \left[\beta, (X'X)^{-1} X' \varepsilon^* \right] \\
= 0 + V \left[(X'X)^{-1} X' \varepsilon^* \right] + 0 \\
= (X'X)^{-1} X' V \left(\varepsilon^* \right) X (X'X)^{-1} \\
= (X'X)^{-1} X' \left[V (\varepsilon^0 + \varepsilon^1 x + \varepsilon^2 z) \right] X (X'X)^{-1} \\
= (X'X)^{-1} X' \left[V (\varepsilon^0) + V (\varepsilon^1 x) + V (\varepsilon^2 z) \right] X (X'X)^{-1} \\
(\text{the covariance terms are assumed zero})
Sandwich Estimators

\[V(\hat{\beta}_{LS}) = (X'X)^{-1}X'[V(\varepsilon^0) + V(\varepsilon'x) + V(\varepsilon^2z)]X(X'X)^{-1} \]

- Not \(\sigma^2 I \) (even if each \(\varepsilon^* \) component is), so whole thing doesn’t reduce to \(\sigma^2 (X'X)^{-1} \), so OLS s.e.’s wrong.
- Be OK on avg (unbiased) & in limit (consistent) if that term varied in way “orthogonal to xx’”
 - But, as b4, def’ly not b/c \([\cdot]\) includes \(x \) & \(z \), which part of \(X \).
 - =brilliant insight of ‘robust’ (i.e., consistent) s.e. est’s:
 - Only need s.e. formula that accounts relation \(V(\varepsilon^*) \) to “xx’”, i.e., to the regressors, their squares, & cross-prod’s involved in \(X'[\cdot]X \)
- \(\Rightarrow \), robust” & “, cluster” can work (for RE & HLM, resp’ly)
 - \(\hat{V}(\hat{\beta})_{RE} = \sigma^2(I + xx' + zz') \) so track e^2 rel \(xx' \) & \(zz' \) \(\Rightarrow \)
 - i.e., White’s het-consistent s.e.’s
 - \(\hat{V}(\hat{\beta})_{HM} = \sigma_0^2 I + \sigma_1^2 xx' + \sigma_2^2 zz' \) sim but grpng \(\Rightarrow \)
 - i.e., het-cluster consistent s.e.’s
From the CLRM to HLM

\[
y = \beta_0 + \alpha_0 x + \gamma_0 z + (\alpha_1 + \gamma_1) xz + (\varepsilon^0 + \varepsilon^1 x + \varepsilon^2 z)
\]

\[
V(\hat{\beta}_{LS}) = (X'X)^{-1}X'[V(\varepsilon^0) + V(\varepsilon^1 x) + V(\varepsilon^2 z)]X(X'X)^{-1}
\]

• ⇒appropriate “, robust” & “, cluster” can work
 – I.e., *asymptotically* std errs right...
 - Note: generally need large \(n_j\), more than just large \(n\), for cluster.
 - I.e., *coefficients still inefficient*.
 - Want/need efficiency, or \(n_j\) low? HLM/RE or FGLS/FWLS.
 - Note: similarity RE and HLM, RE & FWLS. As suggests, RE only helps efficiency and only rightly does so if that’s all it does. (I.e., if the RE’s orthogonal to \(X\).)
 – I.e., “work” thusly for models with additively-separable stochastic components
 - As w/ all such “sandwich” estimators, logical disconnect in applying them to models w/o such separability.
Additional Materials

• Unlikely to cover
• Contents:
 – Interactions in nonlinear/QualDep models
 – Nonlinear Least Squares and complex context-conditionality. Applications:
 • “Multiple Hands on the Wheel”
 • “Veto Actors Bargaining in Common Pools” (Multiple Effects of Multiple Policymakers)
Elaborations, Complications, & Extensions:
Interax in QualDep (Inherently Interactive) Models

- **Probit/Logit Models w/ Interactions**
 - **Probit:** \[p(y = 1) = \Phi(x'\beta) \]
 - **Logit:** \[p(y = 1) = \frac{\exp(x'\beta)}{1 + \exp(x'\beta)} = [1 + \exp(-x'\beta)]^{-1} \]

- **Marginal Effects:** (nonlinear, so must specify @ what \(x \))
 - Start w/ \(x'\beta \) pure lin-add, model inherently inter. b/c S-shaped:
 - **Probit:**
 \[
 \frac{\partial p}{\partial x_k} = \frac{\partial \Phi(x'\beta)}{\partial x_k} = \phi(x'\beta) \cdot \frac{\partial x'\beta}{\partial x_k} = \phi(x'\beta) \cdot \beta_k
 \]
 - **Logit:**
 \[
 \frac{\partial p}{\partial x_k} = \frac{\partial \{e^{x'\beta}[1+e^{x'\beta}]^{-1}\}}{\partial x_k} = \frac{e^{x'\beta}}{1+e^{x'\beta}} \cdot \beta_k - \frac{e^{x'\beta}}{(1+e^{x'\beta})^2} \cdot e^{x'\beta} \cdot \beta_x
 \[
 = \left[\frac{e^{x'\beta}(1+e^{x'\beta})}{(1+e^{x'\beta})^2} - \frac{(e^{x'\beta})^2}{(1+e^{x'\beta})^2} \right] \cdot \beta_k = \frac{e^{x'\beta}}{(1+e^{x'\beta})^2} \cdot \beta_k
 \[
 = \frac{e^{x'\beta}}{1+e^{x'\beta}} \cdot \frac{1}{1+e^{x'\beta}} \cdot \beta_k = p \cdot (1 - p) \cdot \beta_k
 \]

- If \(x'\beta = \ldots + \beta_x x + \beta_z z + \beta_{xz} x z \ldots \Rightarrow \) same except \(dx'\beta / dx = \beta_x x + \beta_{xz} x z \); underlying propensity, i.e., movement along S-shape also interact explicitly \(x \) & \(z \). [Discuss meaning inherent v. explicit interax...]
 - **Probit:**
 \[\frac{\partial p}{\partial x} = \phi(x'\beta) \cdot (\beta_x + \beta_{xz} x z) \]
 - **Logit:**
 \[\frac{\partial p}{\partial x} = p \cdot (1 - p) \cdot (\beta_x + \beta_{xz} x z) \]
Elaborations, Complications, & Extensions: Interax in Nonlin/Qual (Inherently Interax) Models

- **Standard Errors?**

 - **Delta Method:**

 \[
 \text{Asym.Var.}(f(\hat{\beta})) \\
 \approx \left[\nabla_{\hat{\beta}} f(\hat{\beta}) \right]' V(\hat{\beta}) \left[\nabla_{\hat{\beta}} f(\hat{\beta}) \right]
 \]

- **Probit Marginal-Effect s.e.:**

 \[
 \partial \left\{ \phi(x'\hat{\beta}) \frac{\partial x'\hat{\beta}}{\partial x_1} \right\} \hat{V}(\hat{\beta}_1) \ldots \hat{C}(\hat{\beta}_1, \hat{\beta}_k) \\
 \quad \partial \left\{ \phi(x'\hat{\beta}) \frac{\partial x'\hat{\beta}}{\partial x_2} \right\} \hat{V}(\hat{\beta}_2) \ldots \hat{C}(\hat{\beta}_2, \hat{\beta}_k) \\
 \quad \ldots \\
 \quad \partial \left\{ \phi(x'\hat{\beta}) \frac{\partial x'\hat{\beta}}{\partial x_k} \right\} \hat{V}(\hat{\beta}_k) \quad \hat{C}(\hat{\beta}_1, \hat{\beta}_k) \ldots \hat{C}(\hat{\beta}_k, \hat{\beta}_k)
 \]

- **Logit:** same, except \(\hat{p}(1 - \hat{p}) \frac{\partial x'\hat{\beta}}{\partial x} \) replaces \(\phi(x'\hat{\beta}) \frac{\partial x'\hat{\beta}}{\partial x} \)

- For first-difference effects, similar, but need specify from what \(x \) to what \(x \), and not just at what \(x \).

- Or you could **CLARIFY**… or **mfx**…
Complex Context-Conditionality and Nonlinear Least-Squares

- **Complex Context Conditionality**: The effect of anything depends on most everything else. E.g.:
 - **Policymaking**:
 - Socioeconomic-structure of interests
 - Party-system and internal party-structures
 - Electoral system & Governmental system
 - Socio-economic realities linking policies to outcomes
 - **Voting**:
 - Voter preferences & informational environment
 - Party/candidate locations & informational environment
 - Electoral & governmental system
 - **Institutions**: Sets of institutions; effect each depends configuration others present (e.g., that core of VoC claim).
 - **Strategic Interdependence**: each actors’ action depends on everyone else’s; complex feedback (see Franzese & Hays....)
Empirically \(\Rightarrow\) Multicollinear Nightmare: Options?

- Ignore context conditionality (stay linear-additive):
 - Inefficient at best, biased more usually, and, anyway, context-conditionality is our interest!
- Isolate one or some very few interactions for close study; ignore rest (stay linear-interactive):
 - Same, to degree lessened by amount interax allow, but demands on data rise rapidly w/ that amount.
- “Structured Case Analysis”:
- **EMTITM**: Lean harder on thry/subst to specify more precisely the nature interax: functional form, precise measures, etc.
 - Refines question put to the data (changes default tests also).
 - *GIVEN* thry/subst. specification into empirical model, can estimate complex interactivity. Side benefits. But must *give*.
Nonlinear Least-Squares

Estimate NLS:
\[y = f(X, \beta) + \epsilon \text{ with } \epsilon \sim g(\epsilon) \]
\[\Rightarrow E(y) = f(X, \beta), \text{ so } y = f(X, \hat{\beta}) + \hat{\epsilon} \]
\[\Rightarrow \text{Min } _{\beta} \hat{\epsilon}'\epsilon \Rightarrow \text{Min } _{\beta} [y - f(X, \hat{\beta})]'[y - f(X, \hat{\beta})] \]
\[\Rightarrow \text{Min } _{\beta} SSE = y'y - y'f(X, \hat{\beta}) - f(X, \hat{\beta})'y + f(X, \hat{\beta})'f(X, \hat{\beta}) \]
\[\Rightarrow \text{FOC: } \nabla _{\beta} SSE = 0 \Rightarrow -2\nabla _{\beta} f(X, \hat{\beta})'y + 2\nabla _{\beta} f(X, \hat{\beta})'f(X, \hat{\beta}) = 0 \]

So, if, e.g., \(f(X, \beta) = X\beta \), then: \(X'y = X'X\hat{\beta} \Rightarrow \hat{\beta} _{LS} = (X'X)^{-1}X'y \), and if
\[V(\epsilon) \equiv \Omega = \sigma^2I, \text{ then } \hat{V}(\hat{\epsilon}) _{LS} = \frac{1}{n-k}[y - f(X, \hat{\beta} _{LS})]'[y - f(X, \hat{\beta} _{LS})] \] (also, as always).
That is, intuitively, writing \(\nabla _{\beta} f(X, \hat{\beta} _{LS}) \) as simply \(\nabla \), we have:
\[\hat{\beta} _{LS} = (\nabla \nabla)^{-1}\nabla y \]
\[\nabla (\hat{\beta} _{LS}) _{LS} = \nabla [(\nabla \nabla)^{-1}\nabla y] = (\nabla \nabla)^{-1}\nabla \nabla (y)(\nabla \nabla)^{-1}, \]
which if \(f(X, \hat{\beta} _{LS}) = X\hat{\beta} _{LS} \) meaning \(V = X \), & if \(\Omega = \sigma^2I \), gives the familiar
\[\hat{\beta} _{LS} = (X'X)^{-1}X'y \& \nabla (\hat{\beta} _{LS}) _{LS} = \sigma^2(X'X)^{-1}, \text{ as always.} \]

- NLS is BLUE under same conditions OLS, w/ \(\nabla \) for \(X \).
- Interpreting NLS (already know how): Effects = deriv’s & 1st-diff’s; s.e.’s by Delta Method or simulation…
Generalized Nonlinear Least-Squares

- **GNLS:**
 \[y = f(X, \beta) + \varepsilon \quad \text{with} \quad V(\varepsilon) = \sigma^2 \Omega \neq \sigma^2 I \]
 \[\Rightarrow \hat{\beta}_{GNLS} = (\nabla' \Omega^{-1} \nabla)^{-1} \nabla' \Omega^{-1} y \]
 \[\Rightarrow V(\hat{\beta}_{GNLS}) = (\nabla' \Omega^{-1} \nabla)^{-1} \nabla' \Omega^{-1} V(y) \Omega^{-1} \nabla (\nabla' \Omega^{-1} \nabla)^{-1} \]
 \[= (\nabla' \Omega^{-1} \nabla)^{-1} \nabla' \Omega^{-1} \Omega \Omega^{-1} \nabla (\nabla' \Omega^{-1} \nabla)^{-1} \]
 \[= (\nabla' \Omega^{-1} \nabla)^{-1} \nabla' \Omega^{-1} \nabla (\nabla' \Omega^{-1} \nabla)^{-1} = (\nabla' \Omega^{-1} \nabla)^{-1} \]

- **GNLS is BLUE in same cond’s NLS, but Ω for I.**
- **…don’t know Ω, so need consistent 1st stage (e.g., NLS)**
- **FGNLS is asymptotically BLUE:**
 \[y = f(X, \beta) + \varepsilon \quad \text{with} \quad V(\varepsilon) = \sigma^2 \Omega \neq \sigma^2 I \]
 \[\Rightarrow \hat{\beta}_{FGNLS} = (\nabla' \hat{\Omega}^{-1} \nabla)^{-1} \nabla' \hat{\Omega}^{-1} y \]
 \[\Rightarrow V(\hat{\beta}_{FGNLS}) = (\nabla' \hat{\Omega}^{-1} \nabla)^{-1} \nabla' \hat{\Omega}^{-1} V(y) \hat{\Omega}^{-1} \nabla (\nabla' \hat{\Omega}^{-1} \nabla)^{-1} \]
 \[= (\nabla' \hat{\Omega}^{-1} \nabla)^{-1} \]
Nonlinear Least-Squares & EMTI

- **EITM**: Empirical Implications of Theoretical Models
 - **Vision**: Theory ⇒ more, sharper predictions ⇒ better tests, which therefore inform theory more, which...

- **TMEI**: Theory-specified Models for Empirical Inference
 - **Vision**: Theory structures empirical models & relations b/w obs ⇒ specification & (causal) i.d. of empirical models

- **TIEM**: Theoretical Implications of Empirical Measures
 - **Vision**: Emp. regularities, findings, measures inform theory dev’p.

- **EMTI**: Empirical Models of Theoretical Intuitions
 - **Vision**: Intuitions derived from theoretical models specify empirical models. I.e., empirical specification to match intuitions, not model.

- **Note**: Strongly counter some alternative moves stats & econometrics, & related; there toward non-parametric, matching, & experimentation—there, “model-dependence” a 4-letter word. Alternative audiences & rhetorical purposes?
 - Convince skeptic some causal effect exists, vs.
 - For the convinced, give richer, portable model of how world works.
Nonlinear Least-Squares:
"Multiple Hands on the Wheel" Model (Franzese, PA ‘03)

- Monetary Policy in Open & Institutionalized Econ
 - Key C&IPE Insts/Struct: CBI, ER-Regime, Mon. Open
 - CBI ≡ Govt Delegated Mon Pol to CB
 - Peg ≡ Domestic (CB&Gov) Delegate to Peg-Curr (CB&Gov)
 - FinOp ≡ Dom cannot delegate b/c effectively del’d to globe
 - Effect of ev’thing to which for. & dom. mon. pol-mkrs would respond diff’ly depends on combo insts-structs & v.v., & through intl inst-structs, for. on dom. & v.v.

\[
\pi = \begin{cases}
P \cdot E \cdot C \cdot \pi_1(X_1) + P \cdot E \cdot (1-C) \cdot \pi_2(X_2) \\
+P \cdot (1-E) \cdot C \cdot \pi_3(X_3) + P \cdot (1-E) \cdot (1-C) \cdot \pi_4(X_4) \\
(1-P) \cdot E \cdot C \cdot \pi_5(X_5) + (1-P) \cdot E \cdot (1-C) \cdot \pi_6(X_6) \\
+(1-P) \cdot (1-E) \cdot C \cdot \pi_7(X_7) + (1-P) \cdot (1-E) \cdot (1-C) \cdot \pi_8(X_8)
\end{cases}
\]

- Multicolinear Nightmare:
 - 2^3 = 8 inst-struct conds, \(i\) times \(k\) factors per \(\pi_1(X_i)\) if lin-interact
 - Exponentially more if all polynomials; \(k!/(k-2)!\) if all pairs.
 - Good thing can lean on some thry to specify more precisely!
Nonlinear Least-Squares: “Multiple Hands on the Wheel” Model

- CB & Govt Interaction (Franzese, AJPS ‘99):

\[
E(\pi) = c \cdot \pi_c(x_c) + (1 - c) \cdot \pi_g(x_g)
\]

\[
\pi_c = \pi \quad \pi_g(x_g) = \pi_g(GP, UD, BC, TE, EY, FS, AW, \pi_a)
\]

- Full Monetary Exposure & Atomistic \implies zero domestic autonomy \implies

\[
\begin{align*}
\pi_1(x_1) &= \pi_2(x_2) = \pi_5(x_5) = \pi_6(x_6) = \pi_a \\
\Rightarrow & \quad \begin{cases}
E \cdot \pi_a + P \cdot (1 - E) \cdot C \cdot \pi_3(x_3) + P \cdot (1 - E) \cdot (1 - C) \cdot \pi_4(x_4) \\
+ (1 - P) \cdot (1 - E) \cdot C \cdot \pi_c + (1 - P) \cdot (1 - E) \cdot (1 - C) \cdot \pi_g(x_8)
\end{cases}
\end{align*}
\]

- s.t. that, full e.r.fix \implies CB&Govt match peg \implies

\[
\begin{align*}
\pi_3(x_3) &= \pi_4(x_4) = \pi_p \\
\Rightarrow & \quad \begin{cases}
E \cdot \pi_a + P \cdot (1 - E) \cdot \pi_p \\
+ (1 - P) \cdot (1 - E) \cdot \left[C \cdot \pi_c + (1 - C) \cdot \pi_g(x_8) \right]
\end{cases}
\end{align*}
\]
Nonlinear Least-Squares:
“Multiple Hands on the Wheel” Model

- Compact & intuitive, yet gives all theoretically expected interactions, in the form expected

\[
\pi = E \cdot \pi_a + (1 - E) \cdot \left\{ P \cdot \pi_p + (1 - P) \cdot \left[C \cdot \pi_c + (1 - C) \cdot \pi_g (X_g) \right] \right\}
\]

\[
\frac{\partial \pi}{\partial E} = \pi_a \left(P^*, E^*, C^*, X^*, \pi_a^* \right) - \left\{ P \cdot \pi_p \left(P^*, E^*, C^*, X^*, \pi_p^* \right) + (1 - P) \cdot \left[C \cdot \pi_c + (1 - C) \cdot \pi_g (X_g) \right] \right\}
\]

\[
\frac{\partial \pi}{\partial P} = (1 - E) \cdot \left\{ \pi_p \left(P^*, E^*, C^*, X^*, \pi_p^* \right) - \left[C \cdot \pi_c + (1 - C) \cdot \pi_g (X_g) \right] \right\}
\]

\[
\frac{\partial \pi}{\partial C} = (1 - E) \cdot \left\{ (1 - P) \cdot \left[\pi_c - \pi_g (X_g) \right] \right\}
\]

\[
\frac{\partial \pi}{\partial X} = (1 - E) \cdot \left\{ (1 - P) \cdot \left[(1 - C) \cdot \frac{\partial \pi_g}{\partial X} \right] \right\}
\]

\[
\frac{\partial \pi}{\partial X^*} = E \cdot \frac{\partial \pi_a}{\partial X^*} + (1 - E) \cdot \left\{ P \cdot \frac{\partial \pi_p}{\partial X^*} + (1 - P) \cdot \left[(1 - C) \cdot \frac{\partial \pi_g}{\partial \pi_a} \cdot \frac{\partial \pi_a}{\partial X^*} \right] \right\}
\]
Nonlinear Least-Squares:

“Multiple Hands on the Wheel” Model

- Effectively Estimable, yet gives all theoretically expected interactions, in the form expected

\[E(\pi) = B_0 + \beta_e E \cdot \beta_{e},\pi_a + (1 - \beta_e E) \left[\left(\beta_{gp} GP + \beta_{ey} EY + \beta_{up} UP + \beta_{bc} BC + \beta_{aw} AW + \beta_{fs} FS + \beta_{te} TE + \beta_a \pi_a \right) \right] \]

- Just 14 parameters (plus intercepts & dynamics, assuming those constant), just 3 more than lin-add!

- Parameters substantive meaning, too:
 - Degree to which...constrains certain set of actors.
 - Yields est. of inflation-target hypothetical fully indep CB
 - \(\Rightarrow \) general strategy for estimating/measuring unobservables
 - If know role factor will play & explanators of factor well enough, can estimate unobservables conditional on both those theories, if both powerful enough & enough empirical variation.
Nonlinear Least-Squares:
“Multiple Hands on the Wheel” Model

- Neat, but does it work? (Try it! Data online; stata: help nl). Estimated Equation, w/ Std. Errs.:

\[E(\pi) = \begin{pmatrix}
0.53^{.05} + 0.55^{.05} \pi_{t-1} - 0.12^{.04} \pi_{t-2} + 0.44^{.14} E \cdot \pi_a + \\
0.1^{.05} SP \cdot 0.59^{.07} \pi_{sp} + 0.22^{.12} MP \cdot 0.59^{.07} \pi_{mp} + \\
(1 - 0.44^{.14} E) \begin{pmatrix}
1.0^{.05} SP & 0.22^{.12} MP \\
1.0^{.05} SP & 0.22^{.12} MP \\
(1 - 0.44) & (1 - 0.44) \\
(1 - 0.44) & (1 - 0.44)
\end{pmatrix}
\] + 1.0^{.11} C(-0.59^{.12}) + \\
\begin{pmatrix}
-0.60^{.30} GP + 2.6^{.13} EY + 16^{.46} UP - 11^{.24} BC \\
-0.60^{.30} GP + 2.6^{.13} EY + 16^{.46} UP - 11^{.24} BC \\
+ 1.2^{.49} AW - 1.1^{.30} FS - 8.2^{.49} TE + 0.64^{.24} \pi_a
\end{pmatrix} \]

- Estimated Effects (highly context-conditional):

\[E\left(\frac{d\pi}{dC}\right) = (1 - 0.44 \cdot E) \cdot \left\{(1 - b_p \cdot P) \cdot [(0.6GP - 2.6EY - 16UP + 11BC - 1.2AW + 11FS + 8.2TE - 0.64\pi_a) - 0.59]\right\}
\]

\[E\left(\frac{d\pi}{dx}\right) - (1 - 0.44E) \cdot \left\{(1 - SP - 0.22MP) (1 - C) b_x \right\}\]

\[E\left(\frac{d\pi}{dP}\right) = (1 - 0.44E) b_p \cdot \left\{59\pi_p - ((1 - C)(-0.6GP + 2.6EY + 16UP - 11BC + 1.2AW - 11FS - 8.2TE + 0.64\pi_a) - 0.59)\right\}
\]

\[E\left(\frac{d\pi}{dE}\right) = 0.44 \cdot \{\pi_a - \left\{b_p \cdot P \cdot 59\pi_p + (1 - b_p \cdot P) \cdot [(1 - C)(-0.6GP + 2.6EY + 16UP - 11BC + 1.2AW - 11FS - 8.2TE + 0.64\pi_a) - 0.59]\right\}\}
\]
Nonlinear Least-Squares: “Multiple Hands on the Wheel” Model

Table 2: Estimated Effects of Domestic Political-Economic Conditions, $d\pi/x$, as Function of Central Bank Autonomy, CBA, International Monetary Exposure, E, and Exchange-Rate Regime, P

<table>
<thead>
<tr>
<th></th>
<th>Little Exposed (E Float)</th>
<th>Moderately Exposed (E Float)</th>
<th>Highly Exposed (E Float)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basket Peg</td>
<td>Simple Peg</td>
<td>Basket Peg</td>
</tr>
<tr>
<td>central 0.26</td>
<td>+1.56379</td>
<td>+1.22461</td>
<td>+1.35269</td>
</tr>
<tr>
<td></td>
<td>+0.00009</td>
<td>+1.05953</td>
<td>+0.00007</td>
</tr>
<tr>
<td></td>
<td>+0.67837</td>
<td>+0.53129</td>
<td>+0.58732</td>
</tr>
<tr>
<td></td>
<td>+0.00004</td>
<td>+0.45925</td>
<td>+0.00003</td>
</tr>
<tr>
<td>bank 0.46</td>
<td>+1.12057</td>
<td>+0.87744</td>
<td>+0.97050</td>
</tr>
<tr>
<td></td>
<td>+0.00006</td>
<td>+0.75939</td>
<td>+0.00005</td>
</tr>
<tr>
<td></td>
<td>+0.49528</td>
<td>+0.38822</td>
<td>+0.00005</td>
</tr>
<tr>
<td>auton. 0.66</td>
<td>+0.67837</td>
<td>+0.53129</td>
<td>+0.58732</td>
</tr>
<tr>
<td></td>
<td>+0.00004</td>
<td>+0.45925</td>
<td>+0.00003</td>
</tr>
</tbody>
</table>

Estimated Impact of a Post-Election Year ($d\pi/d\varepsilon_Y$)

<table>
<thead>
<tr>
<th></th>
<th>Estimated Impact of 10% Increase in Union Density ($0.1d\pi/dUP$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>central 0.26</td>
</tr>
<tr>
<td></td>
<td>+0.9855</td>
</tr>
<tr>
<td></td>
<td>+0.0005</td>
</tr>
<tr>
<td></td>
<td>+0.3711</td>
</tr>
</tbody>
</table>

Estimated Impact of 1% Increase in Financial-Sector Employment-Share ($d\pi/dFS$)

	-0.6618	-0.5212	-0.0003
	-0.5716	-0.4511	-0.0003
	-0.2509	-0.1906	-0.0001

Estimated Impact of 1% Increase in Average Inflation Abroad ($d\pi/d\pi$)

	+0.4914	+0.4113	+0.1105
	+0.5012	+0.4311	+0.1707
	+0.3206	+0.2806	+0.1706

Notes: These are first-year effects, meaning before the estimated dynamics unfold. Standard errors noted in superscripts.
Nonlinear Least-Squares: “Multiple Hands on the Wheel” Model

Figure 1. Estimated Partisan Cycles in the Linear & Theoretically Informed Models at High & Low CBA, E, & MP
Nonlinear Least-Squares:
“Multiple Hands on the Wheel” Model

Figure 2: Estimated Domestic-Inflation Effect of Actual or Counter-Factual ΔP in 21 Countries, 1957-90. Estimates plotted for $\Delta \text{INF}/\Delta \text{SP}$ at the values of all other variables in the equation actually occurring in that country-year. For counter-factual pegs, peg country assumed to have OECD-average inflation that year. Shading separates countries and extends from 1955 to 1990 in each country, left to right.
Multiple Policymakers: Veto Actors Bargaining in Common Pools

- Multiple implications for policy outcomes dispersal of policymaking-authority across diverse actors:
 - Veto-Actor Theory (Tsebelis ‘02) emphasizes:
 - Privileges S.Q., & so retards policy adjustment, reduces change.
 - Collective-Action/Common-Pool Theories (WSJ ‘81):
 - Externalities & so overexploit/underinvest public goods.
 - Bargaining & Delegation Theories rather stress:
 - Bargaining Strengths/Positions, yielding Weighted Compromise.

- This project attempts a synthesis:
 - Disting. theoretically/conceptually many effects of # (fragment.) & diversity (polar., partisan) policymakers.
 - Empirical model of many effects distinctly & effectively.
 - Preliminary application to evolution fiscal policy (pub debt) in developed democracies, 1950s-90s.
Veto Actors: Deadlock, Delayed Stabilization, & Policy-Adjustment Retardation

- Tsebelis (‘95b, ‘99, ‘00, ‘02): Essential Argument:
 - ↑ # &/or ideological/interest polarization of pol-mkng actors whose approval required to ΔSQ, i.e., *veto actors*, ⇒, loosely, ↓ probability &/or magnitude policy Δ.
 - I.e., strictly, as size W(SQ) ↓, which generally does as # &/or polarization VA ↑, range *possible* policy Δ(SQ) ↓.
 - ⇒ following empirical prediction (Tsebelis 2002, Fig. 1.7):
 - Suggests both mean/expected policy-Δ & variance pol & pol-Δ ↑↓ as size of W(SQ) ↑↓ (aside: why only suggests)
 - No prediction of pol-level or of direction pol-Δ, only of E(|Δp|), V(Δp).
Veto-Actor Implications

- ↑ # (Frag) & Polar of VA Privileges SQ ⇒
 - Retards policy-adjustment rates/delays stabilization,
 - ↓ range of possible policy-Δ, & so, possibly,
 - ↓ magnitude/variance policy- Δ (1st- & 2nd-order E(Δ)).

- Results, e.g. in fiscal policy, deficits & debts; originally mixed, but tighter specify thry into empirical analysis:
 - (F '00, '02) **How model:** policy-adjustment-rate effect =
 conditional coefficient on LDV in dynamic model, not level.
 - (F '00, '02) **How measure:** frag & polar in VA theory =
 - raw #, not eff. # (size-wtd) VA;
 - max range pref’s, not V(pref’s) or sd(pref’s), (size-wtd)

- ⇒ Model: \(y_t = \ldots + \theta(\#VA, \text{Range}\{\text{pref}(VA)\}) \times y_{t-1} \ldots \)
 &/or \(V(y_t) = f(\#, \text{Range}) \) ⇒ empirical support.
Common-Pool Theory (1)

 - Benefits concentrate district i: $B_i = f(C)$, $f' > 0$ & $f'' < 0$
 - Costs disperse across n districts: $C_i = C/n$
 - **optimal project-size from i’s view ↑ in # districts**: $f'(C^*) = 1/n$
 (...log-linearly?)

- **Alternative Decision Rules/Processes [...] ⇒**
 - [...] *Law of 1/n* is general, & stronger as legislative behavior more Universalistic & less Minimal-Winning, which tendency ↑ as rational ignorance, winning-coalition uncertainty, or legislative-rule closure to amend or veto ↑.
 - E.g., PubRev = common pool for n reps, overused to distribute bens; this CA prob worsens “proportionally” by *law 1/n*, i.e. at rate b/w those at which $(n+1)/2n$ (MWC) & $1/n$ (uni) ↓ in n

![Graph showing Minimum-Winning-Coalition Decision-Making and Universalistic Decision-Making](Slide 68)
Manifestations of Common Pools

- Velasco (‘98, ‘99, ‘00): inter-temporal totality pub rev is C-P to today’s policymakers ⇒ deficits & debts also law of 1/n
- Peterson & co’s, Treisman: federalism ⇒ multiple tax authorities ⇒ several common-pool problems:
 - Inter-jurisdiction competition (w/ high factor mobility) ⇒ C-P of investment resources ⇒ over-fishing: taxes too low.
 - National govt as lender last resort ⇒ subnational jurisdictions see fed guarantee & funds as common pool ⇒ excessive borrowing by subnat’l units. (e.g., EU, EMU & Euro ⇒ common pools…)
- Again, should be quite general:
 - Anything that gains set of pol-makers credit ⇒ underinvested as ↑n
 - Anything that gains set of pol-makers blame ⇒ overexploited as ↑n
- E.g., (thry 2nd-best), ELECTIONEERING:
 - Magnitude incentive electioneer fades w/ n (see, e.g., Goodhart)
 - Control over electioneering diminishes w/ n.
- Notice: CP not arise in Tsebelis’ VA Theory b/c # & pref’s of VA’s exog & predetermined, whereas in CP theory: prefs=f(#).
Modeling Common-Pool Effects

- CP Effects distinguishable from VA Effects:
 - C-P Effects on *levels*, not (as in VA) in dynamics.
 - Proportional to $1/n$ for *equal-sized* actors. Standard Olsonian encompassingness logic \Rightarrow proper n here *is* size-weighted (effective & s.d./var.)
 - Fractionalization (#) & esp. polarization (het.) relate to VA effects; CP, conversely, relate primarily to #, although het. can exacerbate some CA probs.

- Suggests Proper Model of Policy-Response to some public demand for, $x_1 \beta_1$, or against, $x_2 \beta_2$:
 - $\ldots + (x_1 \beta_1)(1-f(ln(Eff#)) + (x_2 \beta_2)(1+f(ln(Eff#)) + \ldots$
 - *Same* $f(ln(Eff#))$, b/c overexploit/underinvest same
Bargaining, Delegation, & Compromise

- **Explicit extensive-form delegation & bargaining games:** huge theoretical & empirical literature

- **F (‘99, ‘02, ‘03):** less context-specific empirical strategy...
 - Because broad comparativist seek thry that *travels*, not that requires different model each context.

- **Offering is roughly equivalent Nash Bargaining.**
 - Most ext forms ⇒ eqbm bounded by actors’ ideal pts:
 - Convex set/hull, upper-contour set (=core of coop. game thry),
 - So like Tsebelis, but further, though short of explicit ext-form
 - Policy outside that range possible,
 - e.g., if uncertainty resolved unfavorably,
 - but that ⇒ highly unlikely that E(pol) outside this range
 - Thus, E(pol)=some convex-combo (wtd-avg) pol-mkrs’ ideals ⇒ convex-combo emp. models ≈ compromise
 - If Nash Bargain, e.g., (n.b. NB=coop. game-thry but equiv. sev. reasonable ext-form non-coop barg. games: Rubinstein ‘82), ⇒ (geometric) *wtd-influence pol-mkng*; i.e., simple wtd-avg.
Empirical Manifestations & Model of Compromise Policymaking

- **Re: def’s & debt, Cusack (‘99, ‘01; cf., Clark ‘03)**
 - *Arg:* left more Keynes-active counter-cyc; right less, even pro-cyc
 - *Add Nash-Barg Model ⇒ wtd-avg pol-mkr partisanship conditions ° Keynesian cntr-cyc fisc-pol response to macroecon.*

- **Empirical Implementation:**
 - **Ideally:**
 - Describe barg power party i as $f(\text{charact’s } i \& \text{ barg envir, } j, \Rightarrow f(v_{ij})$
 - Desc. pol response to conditions x_k if i sole pol-mkng control: $q_i(x_k)$
 - Then embed Nash-Barg sol’n, $\Sigma_i f(v_{ij})q_i(x_k)$, in emp. model to est.
 - **Currently:**
 - Assume wtd-avg compromise outcome pre-estimation.
 - I.e., simply assume by measure & specification that Policy responds to $WtdPartisanship\times CurrGovt \times MacroeconomicConditions$.
Empirical Model of the Theoretical Synthesis (1)

- Different aspects of policy-maker fragmentation, polarization, & partisanship:
 - V-A Effects: raw # (frag) and ideological ranges (polar)
 - C-P Effects: eff # (frag) &; maybe, ideol. s.d./var (polar)
 - D-B Effects: power-wtd mean ideologies (partisanship)

- Different ways these distinct effects manifest in pol:
 - V-A (primarily) to slow pol-adjust (delay stabilization);
 - C-P induces over-draw from common resources (incl. from future as in debt); under-invest in common properties (less electioneering), log-proportionately
 - D-B induces convex-combinatorial (compromise) policies, incl. greater left-activist/right-conservative Keynesian-countercyclical/conservative pro-cyclical, in proportion to degree left/right controls policymaking
Empirical Model of the Theoretical Synthesis (2)

...implies specification where:

- Abs # VA & ideol range modify pol-adjust rates
- (log) Eff # pol-mkrs & s.d. ideol (wtd measures) gauge C-P prob in electioneering (+debt-lvl effect?)
- Some barg process among partisan pol-mkrs (e.g., Nash \(\Rightarrow \) wtd-influence) determines combo reflected in net policy responsiveness to macro (° K-activism)

\[
D_{it} = \alpha_i + \left(1 + \rho_n \text{NoP}_{it} + \rho_{ar} \text{ARwiG}_{it}\right) \times \left(\rho_1 D_{i,t-1} + \rho_2 D_{i,t-2} + \rho_3 D_{i,t-3}\right) \\
+ \left(\beta_{\Delta Y} \Delta Y_{i,t} + \beta_{\Delta U} \Delta U_{i,t} + \beta_{\Delta P} \Delta P_{i,t}\right) \times \left(1 + \beta_{cg} \text{CoG}_{it}\right) \\
+ \left(\gamma_{e1} \text{E}_{it} + \gamma_{e2} \text{E}_{i,t-1}\right) \times \left(1 + \gamma_{en} \text{ENoP}_{it} + \gamma_{sd} \text{SDwiG}_{it}\right) + x'_i \eta + z'_i \omega + \epsilon_{it}
\]
Empirical Model Specification & Data

\[D_{it} = \alpha_i + (1 + \rho_n \text{NoP}_{it} + \rho_{ar} \text{ARwiG}_{it}) \times (\rho_1 D_{i,t-1} + \rho_2 D_{i,t-2} + \rho_3 D_{i,t-3}) + x' \eta + z' \omega + \varepsilon_{it} \]

- \(D_{it} \) = Debt (%GDP);
- \(\text{NoP} & \text{ARwiG} = \) raw Num of Prtys in Govt & Abs Range w/i Govt:
 - VA conception, so modify dynamics. Expect \(\rho_n \) & \(\rho_{ar} > 0 \).
 - By thry & for efficiency: modify all lag dynamics same.
- CoG (govt center, left to right, 0-10):
 - Modifies response to macroecon (equally, by thry & for eff’cy) : \(\beta_{cg} < 0 \).
 - Macroec: \(\Delta Y = \) real GDP growth; \(\Delta U = \) \(\Delta \) unemp rate; \(\Delta P = \) infl rate.
- \(x' \eta \) = controls: set pol-econ cond’s response to which not partisan-differentiated or gov comm-pool: (e.g., E(real-int)-E(real-grow), \(\text{T}o\text{T} \))
- ENoP & SDwiG = Effective Num of Prtys in govt & Std Dev w/i Govt:
 - Frag & Polar by \(\text{wtd-influence} \) concept. CP lvl-effects modify (at same rate) electioneering, \(E_t \), pre-elect-year, & \(E_{t-1} \), post-elect-yr.: \(\gamma_{en} \) & \(\gamma_{sd} < 0 \).
- \(z' \omega \) = set of constituent terms in the interactions:
 - ENoP, SDwiG \(\text{may} \) have positive coeff’s by CP effect lvl debt, but issue is \(\text{temporal fract} \) more than curr. govt fract. Thry o/w says omit.
| | Coeff. | Std. Err. | t-Stat. | Pr($T>|t|$) |
|--------------------------|--------|-----------|---------|-------------|
| **Lagged** | | | | |
| D_{t-1} | 1.212 | 0.060 | 20.112 | 0.000 |
| D_{t-2} | -0.153 | 0.085 | -1.792 | 0.074 |
| D_{t-3} | -0.121 | 0.045 | -2.677 | 0.008 |
| **Dependent Variables** | | | | |
| ρ_n (veto-actor effect: fractionalization) | **0.007** | **0.006** | **1.089** | **0.277** |
| ρ_{ar} (veto-actor effect: polarization) | **-0.000** | **0.006** | **-0.013** | **0.990** |
| **Macroeconomic Conditions** | | | | |
| ΔY | -0.336 | 0.111 | -3.033 | 0.003 |
| ΔU | 0.992 | 0.308 | 3.219 | 0.001 |
| ΔP | -0.188 | 0.063 | -2.965 | 0.003 |
| β_{cg} (partisan-compromise bargaining) | **-0.037** | **0.037** | **-0.988** | **0.323** |
| x_1 (open) | 15.891 | 5.279 | 3.010 | 0.003 |
| x_2 (ToT) | 0.388 | 1.744 | 0.222 | 0.824 |
| x_3 (open · ToT) | -10.681| 5.156 | -2.072 | 0.039 |
| x_4 (dxrig) | -0.036 | 0.066 | -0.544 | 0.587 |
| x_5 (gy) | 2.064 | 1.094 | 1.886 | 0.060 |
| **Pre- and Post-Electoral Indicators** | | | | |
| E_t | 0.687 | 0.568 | 1.210 | 0.227 |
| E_{t-1} | 1.490 | 0.645 | 2.310 | 0.021 |
| γ_{en} (common-pool effect: fractionalization) | **-0.547** | **0.182** | **-3.001** | **0.003** |
| γ_{sd} (common-pool effect: polarization) | **0.573** | **0.486** | **1.179** | **0.239** |
| z_1 (CoG) | 0.051 | 0.131 | 0.390 | 0.697 |
| z_2 (ENoP) | 0.281 | 0.446 | 0.629 | 0.530 |
| z_3 (SDwG) | 0.542 | 0.437 | 1.242 | 0.215 |
| z_4 (NoP) | 0.181 | 0.277 | 0.654 | 0.514 |
| z_5 (ARwG) | -0.312 | 0.259 | -1.205 | 0.228 |

Summary Statistics

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N (Deg. Free)</td>
<td>735</td>
<td>(691)</td>
<td>s_e^2</td>
<td>2.525</td>
</tr>
<tr>
<td>R^2 (\bar{R}^2)</td>
<td>0.991</td>
<td>(0.990)</td>
<td>DW-Stat.</td>
<td>2.101</td>
</tr>
</tbody>
</table>
Pace Brambor et al. (‘06), but joint-significance of multiple-policymaker conditioning effects \((\gamma_{en}, \gamma_{sd}, \rho_{n}, \rho_{ar}, \beta_{cg})\) overwhelmingly rejects excluding \((p \approx .001)\), whereas joint-sig coeff’s on constit. terms, \(z\), clearly fails reject \((p \approx .602)\) exclusion. (Almost) All theory says should be zero, so...

| Lagged Variables | Coeff. | Std. Err. | \(t\)-Stat. | \(Pr(T > |t|)\) |
|------------------|--------|-----------|-------------|----------------|
| \(D_{t-1}\) | 1.207 | 0.060 | 20.290 | 0.000 |
| \(D_{t-2}\) | -0.158 | 0.085 | -1.851 | 0.065 |
| \(D_{t-3}\) | -0.117 | 0.045 | -2.577 | 0.010 |

| Dependent Variables | Coeff. | Std. Err. | \(t\)-Stat. | \(Pr(T > |t|)\) |
|---------------------|--------|-----------|-------------|----------------|
| \(\rho_{n}\) (veto-actor effect: fractionalization) | 0.011 | 0.005 | 2.369 | 0.018 |
| \(\rho_{ar}\) (veto-actor effect: polarization) | -0.002 | 0.004 | -0.437 | 0.662 |

| Macroeconomic Conditions | Coeff. | Std. Err. | \(t\)-Stat. | \(Pr(T > |t|)\) |
|--------------------------|--------|-----------|-------------|----------------|
| \(\Delta Y\) | -0.375 | 0.087 | -4.332 | 0.000 |
| \(\Delta U\) | 1.095 | 0.286 | 3.829 | 0.000 |
| \(\Delta P\) | -0.207 | 0.053 | -3.889 | 0.000 |

| \(\beta_{cg}\) (partisan-compromise bargaining) | Coeff. | Std. Err. | \(t\)-Stat. | \(Pr(T > |t|)\) |
|--|--------|-----------|-------------|----------------|
| \(x_{1}\) (open) | 16.128 | 5.314 | 3.035 | 0.002 |
| \(x_{2}\) (ToT) | 0.414 | 1.728 | 0.239 | 0.811 |
| \(x_{3}\) (open \cdot ToT) | -10.780| 5.194 | -2.076 | 0.038 |
| \(x_{4}\) (dxrig) | -0.038 | 0.066 | -0.578 | 0.563 |
| \(x_{5}\) (ov) | 1.898 | 1.100 | 1.724 | 0.085 |

| Pre- and Post-Electoral Indicators | Coeff. | Std. Err. | \(t\)-Stat. | \(Pr(T > |t|)\) |
|-----------------------------------|--------|-----------|-------------|----------------|
| \(E_{t}\) | 0.475 | 0.420 | 1.133 | 0.258 |
| \(E_{t-1}\) | 1.146 | 0.562 | 2.040 | 0.042 |

| Summary Statistics | Coeff. | Std. Err. | \(t\)-Stat. | \(Pr(T > |t|)\) |
|--------------------|--------|-----------|-------------|----------------|
| \(N\) (Deg. Free) | 735 (696) | | | |
| \(R^{2}\) (\(R^{2}\)) | 0.991 (0.990) | | | |

\(\gamma_{en}\) (common-pool effect: fractionalization)
\(\gamma_{sd}\) (common-pool effect: polarization)
Veto-Actor Effects: Estimates of Policy-Adjustment Rate

<table>
<thead>
<tr>
<th>Adjustment Rates</th>
<th>NoP=1</th>
<th>NoP=2</th>
<th>NoP=3</th>
<th>NoP=4</th>
<th>NoP=5</th>
<th>NoP=6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lag Coefficient</td>
<td>0.943</td>
<td>0.952</td>
<td>0.960</td>
<td>0.969</td>
<td>0.978</td>
<td>0.986</td>
</tr>
<tr>
<td>Policy-Adjust/Yr</td>
<td>0.057</td>
<td>0.048</td>
<td>0.040</td>
<td>0.031</td>
<td>0.022</td>
<td>0.014</td>
</tr>
<tr>
<td>Long-Run Mult.</td>
<td>17.498</td>
<td>20.639</td>
<td>25.154</td>
<td>32.200</td>
<td>44.727</td>
<td>73.208</td>
</tr>
<tr>
<td>90%-Life</td>
<td>39.127</td>
<td>46.362</td>
<td>56.761</td>
<td>72.985</td>
<td>101.832</td>
<td>167.415</td>
</tr>
</tbody>
</table>

Bargaining Effects: Estimates of Keynesian Fiscal Responsiveness

<table>
<thead>
<tr>
<th>Mean Econ. Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 std. dev.</td>
<td>-1 std. dev.</td>
<td>+1 std. dev.</td>
<td>+2 std. dev.</td>
<td></td>
</tr>
<tr>
<td>Growth</td>
<td>-2.354</td>
<td>0.454</td>
<td>3.261</td>
<td>6.069</td>
</tr>
<tr>
<td>d(UE)</td>
<td>1.915</td>
<td>1.034</td>
<td>0.153</td>
<td>-0.728</td>
</tr>
<tr>
<td>Infl</td>
<td>-3.593</td>
<td>1.230</td>
<td>6.054</td>
<td>10.877</td>
</tr>
</tbody>
</table>

Collective-Action/Common-Pool Effects: Estimates of Electoral Debt-Cycle Magnitude

<table>
<thead>
<tr>
<th>Electoral-Cycle Magnitude</th>
<th>ENoP=1</th>
<th>ENoP=2</th>
<th>ENoP=3</th>
<th>ENoP=4</th>
<th>ENoP=5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electoral-Cycle Magnitude</td>
<td>1.07410</td>
<td>0.86454</td>
<td>0.65497</td>
<td>0.44541</td>
<td>0.23585</td>
</tr>
</tbody>
</table>
Extension & Refinement

\[E(y_t) = \delta^0 + x_t^0 b^0 + \left(\rho_0 + \rho_1 \ln(NoP_t) + \rho_2 \ln(1 + ARwiG_t) \right) y_{t-1} \]

\[+ \left[x_t^1 b^1 + \sum_{i=1}^{l} p(c_{it}) \times q_i(x_t^2) \right] \times [1 + \alpha_1 \ln(NoP_t) + \alpha_2 \ln(1 + ARwiG_t)] \]

\[\times [1 + \gamma_1 \ln(ENoP_t) + \gamma_2 \ln(1 + SDwiG_t)] \]

- \(x^0 \) = factors that affect policy-outcomes unless pol-mkrs act to change status quo, i.e., that have effect on pol-out directly.
- \(x^1 \) = factors affecting policy-outcomes if policymakers act to change status quo, without partisan-differentiated response
- \(x^2 \) = factors affecting policy-outcomes if policymakers act to change status quo, with partisan-differentiated response
- \(\{NoP,ARwiG\} \) = sources of veto-actor effects; as before
- \(\{ENoP,SDwiG\} \) = sources of common-pool effects; as before
- \(\{p(c_{it}),q_j(x_t)\} \) = sources of bargaining & delegation effects:
 - \(p(c_{it}) \): Effective policy-influence of party \(i \) in context \(t \). (E.g., as now: cabinet seat-shares, but could become richer model.)
 - \(q_j(x_t) \): Model of response of party \(i \) to pol-econ conditions \(x_t \). (E.g., as now: \(CoG_i \times Macroecon_t \), but could become richer model.)
Results of Fuller Model

| Temporal Dynamics | Coeff. | Std. Err. | t-Stat. | Pr(>|t|) |
|------------------|--------|-----------|---------|----------|
| D(t-1) | 1.197 | 0.059 | 20.144 | 0.000 |
| D(t-2) | -0.139 | 0.085 | -1.629 | 0.104 |
| D(t-3) | -0.121 | 0.045 | -2.698 | 0.007 |

| Veto-Actor Effect on Outcome-Adjustment Rate | Coeff. | Std. Err. | t-Stat. | Pr(>|t|) |
|---|--------|-----------|---------|----------|
| NoP | 0.008 | 0.004 | 1.883 | 0.060 |

| Variable | Coeff. | Std. Err. | t-Stat. | Pr(>|t|) |
|----------|--------|-----------|---------|----------|
| Open | 16.624 | 3.758 | 4.423 | 0.000 |
| Open*ToT | -11.190| 3.135 | -3.569 | 0.000 |

| Variable | Coeff. | Std. Err. | t-Stat. | Pr(>|t|) |
|----------|--------|-----------|---------|----------|
| Ele(t) | 0.315 | 0.363 | 0.867 | 0.386 |
| Ele(t-1) | 0.873 | 0.399 | 2.186 | 0.029 |
| OY | 2.833 | 1.295 | 2.187 | 0.029 |
| DXRIG3 | -0.073 | 0.072 | -1.009 | 0.314 |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(ENoP)</td>
<td>-0.277</td>
<td>0.071</td>
<td>-3.903</td>
<td>0.000</td>
</tr>
</tbody>
</table>

| Variable | Coeff. | Std. Err. | t-Stat. | Pr(>|t|) |
|----------|--------|-----------|---------|----------|
| Growth | -0.238 | 0.084 | -2.815 | 0.005 |
| d(UE) | 0.749 | 0.228 | 3.289 | 0.001 |
| Inflation| -0.137 | 0.047 | -2.947 | 0.003 |

| Bargaining-Compromise Effects on Partisan Policy-Responses | Coeff. | Std. Err. | t-Stat. | Pr(>|t|) |
|--|--------|-----------|---------|----------|
| CoG | -0.049 | 0.026 | -1.893 | 0.059 |

| Veto-Actor Effect on Policy-Adjustment Rate | Coeff. | Std. Err. | t-Stat. | Pr(>|t|) |
|--|--------|-----------|---------|----------|
| NoP | 0.215 | 0.121 | 1.773 | 0.077 |

| Common-Pool Effect on Debt Level | Coeff. | Std. Err. | t-Stat. | Pr(>|t|) |
|---------------------------------|--------|-----------|---------|----------|
| ln(ENoP) | 1.123 | 0.486 | 2.320 | 0.021 |

| Summary Statistics | Coeff. | Std. Err. | t-Stat. | Pr(>|t|) |
|--------------------|--------|-----------|---------|----------|
| N (Deg. Free) | 735(697)| 4.86 | 2.320 | 0.021 |
| R² (R²) | 0.991(0.990)| 2.510 | 2.090 | |