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Preface 

This pedagogical manuscript addresses the modeling, interpreting, testing, and presentation of 

interactive propositions in regression analysis. As an instructional text, we intend it to provide 

guidance on these issues to advanced undergraduates, graduate students, and researchers in political 

science and other social-science disciplines. The manuscript begins by explaining how verbal 

statements of interactive arguments and hypotheses translate into mathematical empirical models 

including, and statistical inferences regarding, interactive terms. It then provides advice on 

estimating, interpreting, and presenting the results from such models. The manuscript provides next 

an explanation of some existing general practice rules and, lastly, a discussion of more advanced 

topics including nonlinear models and stochastically interactive models. The manuscript’s summary 

conclusion outlines our general advice for researchers as they formulate, estimate, test, interpret, and 

present interactive hypotheses in their empirical work.  
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Modeling and Interpreting Interactive Hypotheses in Regression Analysis:  

A Refresher and Some Practical Advice 

Cindy D. Kam and Robert J. Franzese, Jr. 

I. Introduction 

Social scientists study complex phenomena. This complexity requires a wide variety of 

quantitative methods and tools for empirical analyses. Often, however, social scientists might begin 

with interest in identifying the simple impact of some variable(s), X, on some dependent variable, Y. 

Political scientists might study the effect of socioeconomic status on an individual’s level of political 

participation, or the effect of partisanship on a legislator’s voting behavior. Scholars of comparative 

politics might be interested in the effect of electoral rules such as multi- vs. single-member districts 

on the party composition of legislatures. Scholars of international relations might study the effect of 

casualties on the duration of military conflict. Psychologists might study the effect of personality 

traits on an individual’s willingness to obey authority, or the effect of an experimental manipulation 

of background noise on an individual’s ability to solve a problem. Economists might investigate the 

effect of education on labor-market earnings, or the effect of fiscal policy on macroeconomic 

growth. Sociologists might examine the effect of the number of years an immigrant has lived in a 

host country on his/her level of cultural and linguistic assimilation. Each of these examples posits a 

simple relationship between some independent variable and a dependent variable.  

One of the simplest empirical model specifications for these types of queries is the linear-

additive model. The linear-additive model proposes that a dependent variable has a linear-additive, 

i.e., a simple, constant, unconditional, relationship with a set of independent variables. For each unit 

increase in an independent variable, the linear-additive model assumes that the dependent variable 
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responds in the same way, under any conditions. Much of the quantitative analysis in print across the 

social sciences exemplifies this approach.  

Such linear-additive approaches address what might be described as a “first generation” 

question, where researchers seek to establish whether some relationship exists between an 

independent variable, X, and a dependent variable, Y. A “second generation” question adds an 

additional layer of complexity, asking not simply whether some relationship exists between an 

independent variable and a dependent variable, but under what conditions and in what manner such a 

relationship exists: e.g., under what conditions is the relationship greater or lesser? Thus, this slightly 

more complex question posits that the effect of some variable, X, on the dependent variable, Y, 

depends upon a third independent variable(s), Z.1  

One could imagine adding such a layer of complexity to each of the examples above. For 

example, the political scientist studying the effect of socioeconomic status on political participation 

might suspect that this effect depends upon the level of party mobilization in an election – the 

participatory gains from socioeconomic status might be attenuated when political parties do more to 

mobilize citizens at all levels. The effect of a legislator’s partisanship on her votes surely depends 

upon whether bills have bipartisan or partisan sponsorship. The effect of multi-member districts on 

the party composition of legislatures likely depends on a third variable, societal fragmentation. The 

effect of casualties on the duration of military conflict might depend on domestic economic 

conditions. The psychologists might expect the effects of certain personality traits on individuals’ 

willingness to obey authority to increase, and of others to decrease, with age, and the effect of 

background noise on problem-solving ability might depend on how well-rested the subject is. The 

economist studying the returns to education might expect booming macroeconomic conditions to 

magnify, and slumping ones to dampen, the effect of education on labor-market earnings; and the 
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one studying the growth effects of fiscal policy would expect zero effects when the public expected 

the policy moves and non-zero effects only when the policy moves were unexpected. Finally, the 

sociologist studying immigrant assimilation might expect the years lived in the host country to have 

greater effect for immigrants from source countries uncommon among the immigrant population in 

the destination countries than immigrants who find large compatriot populations in the destination 

country, the former perhaps being forced to assimilate more quickly. Social scientists often evaluate 

such hypotheses using the linear interactive, or multiplicative, term.2 

Interaction terms are hardly new to social-science research; indeed, their use is now almost 

common. Given the growing attention to the roles of institutions and institutional contexts in politics, 

economics, and society, and the growing attention to how context more generally (e.g., information 

environments, neighborhood composition, social networks) conditions the influence of individual-

level characteristics on behavior and attitudes, interactive hypotheses should perhaps become more 

common still. However, despite occasional constructive pedagogical treatises on interaction usage in 

the past, a commonly known, accepted, and followed methodology for using and interpreting 

interaction terms continues to elude social scientists. Partly as a consequence, misinterpretation and 

substantive and statistical confusion remains rife. Sadly, Friedrich’s (1982)  summary of the state of 

affairs could still serve today: 

…while multiplicative terms are widely identified as a way to assess 
interaction in data, the extant literature is short on advice about how to 
interpret their results and long on caveats and disclaimers regarding their use 
(798). 

This manuscript seeks to redress this and related persistent needs. Our discussion assumes 

working knowledge of the linear-additive regression model.3 Section II begins our discussion of 

modeling and interpreting interactive hypotheses. This section emphasizes how interactive terms are 

essential for testing common and important classes of theories in social science and provides several 
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theoretical examples in this regard.  

In Section III, we offer advice on connecting theoretical propositions that suggest an interactive 

relationship to empirical models that enable the researcher to test those interactive hypotheses. We 

then show which standard statistical tests (certain common t- and F-tests) speak to which of the 

specific hypotheses that are typically nested in interactive arguments. We discuss a generic approach 

to interpreting the estimation results of interactive models. We illustrate its application across an 

array of different types of interactive relationships, where different types and numbers of variables 

involved in those interactions. We also address the presentation of interaction effects. In all cases, 

we urge researchers to go beyond merely reporting individual coefficients and standard-error 

estimates. Instead, we strongly suggest graphical or tabular presentation of results, including effect-

line graphs or conditional-coefficient tables, complete with standard errors, confidence intervals, or 

significance levels of those effects or conditional coefficients. We discuss and provide examples of 

several types of graphs that facilitate interpretation of interaction effects, including effect-line plots, 

scatter plots, and box plots. We also provide instructions on how to construct these plots and tables 

using statistical software commonly used in social science, in addition to specific mathematical 

formulae for their elements. Our approach underscores the importance of understanding the 

elementary logic and mathematics underlying models that use interactive terms, rather than simply 

providing a set of commands for the user to enter mechanically. If students and scholars understand 

the foundations of this generic approach, then they will be well-equipped to apply and extend it to 

any new theoretical problems and empirical analyses.  

In Section IV, we consider certain general-practice rules for modeling interactions that some 

previous methodological treatments advise and social scientists often follow. We suggest that some 

scholars may be misinterpreting these rules, and argue that such general rules should never substitute 
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for a solid understanding of the simple mathematical structure of interaction terms. For example, 

“centering” the variables to be interacted, as several methods texts advise, alters nothing important 

statistically and nothing at all substantively. Furthermore, the common admonition that one must 

include both x and z if the model contains an xz term is an often-advisable philosophy-of-science 

guideline—as an application of Occam’s Razor and as a practical matter, such inclusion is usually a 

much safer adage than exclusion—but it is neither logically nor statistically necessary and not 

always advisable, much less required, in all cases for any question.  

Section V discusses some more-technical concerns often expressed regarding interactive 

models. First, we discuss the question of pooled versus separate-sample estimation that arises in 

every social-science discipline. We show that estimating interactive effects in separate samples is 

essentially equivalent to estimating them in a pooled sample, but pooled-sample estimation is more 

flexible and facilitates statistical comparisons even if one might prefer separate-sample estimation in 

preliminary analyses. The section then discusses nonlinear models. Although all of our preceding 

discussion addresses multiplicative terms exclusively in the context of linear-regression models, 

statistical research in social science increasingly employs qualitative or limited dependent-variable 

models or other models beyond linear ones. We show first that most of the discussion regarding 

linear regression models holds for nonlinear models, and then we provide specific guidance for the 

special case of interactive terms in two commonly used nonlinear models: probit and logit. Finally, 

we address random-coefficient and hierarchical models. As Western (1998) notes, using 

multiplicative terms alone to capture the dependence on z of x’s effect on y (and vice versa) 

implicitly assumes that the dependence is deterministic. Yet this dependence is surely as stochastic 

as any other empirical relationship we might posit in social science, so we should perhaps model it 

as such. Many researchers take this need to incorporate a stochastic element as demanding the use of 
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random-coefficient models. Others go further to claim that cross-level interaction terms—i.e. those 

involving variables at a more micro-level (e.g., individual characteristics in a survey) and at a more 

macro-level (e.g., characteristics of that individual’s state of residence)—that do not allow such 

stochastic element may be biased. As a consequence, a growing number of scholars recommend the 

use of hierarchical linear models (HLM) or first-stage separate-sample estimation of micro-level 

factors’ effects followed by second-stage estimation of macro-level and macro-level-conditional 

effects from the first-stage estimates. Actually, the issues of separate-sample vs. pooled-sample and 

of whether one must apply two-stage or HLM techniques in multilevel data are related, and, as we 

show, under some conditions, the simple multiplicative term sacrifices little relative to these more 

complicated approaches. Moreover, steps of intermediate complexity can allay those concerns (not 

quite fully, but likely sufficiently) under a wide array of circumstances. Thus, some of these 

concerns are, strictly speaking, well-founded, but they do not amount to serious practical problems 

for social scientists as often as one might have supposed. 

Section VI provides a summary of our advice for researchers seeking to formulate, estimate, 

test, and present interactive hypotheses in empirical research. 

II. Interactions in Social Science 

The interaction term received intense scrutiny, much of it critical, upon its introduction to social 

science. Althauser (1971) wrote, “It would appear, in short, that including multiplicative terms in 

regression models is not an appropriate way of assessing the presence of interaction among our 

independent variables” (466). Zedeck (1971) concurred, “The utility of the moderator variable 

research is limited by statistical problems, by the limited understanding of the statistical operation of 

moderators, and by lack of a rapid systematic approach to the identification of moderators” (307).  

As Friedrich (1982) noted, early criticism of interactions focused on three concerns: difficulty in 
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interpreting coefficients, colinearity among independent variables induced by the multiplication of 

terms, and the nature of measurement of independent variables (whether they be interval, ratio, or 

nominal scales). These concerns inspired some scholars (e.g., Althauser 1971; Zedeck 1971) to 

object to any usage of interactive terms. Others suggested alternative methods to incorporate 

interactions in models, by rescaling variables to reduce colinearity (Allison 1979; Cronbach 1987; 

Dunlap and Kemery 1987; Smith and Sazaki 1979; Tate 1984). 

Over two decades after Friedrich’s (1982) seminal article defending interactions, full and 

accurate understanding of the modeling, interpretation, and presentation of interactive hypotheses 

still eludes social scientists, even though including multiplicative terms in linear regressions is now a 

common method of incorporating conditional relationships into empirical analysis. For example, in a 

count of journal articles that appeared from 1996-2001 in three top political-science journals,4 we 

have found that 54% of articles use some statistical methods (defined as articles reporting any 

standard errors or hypothesis tests). Of these articles, 24% employ interactive terms. This amounts to 

about 1/8 of all articles published during this time.5 Despite this appreciable and increasing use of 

interaction terms in empirical analysis, careful consideration of important classes of theoretical 

arguments in political science strongly suggests that they nonetheless remain considerably under-

utilized. Further, when interactions are deployed in empirical work, several misunderstandings 

regarding their interpretation still permeate the field.  

This widespread and perhaps expanding usage of interactions notwithstanding, we contend that 

still more empirical work should contain interactions than currently does, given the substance of 

many political-science arguments. Indeed, interactive arguments arise commonly in every empirical 

subfield in the social sciences. For political scientists, for example, interactive arguments appeal to 

scholars who study of political institutions, political behavior, and perhaps especially those who 
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study the impact of institutions on political behavior, not to mention political economy, political 

culture, and all the other substantive areas of study within political science. These interactive 

arguments arise commonly in other disciplines: sociologists interested in the interactions between 

individuals and their social contexts, micro-economists examining the effect of public policies such 

as the minimum wage on different types of workers, macro-economists studying the impact of fiscal 

or monetary policy under varying institutional conditions, and psychologists seeking to identify 

heterogeneity in individuals’ reactions to experimental treatments. Interactions could fruitfully 

enable testing of these conditional-effect propositions. 

In political science, for example, the core of most institutional arguments, reflecting perhaps the 

dominant approach to modern, positive6 political science implies interactive effects. In one 

influential statement of the approach, Hall (1986) states: 

…the institutional analysis of politics… emphasizes institutional 
relationships, both formal and conventional, that bind the components of the 
state together and structure its relations with society… [I]nstitutions…refers 
to the formal rules, compliance procedures, and standard operating practices 
that structure the relationship between individuals in various units of the 
polity and economy… Institutional factors play two fundamental roles… 
[They] affect the degree of power that any one set of actors has over policy 
outcomes […and they…] influence an actor’s definition of his own interests, 
by establishing his… responsibilities and relationship to other actors… With 
an institutionalist model we can see policy as more than the sum of 
countervailing pressure from social groups. That pressure is mediated by an 
organizational [i.e., institutional] dynamic… (19, emphases added). 

Thus, in this approach, and inherently in all institutional approaches, institutions are interactive 

variables that funnel, moderate, or otherwise shape the political processes that translate the societal 

structure of interests into effective political pressures, those pressures into public-policymaking 

responses, and/or those policies into outcomes. Across all the methodological and substantive 

domains of institutional analysis, further examples abound: 

…[political struggles] are mediated by the institutional setting in which they 
take place (Ikenberry 1988: 222-3, emphases added). 
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…[1] institutions constrain and refract politics but…are never the sole 
“cause” of outcomes. Institutional analyses do not deny the broad political 
forces that animate […class or pluralist conflict, but stress how…] 
institutions structure these battles and, in so doing, influence their outcomes. 
[2. They] focus on how [the effects of] macrostructures such as class are 
magnified or mitigated by intermediate-level institutions…[they] help us 
integrate an understanding of general patterns of political history with an 
explanation of the contingent nature of political and economic 
development… [3] Institutions may be resistant to change, but their impact 
on political outcomes can change over time in subtle ways in response to 
shifts in the broader socioeconomic or political context (Steinmo and Thelen 
1992: 3, 11-2, 18, emphases added). 

…the idea of structure-induced equilibrium is clearly a move [toward] 
incorporating institutional features into rational-choice approaches. Structure 
and procedure combine with preferences to produce outcomes (Shepsle 1989: 
137, emphases added). 

Other recent examples include research that connects the societal structure of interests to 

effective political pressure through electoral institutions: most broadly, plurality-majority versus 

proportional representation (e.g., Cox 1997; Lijphart 1994; Ordeshook and Shvetsova 1994); that 

studies how governmental institutions, especially those that affect the number and polarization of 

key policymakers (veto actors), shape policymaking responses to such pressures (e.g., Tsebelis 

2002); that stresses how the institutional configuration of the economy, such as the coordination of 

wage-price bargaining, shapes the effect of certain policies, such as monetary policy (see Franzese 

2003b for a review). Examples could easily proliferate yet further. 

In every case, and at each step of the analysis, from interest structure to outcomes (and back), 

the role of institutions is to shape, structure, or condition7 the effect of some other variable(s)8 on the 

dependent variable of interest. That is, most (and probably all) institutional arguments are inherently 

interactive. Yet, with relatively rare exceptions, empirical evaluations of institutional arguments 

have neglected this interactivity. 

A more generic example further illustrates the common failure of empirical models to reflect the 

interactions that theoretical models imply. Political scientists and economists consider principal-



 

 

14

agent (i.e., delegation) situations interesting, problematic, and worthy of study because, if each had 

full control, agents would determine policy, y1, by responding to some (set of) factor(s), X, according 

to some function, y1=f(X). Principals, however, would respond to some different (set of) factor(s), Z, 

according to some function, y2=g(Z). For example, the principal might be a current government, 

which responds to various political-economic conditions in setting inflation policy, and the agent an 

unresponsive central bank, as in Franzese (1999). Scholars then offer some arguments about how 

institutional and other environmental conditions determine the monitoring, enforcement, and other 

costs, C, principals must incur to force agents to enact g(Z) instead of f(X). In such situations, the 

connection between the realized policy, y, and the agent’s preferred policy function, y1, will depend 

on C or some function of C, say k(C). Similarly, the effect of the principal’s policy function, y2, on 

the realized policy will depend on C or some function of C, say [1-k(C)]. This reasoning suggests 

that the realized policy should be modeled as y=k(C)·f(X)+[1-k(C)]·g(Z) with 0≤k(C)≤1 and k(C) 

weakly increasing (see, e.g., Lohmann 1992 on the banks, governments, and inflation example). 

Thus, the effect on y of each C∈c generally depends on X and Z, and the effect of each X∈x and 

of each Z∈z  generally depend on C. That is, all factors that contribute to monitoring and 

enforcement costs modify the effect on y of all factors to which the principals and agents would 

respond differently, and, vice versa: the effect of all factors that determine monitoring and 

enforcement costs depend on all factors to which principals and agents would respond differently.9 

Most empirical models of principal-agent situations do not reflect this inherent interactivity. 

For those who study individual or mass political behavior, opportunities to specify interactive 

hypotheses also abound. Scholars who argue that the effects of some set of individual characteristics 

(e.g., partisanship, core values, or ideology) depend on another set of individual characteristics (e.g., 

race, ethnicity, or gender) are proposing hypotheses that can and should be analyzed with interactive 
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terms. Research questions that ask how the impact of some experimental treatment or environmental 

context (e.g., campaign or media communications) depends on the level of some individual 

characteristic (e.g., political awareness) likewise imply interactive hypotheses. Questions that 

explore how context (e.g., minority neighborhood composition or news media coverage of an issue) 

conditions the effect of some other predictor (e.g., racism) also reflect interactive hypotheses. 

Generally speaking, research questions that propose heterogeneity in how different types of 

individuals (or different micro-level units, even more generally) respond to their environments and 

institutional (i.e., macro-level) contexts can and should be modeled interactively.10 

Interaction terms are widely used in statistical research in social science, and, in many more 

cases, theories suggest that interactions should be used although they are not. Despite their 

proliferation, some confusion persists regarding how to interpret these terms. Accordingly, we now 

provide practical advice to assist students and scholars to minimize this confusion. 

III. Theory to Practice 

In this section, we provide guidance for constructing statistical models that map onto substantive 

theory. We discuss the implementation of statistical analyses to test the theory, and we provide 

advice on interpreting empirical results. 

A. Specifying Empirical Models to Reflect Interactive Hypotheses 

Theory should guide empirical specification and analysis. Thus, e.g., empirical models of 

principal-agent and other shared-policy-control situations should reflect the convex-combinatorial 

form, with its multiple implied interactions, as described above. Theoretical models of behavior that 

suggest institutional or environmental contexts shape the effect of individual characteristics on 

behaviors and attitudes should likewise specify empirical models that reflect the hypothesized 

context-conditionality in interactions. 
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To facilitate discussion, we will provide empirical examples from a variety of substantive 

venues. Our first empirical example comes from Gary Cox’s (1997) Making Votes Count. (More 

examples from other substantive venues and illustrating interactions of other types of variables will 

appear later.) Cox’s justifiably acclaimed book makes several institutional arguments in which some 

political outcome, y, say the effective number of parties elected to a legislature or the effective 

number of presidential candidates, is a function of some structural condition, x, say the number of 

societal groups created by the pattern of social cleavages (e.g., the effective number of ethnic 

groups), and some institutional condition, z, say the proportionality or district magnitude of the 

electoral system or the presence or absence of a presidential runoff system. Theory in this case very 

clearly implies that the relationship between y and x should be conditional upon z and, conversely, 

that the relationship between y and z should be conditional upon x. As Cox (1997) theorizes, for 

example, “A polity will have many parties only if it both has many cleavages and has a permissive 

enough electoral system to allow political entrepreneurs to base separate parties on these cleavages. 

Or, to turn the formulation around, a policy can have few parties either because it has no need for 

many (few cleavages) or poor opportunities to create many (a constraining electoral system)” (206). 

(See, e.g., Cox 1997; Neto and Cox 1997; Ordeshook and Shvetsova 1994 for empirical 

implementation.) 

The standard linear-interactive model can reflect the propositions that x and z affect y and that 

the effects of x and of z on y each depend on the other variable. One simple way to write this 

(compound) proposition into a linear regression model is to begin with a standard linear-additive 

model expressing a relation from x and z to y, along with an intercept, and then to allow the intercept 

and the coefficients on x and z each to depend on the level of x and z:11  

εβββ +++= zxy 210  [1] 
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zx 2100 γγγβ ++=  

z211 δδβ +=  

x432 δδβ +=   

Combining these equations, we may express the model of y for estimation by linear regression in the 

standard linear-interactive manner:  

εβββγ ++++= xzzxy xzzx0  [2] 

As originally expressed in [1], the coefficients in this linear-interactive model [2] are: 

11 δγβ +=x , 32 δγβ +=z , 42 δδβ +=xz . More importantly, in this model, the effects of x and z on y 

depend on z and x, respectively, as an interactive theory would suggest.  

Theory or substance might suggest several alternative routes to this same general model. For 

example, suppose we were to specify a system of relationships in which the effect of x on y and the 

intercept (conditional mean of y) depend on z: 

εββ ++= xy 10  [3] 

z100 γγβ +=  

z211 δδβ +=  

This is a common starting point for “multi-level” models in which some individual (micro-level) 

characteristic x, is thought to produce micro-level outcomes or behaviors y, although the mean of 

that outcome or behavior, β0, and the effect, β1, of that individual characteristic, x, may vary across 

contexts, which are described by macro-level characteristic z. Combining these equations, we may 

express the following model for y: 

εβββγ ++++= xzzxy xzzx0  [4] 

where 1δβ =x , 1γβ =z , 2δβ =xz . 
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Note that the models actually estimated in [2] and [4] are identical, even though the 

theoretical/substantive stories told to derive the models from [1] and [3] seem to differ.12 Each of 

these seemingly different theoretical stories yields the same mathematical model: the linear-

interactive model [2].13 This result demonstrates that, although the substance may determine which 

of these arguments is most intuitive to express, the distinction cannot be drawn mathematically. This 

mathematical ambiguity arises because the propositions being modeled are logically symmetric; i.e., 

these statements all logically imply each other and, in that sense, they are identical; they cannot be 

distinguished because they are not distinct. As Fisher (1988) writes, “prior theoretical specification is 

needed to interpret [in this sense] regression equations with product terms” (106). We concur but 

stress that the interpretive issues here are presentational and semantic because the alternatives are 

logical equivalents. These alternative theoretical stories may sound different in some substantive 

contexts, and some versions may seem more intuitive to grasp in certain contexts and others in other 

contexts. However, they are not actually alternatives; they are all the same tale.  

Alternatively, one could propose a substantive argument that the effect of x on y depends on z, 

but that z matters for y only insofar as it alters the impact of x and, in particular, z has no effect when 

x is equal to zero (not present). This is a change in the theoretical account of the relationship between 

the variables, a logically distinct argument, and it produces a truly different equation to be estimated: 

εββ ++= xy 10   

z211 δδβ +=  

εβββ +++= xzxy xzx0  [5] 

where 1δβ =x , 2δβ =xz . 

In this system of equations, we again see that z conditions the effect that x has on y and vice 

versa. However, by theoretical claim and ensuing model construction, z’s sole effect is to determine 
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the effect of x on y, and, in particular, movements in z have no effect on y when x is zero.14 Scholars 

will typically think of z in this scenario as the intervening variable: intervening in x’s relationship to 

y. However, notice that just as a value of x exists, namely x=0, where the effect of z is zero, a value 

of z exists, namely z= xzx ββ− , where the effect of x is zero. The substance of the context at hand 

may suggest whether to conceive x=0 or z= xzx ββ− , or, for that matter, some other value of x or z, 

as the base from which to decide whether x or z is the one intervening in the other’s relationship with 

y. Mathematically that determination is once again arbitrary because, logically, all interactions are 

symmetric.15 Given this logical symmetry, x and z must necessarily both intervene in the other’s 

relationship to y. In this sense, the language of one variable being the intervening or moderating 

variable and the other being the one moderated may be best avoided; if an interaction exists, then all 

variables involved intervene or moderate in the others’ relations to y.  

The equations above assume that the effect of x on y depends on z and the effect of z on y 

depends on x deterministically, i.e. without error. This might seem odd, given that our model 

proposes that x and z predict y only with error (hence the inclusion of the term ε ), but the 

subsequent equations propose that the effect of x on y and of z on y each depend on the other variable 

without error. We can easily amend the linear-interactive model to allow a more logically consistent 

stochastic conditioning of the effects of variables by the others’ levels thus: 

εβββ +++= zxy 210   

02100 εγγγβ +++= zx  

1211 εδδβ ++= z  

2432 εδδβ ++= x   

Combining these equations allows expressing y for regression analysis in the now-familiar: 
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*0 εβββγ ++++= xzzxy xzzx  [5] 

where: zx 210* εεεεε +++= , 11 δγβ +=x , 32 δγβ +=z , 42 δδβ +=xz .
16 

The composite residual *ε  in [5] retains zero expected-value and non-covariance with the 

regressors x, z, and xz provided that its components, ε , 0ε , 1ε , and 2ε , do so. These key 

assumptions of the classical linear regression model (CLRM) ensure unbiasedness and consistency 

of Ordinary Least Squares (OLS) coefficient estimates. However, this compound residual does not 

retain constant variance, since it waxes and wanes as a function of x and z. This heteroskedasticity 

undermines the efficiency of the OLS coefficient estimates and the accuracy of OLS standard errors. 

In other words, if the conditionality of the x and z relationships with y themselves contain error, then 

the standard linear-interactive model has heteroskedastic error even if the individual stochastic terms 

comprising its compound residual are homoskedastic. Thus, OLS coefficient estimates are unbiased 

and consistent but not efficient. The OLS standard-error estimates, on the other hand, are incorrect,17 

but, as we show below, these problems are often easy to redress satisfactorily with familiar 

techniques. We return to this technical concern in Section V.C., because this concern often underlies 

calls for random-coefficient or linear-hierarchical models. For now, we proceed assuming the 

researcher estimates a model like [4] by OLS. 

Let us return to our example of electoral systems, social cleavages, and the number of parties or 

candidates to illustrate the above discussion. We follow Cox’s analysis of the effects of presidential-

runoff systems (Runoff) and the effective number of ethnic groups in a society (Groups) on the 

effective number of presidential candidates (Candidates) that emerge in a presidential democracy. 18 

The theory suggests that (1a) the impact of social cleavages on the effective number of candidates 

depends on whether a runoff system is used, and (1b) the impact of the runoff system on the 

effective number of candidates depends on the number of societal groups. (Recall that these are 
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logically two sides of the same proposition.) The confluence of a high number of social cleavages 

and a runoff system is hypothesized to produce a high effective number of presidential candidates, 

because the number of societal groups increases the potential number of parties and the runoff 

system attenuates the incentives for pre-election coalition-building between such groups. Given this 

theoretical structure, we can specify the following model for estimation: 

0 G R GRCandidates Groups Runoff Groups Runoffβ β β β ε= + + + × +  [7] 

The dataset includes information from 16 presidential democracies in 1985.19 The dependent 

variable, Candidates, i.e., the effective number of presidential candidates, ranges from 1.958 to 

5.689, with a mean of 3.156 and a standard deviation of 1.202. The independent variable, Groups, 

i.e., the effective number of ethnic groups in a society,20 ranges from 1 to 2.756, with a mean of 

1.578 and a standard deviation of 0.630. The independent variable, Runoff, indicates the presence or 

absence of a runoff system for the presidential election; this dummy variable takes the value of 0 if 

the system does not employ runoffs and 1 if it does use them. In this sample of 16 presidential 

democracies, exactly half have a runoff system. The OLS regression results appear in Table 1. 

/INSERT TABLE 1 HERE/ 

How do we interpret these results? What do these estimated coefficients mean? The next section 

provides guidance on these questions.  

B. Interpreting Coefficients from Interactive Models. 

In the simple linear-additive regression:  εβββ +++= zxy zx0 , the effect of the variable, x, on 

y is simply its coefficient, xβ . When x rises by one unit, ceteris paribus, y rises by xβ . Likewise for 

z, its effect on y is its coefficient, zβ . In this case—and only in the purely linear-additive regression 

case—the coefficient on a variable and the effect on the dependent variable of a unit increase in that 

independent variable (ceteris paribus and controlling for other regressors) are identical.  
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In interactive models, as in all non-strictly-linear models, this equivalence between coefficient 

and effect no longer holds. To cope with this change, current practice in interpreting interactive 

effects often substitutes some vague and potentially misleading terms, such as “main effects” and 

“interactive effect,” “direct effects” and “indirect effects”, and “independent effects” and “total 

effects” for the coefficients on x and z in the first case and on xz in the second. Such terminology is 

usually unhelpful at best, misleading or incorrect at worst.21  

Instead, we encourage researchers to recall that each variable involved in the interaction terms 

of interactive models has multiple effects, neither any single, constant effect, such as might be given 

by somehow by a single coefficient, nor a “main” effect and an “interactive” effect, such as might be 

given by some pair of coefficients, but multiple, different effects depending on the levels of the other 

variable(s) with which it interacts. When a researcher argues that the effect of some variable x on y 

depends on z, s/he is arguing that x has different effects on y, depending on the specific values of z. 

In the interactive case, the effects of x on y are therefore not any single constant, like the coefficient 

xβ on x in the simple linear-additive model. The effects of x on y vary. They depend on the 

coefficients on x and xz, as well as the value of z. Outside of the purely linear-additive model, 

coefficients are not effects. The effect of x on y, as we elaborate below, is the derivative, y x∂ ∂ , or 

the difference/change, y x∆ ∆ , which will only equal the coefficient on x by itself in the purely 

linear-additive case. 

Terming one coefficient the “main” effect and another the “interactive” effect thus perilously 

confuses coefficients for effects. Substantively, there may in fact be nothing whatsoever “main” or 

“direct” about the particular effect to which the coefficient on x actually does refer. Researchers 

cannot appropriately refer to the coefficient on x as “the main effect of x” or “the effect of 

x…independent of z” or “…considered independently of z” or, certainly not, “…controlling for z”. 
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The coefficient on x is just one effect x may have, namely the effect of x at z=0. That is, the 

coefficient on x gives the estimated effect of a unit change in x, holding z fixed at zero. We note that 

this zero value of z may have nothing at all “main” about it and may even be out-of-sample or even 

logically impossible! The effect of x on y at z=0 is obviously not “independent of z”; in fact, it is 

connected with a particular value of z. This effect of x on y when z=0 is also a very different thing 

from the effect of x on y “controlling for z.” The simple linear-additive multiple-regression model 

estimates a single, constant “effect of x on y, controlling for z.” This is not what the linear-interactive 

model estimates.  

Our empirical example illustrates and clarifies these points. The estimated coefficient on Runoff 

( 491.2ˆ −=Rβ ) gives the estimated effect of runoff elections on the number of presidential candidates 

for the specific case where Groups takes a value of 0. But the number of societal groups never takes 

the value of 0 in the sample; in fact, the number of ethnic groups in a society cannot logically equal 

0. Thus, an interpretation of Rβ̂ , the estimated coefficient on Runoff, as the “main” effect of a runoff 

system is nonsensical; far from a “main” effect, this is actually the effect at a value of ethnic 

heterogeneity that does not, and, indeed, could not, exist.  

If, however, Groups were rescaled to include a value of zero, e.g., by subtracting some constant 

value, such as the mean, and calling the resulting variable Groups*, then the estimated coefficient 

*
ˆ

Rβ  would be the estimated effect of Runoff when the rescaled variable Groups* takes the value of 

zero. This is assuredly logically possible and in-sample now, but the notion that the effect at this 

particular substantive value of ethnic heterogeneity is somehow “main” would remain strained and 

potentially misleading. That the effect of some variable when its moderating variable happens to be 

at its mean should be called a “main effect” while all the other effects at all the other logically 

permissible or empirically existent values are something other than “main” seems an unnecessary 
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and possibly misleading substantive imposition, especially since the theoretical and substantive point 

of the interaction model in the first place is that the effects of the interacting variables vary 

depending on each other’s values. We return to this topic of mean-rescaling interactive variables 

below, in Section IV.A.  

Symmetrically, the estimated coefficient Gβ̂ , the coefficient on Groups, refers to our estimate of 

the effect of the number of ethnic groups when Runoff equals zero. This value does logically and 

empirically exist, so the estimated value of Gβ̂ = -0.979 tells us something substantively relevant. It 

reports an estimate that, in a system without runoffs, the number of ethnic groups has a negative 

impact on number of presidential candidates. Specifically, an increase of 1 in the number of ethnic 

groups is empirically associated with a 0.979 reduction in the number of presidential candidates, in 

systems without runoff elections. (We find this result substantively puzzling, but that is the 

estimate.) Note, however, that the coefficient Gβ̂  only tells part of the story – it only reveals the 

estimated effect of Groups in one condition: when Runoff equals zero. 

The researcher who equates a coefficient in an interactive model to an effect is thus treading on 

hazardous ground. At best, the researcher will be telling a story about an effect that applies to only 

one of several possible conditions (e.g., when z = 0 or when zz = ). At worst, the researcher will be 

telling a story about an effect that applies in no logically possible condition—an effect that is 

logically meaningless. In short and put simply, and reiterating this crucial point: outside the simplest 

purely linear-additive case, coefficients and effects are different things. 

We suggest two more effective and appropriate methods of interpreting results from interactive 

models: differentiation (which requires working knowledge of entry-level calculus) and differences 

in predicted values (which does not). We discuss each of these techniques, below.  

1. Interpreting Effects through Differentiation.  
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Consider the following standard linear-interactive regression-model: 

εβββγ ++++= xzzxy xzzx0  [6] 

The effects of an independent variable, x, on the dependent variable, y, can be calculated by 

taking the first derivative of y with respect to x (as, e.g., Friedrich 1982 or Stolzenberg 1979 

suggest). This is a direct and simple means of identifying the effects of x on y or the effects of z on y 

because first derivatives or differences, e.g., y x∂ ∂  and y z∂ ∂ , are effects. One may, in fact, read 

y x∂ ∂  as “the change in y, y∂ , induced by a marginal (derivative) or unit (difference) increase in x, 

x∂ , all else held constant.” Differentiation is a simple, reliable, methodical way of calculating 

interactive effects. To help it fulfill its promise of simplicity and to reduce the tendency to induce 

mistakes, we provide a table of basic differentiation rules in Appendix A. 

In the standard linear-interactive model [6], the first derivatives of y with respect to x and z are: 

x xzy x zβ β∂ ∂ = +  [7] 

z xzy z xβ β∂ ∂ = +   [8] 

As [7] and [8] exemplify, the first derivative of [6] with respect to x and z yields the conditional 

effect of those variables directly. Derivatives are effects, whether in basic linear-additive regression 

models, when they yield just the coefficient on the variable of interest, or in linear-interactive models 

like [6], when they give expressions like [7] and [8] involving two coefficients and the other 

interacting variable. This finding generalizes to any other model regardless of its functional form. 

The effect of x on y in an interactive model like [6] is zxzx ββ + , which reflects the conditional 

argument underlying that model. As noted above, xβ  is merely the effect of x on y when z happens 

to equal zero, and is neither necessarily the “main” effect in any sense nor the effect “independent 

of” or “controlling for” z. Nor, we now add, does βxz embody the “interactive” effect of x or of z 
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exactly, as often suggested. The coefficient xzβ  indicates by how much the effect of x on y changes 

per unit increase z. It also indicates the logically and mathematically identical amount by which a 

unit increase in x changes the effect of z on y. Neither is precisely an effect. They are statements of 

how an effect changes: i.e., an effect on an effect. The sign and magnitude of xzβ  tells us how the 

effect of x on y varies according to values of z. In an interactive model, indeed in any model, the 

effect of a variable, x, on y is y x∂ ∂ . Here that effect is zxzx ββ + .  One cannot distinguish some part 

of this conditional effect as main and another part as interactive. 

Returning to our empirical example of the interaction between institutional structure and social 

cleavages in determining the number of presidential candidates, we are now prepared to interpret the 

results using differentiation. Recall the results from our OLS regression:22  

4.303 0.979 2.491 2.005Candidates Groups Runoff Groups Runoff= − − + ×  [11] 

Applying [9] and [10], we see that  

ˆ / 0.979 2.005y G Runoff∂ ∂ = − +   [12] 

ˆ / 2.491 2.005y R Groups∂ ∂ = − +  [13] 

Thus, the effect of societal groups on the number of presidential candidates varies with the 

presence or absence of a runoff, and the effect of a runoff on the number of presidential candidates 

varies with the number of ethnic groups in society. These conditional effects can be easily calculated 

by inserting substantively relevant values for the variables of interest into equations [12] and [13]. 

Recall that Runoff takes only two values: 0 in the absence and 1 in the presence of a runoff 

system. Hence, we use [12] to calculate the conditional effect of Groups on the number of candidates 

for these two substantively relevant values of Runoff. When Runoff=0,  

ˆ / 0.979 2.005 0 0.979y G∂ ∂ = − + × = − . When Runoff=1, ˆ / 0.979 2.005 1 1.026y G∂ ∂ = − + × = . In the absence 

of a runoff, the estimated effect of ethnic groups is negative; in the presence of a runoff, the 
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estimated effect of ethnic groups is positive. (Section C discusses the standard errors and statistical 

significance of these estimated effects, which, like the effects themselves, vary with the level of the 

conditioning variable.)  

Symmetrically, we can calculate the conditional effect of Runoff on the number of presidential 

candidates by inserting substantively relevant values of Groups into [13]. Recall that Groups ranges 

from 1 to 2.756 in our dataset. We should present the estimated effects of Runoff over a substantively 

revealing set of values for Groups: e.g., over the sample range of values of Groups; or at evenly 

spaced intervals starting from the sample minimum to some substantively meaningful and revealing 

high value; or at the minimum, mean, and maximum; or at the mean, the mean plus and the mean 

minus a standard deviation or two.  

To take one of these options, we calculate conditional effects when Groups ranges from 1 to 3, 

at evenly spaced intervals of 0.5, which yields the following estimated conditional effects:23  

When Groups = 1:  ˆ / 2.491 2.005 1 0.486y R∂ ∂ = − + × = −  

When Groups = 1.5:  ˆ / 2.491 2.005 1.5 0.517y R∂ ∂ = − + × =  

When Groups = 2:  ˆ / 2.491 2.005 2 1.520y R∂ ∂ = − + × =  

When Groups = 2.5:  ˆ / 2.491 2.005 2.5 2.522y R∂ ∂ = − + × =  

When Groups = 3:  ˆ / 2.491 2.005 3 3.525y R∂ ∂ = − + × =  

At the sample minimum (when the society has only one ethnic group), a runoff system has a 

negative effect on the number of presidential candidates (which, again, seems substantively odd), but 

as the number of ethnic groups rises, the runoff begins to affect the number of presidential 

candidates positively (which is more sensible). Further, the size of the effect grows as ethnic groups 

become more numerous (also sensible). Again, the standard errors of these estimated effects and 

whether the effects are statistically significant are matters we will discuss below.  
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2. Interpreting Effects through Differences in Predicted Values. 

A second strategy for examining the effects of x and z on y consists of examining differences in 

predicted values of y for logically relevant and substantively meaningful values of x and z. This 

strategy does not require the researcher to have any knowledge of calculus; it is a bit more tedious 

but quite serviceable in its own right. Predicted values of y, or ŷ , can be calculated by substituting 

the estimated values for the coefficients along with logically relevant and substantively revealing 

values of the covariates of interest into the theoretical model (equation [8]) and substituting in 

estimated coefficient values:  

xzzxy xzzx βββγ ˆˆˆˆˆ 0 +++=  [14] 

We can now calculate ŷ  at varying values of x (between, say, xa and xc) while holding z 

constant at some meaningful value (e.g., its mean value, or some other substantively interesting 

value; for example, if z is a dummy, 0 and 1 are meaningful). By doing so, the researcher can 

calculate how changes in x (from xa to xc) cause changes in ŷ  (from aŷ  to ˆcy ). Recall that as x 

changes from xa to xc, while z is held at some meaningful value, say z0, this also implies that xz 

changes from xaz0 to xcz0. The predicted values, aŷ  and ˆcy , can be calculated as follows: 

000
ˆˆˆˆˆ zxzxy axzzaxa βββγ +++=   and   0 0 0

ˆ ˆ ˆˆˆc x c z xz cy x z x zγ β β β= + + +  

The change in predicted values can be calculated as the difference between aŷ  and bŷ : 

0 0 0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ( )c a x c z xz c x a z xz ay y x z x z x z x zγ β β β γ β β β− = + + + − + + +  

0
ˆ ˆˆ ˆ ( ) ( )c a x c a xz c ay y x x z x xβ β− = − + −  [15] 

Symmetrically, the researcher can identify how ŷ  moves with changes in z (and xz) when x is 

held at some meaningful value.  

In our example, we can examine how the predicted number of presidential candidates changes 
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as we increase the number of ethnic groups, in the presence and in the absence of runoff elections: 

4.303 0.979 2.491 2.005Candidates Groups Runoff Groups Runoff= − − + ×  

When Groups = 1 and Runoff = 0, we calculate the predicted number of candidates, ŷ  as:  

324.301005.20491.21979.0303.4)0,1|ˆ( =××+×−×−=== RunoffGroupsy  

Table 2 presents the predicted number of candidates, as Groups ranges from 1 to 3, when Runoff 

takes values of 0 and 1. 

/INSERT TABLE 2 HERE/ 

From such a table, the researcher can discern how the independent variables, Groups and 

Runoff, influence the predicted dependent variable, Candidates. By looking across single rows, we 

see the effect of the presence of a runoff system at the given number of Groups associated with each 

row. In the first row, for example, when the value of Groups is at its minimum (one), a runoff system 

has a small and negative effect, decreasing the number of parties by -0.486 (that same substantively 

odd result again). When the value of Groups is at a higher value, say 2.5 (row 4), the impact of a 

runoff system is larger in magnitude and positive: in a polity with 2.5 social groups, a runoff system 

is estimated to increase the number of presidential candidates by (a substantively sensible) 2.522.  

By looking down single columns, we see the effects of changes in the number of ethnic groups, 

in the absence or in the presence of a runoff system. In the absence of a runoff system (column 1), a 

rise in the number of ethnic groups from, say, 1 to 3 coincides (oddly) with a decline in the number 

of presidential candidates from 3.324 to 1.366. In the presence of a runoff system (column 2), 

however, a rise in the number of ethnic groups from, say, 1 to 3 coincides (sensibly) with an increase 

in the number of presidential candidates (from 2.838 to 4.891). Below, we address standard errors 

for these estimated changes and whether they are statistically distinguishable from zero. 

3. Interpreting Interactive Effects Involving Different Types of Variables. 
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Our advice on interpretation applies generally across essentially24 all types of variables that 

scholars might analyze—dummy variables, discrete variables, continuous variables, etc.—and any 

nonlinear transformations (such as ln(x) or x2, or {v=1 if x<x0, v=0 if x≥x0}) of any of these sorts of 

variables. Furthermore, virtually all permutations of interactions between these types of variables are 

logically and empirically possible,25 and all can be interpreted using one or both of our approaches. 

One need not learn different interpretational techniques for each different variable and interaction 

type; the discussion above fully suffices, as we illustrate next. (Optimal presentational efficacy will 

often suggest different graphical and/or tabular approaches for different applications as the next 

section suggests and illustrates.)  

Our first empirical example illustrates one of these possible permutations: an interaction 

between a dummy variable (Runoff) and a continuous variable (Groups). To illustrate more of the 

rich range of possibilities, we now introduce some additional empirical cases.  

Our second example derives from public-opinion research into partisan and gender gaps in 

support for social welfare (e.g., Box-Steffensmeier et al. 2004; Shapiro and Mahajan 1986). Theory 

suggests that social-welfare attitudes derive from a set of individual-level characteristics, such as 

partisan orientation, ideology, gender, race, and income, and that the effect of one or more of these 

characteristics, such as partisanship, might depend on some other characteristic, such as gender. 

Partisanship is strongly related to support for social-welfare programs; e.g., in the US, Republicans 

are less supportive of these programs than Democrats. Gender is also strongly related to support for 

social welfare programs, with females more supportive than males. However, if partisan and gender 

influences are complements or substitutes in opinion formation regarding social welfare, then the 

effect of partisanship among females will differ from the partisan effect among males. 

Symmetrically, the effect of gender would differ among Republicans compared with the gender 
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effect among Democrats. A standard linear-interactive model like [8] would enable a test of such 

theoretical propositions.  

We analyze such a model using data from the 2004 American National Election Studies. The 

dependent variable is an additive index of support for the social-welfare state.26 The independent 

variables are an indicator (dummy) for gender (1 if female, 0 if male), an indicator for partisanship 

(1 if Republican, 0 if Democrat; with all others excluded for ease of exposition), and the interaction 

of those two variables. 

 εββββ +⋅+++= RepublicanFemaleRepublicanFemaleOpinion FRRF0  [16] 

/INSERT TABLE 3 HERE/ 

The OLS results appear in Table 3. Note that this analysis features an interaction between two 

dummy variables. Differentiation is mathematically possible and will produce the correct 

expressions for the conditional effects, but calculating differences in predicted values might make 

more intuitive sense given the binary nature of the variables.27 As such, these OLS results can be 

easily interpreted by comparing the predicted support for the social welfare state for each of the four 

categories supplied by the multiplication of the two binary variables (male Democrat, female 

Democrat, male Republican, and female Republican). 

/INSERT TABLE 4 HERE/ 

The predicted values in Table 4 suggest there is little difference in the social-welfare support of 

male and female Democrats, but a gender gap does exist in support for social welfare between male 

and female Republicans. The gender gap is thus contingent upon partisanship. Conversely, 

partisanship has a larger effect among men than women; male Republicans and male Democrats are 

farther apart than female Republicans and female Democrats. The degree of partisan polarization is 

contingent upon gender. Below, we address the statistical uncertainty of these estimates.  
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Other interactions may involve the product of two continuous variables. Our third empirical 

example considers the duration of parliamentary governments and features this type of interaction. 

The dependent variable is the average duration of governments in the post World War II era, in 

months, and takes values between 11 and 45.1. We model it as a function of the post-war average 

number of parties in government (NP), which ranges from 1 to 4.3; the post-war average 

parliamentary support for government in the legislature (i.e., the percentage of lower-house seats 

held by the governing party or parties) (PS), which ranges from 41.1 to 80.4; and the level of party 

discipline (PD), an indicator for high levels of party discipline.28 We specify an interaction between 

the number of parties in government and the parliamentary support for government, on the idea that 

as the degree of support for the governing party increases, the effect of the number of parties in 

government on the duration of government will likely decline (and vice versa). PD serves as a 

control; later we expand this model to illustrate other issues. We estimate the following model: 

Government Duration εβββββ ++⋅+++= PDPSNPSPNP pdnppspsnp0   [17] 

/INSERT TABLE 5 HERE/ 

The OLS results appear in Table 5.  Both differentiation and differences in predicted values are 

useful in interpreting the results of an analysis featuring an interaction between two continuous 

variables. Differentiating, the effect of NP on the duration of governments is:  

ˆ ˆˆ / 31.370 0.468np nppsy NP PS PSβ β∂ ∂ = + = − +  

The estimated coefficient 370.31ˆ −=npβ  suggests that the effect of the number of governing 

parties on government duration is -31.370 when PS=0, but setting Parliamentary Support to zero is a 

substantively meaningless value, thus reinforcing our warning that coefficients are not the same as 

effects in the linear-interactive model. Increases in Parliamentary Support attenuate this negative 

effect of the number of parties on government duration (as hypothesized) until parliamentary support 
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reaches a level of 67.02. At this point, the effect has reached zero: ˆ / 0y NP∂ ∂ = . When parliamentary 

support exceeds 67.02, the effect of the number of parties on government duration becomes positive. 

A positive effect seems substantively odd until we consider that only grand coalitions encompassing 

all or most of parliament would typically exceed such a high level of parliamentary support;29 grand 

coalitions including more parties intuitively might indeed last longer than grand coalitions of fewer 

parties, which perhaps exclude some, thereby violating such coalitions’ justifying principle. This 

example provides an interesting case where the effect of some variable x is negative in one range of 

z, crosses zero, and then becomes positive in another range of z. It also illustrates the importance of 

considering conditional effects at substantively meaningful values in the sample.  

Similarly, the effect of the degree of parliamentary support on government duration is:  

ˆ ˆˆ / 0.586 0.468ps nppsy PS NP NPβ β∂ ∂ = + = − +  

The estimated effect of PS on government duration is negative when NP assumes a zero value 

(but this, too, is substantively meaningless value in this example). At the meaningful minimum value 

of NP=1, the estimated effect of PS is near zero, which is substantively sensible; single-party 

governments tend to last to term, regardless of their margin. The conditional effect of parliamentary 

support on government duration crosses zero when NP=1.25, and is increasingly positive as NP 

increases further. Governments tend to endure longer as their parliamentary support increases, and 

this is especially so for multiparty governments, likely because governments of more parties are 

more easily fractured by events and circumstances and so have greater need of greater parliamentary 

support to survive the vicissitudes of coalition politics.  

As Table 6 exemplifies, these results can be interpreted equivalently by comparing the predicted 

government durations at varying meaningful levels of NP and PS, while holding any other variables 

in the model (PD in this case) also at substantively meaningful values (e.g., the sample mean or 



 

 

34

mode; in this case, we hold PD to a value of one).  

/INSERT TABLE 6 HERE/ 

Reading across the first row, one sees a very modestly negative (i.e., near-zero) estimated effect 

of PS under single-party government; across the entire 40-point sample-range of PS, government 

duration declines by only 4.71 (from 33.05 to 28.34). However, this effect intuitively reverses sign 

and grows substantially as the number of governing parties increases. When governments average 

three parties, predicted duration increases by a substantial 32.78 months as PS expands from its 

sample minimum 40 to maximum 80 percent. Reading down each of the columns, we see the 

estimated effects of the number of governing parties at given levels of parliamentary support. 

Intuitively, increases in NP are associated with declines in government duration over most values of 

governing support (although they are associated with longer government durations at the very high 

values of PS associated with grand coalitions). Also intuitively, these deleterious effects of NP are 

greatest where parliamentary support is weakest. Below, we address the statistical uncertainty of 

these estimates.  

Our approaches for interpreting interaction terms also apply when the interacted variables have 

been nonlinearly transformed, such as squared terms (a special case of linear interaction where a 

variable in essence interacts with itself so that its effect depends on its own level), higher order 

polynomials, and logs. Such nonlinear transformations also render interpretation of estimated effects 

from simple examination of estimated coefficients very difficult, and again highlight the utility of 

differentiation or differencing for interpreting regression analyses employing interaction terms.  

Consider the case when a researcher believes that the effect of some variable, x, depends on the 

level of that variable x. One way to model this proposition is to include a quadratic, or squared term, 

x2, i.e. the interaction of x with itself. Researchers have applied this type of interaction in several 
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domains: age is modeled as a quadratic in studies of political participation; time is modeled as a 

quadratic in studies of the dynamics of political campaigns; loss functions in many rational-choice 

models take quadratic form, etc. Generically, such quadratic models might appear as: 

εβββ +++= 2
210 xxy xx  [18] 

and specify parabolic (hump-shaped, convex or concave) relations of x and y. As always, the effect 

of x on y can be calculated through differentiation as: 

1 22x xy x xβ β∂ ∂ = +  [19] 

or by differencing predicted values of y as x moves from xa to xc: 

2 2 2 2
0 1 2 0 1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ( ) ( ) ( )c a x c x c x a x a x b a x c cy y x x x x x x x xβ β β β β β β β− = + + − + + = − + −  [20] 

Figure 1 demonstrates how these parabolic relationships, and the associated marginal effects, 

look under the four possible combinations of positive and negative coefficients on the linear and 

quadratic terms, βx1 and βx2 respectively, across the positive and negative value range of x. 

/INSERT FIGURE 1 HERE/ 

The effect of parliamentary support on government-duration, for example, might depend on the 

level of parliamentary support itself in this way. One might well expect an additional 10% support to 

contribute less to extending a government’s duration if that increase is from 75% to 85% than if from 

45% to 55%. Table 7 shows the estimation results of a simple model to evaluate this possibility.  

/INSERT TABLE 7 HERE/ 

Given the signs of the coefficients on PS and PS2, negative and positive, and the strictly positive 

values of PS, ranging from about 40% to 80%, this example will resemble the lower-left quadrant of 

Figure 1. Figure 2 plots the estimated effect-line (calculated using [19]) and predicted government 

duration as a function of PS. 

/INSERT FIGURE 2 HERE/ 
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Another commonly used nonlinear transformation is the natural logarithm, )ln(x , which is often 

used when researchers want to allow the marginal effect of x to decline at higher levels of x as we 

have suggested here regarding the effect of parliamentary support on government duration. Common 

examples include the natural logs of dollars (e.g., budgetary outlays, Gross Domestic Product, 

campaign spending, or personal income), of population or population density, or of elapsed time 

(e.g., milliseconds for response latencies or other units such as hours or days). In each of these cases, 

researchers will often expect the marginal effect of a unit increase in x to be greater at lower values 

of x and to diminish as x itself increases. In a linear-additive model, the log of x relates linearly to y, 

while x relates nonlinearly to y. The log transformation can also be included in the linear-interactive 

model. Consider, for example, a model including the natural log of parliamentary support interacted 

with the number of governing parties, controlling for party discipline:  

Government Duration ( )0 ln( ) ln( )ln( ) ln( )ps np np ps pdPS NP NP PS PDβ β β β β ε= + + + + +i  [21] 

/INSERT TABLE 8 HERE/ 

Table 8 gives the estimation results for this model. The slightly higher R2 of this model and the 

generally greater significance of its coefficient estimates compared with the model in Table 5 

suggest that this model with diminishing government-duration returns to parliamentary support is 

superior. The effect of parliamentary support on government duration in this model can be calculated 

as by differentiating with respect to PS: ( )ln( )/ ps np psGD PS NP PSβ β∂ ∂ = + .30 Differentiating with 

respect to NP yields its conditional effect on government duration: ln( ) ln( )np np psGD NP PSβ β∂ ∂ = + . 

Note that, befitting the diminish returns specified for PS, the predicted values will vary depending 

upon the values of PS selected for the calculations. Differences in predicted values, however, remain 

straightforward to calculate.31 Figure 3 shows one informative way to present these estimation 

results, plotting the predicted government duration as a function of parliamentary support at a few 
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substantively revealing levels of the number of governing parties. (Party discipline is held fixed at 1 

(high) in Figure 3.) The figure reveals the essentially flat relationship between parliamentary support 

and government duration for single-party governments, the generally deleterious effects of the 

number of parties in government, especially at lower levels of parliamentary support, and the 

increasing effect of parliamentary support at higher numbers of governing parties. It also reveals the 

diminishing-returns relation of parliamentary support to government duration imposed by the log 

transformation. This concavity becomes more noticeable when the number of governing parties is 

greater, i.e., when the effects of support are greater. 

/INSERT FIGURE 3 HERE] 

Threshold and spline (a.k.a., slope-shift) models represent another class of independent-variable 

transformations commonly used in combination with interaction terms. Suppose a researcher thought 

the effect of some independent variable x changed sign or magnitude beyond some particular value, 

x0. For example, the effect of years of education, YE, on a person’s income, Inc, might shift at certain 

numbers of years representing the passing of key milestones, say at 16 years (typical college 

graduation). Up to that point, the accumulated years represent pre-baccalaureate education; beyond it 

they represent some branch of advanced professional training. One way to specify an empirical 

model reflecting such a proposition would be to create a new indicator variable, call it PB for post-

baccalaureate, equal to 1 if YE>16 and 0 if YE≤16. To allow the effect of YE to shift at year sixteen, 

we would want to interact YE with this transformation of itself, PB, and a transformation of that, 

(1-PB), to yield the following model: 

 ( ) { } εββββ ++×+−×+= PBPBYEPBYEInc 3210 1  [22] 

This model has a discontinuity at YE=16, so using the difference method will prove more 

intuitive. The term in braces optionally allows an additional bonus of 3β  to income from completion 
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of the sixteenth year (baccalaureate degree). From the difference method, then, we see exactly how 

the effect on income in this model of adding a year of education depends on whether that year is one 

of the first fifteen, the sixteenth, or beyond the sixteenth: 

( )
1 0

1 2 3 1 2 3 0

1 2 0

15; . ., 0
1 15; . ., 1

1
16; . ., 1

YE i e PB
Inc PBPB PB forYE i e PB

YE YE
YE i e PB

β
β β β β β β

β β

∀ < =
∆ ∆ = − + + = + + = ∆ =∆ = ∆  + ∀ ≥ =

 

In this slope-shift or threshold model, the pre-baccalaureate piece of the income-education 

relation may not adjoin the post-baccalaureate piece; rather, a discontinuous jump may occur at the 

point. To force the segments to link continuously requires a spline model which simply regresses 

income on YE and YE*, where YE*=YE-16 for YE≥16 and 0 otherwise. This general approach to 

slope-shift model specification and interpretation extends intuitively to any number of discontinuous 

or splined-continuous slope-shifts (see Greene 2003, Sections 7.2.4-5, pp. 120-2 for further 

discussion). 

Differentiation and/or differencing thus render calculation of the estimated effects of x on y 

straightforward in any linear-regression model, however the independent variables may have been 

transformed and in whatever combinations they may interact. Section V.B. discusses interpretation 

of interaction terms in nonlinear models, in which these same techniques apply. 

4. Chained, Three-Way, and Multiple Interactions. 

Interactions involving more than two variables are also possible, of course, and may often be 

suggested theoretically. Generically, the effect of some x on y could depend on two (or more) other 

variables, w and z (etc.), as in this model: 

εββββββ ++++++= xwxzwzxy xwxzwzx0   [23] 

By differentiation, the effects of x, w, and z are x xz xwy x z wβ β β∂ ∂ = + + , w xwy w xβ β∂ ∂ = + , and 

z xzy z xβ β∂ ∂ = + , respectively. In our government-duration analysis, for example, one might well 
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conjecture that party discipline, i.e., parties’ internal strategic unity, would as likely moderate the 

effects of the number of governing parties on government duration as would parliamentary support. 

A linear-interactive specification that could entertain this possibility would be: 

Government Duration εββββββ +×+×++++= PDNPPSNPPDSPNP nppdnppspdpsnp0   [24] 

Interpretation of its estimated conditional effect can once again proceed equally by differences 

or derivatives: GD
np npps nppdNP PS PDβ β β∂

∂ = + + , GD
ps nppsPS NPβ β∂

∂ = + , and GD
pd nppdPD NPβ β∂

∂ = + , again 

safely ignoring the binary nature of PD in deriving these expressions for the conditional effects (but 

remembering it when considering at what values of PD or for what magnitude change in PD to 

calculate those conditional effects). This sort of asymmetric model, in which one variable (here: NP) 

modifies the effects of several others (here: PD and PS) or, equivalently, has its effect modified by 

several others (perhaps the more intuitive way to express it in this substantive case), but in which 

those others do not condition each other’s effects, might be termed a “chained-interaction” model.32 

Substantively in this example, a model in which NP has its effects on government duration 

moderated by PD and PS certainly makes sense, and the results in Table 9 show appreciable 

empirical support for this chained specification. However, we might also expect PD and PS, the 

missing pair-wise interaction, to condition each other’s government-duration effects. The durability 

benefits of extra seats of parliamentary support should logically depend on the reliability of those 

seats’ votes for the government, i.e., on party discipline. We call an empirical model like the one this 

suggests, in which the effect of each variable depends on each of the others, the complete “pairwise-

interaction” model, which here just adds that one further interaction term, PD·PS, to the model: 

GovDur εβββββββ +×+×+×++++= PSPDPDNPPSNPPDSPNP pdpsnppdnppspdpsnp0   [25] 

Differentiation continues to suffice in calculating conditional effects in this model: 

GD
np npps nppdNP PS PDβ β β∂

∂ = + + , GD
ps npps pdpsPS NP PDβ β β∂

∂ = + + , GD
pd nppd pdpsPD NP PSβ β β∂

∂ = + + . 
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Table 9 also presents the estimation results for this model, which has some empirical support as 

well, although the difficulty of estimating this many coefficients,33 especially on such correlated 

regressors, in just 22 observations, is also beginning to show in the standard-errors of those 

coefficient estimates (perhaps not so much or in the same way regarding the estimated effects, but 

we are deferring for now the discussion of the statistical certainty of conditional-effect estimates). 

Finally, one might push even further along these lines to suggest that, not only should the effect 

of each of these three factors depend on each of the others in all pairwise interactions, but the effect 

of each might logically depend on the combination of the others present as well. For example, the 

government-durability benefit of additional seats of parliamentary support certainly should depend 

on the reliability of those seats’ votes, so we are theoretically and substantively rather confident of 

the PS-PD interaction. However, the impact of this “reliability adjusted” additional parliamentary 

support on government duration might then depend on the number of governing parties by the same 

logic that led us to our initial model with its single interaction-term, PS·NP. Table 9 also gives the 

estimation results for such a “fully interactive” model, which adds PS·NP·PD to the set of interactive 

terms. Obviously, we are now straining the available information in the mere 22 observations of our 

example dataset severely.34 

/INSERT TABLE 9 HERE/ 

Interpretation of estimated effects in such highly interactive models from coefficient estimates 

alone would be especially problematic. For example, the coefficient npβ  in each of these models 

refers to the effect of NP when both PS and PD are zero, and the former, of course, is logically 

impossible. Using the derivative method allows for better interpretation: 

33.81 .528 2.651 in the chained-interaction model
27.77 .434 3.497 in the pairwise-interaction model
51.26 .843 22.23 .443 in the fully interactive model

PS PD
GD PS PD
NP

PS PD PS PD

− + −
∂ = − + −∂ − + + − ×
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.6677 .528 in the chained-interaction model
1.511 .434 1.162 in the pairwise-interaction model
2.095 .843 1.822 .443 in the fully interactive model

NP
GD NP PD
PS

NP PD NP PD

− +
∂ = − + +∂ − + + − ×

 

14.86 2.651 in the chained-interaction model
48.69 3.497 1.162 in the pairwise-interaction model
86.85 22.23 1.822 .443 in the fully interactive model

NP
GD NP PS
PD

NP PS NP PS

−
∂ = − − +∂ − + + − ×

 

The conditional effects of each independent variable in a three-way (multiple) interaction 

model, excepting the variables not chained in a chained-interaction model, depend on the values of 

two (or more) other independent variables. Accordingly, effective interpretation will require the 

presentation of three (or more) dimensions of information: the value of each of the conditioning 

variables and the estimated conditional effect corresponding to those values. Section D provides 

useful strategies for doing this. 

In summary, these exercises in interpretation of coefficients should underscore the point that the 

variables in interactive specifications have varying effects. The size and sign of the effect of x can 

depend critically upon the value at which the other variable, z, is held; conversely, the size and sign 

of the effect of z can depend critically upon the value at which the other variable, x, is held. Calling 

one of the coefficients involved in these effects the “main effect” and another the “interactive effect” 

can be quite misleading and is no substitute for understanding the model’s actual estimated effects. 

Outside the purely linear-additive model, coefficients are not effects. Differentiation and differences 

of predicted values are two simple, universally applicable and reliable, tools for examining the effect 

of variables x and z on y in general, and in interactive models in particular.  

Once we have calculated these estimated conditional effects, however, we must also estimate 

and convey the statistical certainty of those estimates. We next discuss how to calculate standard 

errors for estimated conditional effects (as opposed to coefficients) and determine the degree to 

which these effects (as opposed to coefficients) are statistically distinguishable from zero. 
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C. Linking Statistical Tests with Interactive Hypotheses 

Common social-science practice in testing interactive propositions relies too exclusively on t-

tests of significance of individual coefficients in the model. Researchers commonly compare each of 

the three key coefficient estimates in a typical interactive model, e.g. xβ̂ , zβ̂ , and xzβ̂  in the 

standard linear-interactive model, [14], to its respective standard error. Assuming the model exhibits 

the necessary statistical properties otherwise (i.e., the Gauss-Markov conditions), the ratios in this 

comparison are t-distributed (or asymptotically normal), so these tests are statistically valid 

(asymptotically). However, scholars often mistake their meaning—i.e., they often mistake what 

these t-tests actually test—reflecting the persistent confusion of coefficients for effects and the use of 

the misleading main- and interactive-effect terminology. Just as the effects of variables involved in 

interactive terms depend upon two (or more) coefficients and the values of one (or more) other 

variable(s), so too do their standard errors and the relevant t-statistics, confidence intervals, and 

hypothesis-test results (significance levels).  

Single t-tests on individual coefficients on variables involved in interactive terms require care to 

interpret because they refer to significance at only one empirical value of the other variables. For 

example, xβ  and zβ  in our standard model [14] indicate, respectively, x’s effect on y when z equals 

zero and z’s effect on y when x equals zero, so the standard t-tests on our estimates xβ̂  and zβ̂  

indicate the significance of that variable’s effect when the other variable equals zero. These specific 

values of zero, as noted above, may be substantively, empirically, or even logically irrelevant.  

For example, in our model of the number of presidential candidates, the number of ethnic 

groups never equals zero in the sample and, logically, could not. Likewise in the government-

duration example, neither the number of governing parties nor the level of parliamentary support 

could ever be zero. Thus, any inferences drawn about the statistical significance of Rβ , the 
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coefficient on Runoff in Table 1, or of npβ , psβ , or pdβ  in any of the models of Table 9, are largely 

meaningless because they refer to conditions that could not logically exist. On the other hand, 

inferences drawn about the statistical significance of our estimate of coefficient Gβ  in Table 2 refer 

to the impact of Groups in the substantively meaningful case where Runoff equals zero. With no 

runoff system, the number of ethnic groups decreases the number of presidential candidates, and the 

test of whether the decrease is statistically significantly distinguishable from zero (i.e., no change) 

produces a p-value of 0.228.  

Likewise in our model of US support for social welfare (Table 3), the coefficients on Female 

and Republican each refer to substantively important conditions. Fβ  is the gender gap when 

Republican equals zero, i.e., among Democrats, which is substantively tiny (-0.003) and statistically 

indistinguishable from zero (i.e., insignificant, at p=.828), whereas Rβ  is the partisan gap when 

Female equals zero (among males), which is highly statistically distinguishable from zero (p<.001).  

Even in cases like these last three, however, where individual coefficients refer to logically 

possible conditions that exist in the sample, and, indeed, have important substantive meaning, the 

judgment of statistical significance is still a limited one. In the first case, it applies only to the effect 

of Groups in the absence of runoffs (Runoff=0) and says nothing about that effect where runoffs 

occur (Runoff =1). In the latter two cases, the t-test on the interaction term refers only to the 

significance of the gender gap among Democrats and to the partisan gap among males, and says 

nothing of the other two gaps (gender among Republicans and partisan among females). Moreover, 

the specific conditions to which the coefficient estimates and their estimated standard errors refer 

have no greater claim than the remaining conditions do about being “main” effects in any sense.  

To provide a universally valid framework for hypothesis testing of effects rather than 

coefficients in interactive models, consider the following types of theoretical questions often asked 
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about them: (1) Does y depend on x, or, equivalently, is y a function of x? Does y depend on z, or, 

equivalently, is y a function of z? (2) Is y’s dependence on x contingent upon or moderated by z, or, 

equivalently, does the effect of x on y depend on z? Is y’s dependence on z contingent upon or 

moderated by x, or, equivalently, does the effect of z on y depend on x? This is the classic 

interactive hypothesis; the two questions are logically identical. (3) Does y depend on x, z, and/or 

their interaction, xz, at all, or, equivalently, is y a function of x, x, and/or xz? In Tables 10-12, we link 

each of these sets of theoretical questions about interactive relationships to hypotheses, the 

corresponding mathematical expression, and the appropriate statistical tests.  

/INSERT TABLE 10 HERE/ 

We start with the simpler propositions in Table 10. Note that the statistical test that corresponds 

to each hypothesis states a null hypothesis that, as always, is what the researcher would like, 

theoretically, to reject statistically. The first hypothesis examines whether x has any effect on y. The 

mathematical expression for the estimated effect of x on y includes xβ̂  and ˆ
xz zβ . The standard F-test 

on the pair of coefficients, xβ̂  and xzβ̂ , therefore identifies whether x matters (i.e., whether y 

depends on x). Only these coefficients both being zero would imply y does not depend on x in some 

fashion in this model.  

An extension of this first hypothesis would propose some direction to the effect of x on y. The 

“simple” extension that the effect of x on y is positive or negative, is actually ill-defined in linear-

interactive models because the effects of x vary linearly depending on values of z, implying that the 

effects will be positive for some, equal to (and around) zero for some, and negative for other z 

values, although, as stressed above, not all values of z will necessarily be substantively relevant. 

Accordingly, no common practice exists for testing hypotheses that x or z generally increases or 

decreases y in linear-interactive models because hypotheses like these are logically ambiguous in 
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such models. Depending on where the relevant ranges of z lie, and on the accompanying standard 

errors, the effects could therefore be significantly positive in some meaningful ranges, significantly 

negative in others, and indistinguishable from zero in yet others.  

To illustrate, suppose we hypothesize that x has increasingly positive effect on y as z increases, 

starting from no effect at z=0. Suppose also that z<0 is logically impossible. In this case, even if that 

proposition were true and the evidence strongly supported it, the estimated effect of x on y would be 

zero at z=0 and therefore necessarily statistically indistinguishable from zero at that point. The 

estimated effect also must be statistically indistinguishable from zero for some range near z=0, given 

that all estimates have some error. (Obviously, the insignificant range will be larger the less precisely 

the relevant coefficients are estimated.) Therefore, hypotheses that the effects of x (or z) are 

generally positive or negative should instead be specified over some range of z (or x). 

In stating hypotheses that prescribe the range of values of the conditioning variable(s) over 

which they are to be evaluated, researchers should calculate measures of uncertainty to determine 

whether the effects of x at several specific values of z are statistically distinguishable from zero. This 

approach is highlighted in the second and third hypotheses in Table 10. Then, to evaluate a claim 

that the effect of x on y is generally positive or negative, the researcher could test whether the effect 

of x on y is positive over the entire logically possible, or substantively sensible, or sample range of z 

by conducting several t-tests along the range of z.35 Alternatively, but equivalently, s/he could plot 

ˆ /y x∂ ∂  over an appropriate range of z along with confidence intervals. These confidence intervals 

would indicate rejection of the null hypothesis at all values of z where zero lies outside the 

confidence interval around the estimated effect. However, as explained above, researchers must 

recognize that, in some cases, we would expect failure to reject (confidence intervals that span zero) 

at some levels of z even if the hypothesis generally were very strongly supported by the data.36 
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To execute this set of t-tests or generate these confidence intervals, the researcher will first need 

to calculate the estimated conditional effect by the differentiation or difference method. In [14], e.g., 

the marginal effect of x on y is ˆ ˆˆ / x xzy x zβ β∂ ∂ = + . As always, to express the uncertainty of an 

estimated effect, in standard errors or in confidence intervals around it, we must find its variance. 

Critically, note that the coefficient estimates vary across repeated samples, not the values of z; i.e, 

the estimated coefficients are the random variables, whereas z is fixed.37 The estimated effect of x on 

y contains the product of xzβ̂  and z; correspondingly, the estimated conditional effects will have 

some level of uncertainty that depends on z. Just as the effects of x on y vary with the values of z, the 

standard errors of the effects of x on y also vary with values of z. Each unique value in the set of 

estimated conditional effects (one at each value of z) will have its own variance and corresponding 

standard error. The variance of ˆ /y x∂ ∂ , the estimated marginal effect of x on y, is:38 

2ˆ ˆ ˆ ˆˆ( / ) ( ) ( ) 2 ( , )x xz x xzV y x V z V zCβ β β β∂ ∂ = + +   [26]39 

Our uncertainty regarding the conditional effects of x on y thus depends on variability in our 

estimates of xβ  and xzβ , the covariance between those estimates of xβ  and xzβ , and the values of z 

at which the effects are evaluated. Our estimates of ˆ( )xV β and ˆ( )xzV β  are simply the squares of the 

standard errors of the coefficient estimates, xβ̂  and xzβ̂ , reported in typical regression output. The 

covariance of xβ̂  and xzβ̂ , however, is not typically displayed in standard regression output. It must 

be extracted from the estimated variance-covariance matrix of the coefficient estimates.  

A variance-covariance matrix40 is a symmetric matrix that contains the variance of each 

estimated coefficient along the diagonal elements and the covariance of each estimated coefficient 

with the other estimated coefficients in the off-diagonal elements: 
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In practice, we use estimates of ˆ( )xV β , ˆ( )xzV β , and C( , )x xzβ β , which we will designate as 

V( ), V( ), and C( , )x xz x xzβ β β β . The desired estimate of C( , )x xzβ β  will appear as the off-diagonal 

element in the estimated variance-covariance matrix that corresponds to xβ̂  and xzβ̂ . In most 

software, researchers can easily retrieve this estimated variance-covariance matrix by a single post-

estimation command.41  

To execute the tests or construct the confidence intervals suggested in the second and third rows 

of Table 10, then, the researcher calculates the effect at some value of z ( ˆ ˆˆ / x xzy x zβ β∂ ∂ = + ) and the 

estimated variance around that effect at that value of z, ˆ( / )V y x∂ ∂ . The t-statistic for testing whether 

this estimate is statistically distinguishable from zero is then found by dividing the estimated effect 

ˆ /y x∂ ∂  by the estimated standard error of ˆ /y x∂ ∂  and evaluate the result against the t-distribution 

(with n-k degrees of freedom, with n the number of observations and k the number of regressors). 

The researcher would then repeat the process for other values across the relevant range of z to 

determine whether a general claim can be made about the direction of the effect. 

As suggested above, however, determining whether the effect of x on y is generally, typically, or 

on-average positive or negative, a common component of the typical complex of interactive 

hypotheses, requires more precise definition of the italicized terms. If on-average refers to the effect 

at the sample-average value of z, then the single t-test of the effect of x at that value of z suffices. 

This value of z also gives the appropriate estimated effect and its statistical confidence for an on-

average effect taken to mean the average in the sample of the effect of x.42 If, however, one wishes 
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to gauge the statistical certainty with which the hypothesis that the effect of x on y is generally or 

typically positive, we suggest plotting the ˆ /y x∂ ∂  over the sample range of z, with confidence 

intervals.43 Support for the hypotheses that /y x∂ ∂  is generally or typically positive or negative 

would correspond to most (unfortunately, no firm cut-off share exists) of this confidence interval 

lying appropriately above or below zero. One could quantify the share of the area covered by the 

confidence interval that lies above or below zero to give more precision to this analysis.44 

Aside from these basic hypotheses that x affects y (perhaps with some sign over some range of 

z), researchers are also interested in whether and how the effects of x and of z on y depend on the 

other variable. Table 11 presents these interactive hypotheses.  

/INSERT TABLE 11 HERE/ 

Notice that the coefficient on xz directly reflects the presence, sign, and substantive magnitude 

of this conditioning relationship, i.e., the degree to which the effects of x and z on y depend on the 

other variable’s value. As such, the standard t-test of the coefficient on the multiplicative term tests 

for the presence or sign of a conditioning relationship. Since the effect of x on y is x xzy x zβ β∂ ∂ = + , 

a simple t-test of the null hypothesis that 0=xzβ  directly evaluates whether the effect of x changes 

as z changes. A rejection of the null hypothesis that 0=xzβ  thus supports the most central 

interactive hypothesis: the effect of x on y varies with the level of z (and vice versa). If interactive 

hypotheses contain a directional element–e.g., the effect of x on y increases as z increases, or the 

effect of x on y decreases as z increases—researchers might apply one-tailed tests of the null 

hypothesis that 0≤xzβ  or 0≥xzβ . These directional hypotheses are displayed in the second and 

third lines of Table 11.45 

Note, also, that the mathematical expression and the statistical test for the hypothesis that x 

conditions the effect of z on y are identical to those for the converse that z conditions the effect of x 
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on y. This reflects the logical symmetry of interactive propositions. If z conditions the effect of x on 

y, then x logically must condition the effect of z on y and in the same amount. In fact, the second 

three rows of Table 11 simply state the logical converses of the first three rows, so the corresponding 

mathematical expressions and statistical tests are identical.46 

Finally, Table 12 reveals that the statistical test corresponding to the broadest sort of hypothesis 

one might have regarding an interactive model: that y depends in some manner, linearly-additively 

and/or linear-interactively, on x and/or on z. In common language, some one or combination of x and 

z matters for y. This corresponds statistically, quite simply, to the F-test that all three coefficients 

involved in the interaction, xzzx βββ ,, , are zero. That all three of these are zero is the only condition 

that would render x and z wholly irrelevant to y. 

/INSERT TABLE 12 HERE/ 

Let us walk our first empirical example through the tests outlined in Tables 10-12. 

First, does x affect y? Does the number of presidential candidates depend in some linear or 

linear-interactive way on the number of ethnic groups? An F-test of the null hypothesis that 0=Gβ  

and 0=GRβ  addresses this question. The F-test produces these results: 47 F = 2.62; Prob(F2,12>2.62) 

= 0.1140. Whether to reject the null hypothesis depends on the researcher’s desired level of certainty. 

At conventional levels (p<0.10, p<0.05, p<0.01), the researcher would not (quite) reject the null.48  

Does z affect y? Does the number of presidential candidates depend in some linear or linear-

interactive way on the presence of a runoff system? The F-test of the null hypothesis that 0=Rβ  

and 0=GRβ  yields the following results: F=2.96; Prob(F2,12>2.96)= 0.0903, which would (barely) 

satisfy a p<0.10 criterion, but fail the stricter p<0.05, p<0.01 criteria.  

Next, we ask whether x (generally) increases y. To answer this question, the researcher should 

conduct t-tests of or construct confidence intervals for the effect of x, across some range of values of 
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z (corresponding to “generally”). To conduct these t-tests, one must first calculate the standard errors 

associated with the given marginal effect following equation [26]. Table 13 displays the estimated 

variance-covariance matrix from our example, which we will need for these calculations.49 

/INSERT TABLE 13 HERE/ 

The element in the first row and first column, 0.593, is the estimated variance of Gβ̂ , which is 

the square of its standard error from Table 1: 2.770 .593≈ . Likewise, the estimated variance of GRβ̂  is 

the squaring of its standard error reported in Table 1: 885.941. 2 ≈ . The information we need from 

the variance-covariance matrix that we do not see in the typical regression output is ˆ ˆ( , )G GRC β β , 

which is -0.593. To calculate the variance of the estimated marginal effects, we simply substitute 

these values from the estimated variance-covariance matrix into equation [26]. 

2ˆ ˆ ˆ ˆˆ( / ) ( ) ( ) 2 ( , )G GR G GRV y G V Runoff V Runoff Cβ β β β∂ ∂ = + + × ×   

2ˆ[( / ) | 0] 0.593 0 0.885 2 0 0.593 0.593V y G Runoff∂ ∂ = = + × + × ×− =  

2ˆ[( / ) | 1] 0.593 1 0.885 2 1 0.593 0.292V y G Runoff∂ ∂ = = + × + × ×− =  

The proposition that societal groups increase the number of presidential candidates corresponds 

to the null hypothesis: H0: 0≤+ RunoffGRG ββ . This null hypothesis can be evaluated at the two 

valid values of z: 0 (no runoff system) and 1 (a runoff system). Table 14 gives these results. 

/INSERT TABLE 14 HERE/ 

With a one-tailed p-value of 0.884, we cannot reject the null hypothesis that 

0≤+ RunoffGRG ββ  when Runoff = 0. In systems without runoffs, a negative or null relationship 

between Groups and Candidates cannot be rejected. However, with a one-tailed p-value of 0.041, we 

can reject the null hypothesis that Groups decrease or have no effect on Candidates in favor of the 

alternative that some positive relationship between Groups and Candidates exists when Runoff = 1. 
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To test the reverse directional hypothesis, that the number of societal groups decreases the number of 

presidential candidates, we pose the opposite null hypothesis: 0≥+ RunoffGRG ββ  and re-evaluate. 

In the absence of a runoff system, the one-tailed p-value is 0.116, which actually (substantively 

oddly, as we’ve noted) approaches significance. In the presence of a runoff system, the one-tailed p-

value of 0.959 suggests that we are quite unable to reject the null hypothesis of a positive or null 

relationship between Groups and Candidates. 

To test the analogous directional hypotheses with respect to the effect of a runoff system on the 

number of presidential candidates, the researcher could conduct a number of t-tests over a logically 

relevant range of Groups. Table 15 displays some examples. 

/INSERT TABLE 15 HERE/ 

Here, we see that evaluation of the null hypothesis of 0≤+ GroupsGRR ββ  changes for various 

values of Groups. As the number of ethnic groups increases, our ability to reject the null hypothesis 

that runoff systems reduce the number of candidates also increases. When Groups exceeds 1.5, the 

hypothesis test begins to approach conventional significance levels. At Groups=2, we can reject the 

null hypothesis that runoff systems reduce the number of candidates. To investigate whether a runoff 

system decreases the number of presidential candidates, we re-evaluate the t-statistics for the null 

hypothesis: 0≥+ GroupsGRR ββ . At the resulting one-tailed p-values, we cannot remotely reject the 

null hypothesis in any case, thus lending no support at all to the reverse proposition. 

So far, then, the evidence perhaps weakly supports that the number of ethnic groups relates to 

the number of presidential candidates, and slightly less weakly supports that the presence or absence 

of runoff systems does so. The best that might be said regarding the results for the general direction 

of these relationships is that the evidence suggesting that runoffs and ethnic fragmentation might 

generally decrease the number of presidential candidates is consistently and considerably less than 
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the evidence weighing in the other, the theoretically expected, direction. 

Next, continuing to the tests outlined in Table 11, comes the question of whether the effect of 

Groups on Candidates depends in some way on the presence or absence of a runoff system and vice 

versa. The answer to this central substantive question of interactive models emerges directly from 

the coefficient on the interactive term, GRβ , and its standard error. A two-tailed test of the null 

hypothesis H0: 0=GRβ  yields a p-value of 0.054. Determination of “statistical significance” 

depends on the researcher’s acceptable level of uncertainty: rejection at the p<0.10 threshold, near 

rejection at a p<0.05 threshold, and failure to reject at the tighter p<0.01 level. The symmetry of 

interaction terms also implies the (same) answer for whether Groups modifies the effect of Runoff.  

The directional hypothesis of whether runoffs increase the effect of Groups on Candidates 

requires a one-tailed test of the null H0: 0≤GRβ , which yields a p-value of 0.027. The researcher 

can reject the null hypothesis of a negative or nonzero coefficient in favor of the alternative 

hypothesis of some positive coefficient at the .10 and .05 levels, but not at the .01 level. The positive 

effect of Groups on Candidates does seem larger in runoff systems and Runoff has greater positive 

effect with a higher number of Groups. 

Finally, consider the test in Table 12: whether x and z have any effect on y in some linear or 

linear-interactive fashion. Here, the researcher cares whether Groups, Runoff, and/or their product 

affect Candidates. An F-test that all three coefficients are zero, H0: 0=== GRRG βββ  yields the 

following results: F = 2.27, with a p-value from the F3,12 distribution of 0.132: not overwhelming, 

but not surprising and perhaps not too disappointing either, given the small sample size. 

We consider the remaining empirical examples more quickly. In the support for social welfare 

example, an F-test on the coefficients on Female and the interaction between Female and Republican 

addresses the interesting substantive question of whether gender affects support for social welfare. 
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The results, F = 13.08; Prob(F2,1073>13.08)=0.000, allow us to reject confidently the null hypothesis 

that gender has no effect on support for social welfare. Analogously, the F-test on the two 

coefficients Republican and the interaction of Female and Republican produces F = 144.07; 

Prob(F2,1073>144.07) = 0.000, allowing confident rejection of the null hypothesis that partisanship 

has no effect on support for social welfare. Next, we test whether the effect of gender depends on 

partisanship and vice versa. Table 17 shows that the statistical significance of the effect of gender 

varies sharply by partisanship: among Democrats, we can reject neither of the directional hypotheses 

(no statistically discernible effect of gender exists among Democrats). Among Republicans, in 

contrast, we can reject the null hypothesis that females are less supportive of social welfare, at 

p<0.001. Table 18 considers the converse: whether partisanship affects support for social welfare at 

various values of Female, i.e., among males and among females. Here, the null hypothesis that 

Republican increases support for social welfare is soundly rejected among both females and males: 

being a Republican significantly decreases support for social welfare. Finally, an F-test of all three 

coefficients addresses whether partisanship or gender affect support for social welfare somehow. F = 

103.65; Prob(F3,1073>103.65) = 0.000, so we can confidently conclude that gender, partisanship, 

and/or their interaction significantly predict support for social welfare. 

/INSERT TABLES 17 AND 18 HERE/ 

In our simple government-duration example (Table 5), we test the hypothesis that parliamentary 

support for government has an effect on government duration using an F-test on the coefficients for 

PS and the interaction of PS and NP: F = 6.50; Prob(F2,17>6.50) = 0.008; we can confidently reject 

the null hypothesis of no effect. Similarly, the F-test on the coefficients for NP and NP·PS identifies 

whether the number of governing parties has an effect on government duration: F=4.87; 

Prob(F2,17>4.87) = 0.021; We can reject the null hypothesis of no effect at conventional significance 
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levels of p<0.10 and p<0.05.  

The proposition that the number of governing parties decreases governmental duration must be 

evaluated at particular values of PS. Table 20 gives the relevant calculations, based on the estimated 

variance-covariance matrix, provided in Table 19. When parliamentary support ranges from 40%-

60%, we can reject the null hypothesis that the number of governing parties increases governmental 

duration at conventional levels. However, when parliamentary support is high (at 70%), we can 

reject neither of the directional hypotheses, and when support is extremely high, we can actually 

weakly reject (at p<0.075) the null hypothesis that the number of governing parties has the 

theoretically expected negative effect on government duration. Conversely for the effect of 

parliamentary support, Table 21 shows that with only one governing party, neither directional 

hypothesis is rejected; greater parliamentary support might increase or decrease the duration of 

single-party governments. However, with multiple governing parties, the null hypothesis that 

parliamentary support decreases government duration is rejected. Thus, generally, parliamentary 

support seems to enhance government durability as expected, although we cannot reject the 

alternative for the case of single-party governments. Finally, the hypothesis that the number of 

governing parties, governing support and/or their interaction significantly affects duration of 

governments can be evaluated using an F-test on all three coefficients. This F-test produces: F = 

4.62; Prob(F3,17>4.62) = 0.015. We can confidently reject the null hypothesis of no effect.  

/INSERT TABLES 19, 20, 21 HERE/ 

In Table 7, we considered a simple model in which parliamentary support had nonlinear relation 

to government duration, specified empirically by including PS and PS2 as regressors. In this case, the 

effect of PS on government duration is 22ps psGD PS PSβ β∂ ∂ = + . The test that PS has some effect on 

government duration is the F-test on both coefficients, for which the table reports p=.075: moderate 
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support. The test of whether this effect depends (linearly) on the level of parliamentary support itself 

(i.e., that the relationship of PS to government duration would be quadratic), is the standard t-test on 

2
ˆ

psβ , which is reported in the table as giving p=.142: weak support. To gauge the significance of the 

estimated effect of PS at particular values of PS, we would use the following formula: 

( ) ( ) ( ) ( )2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ2 2 2 ,2ps ps psps ps ps

GDV V PS V V PS C PS
PS

β β β β β β
 ∂

= + = + +  ∂ 
 

( ) ( ) ( )2 2
2ˆ ˆ ˆ ˆ4 2 , 2ps psps ps

GDV V V PS C PS
PS

β β β β
 ∂

= + × + ×  ∂ 
 

( ) ( ) ( )2 2
2ˆ ˆ ˆ ˆ4 4 ,ps psps ps

GDV V V PS C PS
PS

β β β β
 ∂

= + × + ×  ∂ 
  [27] 

The relevant portion of the estimated variance-covariance matrix of these coefficient estimates is: 

( ) ( )
( ) ( )

2

2 2

ˆ ˆ ˆ4.247 , .0343

ˆ ˆ ˆ, .0343 .000281

ps psps

ps ps ps

V C

C V

β β β

β β β

≈ ≈ −

≈ − ≈
 

So, for example, the standard error of the estimated marginal effect of PS on government 

duration at PS=55% is: 

( ) 2. . 4.247 4 .000281 55 4 .0343 55 0.3s e GD PS∂ = + × × + ×− × ≈  

The marginal effect at this point is -2.73+2(.0257)55=+.09, and, given the associated standard 

error of the marginal effect, is not remotely statistically distinguishable from zero. In fact, the 

estimated marginal effect is insignificant in one- or two-tailed tests over about half of the sample 

range of PS in this model; to present the range over which the marginal effect is distinguishable from 

zero, we suggest calculating and plotting the confidence intervals around the effect line depicted in 

Figure 2 (and we do so in Figure 10). We provide instructions for doing so in the next section. 
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In Table 8, we log-transformed parliamentary support before including it in an interactive model 

otherwise identical to that of Table 5. Accordingly, testing null hypotheses that effects equal zero 

(i.e., testing for the existence of effects) follow that discussion exactly. NP has no effect on 

government duration if and only if (iff) the coefficients on NP and NP·ln(PS) are both zero (F=5.36; 

Prob(F2,17>5.36)=.0157: reject); PS has no effect iff the coefficients on ln(PS) and NP·ln(PS) are 

both zero (F=6.78; Prob(F2,17>6.78)=.0068: reject); and NP and PS have no linear or linear-

interactive effect iff all three coefficients are zero (F=4.81; Prob(F3,17>4.81)=.0133: reject). The 

significance of the estimated marginal effects of NP at specific values of ln(PS) and the test of 

whether NP generally decreases government duration likewise follows the discussion from the Table 

5 case exactly, merely replacing PS with ln(PS). However, estimated marginal effects of PS on 

government duration are ( )ln( ) ln( )
ˆ ˆ/ ps np psGS PS NP PSβ β∂ ∂ = + , which depend on both NP and PS; so 

too, then, does the standard error of this estimated effect: 

( ) ( )( )ln( ) ln( )
ˆ ˆ

ps np psV GD PS V NP PSβ β∂ ∂ = +

( )( ) ( ) ( ) ( )ln( ) ln( ) ln( ) ln( ) ln( ) ln( )2
1ˆ ˆ ˆ ˆ ˆ ˆ2 ,ps np ps ps np ps ps np ps

GDV V NP PS V V NP C NP
PS PS

β β β β β β
 ∂  = + = + +    ∂   

( ) ( ) ( )2
ln( ) ln( ) ln( ) ln( )2

1 ˆ ˆ ˆ ˆ2 ,ps np ps ps np ps
GDV V NP V NP C
PS PS

β β β β
 ∂  = + + ×    ∂   

  [28] 

We simply insert the values from the estimated variance-covariance matrix of these coefficient 

estimates, along with assigned values of NP and PS, into this formula for the variance of the 

marginal effect of PS at those values of PS and NP.50 For example, a three-party government that 

increased its parliamentary support marginally from 55% would increase its expected duration by 

about a month ( 43.4 32.7 3 .995
55 55

GD
PS

∂ − ×
= + ≈

∂
), with a standard error for that estimate of: 
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271.8.302
55

3295.142
55
37.751

55
1

5.

2

22

≈











×

×
−






+






= . Dividing the estimated marginal effect by the 

estimated standard error yields a t-statistic of 671.3
271.
995.

= , implying reject at p(t17>3.671)=.0019, 

for the test of the null hypothesis of no effect of PS on government duration at these levels of NP and 

PS. As with the preceding nonlinear transformation, however, we strongly recommend graphical 

presentation of such estimated effects and confidence intervals and so defer further discussion. 

For the chained, pairwise, and fully interactive three-way-interaction models of government 

duration (Table 9), finally, we could follow the same sequence of common theoretical hypotheses. In 

doing so, notice, first, that we can evaluate whether one of the three independent variables affects the 

dependent variable by conducting an F-test of the null hypothesis that the coefficients on all of the 

terms involving that variable are zero. For example, the F-test that PS “matters” has a null 

hypothesis that psβ  and nppsβ  are both zero in the chained model (F=5.86; p(F2,16>5.86)=.012), that 

psβ , nppsβ , and pspdβ  are zero in the pairwise model (F=5.81; p(F3,15>5.81)=.008), and that psβ , 

nppsβ , pspdβ , and nppspdβ  are all zero in the fully interactive model (F=4.26; p(F4,14>4.26)=.018). That 

the effect of PS depends on NP or PD in the pairwise or fully interactive models is now also a joint 

hypothesis in the pairwise and fully interactive models: that the coefficients nppsβ and pspdβ  are both 

zero (F=5.69; p(F2,15>5.69)=.015), and that nppsβ , pspdβ , and nppspdβ  are all zero respectively 

(F=3.75; p(F3,14>3.75)=.036). That the effect of PS depends on NP or that the effect of PS depends 

on PD are each a simple-hypothesis t-test in the pair-wise model, on nppsβ  or nppdβ   (t=2.2, 

p(|t15|>2.2)=.04; t=1.9, p(|t15|>1.9)=.07), respectively, but each is a joint-hypothesis, F-test on nppsβ  

and nppspdβ  or on pspdβ and nppspdβ  (F=2.5; p(F2,14>2.5)=.12; F=1.96; p(F2,14>1.96)=.18), respectively, 

in the fully interactive model. The tests for the analogous hypotheses regarding how the effects of 
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NP or of PD depend on the one or both other two variables are symmetric. Finally, that some linear 

or linear-interactive combination of NP, PS, and/or PD “matters” corresponds to the F-test of the 

model in each case (as reported in Table 9: F=4.68; p(F7,14>4.68)=.007). We highly recommend 

graphical methods for interpreting the sign and the statistical certainty and significance of estimated 

effects of each variable over ranges of each of the others, as discussed in the next section. 

D. Presentation of Interactive Effects 

Hayduk and Wonnaccott (1980) noted, “While the technicalities of these [interactive] 

procedures have received some attention…the proper methods for the interpretation and visual 

presentation of regressions containing interactions are not widely understood” (400). This section 

provides guidance on presentation of results from models that include interaction terms. 

Mere presentation of regression coefficients and their standard errors is inadequate for the 

interpretation of interactive effects. As we have seen, the estimated effects of variables involved in 

interactive terms and the standard errors of these estimated effects vary depending on the values of 

the conditioning variables. Therefore, conditional effects, as best calculated by the derivative or 

difference method, are most effectively conveyed in tabular and graphical forms. Presentations of 

effects that involve interactive terms now often do utilize tables or graphs that depict the effect of x 

on y, when z equals particular values. What still too often lacks is presentation of estimated 

conditional effects across a sufficiently wide and meaningful range of values of z, and indication of 

the estimated uncertainty of these estimated conditional effects across that range. 

Many statistical-software packages can provide conditional marginal effects or predicted values 

as well as standard errors for these conditional estimates, typically as part of some post-estimation 

suite of commands.51 Further, other programs exist that will generate estimates of uncertainty around 

predicted values from any estimated model using simulation (King, Tomz, and Wittenberg 2000). 
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While we have no particular qualms against such pre-programmed commands and procedures,52 the 

procedures we recommend below maximize the user’s control over the values at which marginal 

effects and predicted values are calculated, and, we believe, will strengthen the user’s understanding 

and intuition in interpreting models that contain interactive terms. We strongly recommend that the 

user be fully conversant with the elementary mathematical foundations underlying these procedures 

before taking pre-programmed commands “off the shelf.”53  

1. Presentation of Marginal Effects. 

Researchers will often wish to convey to the reader how the effect of x changes over some range 

of z values. The estimated marginal conditional effects of x on y are the first derivative of ŷ  with 

respect to x: ˆ ˆˆ / x xzy x zβ β∂ ∂ = + . We will want to discuss these conditional effects of x over some 

substantively revealing range of z values. One such revealing range and sequence of values, which 

may serve as a good default, would be an evenly spaced range of values ranging from a, the sample 

minimum of z, to c, its sample maximum. More generally, the researcher could calculate the 

marginal effect of x on y for any set of z values of interest. Sample means, percentiles, means plus or 

minus one or two standard errors, etc. are all frequently useful default points or ranges for these 

considerations, but substance and researchers’ presentational goals should be determinate here. 

Using z values of particular observations—say, of some well-known, important, or illustrative case 

or cases in the sample—is also often a good idea. Finally, crucially, the researcher must also report 

the estimated certainty of the estimated conditional effects in some manner: standard errors, t-

statistics, significance levels, confidence intervals. Confidence intervals are usually more effective in 

graphical presentation and standard errors, t-statistics, or significance levels in tables. Confidence 

intervals can be generated by this formula: 

,ˆ ˆ/ ( / )df py x t V y x∂ ∂ ± ∂ ∂  
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Where tdf,p is the critical value in a t-distribution with df degrees of freedom (df=n-k; n is the number 

observations and k the number of regressors, including constant) for a two-sided hypothesis-test at 

one minus the desired confidence-interval size. For example, to obtain the lower and upper bounds 

of a 95% (90%) confidence interval, tdf,p should correspond to critical values for a two-sided test at 

the p=.05 (p=.10) level, i.e.,  .025 (.05) on each side; with large degrees of freedom, tdf,.05 is 

approximately 1.96 (tdf,.10≈1.65). 

For any constant c and random variables r1 and r2, the variance, V(), of r1+r2c is given by 

),(2)()()( 212
2

121 rrCcrVcrVcrrV ×++=+ , where C(r1,r2) is the covariance of r1 and r2. Under 

standard regression assumptions, the independent variables are fixed across repeated samples (i.e., 

constants); the estimated coefficients are what vary across repeated samples (i.e., random variables). 

Thus,  2ˆ ˆ ˆ ˆˆ( / ) ( ) ( ) 2 ( , )x xz x xzV y x V z V z Cβ β β β∂ ∂ = + + ×  as given in [26]. More generally, for a vector of 

random variables, β̂ , and a constant vector, m , the variance of the linear-additive function βm ˆ′  is 

( )ˆ ˆ( )V ′ ′=m β m V β m .  

For example, for three-way interactions in fully interactive models like the third model of Table 

9, the variance of the estimated marginal effect of x on y is:  

ˆ ˆ ˆ ˆˆ( / ) ( )x xz xw xzwV y x V z w zwβ β β β∂ ∂ = + + +  

2 2 2

, , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 2 ( , ) 2 ( , )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ( , ) 2 ( ) 2 ( ) ( ) 2 ( ) ( )

x xz xw xzw x xz x xw

x xzw xz xw xz xzw xw xzw

V z V w V zw V z C w C
zw C zw C z zw C w zw C
β β β β β β β β

β β β β β β β β
= + + + + × + ×
+ × + × + × + ×

 

Or, more simply, in matrix notation: 
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ˆ
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( ) [ ]

[ ]

ˆ 1
ˆ

ˆ ˆ 1
ˆ

ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( , ) ( , )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , )
1

ˆ ˆ ˆ ˆ( , ) ( , ) (
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xz
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x x xz x xw x xzw
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β
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            ′ ′= = × ×               

=

m β m V(β)m V

1

ˆ ˆ ˆ) ( , )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( )

xw xw xzw

x xzw xz xzw xw xzw xzw

z
wC
zwC C C V

β β β

β β β β β β β

                   

 

In words, the variance of a sum of random variables and constants, such as an estimated conditional 

effect, is the sum of all the variances of the variables (the estimated coefficients implied by the 

conditional effect), each multiplied by the square of their cofactor (the associated independent 

variable(s)), plus two times each of the covariances of the variables (the estimated coefficients) times 

the product of their cofactors (the associated independent variable(s)). 

In our first empirical example, we calculated two sets of conditional effects. We calculated the 

marginal effect of Groups when Runoff equals 0 and when it equals 1, and we calculated the 

marginal effect of Runoff at evenly spaced values of Groups from 1 to 3. To construct confidence 

intervals for these estimated conditional effects, we need to determine the estimated variance of 

these estimated effects and to choose a desired confidence level. Given our small sample size, we 

choose to accept lower certainty and so select a 90% confidence interval. This interval implies a 

critical value of t12,.10 = 1.782. We would thus calculate the upper bound and lower bound for the 

confidence intervals as: 

Upper bound: ˆ ˆ/ 1.782* ( / )y x V y x∂ ∂ + ∂ ∂  

Lower bound: ˆ ˆ/ 1.782* ( / )y x V y x∂ ∂ − ∂ ∂   

Note that ˆ( / )V y x∂ ∂  is the estimated variance of the marginal effect of x on y, produced by 

plugging in values from the estimated variance-covariance matrix into the expression [26]. When 
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evaluating the marginal effect of x at several values of z, a graphical display of marginal effects 

with confidence intervals is especially effective. Figure 4, for example, displays the marginal 

effect of Runoff across a range of values of Groups with confidence intervals around these 

estimated effects. The straight line thus plots the estimated marginal conditional effects of Runoff 

as a function of Groups, and the confidence interval reveals the uncertainty surrounding these 

estimated effects. The estimated coefficient GRβ̂  gives our estimate of the slope of the marginal 

effect line (+2.01), indicating that the marginal effect of Runoff on the number of candidates is 

estimated to increase at a rate of about +2 Candidates for each one-unit increase in Groups. This 

graph shows that over the range of sample-relevant values (varying Groups from 1 to 3), the 

marginal effect of runoff increases by about 2 for each one-unit increase in the number of 

groups. The marginal effect takes on both negative values (though indistinguishable from zero) 

and positive values, along the range of Groups. The 90% confidence interval overlaps zero at 

lower values of Groups, suggesting that within that range the marginal effect cannot be 

statistically distinguished from zero, but the confidence interval does not overlap zero when the 

number of societal groups exceeds 1.75.   

 /INSERT FIGURE 4 HERE/ 

Note how this example illustrates the ambiguity discussed above in hypotheses of “generally 

positive” effects of variables involved in linear interactions. The researcher in this case would likely 

have hypothesized that runoff systems increase the number of presidential candidates, especially in 

more ethnically fragmented societies. Although the effect of runoff systems is essentially zero when 

fragmentation is very low, this estimated effect turns positive in even moderately fragmented 

societies, i.e., beyond Groups≈1.25, and significantly so beyond a modest Groups≈1.75. Regarding 

the proposition that the effect of Runoff increases as Groups increases, no ambiguity arises. The 



 

 

63

marginal effect line slopes upward at the rate of ˆ
GRβ , and this estimated slope of the effect line is 

comfortably significant statistically. The ambiguity regards the hypothesis of a “generally positive” 

effect, because the estimated effect of Runoff is not, in fact, positive over the entire sample range of 

Groups and is only significantly distinguishable from zero in the positive direction over the higher 

end of that sample range. Consideration of only the coefficient on Runoff, Rβ̂ , would have badly 

served the researcher in this example; that so-called “main effect” coefficient, which actually 

corresponds to the logically impossible Groups=0 case, is negative and larger than its standard error, 

yet the actual conditional effects of runoff are indeed estimated to be positive over almost the entire 

relevant range. Graphing the estimated effects over this substantively relevant range with 

accompanying confidence intervals in this way reveals that this evidence actually supports that 

proposition reasonably strongly. 

To illustrate the mathematical properties of these effect lines and their associated standard 

errors, imagine extending the estimated effect line from Figure 4 in both directions by projecting into 

much lower and much higher values for Groups. Projecting into values of Groups less than one is 

substantively nonsensical, but linear regression per se imposes no such bounds on the values of 

independent variables, so let us imagine it were possible here, solely for these illustrative purposes. 

Calculating the estimated marginal effects of Runoff, as the number of ethnic groups ranges from -2 

to +6 produces Figure 5, demonstrating several interesting properties.  

As we noted above, the coefficient on Runoff indicates the impact of Runoff when Groups = 0, 

so Rβ̂ =-2.49 is also our estimate of the intercept of the marginal effect line (i.e., the value on the y-

axis when Groups are zero), as the graph indicates. And, as evidenced in Figure 4, the estimated 

coefficient GRβ̂  gives our estimate of the slope of the marginal effect line (+2.01), indicating that the 

marginal effect of Runoff on the number of candidates is estimated to increase at a rate of about +2 



 

 

64

Candidates for each one-unit increase in Groups. Next, note the hourglass shape of the confidence 

interval around the estimated marginal-effect line; this hourglass shape is characteristic of 

confidence intervals for estimated conditional-effects in linear-interaction models. The narrowest 

part of the hourglass occurs at the value of z at which there is greatest certainty concerning the size 

of the marginal effect of x on y. This point, intuitively, will correspond to the sample mean of the 

other term in the interaction (z); as always, our estimates have greatest certainty for values around 

the mean (centroid for more-than-one variable) of our data. The wider parts are points at which 

lesser certainty prevails regarding the estimated effects, which, intuitively, correspond to points 

farther from the mean (centroid). The characteristic hourglass shape of the confidence region results 

from the appearance of z2 in the expression for the variance of the effect and also from the 

covariance of the coefficient estimates in that expression, which is typically negative because the 

corresponding variables x and xz tend to correlate positively. The relative concavity of these 

hourglasses generally sharpens with the magnitude of this negative correlation. In summary, the 

confidence intervals (regions) around conditional-effect lines will be (3D) hourglass-shaped, with 

the narrowest points located at the mean (centroid) of the conditioning variable(s) and generally 

becoming more accentuated as x and xz correlate more strongly, although accentuation depends also 

on the relative (estimated) variances of Rβ̂  and GRβ̂  and, in appearance, also on graph and z scaling. 

Note also from Figure 5 that the marginal effect of Runoff is statistically distinguishable from 

zero in the negative direction for values of Groups below about -.5, and statistically distinguishable 

from zero in the positive direction for values of Groups above about 1.75. These results illustrate 

clearly the following points made above. First, the marginal effect of Runoff indeed varies with 

values of Groups. Second, the effect lines, being linear, will extend above and below zero for some 

(not necessarily meaningful) values of the variables involved. Third, our confidence regarding (i.e., 
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standard errors and significance levels for) the marginal effect of Runoff also varies with values of 

Groups. Although Figure 5 plots these effects and confidence intervals extending into substantively 

or even logically meaningless ranges, we emphasize that, in actual research, the researcher bears 

responsibility to ensure that interpretation and presentation of the results corresponds with logically 

relevant and substantively meaningful values of the independent variables of interest. This implies 

that researchers must give such information about sample, substantive, and logical ranges necessary 

for the reader to recognize substantively and logically meaningful and sample-covering ranges. We 

have projected Groups into negative and very high positive values for pedagogical purposes only, to 

display properties of the marginal effects and confidence intervals most clearly, but we reiterate that 

these would not be logically relevant values in this case. Indeed, presenting a graph like Figure 5, 

which extends well beyond the sample and indeed the logically permissible range, would foster 

misleading conclusions regarding the substantive meaning of our estimates. 

/INSERT FIGURE 5 HERE/ 

Other types of graphs may more usefully depict marginal effects when conditioning variables 

are not continuous. For example, the variable Runoff takes only two values: 0 in the absence of a 

runoff system and 1 in the presence of one.  Accordingly, the marginal effect of Groups on 

Candidates is also substantively interesting for only these two values of Runoff.  We can graph the 

estimated marginal effect of Groups on Candidates as a function of Runoff, as shown in Figure 6, 

with 90% confidence intervals around each estimated marginal effect.54 We see that in systems 

without runoffs, the confidence interval includes the value of zero, suggesting that the marginal 

effect of societal groups is not distinguishable from zero in countries with these systems. We also see 

that in systems with runoffs, the confidence interval does not include the value of zero; the marginal 

effect of societal groups can be statistically distinguished from zero in these cases. However, the 
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confidence intervals themselves across the values of Runoff overlap, suggesting that we cannot say 

with high levels of certainty that the marginal effect of Groups in cases without runoffs and with 

runoffs are statistically distinguishable from each other. 

/INSERT FIGURE 6 HERE/ 

As another example of using this type of graph, consider our social welfare example, where both 

Female and Republican are dummy variables (binary indicators), and each conditions the other’s 

effect on support for social welfare. Thus, only four effects exist to plot: gender among Democrats 

and among Republicans, and party among women and men. Graphically, conditional effects and 

associated confidence intervals in such cases are perhaps best displayed as shown in Figure 7. (We 

adopt a more stringent confidence level, 95%, in these figures, given the much larger sample here.) 

Figure 7 reveals the estimated effects of Female among Democrats and Republicans with associated 

confidence interval, and the estimated effects of Republican for males and females, again with 

associated confidence interval. In the top panel, we see that the confidence interval for the marginal 

effect of Female among Democrats includes the value of zero whereas that among Republicans does 

not. This graph shows that the effect of gender among Democrats does not differ statistically 

distinguishably from zero but the effect of gender among Republicans does. Furthermore, the 

confidence intervals do not overlap, indicating that the effect of gender differs significantly between 

Democrats and Republicans. In the bottom panel, zero lies outside both sets of confidence intervals; 

the marginal effect of partisanship is significantly different from zero for both males and females. 

Again, the confidence intervals do not overlap, suggesting that the marginal effect of partisanship is 

significantly stronger (in the negative direction) among males.  

/INSERT FIGURE 7 HERE/ 

Moving to our government-durability example, Figures 8 and 9 illustrate the marginal effect of 
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the number of governing parties and the marginal effect of parliamentary support on government 

duration from the simple, linear-interactive model of government duration featured in Table 5. 

Figure 8 shows that the marginal effect of NP takes negative and positive values, depending on the 

value of PS, as we noted in that discussion. It also reveals far more clearly than discussion alone 

could that, at lower values of PS, the (negative) marginal effect of NP is statistically distinguishable 

from zero (the 90% confidence interval lies entirely below zero until parliamentary support reaches 

about 62%) whereas, while the estimated effect becomes positive beyond that value, it remains 

statistically indistinguishable from zero through the rest of the sample range. We can conclude 

reasonably confidently that the number of governing parties reduces government duration for 

parliamentary support below 62%, as expected, and note that it becomes statistically 

indistinguishable from zero beyond that, even though estimates suggest that it might even become 

positive. Analogously, Figure 9 plots the estimated marginal effect of parliamentary support on 

government duration as a function of the number of governing parties. It is generally positive and 

becomes statistically distinguishable from zero in that direction once the number of governing 

parties reaches two. 

/INSERT FIGURES 8 and 9 HERE/ 

Recall that Figure 2 plotted estimated government duration as a quadratic function of 

parliamentary support and the estimated marginal effect on government duration of parliamentary 

support as a function the level of support. Graphical presentation of estimates and estimated effects 

in nonlinear models is especially useful, and including some representation of the certainty of those 

estimates and estimated effects is equally crucial. Accordingly, Figure 10 adds 90% confidence 

intervals to the straight line (the estimated marginal conditional effect line) in Figure 2, using the 

square root of the expression in [27] to calculate the estimated standard error of the estimated 
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marginal conditional effect. (We discuss construction of the confidence interval around the predicted 

values below). We take the estimated marginal effect and add (subtract) the product of the t-critical 

value and the estimated standard error to obtain the upper (lower) bound of the confidence interval: 

( ) ( ) ( ) ( )2 2 2

.5
2ˆ ˆ ˆ ˆ2 1.729 4 4 ,ps psps ps ps psPS V V PS C PSβ β β β β β + ± × + × × + × ×  

 

/INSERT FIGURE 10 HERE/ 

Likewise, Figure 3 plotted the estimated, marginal, nonlinear, conditional effect of 

parliamentary support on government duration from the model specifying PS in natural log terms 

and interactively with the number of governing parties, NP. This presentation, too, requires 

indication of the uncertainty of these estimated effects. We first use the expression provided in 

equation [28] to calculate the estimated standard error of the marginal effect of PS and then add 

(subtract) the product of the estimated standard error and the t-critical value to the estimated 

marginal effect to obtain the upper (lower) bound of the confidence interval: 

( ) ( ) ( ) ( )
.5

2
ln( ) ln( ) ln( ) ln( )ln( ) 2

1 ˆ ˆ ˆ ˆ1.74 2 ,ps np ps ps np psps np ps NP PS V NP V NP C
PS

β β β β β β  + ± × + + ×    
 

To accommodate the two-dimensional, monochrome technology of most social-science 

publications and to reduce visual clutter, Figure 11 plots two of these conditional-effect lines with 

confidence intervals, those corresponding to the revealing and interesting NP=2 and NP=4 cases. 

/INSERT FIGURE 11 HERE/ 

The estimated, marginal conditional effects of the number of governing parties on government 

duration, can also be plotted along values of parliamentary support for government, with a 

confidence interval. We calculate the confidence interval as:  

 ( )
.5

2
ln( ) ln( ) ln( )

ˆ ˆ ˆ ˆ ˆ ˆln( ) 1.74 ( ) ln( ) ( ) 2 ln( ) ( , )np np ps np np ps ps np psPS V PS V PS Cβ β β β β β + ± × + +  
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As Figure 12 reveals, the point-estimate of the effect of NP does turn positive beyond PS≈65%. 

However, this putatively positive effect never surpasses even generous levels of statistical 

significance (p<.10), whereas the decreasingly negative effects in the range below PS≈60% are 

statistically distinguishable from zero at this level. Thus, this fuller picture of the evidence from the 

empirical analysis rather suggests that, as expected intuitively, increasing government 

fractionalization reduces durability, but this detrimental effect generally diminishes as the strength of 

parliamentary support for that fractionalized government rises. 

/INSERT FIGURE 12 HERE/ 

As we saw comparing the regression output from Table 5 (linear-interactive) and Table 8 (log-

transformed-interactive) versions of this model, the curvature of the effect lines induced by the log-

transformation of PS, however, is not especially strongly supported relative to a linear specification 

( 2 .520R = vs. 2 .511R = ). Graphically, this relatively weak support is seen from how easily straight 

conditional effect lines could fit within the confidence intervals surrounding these slightly curved 

conditional effect lines. However, we caution that exact correspondence to the significance with 

which the nonlinear- could reject linear-interactive model does not emerge from these graphs. In 

fact, more generally, ability to draw flat (unconditional) effect-lines within the confidence intervals 

of slanted (conditional) effect-lines does not correspond to a hypothesis test that the effect is 

conditional (interactive). The correct test of that, as Table 8 detailed, is the simple t-test on the 

interaction term in the model (or analogous F-tests in multiple-interaction models as in Table 9). 

Significance of the hypothesis that the effect of x depends on z (i.e., generally) does not guarantee 

that the confidence intervals for the conditional effects at the high and low end of the range of z 

plotted or, for that matter, necessarily at any two z-values plotted, will fail to overlap.55 

In the chained three-way interaction model of the first column of Table 9, the effects of PS and 
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of party discipline, PD, are conditioned by one other variable, NP. We already discussed how to 

present conditional effects like this above. However, the effect of NP in this model depends on both 

PS and PD: ˆ ˆ ˆ/ np npps nppdGD NP PS PDβ β β∂ ∂ = + + . One might consider a three-dimensional plot of 

such a conditional effect, plotting the marginal effect of NP (y-axis) as a function of PS (x-axis) and 

of PD (z-axis). However, conditional-effect “lines” in such cases will actually be planes plotted at 

linearly changing heights y as x and z change, which would be difficult to render clearly on two-

dimensional pages, especially since we must also include confidence intervals, which will be 

(hourglass) curved surfaces above and below that conditional-effect plane. We therefore recommend 

eschewing three-dimensional graphics and instead plotting contours of those three-dimensional 

relationships onto two dimensions. To be precise, we suggest plotting ˆ ˆ ˆˆ / x xz xwy x z wβ β β∂ ∂ = + +  as a 

function of z or w at a few values of w or z, each of which will generate one conditional-effect line, 

each with its own confidence interval, like those previously shown. In this case, PD is binary, so we 

could plot ˆ ˆ ˆ/ np npps nppdGD NP PS PDβ β β∂ ∂ = + + as a function of PS just at PD=0 and at PD=1, with 

confidence intervals, to illustrate the estimated conditional effects fully. 

/INSERT FIGURE 13 HERE/ 

The graph demonstrates that the detrimental effect of NP on government durability declines with PS, 

but it does not seem to be further conditioned by PD in this analysis. 

In the pairwise and fully interactive three-way-interaction models, finally, the effects of NP, PS, 

and PD each depend on the other two factors. Figures 14 and 15 demonstrate how researchers can 

graph estimation results from pairwise-interaction models effectively. Figure 14 parallels the case of 

Figure 13, plotting how the effect of parliamentary support depends on the number of governing 

parties and party discipline. (The effect of NP symmetrically depends on PS and PD in this model, 

too, but those results and that figure add little to what Figure 13 already displayed.) The formulae for 
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the effect lines in this figure parallel those from above also: 

ˆ ˆ ˆ/ ps npps pspdGD PS NP PDβ β β∂ ∂ = + +

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2ˆ ˆ ˆ/

ˆ ˆ ˆ ˆ ˆ ˆ2 , 2 , 2 ,

ps npps pspd

ps npps ps pspd npps pspd

V GD PS V V NP V PD

C NP C PD C NP PD

β β β

β β β β β β

⇒ ∂ ∂ = + +

+ + + ⋅

( )
.5

90% c.i.: 1.75GD GD
PS PSV∂ ∂
∂ ∂

 ⇒ ± ×   
 

The nearly non-overlapping confidence intervals in Figure 14 reveal that the effect of parliamentary 

support, unlike that of the number of governing parties (not shown), does seem to depend somewhat 

on party discipline. Intuitively, the durability-enhancing effects of larger parliamentary support are 

greater with higher than with lower discipline of those additional partisan supporters. The upward 

slope of these conditional-effect lines show also that the benefit of greater parliamentary support to 

government durability seems to increase with the fractionalization of those governments. Intuitively, 

single-party governments can survive with bare-majority support; multi-party governments need 

more cushion. This feature also seems more statistically certain at higher party discipline, as the 

narrower confidence region for the effect at PD=1 than at PD=0 reveals. 

/INSERT FIGURE 14 HERE/ 

The effect of party discipline in these models depends on two continuous variables, NP and PS. 

Therefore, three dimensions are needed to represent its conditional effects fully; however, two two-

dimensional graphs can suffice nearly as fully and will usually be far easier to comprehend. Namely, 

we recommend plotting ˆ ˆ ˆ/ pd nppd pspdGD PD NP PSβ β β∂ ∂ = + +  as a function of NP at a few values of 

PS and as a function of PS at a few values of NP, each with confidence intervals.56  

/INSERT FIGURE 15 HERE/ 

The upper graph displays two flat conditional-effect lines and nearly completely non-overlapping 

confidence intervals. The lower graph displays two clearly upward-sloping conditional-effect lines 
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nearly on top of each other and with almost fully overlapping confidence intervals. These graphs 

suggest that the effect of party discipline on government duration seems to depend on parliamentary 

support but not on the number of governing parties in this model. 

Figures 16 and 17 graph the estimated marginal effects of NP and PD in the fully interactive 

model wherein the effect of each variable depends on the values and the combination of the values of 

the other two variables.57 Effective graphing techniques for fully interactive models mirror those for 

pairwise-interaction models because in both cases the effect of each variable depends on two others. 

The difference here is that when, as in Figure 16, e.g., plotting the marginal effect of one variable, 

e.g., PS, as a function of a second, NP, at different values of the third, PD, the marginal-effect lines 

will not be parallel because the effect of the first depends not just additively on the other two, but 

multiplicatively as well. The other major difference is the magnitude of the confidence intervals; 

attempting to estimate such complexly interactive relations, with 7 nested, and so highly collinear, 

linear-interaction terms, with just 22 observations and 14 degrees of freedom, will almost always 

prove quixotic, as it does here. We can distinguish from zero even at the low p=.10 level only (1) the 

intuitive increasingly beneficial effect of parliamentary support as the number of parties increases in 

a high party-discipline environment (Figure 16, PD=1 line), (2) the converse increasingly beneficial 

effect of party discipline as parliamentary support for a government of relatively few parties 

surpasses about 50% (Figure 17, bottom graph, NP=2 line), and (3) the decreasingly beneficial effect 

of party discipline as the number of parties in a high parliamentary-support government rises (Figure 

17, top graph, PS=80 line). Almost none of these estimated complexly conditional marginal effects 

is distinguishable from any other at almost any combination of independent-variable values. This 

illustrates the extremely high premium for researchers interested in exploring such complex context-

conditionality empirically on maximizing observations and degrees of freedom, and for leveraging 
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theory to specify interactive hypotheses as precisely as possible (as strongly urged in Section II 

above, and as demonstrated in Franzese 1999, 2002b, 2003a). 

/INSERT FIGURES 16 AND 17 HERE/ 

2. Presentation of Predicted Values. 

Aside from presenting conditional effects, researchers may also wish to present the predictions 

of y as x varies across a range of values, say from ax to cx , its sample minimum to maximum, while 

holding z constant at some (meaningful and revealing) value. Changes in these predictions from 

some particular ˆ | ay x  to ˆ | cy x would reveal the effects of such changes in x on y at that level of z as 

just discussed, but we may also wish to present tables or graphs of predictions per se as x varies, 

holding z fixed. (Recall that xz will also vary with x, even though z is held constant.) Including 

measures of uncertainty around these predictions is again imperative, and, as with effects, each 

predicted value at some particular x and z values has its own level of uncertainty attached to it. Thus, 

tables and graphs of predicted values should also include standard errors and/or confidence intervals 

(variances, standard errors, significance levels) around each of those predicted values.  

In the standard linear-interaction model, the variance around each predicted value is: 

0
ˆ ˆ ˆ ˆˆ( | , ) ( )x z xzV y x z V x z xzβ β β β= + + +  [29] 

Expanding this expression:58 

2 2 2
0

0 0 0

ˆ ˆ ˆ ˆˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ2 ( , ) 2 ( , ) 2 ( , )
ˆ ˆ ˆ ˆ ˆ ˆ2 ( , ) 2 ( ) ( , ) 2 ( ) ( , )

x z xz

x z xz

x z x xz z xz

V y V x V z V xz V
xC zC xzC
xzC x xz C z xz C

β β β β
β β β β β β
β β β β β β

= + + +
+ + +
+ + +

 [30] 

In words, the variance of a sum equals the sum of the variances plus two times all the covariances; 

more completely, the variance of a sum of random variables (here, the coefficient estimates) times 

constants (here, independent variables) is equal to the sum of the variances times the associated 

constants squared plus two times all the covariances times the product of their constant cofactors.59 
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As before, we will need the estimated variance-covariance matrix of the parameter estimates ( ( )ˆV β ) 

to calculate this, which can be easily recalled by an additional post-estimation command in most 

statistical software.60  

Let us calculate the predicted number of presidential candidates corresponding with various 

values of Ethnic Groups and Runoff and their variances from our first example. Table 13 gave the 

variance-covariance matrix of the coefficient estimates from this model. When Groups = 1 and 

Runoff = 0, we estimate/predict the number of candidates as: 

( | 1, 0) 4.303 0.979 1 2.491 0 2.005 1 0 3.324Candidates Groups Runoff= = = − × − × + × × = . 

Using Equation [30], substituting Groups =1 and Runoff =0, yields the following expression: 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2 2 2
0

0 0 0

( | 1, 0)

ˆ ˆ ˆ ˆ1 0 (0)(1)

ˆ ˆ ˆ ˆ ˆ ˆ2 1 , 2 0 , 2 1 0 ,

ˆ ˆ ˆ ˆ ˆ ˆ2 1 0 , 2 1 (1 0) , 2 0 (1 0) ,

G R GR

G R GR

G R G GR R GR

V Candidates Groups Runoff

V V V V

C C C

C C C

β β β β

β β β β β β

β β β β β β

= = =

+ + +

+ × × + × × + × × ×

+ × × × + × × × + × × ×

 

Substituting the estimated values of the variances and covariances of the coefficients: 

( )( | 1, 0) 1.509 0.593 2 0.900 0.302V Candidates Groups Runoff= = = + + × − =  

Table 22 presents the variance of the predicted values as Ethnic Groups ranges from 1 to 3, when 

Runoff takes the values of 0 and 1. These predictions can also be graphed as described below. 

 /INSERT TABLE 22 HERE/ 

Obviously, these calculations will become quite cumbersome, quite quickly, in the presence of 

additional covariates. In fact, calculation of the variance of predicted values requires attention to the 

levels of all the independent variables and to the variance of each estimated coefficient and the 

covariances between each of the estimated coefficients. In our simple model, which includes just 
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three variables plus an intercept, this involves ten terms. Adding just one more regressor (which did 

not interact with any others) would require us to include five more terms in Equation [30]! 

One way to simplify the expression is to use matrix algebra to depict ŷ  and to calculate ( )ˆV y  

(see note 39). Note that a predicted value, ŷ , sums the products between sets values of the right-

hand-side variables and their corresponding coefficients. Let Mh be a j-by-k matrix of values at 

which x, z, and any other variables of interest in the equation are set, where j refers to the number of 

values at which the predicted value is calculated and k refers to the number of regressors, including 

the constant. Suppose we were to hold z (and any the other variables) at some logically relevant 

value(s), say z0, and examine the predicted values of ŷ  at a set of j evenly spaced values of x from xa 

to xc, and correspondingly, as xz takes j evenly-spaced values from xaz0 to xcz0. In our standard 

equation, we have estimated coefficients for x, z, and xz, in addition to an intercept. Mh is thus: 

0 0

1 0 1 0

0 0

1
1
1
1

a a

a a

c c

x z x z
x z x z

x z x z

+ +

 
 
 =
 
 
 

hM  

In Mh, the value of x increments evenly from some value xa to some other value xc; z is fixed at z0; 

and the interaction term xz varies as x does. The column of one’s represents the constant (intercept). 

We can then express the vector of predicted values ŷ  as: 

0

ˆ

ˆ
ˆ ˆˆ   where  =

ˆ

ˆ

x

z

xz

β

β

β

β

 
 
 

=  
 
 
 

hy M β β  

As a consequence, ( ) ( )ˆ= hV y V M β . Since Mh is a matrix of values at which we set our independent 

variables, and since independent variables are fixed in repeated sampling under classical regression 
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assumptions, the matrix Mh is a constant whereas the β̂ is a random vector. Accordingly:  

( ) ( ) ( )ˆ ˆ ′= =h h hV y V M β M V β M  

where ( )ˆV β  is the variance-covariance matrix of the estimated coefficients.  

The j diagonal elements in the resulting matrix correspond with the variances of the j predicted 

values of ŷ  at various values included in Mh. As before, we denote the estimate of ( )ˆV β  as ( )ˆV β .  

Using our Candidates example, we can calculate the variance of the predicted values of y as 

follows. First, varying values of Groups in 0.5 intervals from 1 to 3, holding Runoff to zero gives: 

1 0 0 1
1.5 0 0 1
2 0 0 1

2.5 0 0 1
3 0 0 1

 
 
 

=  
 
 
  

hM .  

The first column indicates the values of Groups, the second column indicates the values of Runoff, 

the third column indicates the values of Groups ×  Runoff, and the fourth column represents the 

values for the intercept. The estimated variances of the predicted numbers of candidates at these 

values are therefore given by: 

( ) ( )

1 0 0 1
0.593 0.900 0.593 0.900 1 1.5 2 2.5 3

1.5 0 0 1
0.900 2.435 1.377 1.509 0 0 0 0 0ˆ 2 0 0 1
0.593 1.377 0.885 0.900 0 0 0 0 0

2.5 0 0 1
0.900 1.509 0.900 1.509 1 1 1 1 1

3 0 0 1

 
− −    

     − −   ′  = =
   − − 
     − −     

h hV y M V β M   

which produces the following symmetric matrix: 
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= ( )

0.302 0.149 0.005 0.159 0.312
0.149 0.143 0.138 0.133 0.128

ˆ 0.005 0.138 0.281 0.424 0.567
0.159 0.133 0.424 0.715 1.007
0.312 0.128 0.567 1.007 1.446

− − − 
 
 
 = −
 − 
 − 

V y  

The diagonal elements are ( )ˆV y for the respective values of Groups when Runoff =0. Statistical 

software or a basic spreadsheet program can make these matrix calculations simple to implement.  

Predicted values are often more effectively displayed when graphed with confidence intervals, 

which can be constructed as ,ˆ ˆ( )df py t V y± , where, as before, pdft ,  is the critical value in a t-

distribution with df degrees of freedom that produces a p-value corresponding to ½ of the probability 

outside of the desired confidence interval. For example, lower and upper bounds of a 95% 

confidence interval will again come from pdft ,  of approximately 1.96 in large samples. 

For this example, we calculated ŷ  along evenly-spaced values of Groups from 1 to 3, fixing 

Runoff first to 0 and then to 1. To calculate confidence intervals, we need to calculate the variances 

of these predicted values and to identify a desired level of confidence. Given our small sample, we 

again accept appreciable uncertainty, selecting a 90% confidence interval, implying a critical value 

of t12,α=.10 = 1.782. The upper bound and lower bound for the confidence intervals are therefore: 

Upper bound: ˆ ˆ1.782 ( )y V y+ ×  

Lower bound: ˆ ˆ1.782 ( )y V y− ×  

For Groups=1 and Runoff=0, e.g., ˆ( ) .302V y = as seen above, so the 90% confidence interval is:  

Upper bound: 3.324 1.782 0.302 4.304+ × =  

Lower bound: 3.324 1.782 0.302 2.345− × =  

/INSERT TABLE 22 HERE/ 
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Table 22 displays the confidence intervals calculated for the predicted values of the number of 

presidential candidates as Groups ranges from 1 to 3 in steps of .5, with Runoff fixed to 0 and to 1. 

Figures 18 graphs these predicted values and confidence intervals with Groups on the x-axis, the 

predicted values on the y-axis, and the value of Runoff fixed.  

/INSERT FIGURE 18  HERE/ 

As with the previous graph of marginal effects, the graph of predicted values contains a straight 

line, indicating how the predicted number of candidates changes as Groups varies, in the presence 

and absence of a runoff system. The hourglass curves indicate the degree of certainty associated with 

each predicted value, ŷ . Like estimated effects, predictions have greatest certainty around the mean 

of Groups and less certainty at more-extreme and, especially, out-of-sample values.  

The tables reveal differently what we have already seen in this example: substantial overlap in 

the 90% confidence intervals for the predicted number of presidential candidates in the presence and 

absence of a runoff system when only one ethnic group exists but much less overlap occurs in these 

confidence intervals at higher numbers of Groups, suggesting that the impact of runoff systems on 

the number of candidates becomes more discernibly positive statistically as Groups increases.  

Tables 23 and 24 provide confidence intervals for various predicted values in two of our other 

examples: the US support for social welfare model and the baseline model of government duration 

with just the number of governing parties and parliamentary support interacting. The results in Table 

23 are easily comprehensible, given that the interaction involves only two binary variables: Female 

and Republican. Table 23 shows again, in its first and second columns, the negligible difference in 

predicted social-welfare support among Democrats (Republican=0) by gender, with the confidence 

intervals around those predicted values overlapping substantially (in fact, the confidence interval for 

male Democrats entirely encloses the confidence interval for female Democrats). We also see again, 
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in the third and fourth columns, that social-welfare support among Republican males is appreciably 

lower than among Republican females and that this gender gap among Republicans is statistically 

distinguishable from zero in that the confidence intervals for male and female Republicans do not 

overlap. The same information could also be presented graphically, but the simplicity of the table 

may recommend tabular form instead. 

/INSERT TABLE 23 HERE/ 

Table 24 adds 90% confidence intervals to the predicted values presented in Table 6. It is less 

immediately interpretable, given the plethora of values that NP and GS can take. A multi-paneled 

graph may be the most effective means of presenting the predicted values and their associated 

confidence intervals in cases like this, as shown in Figure 19. 

/INSERT TABLE 24 HERE/ 

/INSERT FIGURE 19 HERE/ 

For variables that enter nonlinearly, e.g., in the example where parliamentary support for 

government is quadratically related to government-durability, the procedure outlined above still 

obtains. Recall that Figure 2 plotted estimated government duration as a quadratic function of 

parliamentary support. Accordingly, Figure 10 adds 90% confidence intervals to the predicted value 

curve, using the results from the model in Table 7, and calculating the confidence interval by: 
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In the log-transformed-PS model, we can also graph the predicted government duration, at 
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selected values of NP and PD, along values of parliamentary support. The 90% confidence interval 

can be calculated around GD  as: 

( ) ( )
( )

0 ln( ) ln( )

0 ln( ) ln( )

ˆ ˆ ˆ ˆ ˆln( ) ln( )

ˆ ˆ ˆ ˆ ˆln( ) ln( )

90% c.i. 1.74

ps np np ps pd

ps np np ps pd

GD PS NP NP PS PD

V GD V PS NP NP PS PD

GD V GD

β β β β β

β β β β β

= + + × +

= + + × +

⇒ ±

 

The estimated government duration, calculated for NP=2 and NP=4, when PD=1, and 

accompanying confidence intervals, appear in Figure 20.  

/INSERT FIGURE 20 HERE/ 

3. Presentation of Differences of Predicted Values. 

Predicted values display how variation along some range of an independent variable, x,  affects 

the level of the dependent variable, conditional upon a third independent variable, z. Researchers 

may sometimes wish to present the estimated effects of discrete changes rather than marginal 

changes of independent variables involved in interaction terms: y x∆ ∆  rather than y x∂ ∂ . For 

example, one might want to plot the estimated effect of some substantively motivated counterfactual 

increase or decrease in an independent variable, say of a 10% increase in parliamentary support, or 

of a unit change in binary indicators like gender, partisanship, runoff or party discipline, or of a 

change from the level of some well-known exemplar to another (e.g., from the average number of 

governing parties in the UK, 1, to that of the Netherlands, 3.3). Provided that the variables involved 

in the estimated conditional effect enter only linearly, as in all of our examples except those using 

the square or natural log of parliamentary support (Tables 7 and 8), doing so requires only a very 

simple extension of our discussion of presenting marginal effects above. 

In regression models where the independent variables enter only linearly or linear-interactively, 

the estimated marginal effect of any variable is equal to the estimated effect of a unit increase in that 
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variable. In a linear-interaction model involving x, z, and xz, for example, ˆ ˆˆ / x xzy x zβ β∂ ∂ = +  and 

( )ˆ ˆˆ / x xzy x x x zβ β∆ ∆ = ∆ + ∆ , which gives ˆ ˆˆ / x xzy x zβ β∆ ∆ = +  for x=1∆ . Of course, their estimated 

standard errors are also identical. Thus, Figures 4- 9 and 13- 17 all give the estimated effects of a 

unit increase as well as the estimated slope (or effect of a marginal increase) of their respective 

independent variables in their respective models.61 More generally, if we wanted to present the effect 

of some discrete change other than x=1∆  in a linear-interaction model, we have only to replace the 

marginal effect, e.g., ˆ ˆˆ / x xzy x zβ β∂ ∂ = + , with that of the change, ( )ˆ ˆˆ / x xzy x x x zβ β∆ ∆ = ∆ + ∆ , which 

amounts simply to multiplying the marginal effect by x∆ . To estimate standard errors for confidence 

intervals around differences in predicted values, we apply the usual variance formula: 

( ) ( )( ) ( ) ( ) ( ) ( )2 2 22ˆ ˆ ˆ ˆˆ / 2 ,x xz x xzV y x V x V z x z x Cβ β β β∆ ∆ = ∆ + ∆ + ∆ , that is, we multiply the estimated 

variance of the estimated marginal effect, ( ) ( ) ( ) ( )2ˆ ˆ ˆ ˆˆ / 2 ,x xz x xzV y x V V z zCβ β β β∂ ∂ = + + , by ( )2x∆ .  

We can use the estimates in Table 22 to determine the effect of a Runoff at various values of 

Group using the difference method simply by subtracting the first from the fourth column, i.e., 

( ) ( )ˆ ˆ| , 1 | , 0y Groups Runoff y Groups Runoff= − = . Recall that the case of ( ) 1c ax x− =  produces 

exactly the same results as the derivative method; the differences in predicted values between 

systems with runoffs and without runoffs, at given values of Groups(and the corresponding estimates 

of uncertainty around those differences in predicted values) appear in Table 14.  

More generally, for binary variables like our Runoff, Gender, Partisanship, or party-discipline, 

the only discrete changes meriting consideration are unit increases or decreases, 1x∆ = ± , so the 

estimated marginal effects and confidence intervals plotted in Figures 4-5, 7, and 15 and 17 are all 

identical to the estimated conditional effects of and confidence intervals for a positive switch in the 
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value of that binary indicator. Similarly, the estimated marginal effects of Groups, NP, and PS and 

confidence intervals plotted in Figures 6, 8-9, 13-14, and 16 are all identical to the estimated effects 

and confidence intervals for unit increases in those (non-binary) variables. If we had wanted to 

present the estimated effects of, say, a 10% rather than a unit (1%) increase in parliamentary support, 

for example, we would simply have multiplied the conditional effect line in Figures 9, 14, and 16 by 

10, the variance in the formula for the confidence intervals associated with those lines by 102, and 

relabeled the Figure as “Effect of a 10% Increase in Parliamentary Support…” 

Graphs of the estimated effects of discrete changes would therefore simply rescale the marginal-

effect graphs already shown. We can demonstrate this formally for the standard linear-interaction 

model as follows. The difference between aŷ  and ˆcy , i.e., ŷ  at ax x=  minus ŷ  at cx x= , is: 

( )

0 0 0 0 0 0

0

0

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ( )
ˆ ˆ( ) ( )

ˆ ˆ( )

c a x c z xz c x a z xz a

x c a xz c a

c a x xz

y y x z x z x z x z

x x z x x

x x z

γ β β β γ β β β

β β

β β

− = + + + − + + +

= − + −

= − +

 

The variance of that difference is then: 

( ) ( )
( )
( ) ( )

0

2
0

2 2
0 0

ˆ ˆˆ ˆ ( )
ˆ ˆ( )
ˆ ˆ ˆ ˆ( ) 2 ( , )

c a c a x xz

c a x xz

c a x xz x xz

V y y V x x z

x x V z

x x V z V z C

β β

β β

β β β β

 − = − + 
 = − + 

 = − + + 

 

So, in the case of ( ) 1c ax x− = , we have exactly the same results as the derivative method, and in the 

case of ( )c ax x x− = ∆  we have the same results rescaled multiplicatively by x∆ . 

We could also tabulate and/or graph the difference in predicted values as the number of societal 

groups changes, by one unit (say, from Groups=1 to Groups =2, or, equivalently, from Groups=2 to 

Groups=3), or by two units (from Groups=1 (the sample minimum) to Groups=3 (just above the 

sample maximum)), by the presence or absence of a runoff. The differences in predicted values that 
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correspond with a one-unit and a two-unit shift in Groups, by Runoff, appear in Table 25. We could 

also present a graph containing the difference in predicted values associated with a two-unit shift in 

Groups, but since there are only two points to be graphed, a table like Table 25 is just as informative. 

/INSERT TABLE 25 HERE/ 

When variables enter the regression models nonlinearly, however, as in the quadratic- and log-

transformed-PS models of Tables 7 and 8, the effect of a discrete change from one value of x to 

another can be quite different than the effect of a marginal (i.e., infinitesimal) change at that x. That 

is, except for straight lines, derivatives and slopes differ from differences. In Figure 2, e.g., the 

marginal effect of parliamentary support at PS=50 (i.e., the derivative or slope at that point) is 

2 2
ˆ ˆ ˆ ˆ2 50 100ps psps ps

GD PS β β β β∂ ∂ = + = + × . The effect of a unit change from PS=50 to 51 would be 

( ) ( ) ( )2 2 2 2
2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ51 51 50 50 51 50 101ps ps ps psps ps ps ps

GD PS β β β β β β β β∆ ∆ = + − + = + − = + .62 The 

estimated variances would differ accordingly. The estimated effect of a 10% increase from PS=45% 

to 55%, ( ) ( )2 2 2
2 2ˆ ˆ ˆ ˆ ˆ ˆ55 55 45 45 10 1000ps ps psps ps ps

GD PS β β β β β β∆ ∆ = + − + = + , is likewise not equal 

to the slope at PS=45, 2
ˆ ˆ90ps ps

GD PS β β∂ ∂ = + , and their standard errors differ also. 

Similarly in the log-transformed-PS model, the effects of discrete changes in parliamentary 

support depend not only on the number of governing parties but on the magnitudes and values of 

those changes in PS. The estimated effect of a 10% increase, PS=45% to 55%, and its standard error 

would be: 

( ) ( ) ( ) ( )
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( ) ( ) ( )

ln( ) ln( )

2 2
ln( ) ln( ) ln( ) ln( )

ˆ ˆ| 55 | 45 ln 55 ln 45 ln 55 ln 45
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As these two examples illustrate, the conditional effect of a discrete change in an independent 

variable that enters an interaction model nonlinearly depends not only on the values of the variables 

with which it interacts, but also on the magnitude of the change and from what starting point. We 

would not, therefore, generally recommend graphing but rather tabulating sets of estimates like these 

for consideration and discussion. 

4. Distinguishing Between Marginal Effects and Predicted Values. 

How do tables and graphs of conditional effects and those of predicted values differ? Both 

reveal information about the relation of x to y and how this relationship changes as z varies, but in 

slightly different ways. Graphs and tables of derivatives of or differences in predicted values show 

directly how the effect of x on y changes as z changes. Graphs and tables of predicted values show 

how the level of ŷ , i.e., the prediction for y, changes as x changes, at particular levels of z. By 

comparing several of these predicted levels, one can also grasp the effects of x or of z on y and how 

they change as the other variable changes, but, in predicted-level tables and figures, the comparison 

of effects is less direct and the uncertainties related refer to individual predictions and not to these 

differences, i.e., not to the effects. Selection of one type of table or graph over the other therefore 

largely depends on the researcher’s presentational goals. Either method can effectively convey the 

substantive results from empirical models involving interactive terms; we stress, however, that either 

sort of table or graph should incorporate measures of uncertainty into its presentation. 

IV. The Meaning, Use, and Abuse of Some Common General-Practice Rules  

Having discussed formulation of interactive hypotheses, and interpretation and presentation of 

effects, we turn now to clarify some general-practice rules often used in the social sciences.  

A. Colinearity and Mean-Centering the Components of Interactions Terms 

One common concern regarding the estimation of interactive models is the (multi)colinearity, or 
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high correlation, among independent variables induced by multiplying regressors together to create 

additional regressors. Colinearity, as social scientists well-know, induces large standard errors, 

reflecting our low confidence in the coefficients estimated on these highly correlated factors. What is 

sometimes forgotten is that these large standard-errors are correctly large; the effect of x controlling 

for other terms (i.e., holding them constant) is hard to determine with much certainty if x and other 

terms correlate highly. These large standard errors accurately reflect our large uncertainty in these 

conditions. These perhaps unfortunate, but very real, facts regarding colinearity led Althauser 

(1971), e.g., to argue against the use of interactive terms at all. However, to omit interactions simply 

because including them invites a greater degree of uncertainty in parameter estimates is to mis-

specify intentionally our theoretical propositions. This assures at least inefficiency, but most likely 

induces bias due to standard omitted-variable-bias considerations: namely, if the omitted factor, xz, 

(partially) correlates with the included, say x, and (partially) correlates with the dependent variable, 

y, then a bias of sign and magnitude given by the product of these two partial coefficients is incurred.  

Scholars, therefore, struggled valiantly for some technical artifice to reduce interaction-induced 

colinearity. However, the problem of colinearity is “too-little information.” As such, the only routes 

available to researchers around the problem are to ask the data questions that require less information 

(e.g., only first-order questions, like those in Table 10 or 12) or to obtain more information, by 

drawing new data (preferably less-correlated, but more data will help regardless) or by relying more 

heavily upon the theoretical arguments/assumptions to specify models that ask more precise 

questions of the data than do generic linear-interactive models (e.g., Franzese 1999, 2002, 2003a) . 

Scholars have instead devoted inordinate attention to illusory colinearity “cures.” The most 

commonly prescribed “cure” is to “center” the variables (i.e., subtract their sample means or “mean-

deviate” them) that comprise the interactive terms. Smith and Sasaki (1979) offered centering as a 
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technique that would improve substantive interpretation of the individual coefficients, and we agree 

that it might facilitate interpretation in some substantive contexts. Tate (1984) argued that, although 

centering should not change the substantive effects (actually, it will not: see below), it “may improve 

conditioning through reduction of colinearity” (253). Others, including Morris et al. (1986), and 

Dunlap and Kemery (1987) recommend centering less circumspectly. Cronbach’s (1987) centering 

technique has attained considerable acceptance in social science, perhaps due to Jaccard, Turrisi and 

Wan’s (1990) promotion of it . Unfortunately, Cronbach’s clarification on the extremely limited 

value of centering seems less widely known.  

To be sure, Cronbach’s (1987) centering procedure is harmless; however, it also offers no help 

against the “too little information” problem of colinearity, if understood correctly. Our concern is 

that centering seems widely misunderstood and misinterpreted. Some existing scholarly research 

claims, wrongly, that centering helps evade colinearity in some manner that actually produces more-

certain effect-estimates. Centering adds no new information of any sort to the empirical estimation, 

so it cannot possibly produce more-precise estimates. Centering merely changes the substantive 

question to which the coefficients and t-tests on those coefficients refer. 

Recall our “standard” linear-interactive model: 

εββββ ++++= xzzxy xzzx0  [31] 

Cronbach (1987) suggested subtracting the sample means from each of the independent 

variables involved in the interaction and multiplying the resulting demeaned variables together for 

the interaction term. The mean-centered model, then (using γ  to represent coefficient values 

resulting from use of the centered data), is as follows: 

* * * * *
* * * * * * *

0
  where   and 

x z x z
y x z x z x x x z z zγ γ γ γ ε= + + + + = − = −  [32] 

Cronbach (1987)  argued that rescaling the variables thusly could insure against computational 
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errors—i.e., literally computational: deriving from inescapable rounding errors in translating from 

computer binary to human base-10—that severe colinearity might induce.63 Cronbach (1987) also 

noted that centered and non-centered models “are logically interchangeable, and under most 

circumstances it makes no difference which is used” (415). Given the many thousands of times 

computing precision has increased since Cronbach’s writing, the computational concern has no 

current practical relevance in social science, so it now makes no difference under any circumstances. 

Because centering does not affect the substance of any empirical estimation in any way, because 

it will not affect the computational algorithms of any modern statistical software, and because it is so 

widely misunderstood in the field, we join Friedrich (1982), Southwood (1978) and others in 

strongly advising the abandonment of the practice or, at least, far greater care in interpreting and 

presenting the results following its implementation. To clarify what centering does to the numeric 

and substantive estimates of an interactive analysis, which is something and nothing, respectively, 

consider again our basic linear-interaction model and its centered version, which appear in equations 

[31] and [32], respectively. Starting from equation [32], and substituting terms, we see that: 

* * * * *
*

0
( ) ( ) ( )( )

x z x z
y x x z z x x z zγ γ γ γ ε= + − + − + − − +  [33] 

* * * * * * * * * * * * *
*

0 x x z z x z x z x z x z
y x x z z xz xz xz xzγ γ γ γ γ γ γ γ γ ε= + − + − + − − + +  

* * * * * * * * * * * * *
*

0
( ) ( ) ( )

x z x z x x z z x z x z
y x z xz z x x z xzγ γ γ γ γ γ γ γ γ ε= − − + + − + − + +   [34] 

Comparing the centered equation in [34] with the original model in [31] highlights the exact 

correspondence of results between the centered and uncentered regression models.  

zxzx zxzx *****00 γγγγβ +−−=  

zzxxx *** γγβ −=  

xzxzz *** γγβ −=  
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**zxxz γβ =  

Collecting terms, we see that the first parenthetical expression in equation [34] contains its set of 

constant terms and so equals the intercept, 0β , from [31]. The second term in [34] is its ultimate 

coefficient on x, which is equal to xβ  from [31], and the third term is the ultimate coefficient on z in 

[34], which equals zβ in [31]. The fourth term is the coefficient on xz in each model. Trivially, since 

the right-hand-side models are mathematically interchangeable, the estimated residuals and so the 

estimated residual-variance from the centered and uncentered models are also identical.  

As we explained above, researchers’ common troubles arise when they confuse coefficients with 

effects. We know, for example, that the marginal effect of x on y in equation [31] would be 

/ x xzy x zβ β∂ ∂ = + . The marginal effect of x* on y given equation [32] would be 

* * *
* */

x x z
y x zγ γ∂ ∂ = + . From above, we have that * * *x x x z

zβ γ γ= − , so * * *xx x z
zγ β γ= + . Therefore  

* * * *
* */ x x z x z

y x z zβ γ γ∂ ∂ = + +  

Then, given that zzz −=* , we have: 

* * * * * *
*

* */ x x x zx z x z x z
y x z z z zβ γ γ γ β γ∂ ∂ = + + − = +  

Finally, since **zxxz γβ = , we conclude: 

*/ /x xzy x z y xβ β∂ ∂ = + = ∂ ∂  

Stated directly, the point is obvious: the effect of a marginal increase in the centered version of x 

is identical to the effect of a marginal increase in uncentered x. The same identity applies to the 

effects of z of course. We reiterate: centering does not change the estimated effects of any variables. 

Further, the estimated variance-covariance (i.e., standard errors, etc.) of those effects are also 

identical. Thus, the estimated statistical certainty of the estimated effects are also unchanged by 
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centering. For the uncentered data, 2ˆ ˆ ˆ ˆˆ( / ) ( ) ( ) 2 ( , )x xz x xzV y x V z V zCβ β β β∂ ∂ = + + . Using the mean-

centered model:  

* * * * * *
* * 2 *ˆ ˆ ˆ ˆˆ( / ) ( ) ( ) ( ) 2 ( , )

x x z x x z
V y x V z V z Cγ γ γ γ∂ ∂ = + +  

Substituting zzxxx *** ˆˆˆ γβγ +=  and **ˆˆ
zxxz γβ =  

* * 2 *ˆ ˆ ˆ ˆ ˆ ˆˆ( / ) ( ) ( ) ( ) 2 ( , )x xz xz x xz xzV y x V z z V z C zβ β β β β β∂ ∂ = + + + +  

2 * 2 *ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ( / *) ( ) ( ) 2 ( , ) ( ) ( ) 2 ( , )x xz x xz xz x xz xzV y x V z V zC z V z C zβ β β β β β β β∂ ∂ = + + + + +  

Re-arranging terms and substituting zzz −=* : 

* 2 2ˆ ˆ ˆ ˆˆ( / ) ( ) ( ) ( ) ( ) 2( ) ( )
ˆ ˆ ˆ ˆ2( ) ( , ) 2 ( , )

x xz xz xz

x xz x xz

V y x V z V z z V z z zV

z z C zC

β β β β

β β β β

∂ ∂ = + + − + −

+ − +
 

* 2ˆ ˆ ˆ ˆˆ ˆ( / ) ( ) ( ) 2 ( , ) ( / )x xz x xzV y x V z V zC V y xβ β β β∂ ∂ = + + = ∂ ∂  

The variances of the estimated marginal effects of the centered x and of the uncentered x are 

identical. The same holds for the variances of the estimated marginal effects of z and mean-centered 

z of course. As with the coefficients, the numeric values of the elements in the variance-covariance 

matrices for the coefficients using uncentered and centered data will naturally differ from each other, 

but exact correspondence in the estimated effects and the estimated variances of effects can be 

derived through algebraic manipulation of these values. As an example, recall that zzxxx *** γγβ −= . 

This implies that * * *
ˆ ˆ ˆ( ) ( )x x x zV V zβ γ γ= − 2

* * * * * *ˆ ˆ ˆ ˆ( ) ( ) 2 ( , )x x z x x zV z V zCγ γ γ γ= + − . Hence, while the 

estimated coefficients and variance-covariance matrices of coefficients will differ numerically (i.e., 

*
ˆ ˆx x
β γ≠  and *

ˆ ˆ( ) ( )x x
V Vβ γ≠ ), the estimated effects and the precision of the estimated effects of the 

variables will be identical, regardless of whether the data are centered or uncentered. Again, we warn 

the reader against confusing coefficients with effects.  

If all estimates of the substantive effects and all estimates of the certainty of those substantive 
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effects are identical whether the data are mean-deviated or left uncentered, how, one might wonder, 

can some key coefficient estimates, their standard errors, and corresponding t-statistics differ? The 

answer is simply that the coefficients and associated standard errors and t-statistics do not refer to 

the effects at the same substantive values of the regressors across centered and uncentered models. 

For example, in our standard model, εββββ ++++= xzzxy xzzx0 , the coefficient xβ  gives the 

effect of a unit increase in x when z equals zero; its standard error and the resulting t-ratio refer to the 

certainty of that x effect at that particular z value. In * * * * *
* * * * *

0 x z x z
y x z x zγ γ γ γ ε= + + + + , the 

coefficient *x
γ  gives the effect of a unit increase in x* (or x, since a unit increase in x or x* is the 

same thing) when z* equals zero, which is not at all the same value as when z=0 (assuming, of 

course, that 0≠z ). Since *z z z= − , the centered z* equals zero when the uncentered z equals its 

mean, not when z=0 (except in the specific case where 0z = ). The standard error of this coefficient-

estimate, *x
γ , and the resulting t-ratio also refer to the certainty of the effect of a one-unit change in 

x at this different z z= value. Coefficients, standard errors, and t-statistics differ in centered from 

non-centered model because they refer to different substantive quantities, not because either model 

produces different, much less any better, estimates of effects than does the other. 

Centering can, in this manner, actually be useful for substantive interpretation in some contexts. 

If interpreted carefully and understood fully, centering sometimes can facilitate a more substantively 

grounded discussion of the empirical analysis. If z cannot logically equal zero, e.g., then substantive 

interpretation of xβ  is vacuous, but examining the effect of x when z is equal to its sample mean 

might be substantively revealing. If so, researchers might advantageously center z around its mean to 

aid substantive interpretation and discussion. That is, centering z around its mean allows one to 

interpret the coefficient on x as the effect of x when z equals its mean rather than when z equals zero. 
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Further, it allows the researcher to interpret the t-statistic on *x
γ  as the statistical significance of x 

when z happens to equal its mean, which may likewise simplify discussion in some contexts. 

Accordingly, our concern is that researchers too often misinterpret the results of centering – and 

have come to the mistaken conclusion that centering alters the estimates of effects or the estimated 

significance of effects. We recommend that centering transformations, if applied at all, be applied 

only with the aim to improve substantive presentation, not, mistakenly, to improve (apparent) 

statistical precision, and certainly not, reprehensibly, to move the value of z to which the standard t-

ratio refers so as to maximize the number of asterisks of statistical significance on reported t-tests. 

The substantive interpretation of the effects and the certainty of those effects is completely 

unaffected by this algebraic sleight-of-hand.  

B. Including x and z When xz Appears 

To estimate models containing multiplicative interaction terms, most texts advise a hierarchical 

testing procedure: i.e., if xz enters the model, then x and z must also. If wxz appears, then all (six) of 

the lower-order combinations (x, w, z, xw, xz, wz) must appear also, and so on analogously for 

higher-order interactions. Allison (1979), e.g., writes, “[The] common rule… is that testing for 

interaction in multiple regression should only be done hierarchically... If a rationale for this rule is 

given at all, it is usually that additive relationships somehow have priority over multiplicative 

relationships” (149-150). This rule is probably an advisable one, if researchers must have a rule. 

Certainly it is a much safer rule than an alternative proviso that one can include or not include 

components to interactions with little concern or consideration. However, we believe researchers 

must understand the logical foundations of the models they estimate and the meaning and purpose of 

any proffered rule, no matter how usually useful, instead of merely following such rules by rote. We 

argue instead for theoretically-driven empirical specifications with better appreciation of the 
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assumptions underlying alternative models. While the rule of including x and z if including xz, may 

be a quite reasonable application of Occam’s Razor and is often practically advisable, it is neither 

logically nor statistically strictly necessary. 

As proof that the rule is not logically necessary, notice that one can decompose any variable into 

the product of two or more others; therefore, strict adherence to this rule would actually entail 

infinite regress. As a substantive example, note that real GDP (per capita) equals nominal GDP 

times a price-index deflator (times the population inverse); conversely, nominal GDP (per capita) is 

real GDP times a price index (times the population inverse). Nothing statistically or logically 

requires researchers to include all these components in every model containing some subset of them. 

Researchers should, instead, estimate the models their theories suggest.  

That said, several good reasons to follow the rule exist. First, given the state of social-science 

theory, the models implied by theory will often be insufficiently specified as to whether to include x 

and/or z in an interactive model. Due scientific caution would then suggest including x and z to allow 

the simpler linear-additive theory a chance. Failing to do so would tend to yield falsely significant 

estimates of coefficients on xz if, in fact, x or z or both had just linear-additive effect on y. Second, 

inclusion of the x and z terms in models involving xz allows a non-zero intercept to the conditional 

effect lines, such as those plotted in the preceding section. This is important because, even if the 

effect of x on y is truly zero when z is zero, if this conditional relationship is nonlinear, allowing a 

non-zero intercept to the linear-interactive estimate of the truly nonlinear interaction (by including x 

and z) will enhance the accuracy of the linear approximation. Third, and perhaps most importantly, 

even when the theory clearly excludes x and/or z, from the model, i.e., when it unequivocally 

establishes the effect of one (or both) variable(s) to be zero when the other is zero, the researcher can 

and should test that prediction and report the certainty with which the data supports the exclusion. If 
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that test supports exclusion, then both theory and evidence recommend exclusion of the components, 

and continued inclusion would be the misspecification of the model. For this sort of empirical 

exploration, only finding a coefficient expected to be zero in fact to be estimated as (very close to) 

zero and, highly preferably, with small standard error is clear evidence from the data that the 

assumption holds. That is, clearest support for the assumption comes from failure to reject because 

the estimate is with considerable certainty near zero rather than because the estimate has very large 

standard error. In sum, then, this rule, as an application of Occam’s Razor, is a safer adage than its 

opposite, but researchers should still, first, understand the basis for the rule and, second, should not 

shy from breaking it if their theory and the data strongly suggest doing so.  

We now elaborate these points more fully and formally. If the theory expressly excludes z from 

having any effect on y when x is zero—i.e., non-zero presence of x is a necessary condition for z to 

affect y, the correct model is: 

εβββ +++= xzxy xzx0  [35] 

By this model, as theory demands, the effect of z on y, y z∂ ∂ , equals xxzβ , which is zero when 

x=0. Estimating this model assumes that x must be present for z to affect y but does not allow the 

data to adjudicate the question. If z does affect y even when x is zero, equation [35] would suffer 

omitted-variable bias, with coefficient estimates wrongly attributing the omitted variable’s effects to 

the variable(s) that do enter the model and that correlate with the omissions. In this case, the 

omission will most likely imply a biased xzβ  estimate (primarily). Regression estimation will 

attribute some of the true-but-omitted effect-of-z-when-x=0 to z’s interaction with x, so the estimate 

of xzβ  will be too large (small) when this true-but-omitted effect is positive (negative). Thus, if the 

omitted effect is, e.g., positive, the estimated effect of z on y (i.e., xzy z xβ∂ ∂ = ) will reflect a greater 

conditional effect than truly exists (i.e., greater slope to this effect line), with underestimation of the 
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effect of z on y at low values of x and over-estimation at high values of x. Conversely, the effect of x 

on y (i.e., x xzy x zβ β∂ ∂ = + ) will be estimated as more conditional upon z than it truly is, implying 

too great a slope to this effect line and, likely, also too low an intercept ( xβ ) to that effect-line. 

Rather than assume such necessity clauses by omitting key interaction components, we suggest 

researchers test them by first estimating the model including all lower-order components:  

εββββ ++++= xzzxy xzzx0   [36] 

An insignificant coefficient of zβ  here might then support the exclusion theory and provide some 

justification for proceeding with the necessity clause in place. But recall that a t-test on zβ  only 

refers to the effect of z when x equals zero. The theory concludes zβ  should equal zero, so we would 

hardly want to accept that hypothesis merely because we fail to reject it at some generous 

significance level like 90% (i.e., even more, far more, so than we should usually show such caution 

in conclusions). Recall that failure to reject can occur with small coefficient-estimates and small 

standard-errors, small coefficient-estimates and large standard-errors, or large coefficient-estimates 

and larger standard-errors. Only the first of these should give the researcher great comfort that she 

may estimate the model that assumes the necessity clause by omitting (an) interaction component(s); 

the second gives less support for such a restriction; and that last gives very little or none at all. 

In sum, estimating models like [36] that include interaction components when true models, e.g. 

[35], actually exclude them will cost researchers some inefficiency if not bias. Estimating [36] when 

the true model is [35] involves trying to estimate more coefficients than necessary, which implies 

inflated standard errors. Moreover, these included-but-unnecessary coefficients, xβ  or zβ , are on 

variables, x or z, that are likely highly correlated with the necessary ones, xz, which implies greatly 

inflated standard errors. Thus, the inefficiency of over-cautious interaction-component inclusion 
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could easily and often be severe enough to lead researchers to miss many interactions actually 

present in their subject. Especially as theory advances, and empirical models attempt to follow, to 

grapple with the complex conditionality of the subjects that social scientists study while data remain 

stubbornly scarce, such inefficiency can very easily become unaffordable. Thus, we recommend that 

researchers (a) acknowledge and discuss the assumptions/arguments underlying the decision to omit 

or to include components of their interaction terms, (b) gauge statistically the certainty with which 

the data supports those assumptions, and then (c) apply Occam’s Razor by following hierarchical 

procedures unless theory and data clearly indicate that doing so is unnecessary and over-cautious. 

V. Extensions 

We turn next to some more-technical statistical concerns often raised regarding interaction-term 

usage in regression analysis. The first issue regards separate versus pooled-sample estimation of 

interactive effects, and it should interest all readers. Readers less interested in more-technical 

matters, though, can skim the ensuing sections, being sure to take from them, however, the strong 

recommendation that one employ some version of White’s robust (heteroskedasticity-consistent) 

variance-covariance (standard-error) estimator when estimating regression models that include 

multiplicative interaction-terms. The second issue concerns estimation and interpretation of 

interaction terms in nonlinear models, including qualitative dependent-variable models like logit and 

probit models of binary outcomes. The third issue concerns modeling and estimating stochastically 

(rather than determinatively) interactive relationships. 

A. Separate- Versus Pooled-Sample Estimation of Interactive Effects64 

Researchers often explore the interactive effects of nominal (binary, categorical, etc.) variables 

by splitting their samples according to these categories and estimating the same model separately in 

each subsample.65 In behavioral research, for example, scholars may analyze interactive hypotheses 
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that individual characteristics structure the impact of other variables by estimating the same model in 

subsamples separated by race, gender, etc. A researcher might, e.g., estimate the effect of 

socioeconomic status on political participation separately in samples of male and female respondents 

to explore whether socioeconomic status affects the propensity to vote differently by gender. In 

comparative or international politics too, researchers might estimate the same model separately by 

country or region to explore whether national or regional contexts condition the effects of key 

variables. A political economist might, for instance, estimate a model of electoral cycles in monetary 

policy separately in subsamples of fixed- and flexible-exchange-rate country-times. Similar 

subsample estimation strategies populate all subfields of political science and other social sciences.  

Such subsample estimation (1) produces valid estimates of the (conditional) effects of the other 

variables at these different values of the “moderating” variable, (2) commendably recognizes the 

conditionality of the underlying arguments, and (3) can (perhaps with some effort) reproduce any of 

the efficiency and other desirable statistical properties of the alternative strategy of pooling with 

(nominal) interactions. However, these subsample procedures also isolate, at least presentationally, 

one variable as the moderator in what is logically a symmetric process—if x moderates the effect of z 

on y, then z moderates the effect of x on y and vice versa—thereby obscuring the converse. More 

fundamentally, these procedures do not facilitate statistical comparison of the effects of “moderated” 

or “moderating” variables; i.e., one cannot as easily determine whether any differences in estimated 

effects across subsamples are statistically significant or as easily determine the (conditional) effects 

of the variable being treated as the “moderating” variable as one can in the pooling strategy. 

An alternative approach is to estimate a model that keeps the samples together and that includes 

interaction terms of all of the other covariates, including the constant, with the variable being treated 

as the “moderator”; this is sometimes called a “fully dummy-interactive” model. The two approaches 
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(separate-sample versus fully dummy-interactive pooled-sample) extract almost identical sets of 

information from the data, but pooled-sample estimation extracts slightly more, potentially more 

efficiently, and more easily allows statistical testing of the full set of typical interactive hypotheses. 

That is, any desirable statistical properties that one can achieve by one strategy can, perhaps with 

considerable effort, be achieved by the other (see, e.g., Jusko and Shively 2005). However, we 

believe the pooled interactive strategy lends itself more easily to obtaining these desirable qualities 

and, in some cases, also to presenting and interpreting results. Hence, we suggest that separate 

sample estimation be relegated to exploratory and sensitivity-and-robustness-consideration stages of 

analysis and replaced by pooled-sample approaches for final analysis and presentation. As a caveat, 

however, we note that theory should dictate the use of fully-interactive versus selectively interactive 

models. We do not advocate that fully-interactive models be used as a substitute for theoretically 

informed specifications. However, we do suggest that if a researcher is intent on “splitting the 

samples,” then a fully-interactive pooled model is a better alternative to that approach. 

As an example, a researcher, wishing to explore gender differences, g, in the effect of 

socioeconomic status and other independent variables, X, on propensity to vote, y, separates her 

sample into males and females and estimates: 

Sample g=Male: m m my = Xβ + u  [37] 

Sample g=Female: f f fy = Xβ + u  [38] 

Let M (F) be the number of observations in the male (female) sample. Let j index the columns 

of X (e.g., xgj represents the jth independent variable, for the gender g sample; gjβ  is the coefficient 

on that jth independent variable, for that gender g sample), and let J be the number of independent 

variables. To obtain distinct coefficient estimates by gender, the researcher has several options.  

Most easily, she could estimate models [37] and [38] separately, once per sub-sample. Or, she 
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could pool the data into one sample and reconfigure the X matrix by manually creating separate Xm 

and Xf variables for each column of X, where Xm replaces each female respondent’s X-value with 

zero and Xf does analogously for male respondents. This allows distinct coefficients on Xm and Xf 

and, if the constant (intercept) is also separated into Xm and Xf in this way, will produce exactly the 

same coefficient estimates as separate-sample estimation does. Identically to this manual procedure, 

the researcher could simply create an indicator variable for gm=male, another indicator for 

gf=female, and include these two indicators in place of the intercept and the interaction of each of 

these indicators with all of the other independent variables in place of those independent variables. 

Each gmX and gf·X here will equal the Xm and Xf from the manual procedure just described, so this 

too produces exactly the same coefficient-estimates as the separate-sample estimation. Finally, the 

researcher could simply create one gender indicator, say the female gf, and include in the pooled-

sample estimation all of the X independent variables (including the constant), unmodified, plus that 

gf indicator times each of these X variables (including the constant, which product just reproduces 

gf). This, too, would produce the same substantive estimates for the model as separate-sample 

estimation, but the coefficients would now refer to different aspects of that substance. The 

coefficient on each variable xj (including the intercept) in this last option would refer to the effect on 

y of that variable among males, whereas those coefficients on each xj plus the coefficient on the 

corresponding interaction term, gf·xj, would refer to the effect on y of that xj among females. And the 

coefficient on gf·xj would refer to the difference from the effect of that xj among females to the effect 

of that xj among males. If all of these approaches produce the same substantive results from their 

estimates, why might researchers prefer one or the other of them? 

In our review, researchers rarely offer reasons for presenting separate subsample estimations of 

interactive effects. Perhaps some do not realize that pooled-sample alternatives using interaction 
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terms exist and, as we show next, are at least equivalent on all grounds except, perhaps, convenience. 

Others may note more explicitly that, lacking a priori hypotheses about what differences in the 

effects of the various xj to expect across their subsamples, they wish simply to explore inductively 

what some possible candidates for interactive effects might be, and they find separate-sample 

estimation a convenient and easily interpreted means of conducting such exploration. The more 

technically savvy might even suggest that they did not wish to impose or estimate any distributional 

features of the residual term across subsamples, which would be necessary to validate statistical 

comparison of subsample coefficient-estimates in pooled estimation. 

In the separate-sample approach, researchers estimate one equation for males: 
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 [39] 

and the exactly analogous equation for females. Table 26 provides OLS regression results from 

conducting this split-sample analysis (using our very simple Support for Social Welfare example).  

/INSERT TABLE 26 HERE/ 

Typically, researchers will estimate these equations separately in each subsample and “eyeball” 

the results for differences in estimated β , which, assuming no other interactions, reflect directly 

the effect of the associated x in that sample. This provides the often-cited ease of interpretation in 

separate sample estimation. However, the second or third of the pooled-sample options described 

above (i.e., creating distinct Xf and Xm variables manually or by dummy-variable interaction) 

exactly replicates these separate-subsample coefficient estimates. If researchers prefer this sort of 

interpretability, pooled-sample estimation can also produce it. Presentationally, too, one can just 

as easily display two columns of coefficient estimates from one pooled-sample equation as from 
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two separate-sample estimations. Therefore, direct interpretability of effects by subsample 

cannot adjudicate between pooled and separate-sample approaches since one can present the 

same results in the same fashion regardless of whether those results derived from pooled or 

separate-sample estimation.  

Underlying any separate-sample estimation in the first place is at least the hunch that the effect 

of some independent variables differ across the categories distinguished by the subsamples. Thus, 

certainly, anyone conducting such analysis will wish to compare coefficient estimates across such 

subsamples. In Table 26, a researcher might “eyeball” the differences in the estimated coefficient for 

Republican: in the sample for males, 0.2205Rβ = − , and in the sample for females, 0.1368Rβ = −  and 

conclude (often by some unspoken or, worse, arbitrary standard) that these coefficients look 

“different enough.” If classical OLS assumptions apply in each subsample (the OLS β̂  are BLUE), 

then the researcher could test the statistical significance of any differences in parameters estimated 

separately across subsamples by difference-in-means-tests of each ˆ
fβ and corresponding ˆ

mβ :66 

H0: mf ββ = , or 0=− mf ββ   

Conducting the standard t-test on this null hypothesis: 

ˆ ˆ ˆ ˆ ˆ ˆ( ) 0 ( ) ( )
ˆ ˆ( ) ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) 2 ( , ) ( ) ( )

f m f m f m

f m
f m f m f m

se V V C V V

β β β β β β
β β β β β β β β

− − − −
= =

− + − +
 [40] 

The equality of the last expression to the previous two follows in this case, as it would not generally, 

because fβ̂  and mβ̂ will not covary due to the orthogonality of the gender indicators. Using our 

example, we would thus calculate: 
( ) ( )2 2

ˆ ˆ( ) 0 0.1368 ( 0.2205) 0.0837 3.92ˆ ˆ 0.0214( ) 0.0148 0.0154

f m

f mse
β β

β β

− − − − −
= = ≈

− +
. The 

resulting t-test on this value suggests p<0.0001: these estimated coefficients do appear to be 
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statistically distinguishable from each other. 

Few researchers in our review of the literature actually conduct this test; at best, they offered 

some reference to the individual standard errors of the two coefficient estimates in question. The 

subsample coefficient estimates will be independent by construction (the orthogonality of the 

indicator-variables assures this), but the simple sum of the standard errors of the two coefficients is 

not the correct standard error for the estimated difference. The standard error of the estimated 

difference between the two coefficients is the square root of the sum of the estimated variances of 

the two coefficients. To conduct this comparison across subsamples of estimated effects, the reader 

should square the reported standard-error estimates; sum those variances; and square-root that sum.  

Pooled-sample estimation allows a more directly interpretable formulation if the goal is to test 

whether effects differ across subsamples. Namely, with the right-hand side of the model specified as 

X and the nominal indicator(s) times X, the coefficient(s) on the interaction terms directly reveal the 

difference in effects across subsamples and the standard t-tests on those interaction-term coefficients 

directly reveal the statistical significance of those differences.67 A researcher seeking to determine 

whether the effect of Republican differs across females and males would need to calculate 

, ,
ˆ ˆ 0.0837R females R malesβ β− =  by subtracting the respective estimated coefficients acquired through 

separate-sample estimation. The pooled-sample estimation already provides this information, in the 

estimated coefficient, ˆ 0.0837FRβ = ! Further, instead of calculating the estimated standard error 

ˆ ˆ( )f mse β β−  based on the two separate samples, per Equation [40], the researcher can determine 

whether the difference in the effect of Republican between females and males is statistically 

distinguishable from zero by simply conducting a t-test using the results from the pooled-sample 

estimation: divide the estimated coefficient ˆ
FRβ  by its estimated standard error: 0.0837 3.92

0.0214
≈ ! 
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Thus, pooled-sample estimation offers two ways of presenting the same substantive results. One 

way replicates the same interpretability of coefficients as effects in subsamples afforded by separate-

sample estimation. Another affords direct interpretation of coefficients as the estimated difference 

between effects across subsamples, as well as the standard t-tests or F-tests on those coefficients as 

revealing the statistical significance of that estimated difference. Pooled-sample estimation 

streamlines the process of testing the substantive hypotheses that researchers often seek to examine.  

Moreover, pooling not only produces identical effect estimates as those obtained from separate 

samples, but it also (under CLRM assumptions) constrains the variance of residuals, 2s , to be equal 

for the two samples and not to covary across subsamples. Separate-sample estimation makes no such 

assumptions; thus, pooled-sample estimation borrows strength from the other subsample(s) to obtain 

more precise coefficient estimates (smaller standard errors), although only correctly so if these 

assumptions are correct. Formally, these features are seen most directly for the case where X is 

arranged in block diagonal, either manually or by dummy-variable interactions: 
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Recall that 2 1ˆ ( )s −=Σ X'X . Since the X-matrix here is block-diagonal, the inverse will also be 

block diagonal, and the elements for males of (X'X)-1 and X'y, which comprise the coefficient 

estimate for males, ( )ˆ -1
m m m m mβ = X 'X X 'y , are identical to what they would have been with the 

samples separated. The statistical test for the equality of the male and female coefficient estimates is 
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then just the standard F-test on the equality of sets of two parameters ( mf ββ = ). Note, though, that 

the single 2s  estimated here naturally differs from the two, 2
ms  and 2

fs , estimated separately in the 

subsample estimates. Pooled OLS assumes that 2s  is the same across the two samples. That one 2s  

estimate, which is the average squared-residual, sums squared-residuals across the entire sample and 

divides by N-k with the N reflecting the entire sample (M+F) and k reflecting the 2(kg+1) 

coefficients in the pooled estimation. Separate-sample estimation allows 2s  to vary, producing one 

estimate for each subsample, and each sums only the squared residuals from its subsample and 

divides only by its subsample N. The subsample estimates are inefficient. In other words, we obtain 

better estimates of 2s  and, with it, of estimated coefficient-estimate variance-covariances in pooled- 

than in separate-sample estimation—if, indeed, the residual-variances are equal across subsamples. 68 

In this case, the inefficiency manifests as one of the 2
ms  and 2

fs  being larger than it need be and the 

other smaller than it should be. More generally, some of the 2
is  will be larger than need be and 

others smaller than should be. To explore whether such a common error-variance assumption is 

warranted, we can test whether heteroskedasticity instead prevails rather simply. If the data insist 

that heteroskedasticity exists, then one can model that variance (or variance-covariance) structure 

and employ weighted (or feasible-generalized) least-squares in the pooled sample. 

Other model restrictions, such as constraining some coefficients to be equal across subsamples 

while allowing others to vary, are also easier to implement in pooled-sample estimation and will 

also, if true, enhance coefficients and standard-error estimates’ efficiency. For example, we may 

posit, or theory may establish, that some x affects males’ and females’ voting propensities equally 

(or equally and oppositely, or otherwise relatedly in some deterministic manner). In some contexts, 

accounting or other mathematical identities may even require certain relations between particular 



 

 

104

coefficients. Rather, then, than estimate both of these effects separately, as separate-sample 

estimation all-but requires69, one could in pooled-sample estimation simply refrain from including 

those dummy-variable interactions (or reverse the sign of those variables in the male or female 

sample, or analogously impose the constraints directly for other cases). As with a common-variance 

assumption, such cross-subsample restrictions can be tested, rather than assumed and imposed 

without testing, and again more conveniently in pooled than in separate-subsample estimation. If the 

data insist that coefficients differ, this is easily allowed. 

Thus, in short, compared to separate-sample estimation: (1) pooled-sample estimation can yield 

identical or superior interpretability; (2) it can encourage statistical comparison of effects more than 

mere eyeballing; and (3) it may improve efficiency (precision) of estimation more easily if any 

efficiency-enhancing cross-subsample coefficient or error-variance/covariance constraints are 

warranted and easily test whether they are (and relax them if they are not). Therefore, if theory 

dictates that the effects of all variables should be dependent upon some x, we generally recommend 

researchers present pooled-sample estimates as their final analysis—and report on the statistical 

certainty of any differences in effects they deem substantively important—even if they find 

conducting preliminary exploratory analysis in separate subsamples more convenient. We reiterate 

that while fully-interactive pooled-sample estimation is preferable to separate-sample estimation, 

neither substitutes for a theoretically motivated model that identifies persuasively why the effect of 

some (set of) variable(s) should depend on x. 70 

B. Nonlinear Models. 

To this point, we have limited our discussion to interactive terms in linear models. However, we 

must also address interactions in nonlinear models, which would include most models of qualitative 

dependent variables, given their prevalence in social science. For nonlinear models that include 
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explicit linear-interactive terms among their right-hand-side variables, much of the discussion in 

preceding sections continues to apply. However, a further complication arises regarding the effect of 

x on y when right-hand-side variables are nonlinearly related to y by construction in the model. In 

logit or probit models of binary outcomes, for example, the effect of a variable x on y depends on the 

values of (all) the other variables z automatically due to the imposed nonlinear structure of the 

model. Thus, nonlinear models express conditional (i.e., interactive) relationships of the independent 

to dependent variables by construction, although they may also contain additional, explicitly 

modeled linear interactions among the right-hand-side arguments of those nonlinear functions. The 

issue, then, regards the proper interpretation of the effects of variables upon which a conditional 

relationship has been imposed, or assumed by construction, by virtue of the particular model 

specification employed. 

Logit and probit models of dichotomous outcomes, for example, both 1) impose conditional 

relationships of x to y by construction and 2) use an S-shaped functional form implying specific 

character to these interactions. In such sigmoidal functional forms, the effects of changes in one 

variable on y are larger when the predicted probabilities are closer to the midpoint. Noting this, 

Nagler (1991), for example, critiques Wolfinger and Rosenstone’s (1980) claim that the effects of 

registration requirements in discouraging turnout are greater for low education groups. He argues 

this larger effect derives from the functional form assumed a priori and not necessarily from an 

explicit or direct interaction between education and registration requirements, e.g., that the less 

educated find surmounting registration requirements more difficult. The logit form by itself implies 

that education interacts with registration requirements and vice versa only because and only through 

the other variable’s effect on the overall propensity to vote. Insofar as being less-educated puts one 

nearer a 0.5 probability of voting and being more-educated puts one further from that point, 
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registration requirements will have greater effect on the less-educated’s propensity to vote for that 

reason alone. Nagler tests whether education and registration requirements additionally interact 

explicitly to move a respondent along the S-curve, by including a specific linear-interaction between 

education and registration requirement in the argument to a logit function. He also estimates logit 

coefficients on strict versus lax registration requirements separately in samples split by education (a 

strategy discussed in above). He finds little support for Wolfinger and Rosenstone’s conclusion.71 

The notion that multiple, explicit interactions determine one’s dependent variable suggests 

explicit modeling of those interactions, in as precise a fashion as theoretically possible. The defense 

for the specific form of interactivity implicit in logit, probit, and related models is, in fact, explicit 

and theoretical in this way. First, the logit and probit functional form implies a particular and very 

specific set of interactions to produce S-shapes. That such S-shapes should describe the relations of 

independent to dependent variables is substantively and theoretically derived from the proposition 

that inducing probabilities to increase or to decrease becomes increasingly difficult, i.e. requires 

larger movements in independent variables, as probabilities near one or zero (see also note 71). If the 

researcher wishes to infer beyond the specific forms of interactions that produce these S-shapes, we 

concur with Nagler (1991) that she must model those further interactions explicitly. 

We now discuss in more detail the interpretation of effects in two commonly used nonlinear 

models: probit and logit. For example, suppose some nonlinear function, F(·), often called a “link 

function”, is used to relate a binary outcome y, with ′x β , where y refers to a column vector of the 

dependent variable with n rows, ′x  refers to a row vector of k regressors, and where β  refers to a 

column vector of coefficients. In such a case, one could model the probability that y takes the value 

1, as ( 1) ( )p y p F ′= ≡ = x β . 

In the probit case, ( )p ′= Φ x β , where Φ  is the cumulative standard-normal distribution. 
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Cumulative normal distributions are S-shaped, so ever larger increases or decreases in ′x βare 

required to increase or decrease the probability y=1 as this probability draws closer to one or zero. In 

the logit case, ( )p ′= Λ x β , where ( )Λ i  is the logit function: ( )
1

e
e

′

′′Λ =
+

x β

x βx β  or, equivalently, 

1( ) [1 ]e ′− −′Λ = + x βx β . (Several other useful formulations of the logit function also exist.)  

We begin with a simple probability model that omits explicit interaction terms: 

0( ) ( ... )x z kp F F x z wβ β β β′= = + + + +x β  

As always, the marginal effects of a variable x on p can be calculated by taking the first 

derivative of this function.72 Note, here, the use of the chain rule in differentiating the function. 

[ ( )][ ( ) ]p x p F F x′ ′∂ ∂ = ∂ ∂ ∂ ∂x β x β  

[ ( )][ ( ) ]p x p F F x′ ′∂ ∂ = ∂ ∂ ∂ ∂x β x β  

In the probit case, using the same model that omits explicit interaction terms, this is simply: 

21
2

0

0

( ) ( ... )

1   where  ...
2

x z k

t
x z k

p x z w

e dt t x z w

β β β β

β β β β
π

′
−

−∞

′= Φ = Φ + + + +

≡ ≡ + + + +∫
x β

x β
 

( )21
2

1[ ( ) ( )][ ( ) ] ( )
2x xp x F F x eφ β β
π

′−′ ′ ′ ′∂ ∂ = ∂Φ ∂ ∂ ∂ = = ×x βx β x β x β x β  

where ( )φ ′x β  is the standard-normal probability density function evaluated at ′x β .73 Thus, as is 

central to the theoretical proposition of an S-shaped relationship, the magnitude of effects of x on the 

probability that 1=y  are largest at 5.0=p  (at 0′ =x β ) and become smaller, approaching zero, as 

that probability goes to one or zero (as ′x β  approaches infinity or negative infinity). One sees also 

that the effect of each x depends on all the x in that all the covariates and their coefficients appear in 

the ( )φ ′x β  that multiplies the coefficient on x to determine the effect of x. 
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In the logit case, again for this model omitting explicit interaction terms, this is simply: 

( ) ( )( )0
11 ...( ) 1 1 x z kx z wp e e β β β β −− − + + + +′−′= Λ = + = +x βx β  [42] 

( ) ( )( )( )1 xp x β′ ′∂ ∂ = Λ −Λx β x β  

In the specific model of equation [42], this would be:  

( )
( ) ( )

0

0

...

0 02...
... 1 ...

1

x z k

x z k

x z w

x x z k x z k xx z w

p e x z w x z w
x e

β β β β

β β β β
β β β β β β β β β β

+ + + +

+ + + +

 ∂    = = Λ + + + + −Λ + + + +  ∂ + 

 

Obviously, as with probit, the effect of x depends on the values of x, z,…, w as well as the estimated 

coefficients for kββ ,...,0 . We can also see, again as with probit, that the largest magnitude effects of 

x occur at 5.0=p , which occurs at ′x β=0, and that these effects become progressively smaller in 

magnitude as p approaches one or zero, which occurs as ′x β  approaches positive or negative infinity, 

producing that familiar S-shape again (although a slightly different S-shape than probit produces). 

When an explicit linear-interaction term (for example, between x and z) is included in the ′x β  

part of the model, the effects of x continue to depend on the values of the other variables via the 

nonlinear form, specifically the S-shape, of the model as above. In addition, movements along this S-

shape induced by movements in x depend directly on the value of z as well: 

21
021( )   where  

...2
t x z

xz k

x z
p e dt t

xz w
β β β
β βπ

′
−

−∞

+ +
′= Φ = ≡ + + +

∫
x β

x β  [43] 

0

0

...

...( )
1

x z xz k

x z xz k

x z xz w

x z xz w
ep

e

β β β β β

β β β β β

+ + + + +

+ + + + +
′= Λ =

+
x β  [44] 

For illustration, we discuss a simple empirical example predicting turnout, using data from the 

2004 National Election Studies. The dependent variable, Voted, is binary: 1 if the respondent voted; 

0 if not. We model turnout as a function of two individual-level characteristics: education, ranging 
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from 1 to 17 years of Schooling, and strength of partisanship, StrPID, an ordinal measure equaling 0 

for Independents, and 1 for leaning, 2 for weak, and 3 for strong partisans74. We interact education 

and strength of partisanship to explore whether education explicitly conditions the effect of strength 

of partisanship and vice versa. A researcher might argue that education and strength of partisanship 

each bring resources and motivation that reinforce each other in reducing the costs or increasing the 

benefits of voting, such that increases in one variable will boost the impact of the other in generating 

the net benefit to the individual of voting that relates nonlinearly (specifically: sigmoidally) to that 

individual’s propensity to vote. Alternatively, the researcher might suspect the opposite: that 

educational and partisan resources and motivations undermine each other, such that increases in one 

variable contribute less to the net benefit of voting when the other is high than when it is low. Notice 

how these propositions argue something further than that the effect of one variable is higher or lower 

when the other is lower or higher because both augment (detriment) the propensity to vote and so 

each has less effect when the other already leans the individual far toward or away from voting. This 

last possibility is what the S-shaped function relating education and partisanship to vote-propensity 

already assumes. Formally, we specify the following model (a fully-specified model of turnout 

would, of course, include several additional covariates): 

( )0 Sch Str Sch StrVoted F Schooling StrPID Schooling StrPIDβ β β β ε⋅= + + + × +   

The logit and probit estimates appear in Table 27. 

/INSERT TABLE 27 HERE/ 

The effects of x can be calculated using the derivative method or the method of differences in 

predicted probabilities. For the first-derivative approach, interpretation of a model with an explicit 

interaction in addition to its implicit ones would again require application of the chain rule. For logit: 
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( )

( )

'
2

' 2

'

' '

' '(1 )
' (1 )

1
1 1

x xz

x xz

p p ee e z
x x x e

e z
e e

β β

β β

−
′ ′− − −

− −

 ∂ ∂ ∂ ∂
= = − + = + ∂ ∂ ∂ ∂ + 

  = +  + +  

x β
x β x β

x β

x β

x β x β

x β x β
x β

 

( ) ( ) ( ) ( )( )'
' 1 ' 1 x xz

p p p z
x x

β β
∂∂

   = Λ −Λ = − +   ∂ ∂
x β

x β x β  [45] 

This is the same expression as before except that now the effect of x depends not only on the 

other x through [ ( ' )][1 ( ' )]Λ −Λx β x β , but also and again on the value of z in the manner implied by 

the linear-interaction of x and z contained in x. Thus, z modifies the effect of x on p not only by its 

role in the calculation of ( ' )Λ x β , where it enters in the z xzz xzβ β+ +  terms, but also in the final 

term, ' / x∂ ∂x β , where it enters in the expression ' / x xzx zβ β∂ ∂ = +x β . The former role is that 

imposed by the assumed sigmoid relationship from independent to dependent variables; the latter 

role is imposed by the explicit interaction term as z conditions the effect of x on movement along 

that S-shape.  

Similarly, for the probit model, when there is an explicit interaction between x and z: 

( )

( ) ( )
21

2 '

' '( ' ) ( ' )
'

1
2

x xz

x xz

p p z
x x x

e z

φ φ β β

β β
π

−

∂ ∂ ∂ ∂
= = = +

∂ ∂ ∂ ∂

= × +x β

x β x βx β x β
x β

 [46] 

In our example, the marginal effects of Schooling would be calculated at specific values of 

Schooling and StrPID, along varying values of StrPID, given as ( )( )1 x xzp dx p p zβ β∂ = − +  in the 

logit case and ( )( ' ) x xzp dx zφ β β∂ = +x β  in the probit case. Table 28 provides the marginal effects 

of Schooling, holding Schooling and StrPID at substantively interesting values. A sample calculation 

of the marginal effect of Schooling, when Schooling =12 and StrPID =3, using the logit results, is:  
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( )
3.84 0.31 12 0.904 3 0.021 12 3 3.84 0.31 12 0.904 3 0.021 12 3

3.84 0.31 12 0.904 3 0.021 12 3 3.84 0.31 12 0.904 3 0.021 12 3
e e1 0.31 0.021 3

1 e 1 e
p
x

− + × + × − × × − + × + × − × ×

− + × + × − × × − + × + × − × ×

  ∂
= − + − ×  ∂ + +  

 

( ) ( ).861 (1 .861) 0.31 0.021 3 .029p
x

∂
= − + − × ≈

∂
 

/INSERT TABLE 28 AND 29 HERE/ 

Alternatively, one could calculate the predicted probabilities, p̂ , with appropriate confidence 

intervals. The intuition behind calculating the predicted probabilities in a nonlinear model is exactly 

the same as that behind calculating predicted values of y in a linear model. The nonlinear model 

merely requires an additional step, in projecting the linear index (i.e., the sum of the coefficients 

times their covariates) through the nonlinear model onto probability space (in the cases of logit and 

probit). For example, suppose we estimated the following relationship:  

)( 0 xzzxFp xzzx ββββ +++=  

Denote the predicted probabilities ˆˆ ( ' )F F= x β , with the linear index ˆ'x β  computed in identical 

fashion to the linear-regression case:  

0
ˆ ˆ ˆ ˆ ˆ' x z xzx z xzβ β β β= + + +x β  

After calculation of the linear index, the researcher must use the link function, ˆ( ' )F x β , (here, the 

logit ˆ( ' )Λ x β  or probit ˆ( ' )Φ x β ) to convert the linear index into probability space. In either case, the 

predicted probabilities would be calculated at various values of x (say, between xa and xc), holding z 

at some substantively meaningful and logically relevant value (e.g., its sample mean, z ), and of 

course allowing xz to vary from zxa  to cx z .  

Thus, to the calculate effect on the predicted probability of a discrete change in x, say from xa 

and xc, one would simply first compute the linear index at xa and xc:  
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( ) 0
ˆ ˆ ˆ ˆ ˆ' x a z xz aa

x z x zβ β β β= + + +x β      ;     ( ) 0
ˆ ˆ ˆ ˆ ˆ' x c z xz cc

x z x zβ β β β= + + +x β  

Then one would project each linear index into probability space; for the logit case: 

( )

( )

ˆ'

ˆ'
ˆ

1

a

a
a

ep
e

=
+

x β

x β
     ;     

( )

( )

ˆ'

ˆ'
ˆ

1

c

c
c

ep
e

=
+

x β

x β
 

And then one simply computes the difference between the two probabilities: ˆ ˆc ap p− . For probit, the 

process is identical except one uses ( )ˆ'
a

Φ x β  instead of ( )ˆ' 1[1 ]ae
− −+

x β
, i.e. the cumulative standard-

normal rather than the logit, as the link function.  

We reiterate our strong recommendation that researchers compute and report measures of 

uncertainty around marginal effects and predicted probabilities. Standard errors for marginal effects 

can be computed by the delta method, as described in most statistics texts, e.g., Greene (2003: 70).75 

The variance of any nonlinear function of parameter estimates, such as an estimated marginal effect 

like /p x∂ ∂ , is approximated asymptotically as a linear function of the estimated variance-covariance 

matrix of the parameter estimates, here ( )ˆV β , and the derivative of the function with respect to β̂ :76  

( ) ( ) ( )'ˆ ˆ
ˆ ˆ

ˆ ˆ

p p
x xpV

x

∂ ∂
∂ ∂

   ∂ ∂∂      ≈   ∂  ∂ ∂        
V β

β β
 [47] 

We now apply this to the logit case, where ( ) 1
'ˆ 1p e

−
−= + x β , ( )ˆ 'ˆ ˆ1p p p

x x
∂ ∂

= −
∂ ∂

x β .77  

Next, using the product rule78 to solve 
( )ˆ

ˆ

p
x
∂
∂

 ∂
 
∂  β

: 

( )( ) ( )
ˆ ' ˆ ˆ' (1 ) 'ˆ ˆ ˆ1 1
p
x x p pp p p p

x x

∂ ∂
∂ ∂

        ∂ ∂ ∂ ∂ ∂ − ∂
= − + − +           ∂ ∂∂ ∂ ∂ ∂         

x β x β x β
β β β β
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Re-expressing terms: 
'
x

∂
∂∂

=
∂

x β

I
β

,  
' 2

ˆ ˆ ( ' ) (1 )
( ' ) (1 )

p p e p p
e

′−

−

∂ ∂ ∂
= = = −

∂ ∂ ∂ +

x β

x β

x β x x
β x β β

,  

( ) ( )
' 1 '

' 2

1 (1 )ˆ ˆ(1 ) (1 ) ( ' ) ( ' ) (1 )
( ' ) ( ) (1 )

ep p e p p
e

− −
−

−

∂ − +∂ − ∂ − ∂ ∂ −
= = = = − −

′∂ ∂ ∂ ∂ ∂ +

x β x β

x β

x β x β x x
β x β β x β β

 

and substituting: 

[ ] ( )( ) ( ) ( )
ˆ ' 'ˆ ˆ ˆ1 (1 ) 1 (1 )
p
x p p p p p p p p

x x

∂
∂∂ ∂ ∂     = − + − − + − −      ∂ ∂∂    

x β x βI x x
β

 

Re-arranging terms: ( )( ) ( )
ˆ 'ˆ ˆ ˆ1 1 2
p
x p p p

x

∂
∂∂  ∂ = − + −   ∂∂   

x βI x
β

 

Then substituting into Equation [47]: 

( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )2

ˆ ' 'ˆ ˆ ˆ ˆ ˆ ˆ1 1 2 ' 1 1 2

' 'ˆ ˆ ˆ ˆ1 1 2 ' 1 2

pV p p p p p p
x x x

p p p p
x x

   ∂ ∂ ∂     ≈ − + − − + −        ∂ ∂ ∂        
   ∂ ∂   = − + − − +      ∂ ∂      

x β x βI x V β I x

x β x βI x V β x I

 

Recall that in the nonlinear-interaction case, as given by Equation [44], '
x xz z

x
β β∂

= +
∂
x β , yielding: 

( )( ) ( )( )( ) ( ) ( )( )( )2ˆ ˆ ˆ ˆ ˆ1 1 2 ' 1 2x xz x xz
pV p p p z p z
x

β β β β∂  ≈ − + − + − + + ∂ 
I x V β x I  

Using our empirical example, we can calculate the estimated variance around the estimated 

marginal effect of Schooling, when Schooling =12 and StrPID=3. In this example, 

[ ]12 3 36 1′ =x ; the value at which Schooling is held is located in the first column; the value at 

which StrPID is held is in the second column; the interaction term’s value appears in the third 

column; and a 1 is located in the last column, to represent the intercept. We established above that 

( )ˆ | 12, 3 .861p Sch Str= = = . Because we are taking /p x∂ ∂ with respect to a single x (rather than a 

vector x ), the identity matrix in the formula could as easily be a scalar 1. As with linear regression, 
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the estimated variance-covariance matrix of the estimated logit or probit coefficients can be easily 

called by a post-estimation command. In this case, ( )
.004 .024 .002 .055
.024 .198 .015 .322
.002 .015 .001 .024
.055 .323 .024 .726

− − 
 − − =
 − −
 − − 

V β , a 4 x 4 

matrix that lists the estimated coefficient variances and covariances in the order in which they appear 

in the regression results, and corresponding with the order in which values are arrayed in x' . 

Substituting the set values in x'  and the estimated values for p̂  and ( )V β : 

( )( ) ( )( )[ ]( )

( ) ( )

2ˆ
.861 1 .861 1 1 2 .861 .31 .021 3 12 3 36 1

.004 .024 .002 .055 12

.024 .198 .015 .322 3
1 2 .861 .31 .021 3 1 0.002

.002 .015 .001 .024 36

.055 .323 .024 .726 1

pV
x
∂  ≈ − × + − × − × ∂ 

− −     
    − −     × × − × − × + ≈
 − −   
     − −    

  

A standard statistical package or a spreadsheet program can easily perform these calculations.  

Similarly for the probit case, standard errors around marginal effects are calculated following 

Equation [47]; specifying ( )ˆ 'p = Φ x β , we have ( )ˆ ''p
x x

φ∂ ∂
=

∂ ∂
x βx β , and, using the product rule, 

( ) ( )ˆ ' '''
p
x x

x

φ
φ

∂ ∂
∂ ∂

 ∂   ∂ ∂ ∂  = +      ∂∂ ∂ ∂      

x β x βx βx β
β β β

. Then,  we can re-express some terms, 
( )'

x
∂
∂∂

=
∂

x β

I
β

, 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )( )( )
21 '

2
' ' ' '1 ' ' ' '

2'
e

φ φ
φ

π
−∂ ∂ ∂ ∂ 

= = − = − 
∂ ∂ ∂∂  

x βx β x β x β x β
x β x β x β x

β β βx β
, and substitute: 

[ ] ( ) ( )( )( ) ( ) ( )
ˆ ' 'ˆ ˆ' ' ' ' ' ' '
p
x

x x
φ φ φ

∂
∂

    ∂ ∂ ∂
= − = −        ∂ ∂∂     

x β x βI x β x β x β x x β I x β x
β

 

Then substituting into Equation [47]: 
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( )( ) ( ) ( )( )

( )( ) ( )2

ˆ ˆ ˆ ˆ'

'ˆ ˆ

pV
x x x

x x

φ φ

φ

         ∂ ∂ ∂     ≈ − −              ∂ ∂ ∂              
         ∂ ∂
   = − −            ∂ ∂            

x'β x'βx'β I x β x' V β x'β I x x'β

x β x'βx'β I x'β x' V β I x x'β

 

Recall that by Equation [46], x xz z
x

β β∂
= +

∂
x'β . Substituting,  

 ( )( ) ( )( ) ( ) ( )( )2ˆ ˆ
x xz x xz

pV z z
x

φ β β β β∂     ≈ − + − +        ∂ 
x'β I x'β x' V β I x x'β  

For standard errors around predicted probabilities, we can also use the delta method. In the logit 

case: ( ) ( ) ( ) ( ) ( )2ˆ ˆˆ ˆ ˆˆ (1 ) (1 ) (1 )ˆ ˆ
p pV p p p p p p p
′   ∂ ∂        ≈ = − − = −                ∂ ∂   

V β x' V β x x' V β x
β β

 

I.e., square )ˆ1(ˆ pp −  and multiply the result by the estimated variance-covariance matrix of the 

estimated coefficients, pre-and post-multiplied by the x vector specified at the values of interest. In 

the probit case, ( ) ( )( ) ( ) ( )( ) ( )( ) ( )
2

ˆ ˆˆV p φ φ φ
′       ≈ − − =            

x'β x V β x'β x x'β x' V β x . As with linear 

regression models, predicted probabilities are most effective presentationally when graphed with 

confidence intervals. Confidence intervals can be generated using the same formulae: , ( )df pp t V p± .  

Calculation of the standard error for the difference between two predicted probabilities, say 

those reflecting the effect of a specific change in x from xa to xc, follows the same delta method: 

( ) ( ) ( ) ( ) ( )

( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ

a c a c a c a c
a c

a a c c a a c c

F F F F F F F FV F F V V

f f V f f

′ ′   ∂ − ∂ −    ∂ ∂ ∂ ∂      − ≈ = − −            ∂ ∂ ∂ ∂ ∂ ∂      
    = − −     

β β
β β β β β β

x' x' β x x

 

âF and ĉF here are the link function (logit or probit here), and âf and ĉf are their derivatives with 
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respect to ˆx'β  ( ( )ˆ ˆ1p p−  for logit and ( )ˆφ x'β for probit), evaluated at ax and cx respectively.  

Many existing statistical software packages will calculate these standard errors of estimated 

probabilities for the researcher, and some will even calculate standard errors for derivatives or 

differences at user-given levels of the variables. Our intention here is to reemphasize the importance 

of examining effects rather than simply coefficients (or predicted levels), be they estimated in a 

linear or nonlinear specification, and to provide readers with a sense of the mathematics underlying 

the calculation of these estimated effects and their corresponding standard errors. 

C. Random-Effects Models and Hierarchical Models79 

When modeling relationships between a set of covariates, X, and a dependent variable, y, 

scholars make assumptions about the deterministic (i.e., fixed) versus stochastic (i.e., random) nature 

of those relationships. In the interaction context, for example, scholars might propose that the effects 

of x and of z on y depend either deterministically or stochastically on the other variable. The 

burgeoning “random effects” literature proposes the latter, probabilistic, relationship. (The related 

multi-level-model or hierarchical-model literature addresses a similar issue, although possibly with 

different assumptions about the properties of the stochastic aspects of the relationships: see below.) 

Let us start thus: 

εβββ +++= zxy 210  [48]  

As before, the linear-interactive specification of the posited interactive relationships could be: 

00 γβ = , z211 δδβ +=  and x432 δδβ +=  [49]  

in the deterministic case, suggesting our standard linear-interactive regression model: 

εββββ ++++= xzzxy xzzx0   [50] 

 where 4231 ,, δδβδβδβ +=== xzzx  

Notice, however, that this standard model in fact assumes that the effect of x on y varies with z, 
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and the effect of z on y varies with x, without error. Likewise, the intercept does not vary across 

repeated samples. A linear-interactive model with random effects would instead be:  

000 εγβ += , 1211 εδδβ ++= z , and 2432 εδδβ ++= x  [51]  

suggesting the following, similar-looking linear-interactive regression model:  

*0 εβββγ ++++= xzzxy xzzx  [52] 

but with: zx 210* εεεεε +++= . 

Thus, the distinction between the deterministically interactive and the stochastically interactive 

models occurs only in the “error” term; i.e., the two models are identical except for the difference 

between ε  and *ε . In the first case, where the conditioning effects are assumed to be deterministic, 

OLS would be BLUE, i.e., yielding the best (most efficient), linear unbiased estimate (provided the 

model is also correctly specified in other regards, of course). In the latter case, where effects are 

assumed stochastic, or probabilistic, one suspects OLS estimates might not be BLUE. Notice, 

however, that, assuming all the stochastic terms have mean zero, ( )0 1 2, , ,E ε ε ε ε = 0 , and do not 

covary with the regressors, { }( )0 1 2, , , ,C ε ε ε ε =x 0 , as commonly done in most regression contexts 

including random-effects/hierarchical-modeling, OLS estimation would still yield unbiased and 

consistent coefficient-estimates.80 On the other hand, the composite residual’s variance, ( )*V ε , is 

not constant (homoskedastic) but differs (heteroskedastic) across observations, even if ( ) ( )2...V Vε ε  

are each constant, rendering coefficient estimates and standard errors inefficient. Moreover, this non-

constant variance moves with the values of x and z, which implies that the standard-error estimates 

(but not the coefficient estimates) are biased and inconsistent as well. Thus, even if the error 

components in the random effects model had constant variance, mean zero, and no correlation with 

regressors, as we would commonly assume, OLS coefficient estimates will be inefficient, and OLS 
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standard-error estimates will be biased, inconsistent, and inefficient. These problems, though 

potentially serious, are probably small in magnitude in most cases and, anyway, easy to redress by 

simple techniques with which political scientists are already familiar.  

As mentioned above, similar issues arise in the literature on hierarchical, or multi-level models 

(see, e.g., Bryk and Raudenbush 2001, Steenbergen and Jones 2002, Kedar and Shively 2005). Often 

these models propose that some unit-level yij depends on a contextual-level variable, zj, varying only 

across and not within the j contexts, and a unit-level variable, xij, and furthermore that the effect of 

the unit-level variable xij depends (deterministically or stochastically) on zj: 

ijjijij zxy εβββ +++= 210  [53]  

0 0 0( )ijβ γ ε= +  

)( 1211 jjz εδδβ ++=  

)( 2432 ijijx εδδβ ++=  

which implies that one may model y for regression analysis as:  

*0 εβββγ ++++= xzzxy xzzx   [54] 

where: )(* 210 jijijjijij zx εεεεε +++=  and the coefficients remain identical to those above. 

Assuming deterministic conditional relationships so that ijεε =* , i.e., the parenthetical terms are 

all zero, and assuming that this simple residual is well-behaved (mean zero, constant variance, and 

no correlation with regressors, as usual), OLS is BLUE. If, instead, ijε  exhibits heteroskedasticity 

and/or correlation across i or j, then OLS coefficient and standard-error estimates would be unbiased 

and consistent but inefficient in the case that the patterns of these non-constant variances and/or 

correlations were themselves uncorrelated with the regressors, their cross-products, and squares. In 

the case that these patterns correlated in some fashion with the regressors, their cross-products, or 
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squares, OLS coefficient estimates would still be unbiased and consistent but inefficient, but OLS 

standard errors would be biased and inconsistent as well as inefficient, as usual in this context. These 

standard-error inconsistency problems could be redressed in familiar manners by replacing the OLS 

formula for estimating the variance-covariance of estimated coefficients with a heteroskedasticity-

consistent formula like White’s or the appropriate heteroskedasticity-and-correlation-consistent 

formula like Newey-West for temporal correlation, Beck-Katz for contemporaneous (spatial) 

correlation, or “cluster” for the case of common stochastic shocks to all units i in each context j. 

With stochastic dependence such that jijijjijij zx 210* εεεεε +++= , on the other hand, OLS 

coefficient-estimates are still unbiased and consistent, but the error term presents us with two issues 

even in the case of well-behaved ijε : heteroskedasticity (the composite residual term, *ε , depends 

on some linear combination of x and z) as well as potentially severe autocorrelation (each j1ε  will be 

common to all individuals i in context j).81 

Thus, the random-effects and multi-level (hierarchical) cases produce identical problems in OLS, 

and so, the same solutions will apply. Note first that some form of the familiar White’s or Huber-

White’s consistent variance-covariance estimators, i.e., “robust” standard errors, will redress the 

inconsistency in OLS estimates of the estimated coefficients’ variance-covariance, i.e., in ( )ˆ
ols

V β . 

Recall that, given nonspherical disturbances,  

( ) ( )( ) ( ){ } ( ){ }

{ }{ }
( ) ( )

ˆ ˆ ˆE E

E E

E V

   ′′ ′= − − = − + − +  
   

 ′  = =    
′   = =   

-1 -1

-1 -1 -1 -1

-1 -1 -1 -1

V β β β β β β β (X X) X'ε β β (X'X) X'ε

(X'X) X'ε (X'X) X'ε (X'X) X'εε'X(X'X)

(X'X) X' εε X(X'X) (X'X) X' ε X(X'X)

 [55] 

Under classical linear-regression assumptions, 2( , )σε ~ N 0 I  and ( )E ′ =ε X 0 , so this reduces to: 
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 ( ) ( )( ) ( ) 2

2 2

ˆ ˆ ˆE V σ

σ σ

 ′ ′ = − − = =   
 

= =

-1 -1 -1 -1

-1 -1 -1

V β β β β β (X'X) X' ε (X'X) X (X'X) X IX(X'X)

(X'X) X'X(X'X) (X'X)

 

With random effects, zx 210* εεεεε +++= ; in multilevel data, jijijjijij zx 210* εεεεε +++= . 

Both violate the assumptions of classical linear regression in essentially the same way. In our 

random coefficient case: 

( )* *
0 1 2 0 1 2

0 1 2 0 0 0 1 0 2 0 1 0 1

1 1 2 1 2 0 2 1 2 2 2

( )( )

'

E E x z x z

x z x z x x
E

xx zx z z xz zz

ε ε ε ε ε ε ε ε

εε ε ε ε ε ε ε εε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε

= + + + + + +

+ + + + + + + + + 
=  + + + + + + 

ε ε ' '

' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' '

 [56] 

Even assuming ( )0 1 2, , ,ε ε ε ε are independently and identically distributed (i.i.d.) 2( , )N σ0 I , the 

variance-covariance matrix for β̂  in the random coefficient model will be: 

( ) ( )2 2 2 2ˆ 2 2RC σ σ σ σ= + + = + +V β xx' zz' I xx' zz'   [57] 

In the hierarchical model, the basic structure is the same but that ( )0 1 2, , ,ε ε ε ε  would be i.i.d. is 

less plausible because, among other reasons, context-level variance ( j1ε ) is unlikely to equal unit-

level variances ( ijijij 20 ,, εεε ). It is more plausible to assume that between-level variation differs but 

within-level variation is constant. If so, the variance-covariance of β̂ in the hierarchical case is:  

( ) ( )2 2 2 2 2ˆ 2 2context contextHM ind ind indσ σ σ σ σ= + + = + +V β xx' zz' I zz' xx'   [58] 

Notice that the expressions for ( )ˆ
HMV β  in the hierarchical case and for ( )ˆ

RCV β  in the random-

coefficient case are almost identical. The only difference is the separation we allow for the variances 

of components of ε* in the hierarchical case, because such separation seems substantively sensible, 

that we do not allow in the random-coefficient case. In either case, the familiar class of robust 

estimators and/or reasonably familiar versions of Feasible Generalized Least Squares will redress 
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OLS’ problems sufficiently in a relatively straightforward manner.  

Recall that White’s heteroskedastic-consistent estimator, for example, is 

( ) 2

1

1ˆ      where  e
n

i
i

n
n =

= = ∑-1 -1
0 0 i iV β (X'X) S (X'X) S x x'  

As Greene (2003) writes, White’s estimator “implies that, without actually specifying the type 

of heteroskedasticity, we can still make appropriate inferences based on the results of least squares” 

(199). More precisely, White’s estimator produces consistent estimates of the coefficient estimates’ 

variance-covariance matrix in the presence of pure heteroskedasticity (non-constant variance) whose 

pattern is somehow related to a pattern in xx' , i.e. to some pattern in the regressors, the regressors 

squared, or the cross-products of the regressors. Thus, in our pure random-coefficient case, White’s 

estimator provides consistency (“robustness”) to precisely the heteroskedasticity issue raised because 

the pattern of non-constant variance depends on the regressors x and z and heteroskedasticity is the 

only issue raised. In the hierarchical-model case, we might additionally have concerns about a 

correlation among residuals due to the common component, ε1j, in the errors of all individuals in 

context j. The pattern of this induced correlation will likewise relate to the regressors x and z (and 

their products and cross-products). In this case, a Huber-White heteroskedasticity-and-clustering 

consistent variance-covariance estimator will produce the appropriately “robust” standard errors.82 

Such “robust” standard-error estimators leave the inefficient coefficient estimates unchanged 

and are not efficient in their estimates of coefficient-estimate variance-covariance either. To redress 

these issues, Feasible Weighted Least Squares (FWLS) may be appropriate for the pure 

heteroskedasticity induced by simple random-effects, and Feasible Generalized Least Squares 

(FGLS) may be appropriate for the heteroskedasticity and correlation induced by the clustering 

likely in the hierarchical context. Specifically, since the patterns of heteroskedasticity or correlated 

errors producing the concerns are a simple function of the regressors involved in the interactions, 
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one can conduct FWLS if appropriate and desired as usual following these steps: (1) estimate by 

OLS; (2) save the OLS residuals; (3) square the OLS residuals; (4) regress the squared residuals on 

the offending regressors (x and z here); (5) save the predicted values of this auxiliary regression. The 

researchers would then (6) use the inverse of the square root of these predicted values as weights for 

the FWLS re-estimation. One may wish instead to regress the log of the squared OLS residuals on 

the offending regressors and save the exponential of these fitted values in step (5) to avoid 

estimating negative variances and then attempting to invert their square root in step (6). The 

procedure for implementing FGLS if appropriate and desired is similar, except that both variance 

and covariance parameters are to be estimated in steps (3)-(4) for insertion into the ( )ˆV ε  whose 

“square-root inverse” is to provide the weighing matrix in step (6).83,84  

As evidence in support of the claim that some form of a robust-cluster estimate will suffice in 

the hierarchical model with random coefficients case, we conducted several Monte Carlo 

experiments applying OLS, OLS with heteroskedasticity-consistent standard-error estimation, OLS 

with heteroskedasticity-and-cluster-consistent standard-error estimation, and random-effect-model 

estimation.85 In all cases, the data were actually generated using hierarchical model structures (with 

several alternative relative variances and covariances of the error components and the right-hand-

side variables) and in samples with 50 i units and 100 observations per unit (to correspond to a rather 

small survey conducted in each of the 50 US states). All four estimation techniques yielded unbiased 

coefficient estimates, but the standard error estimates, not surprisingly, were wrong with OLS and 

with robust standard-error estimates that ignore within-level autocorrelation (i.e., estimators 

consistent to heteroskedasticity only), but were nearly as good with the robust-cluster-estimation 

strategy as with the full random effects model (the estimates were within 5% of each other). 

Appreciable efficiency gains in coefficient estimates from the hierarchical models relative to the 
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OLS ones were also notably absent. Accordingly, the main conclusion of our exercise was that one 

seemed generally to have little to gain—in linear models in samples of these dimensions anyway—

from complicated random-coefficients and hierarchical modeling strategies as any of the more-

familiar and far-easier-to-implement OLS with robust Variance-Covariance estimators appended to 

OLS (e.g., in STATA, one simply appends “, robust” or “, robust cluster” to the end of the 

estimation command) seemed generally to suffice. Of course, we would demand much further 

simulation, across wider and more-systematically varying model types and ranges of parameters and 

sample dimensions to support this conclusion more whole-heartedly as a general one. In this sample-

dimension and model context at least, however, simpler strategies work almost indistinguishably 

from the more complex ones, so we are happy to argue for simplicity in cases like this at least. We 

also note, however, that the properties of these “robust” standard-error estimators deteriorate in 

smaller samples. For the simple heteroskedasticity-consistent estimator, this seems to occur notably 

worrisomely only in very small samples beginning around N=35. For robust-cluster estimators, two 

sample-size dimensions are key: total N, and J, the number of “contexts”. Again, very small J, say 

below about 30, and/or N become increasingly problematic.86 

VI. Summary 

We have emphasized the importance of understanding the links between substantive theory and 

empirical tests of those theories. Social scientists often formulate hypotheses that demand some 

complexity beyond the simple linear additive model. Multiplicative interaction terms provide one 

simple means often sufficient to enhance the match of these complex theories to appropriate 

empirical statistical analyses. 

We conclude with this summary of our recommendations on the use and interpretation of 

interactive terms in linear regression models. In order: 
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 Theory: What is the scientific phenomenon to be studied? Does your theory suggest 

that the effects of some variable(s) x depend on some other variable(s) z (implying 

the converse that the effect(s) of z depend(s) on x)? Does it imply anything more 

specific about the manner in which the effects of x and of z depend on each other? 

 Model: What is the appropriate mathematical model to express your theory? Write 

the formal mathematical expression that encapsulates your theory. In the case where 

the theory implies that the effect(s) of x depend(s) on z and vice versa, (a) simple 

multiplicative interaction (s) will often suffice to express that (those) proposition(s). 

If the theory implies something more specific, ideally one would specify that more-

specific (perhaps nonlinear) form of the interactions. 

 Estimation: Estimate the model with an appropriate estimation strategy; OLS (or 

nonlinear regression model).  

 Interpretation: What are the substantive effects of interest? Conduct appropriate 

hypothesis tests that match your substantive theoretical propositions. Calculate 

marginal effects using derivatives to describe the effects of the variable(s) of interest, 

x and/or z at various, meaningful levels of the other variables. Calculate changes in 

the predicted values of y induced as some variable(s) of interest, x and/or z, 

change(s) at various, meaningful levels of the other variables. Also calculate the 

standard errors of these estimated effects and/or confidence intervals. 

 Presentation: Present tables or graphs including both marginal effects or differences 

and accompanying measures of uncertainty or including both predicted values and 

accompanying measures of uncertainty. Plot or tabulate these effects across a range 

of meaningful levels of the other variables. 
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VII. Appendix A: Differentiation Rules. 

Here is a table of useful differentiation rules (for a more complete list of differentiation rules, we 
refer the reader to Kleppner and Ramsey 1985). 
Let  a, b, c = constants 
 x, z, w = variables 
 y = a function of some variable(s) 

f(), g() = functions 
 

/INSERT TABLE A1 HERE/ 
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VIII. Appendix B: Stata Syntax.  

Many statistical software packages are available to researchers. Because STATA is prominent in 

the social-sciences, we provide STATA-based syntax for readers to use in following our advice of 

interpreting and presenting results from linear models that include interaction terms.87  

We advise creating a separate dataset that contains simulated values for each of the variables in 

the regression analysis (it can be used for marginal effects and/or for predicted values, or separate 

ones can be used for each approach). A dataset of simulated values enables the researcher to interpret 

effects along evenly spaced values of one or more of the variables, within a substantively useful 

range at which marginal effects, predicted values, and differences in predicted values can easily be 

interpreted (where the actual dataset may not contain evenly spaced values).  

A. Marginal Effects, Standard Errors, and Confidence Intervals. 

To begin, determine the number of observations that will be contained in the simulation dataset. 

A researcher might want to calculate the estimated marginal effects of x as z ranges from its 

minimum to its maximum, at evenly spaced increments (e.g., if the variable z ranges from 1 to 10, 

and the user wishes z to vary in 1 unit increments, this would imply 10 observations). We advise 

selecting a manageable number of values (5-100). Open Stata, and create a new dataset by setting the 

number of observations, v (e.g., “10”), to be included:  

set obs v 

One could manually enter each evenly spaced value into a dataset (e.g., 1; 2; 3; etc.) using the 

data editor. A more efficient way of setting values of z is easily found: 

gen z = _n 

This command creates a variable z that ranges from 1 to 10, based on _n, the stored observation 

number. If, following our government-durability example, z is to range between 40 and 80 and rise 
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by 5 unit increments, then we would need 9 observations, and we would run the following command 

line to generate values of z: gen z = ((_n-1)/(9-1))*(40)+40. Or, more generally: 

(_ 1) (max min) min
( 1)

nz
v
−

= − +
−

, where “min” and “max” indicate the endpoints of the range across 

which z will span. Then, save the dataset: 

save dydxdata.dta 

After you have created a dataset that allows for a range of z values, return to the empirical data: 

use realdata.dta 

To estimate the following “standard model,” given variables y, x, and z in the dataset.  

0 x z xz wy x z xz wβ β β β β ε= + + + + +  

Generate the multiplicative term, xz, and save the dataset. 

gen xz = x*z 

save, replace 

Estimate the linear regression model: 

regress y x z xz w 

Recall that the marginal effects of x and z on y are: ˆ ˆˆ / x xzy x zβ β∂ ∂ = +  and ˆ ˆˆ / z xzy z xβ β∂ ∂ = + . 

Marginal effects are calculated by adding the estimated xβ̂  to the product of each value in z with 

the estimated coefficient xzβ̂ . Open the simulation dataset to calculate marginal effects: 

use dydxdata.dta 

One could take the estimated coefficients from the regression output and create a new variable: 

gen dydx= xβ̂ +z* xzβ̂  

Where the estimated value xβ̂  from the regression output (e.g., “-2”) is entered instead of “ xβ̂ ”, and 

the estimated value of xzβ̂  from the regression output (e.g, “10”) is entered in place of “ xzβ̂ ”. This 

command line would thus create v values corresponding with the marginal effects of x, at various 
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values of z. A disadvantage to the procedure above is that it is possible to mistype the estimated 

values, creating grave errors in the calculated effects. A less error-prone way of calculating the 

marginal effects, then, is to use the estimates STATA stores in memory.  

STATA stores the estimated coefficient xβ̂  in memory as _b[x] and the coefficient xzβ̂  in 

memory as _b[xz], so a variable that consists of the marginal effects of x as z varies across the 

evenly incrementing values of z is generated as follows:  

gen dydx=_b[x]+_b[xz]*z 

Using the variable dydx, a table or plot of selected marginal effects for evenly spaced values of 

interest is now easily created.88  

Presentations of marginal effects should also include an indication of our level of certainty or 

uncertainty regarding these marginal effects. Recall that the estimated variance of the marginal 

effects in this example would be: 2ˆ ˆ ˆ ˆˆ( / ) ( ) ( ) 2 ( , )x xz x xzV y x V z V zCβ β β β∂ ∂ = + + . Calculating 

ˆ( / )V y x∂ ∂  is straightforward from there. The estimated variance-covariance matrix of estimated 

coefficients is retrieved in STATA by typing “vce” after an estimation command. The user could 

then simply generate a new variable by taking the specific values of ( )ˆ
xV β , ( )ˆ

xzV β , and 

( )ˆ ˆ,x xzC β β  acquired from viewing the values in the variance-covariance matrix.  

gen vardydx = ˆ ˆ ˆ ˆ( ) ( ) 2 ( , )x xz x xzV z z V z Cβ β β β+ × × + × ×  

where ( )ˆ
xV β , ( )ˆ

xzV β , and ( )ˆ ˆ,x xzC β β , would be replaced by their estimated values (e.g., “2”).  

Again, although this “enter by hand” method is transparent, human error in data entry could be a 

problem. A less error-prone uses the estimates that STATA stores in memory. The square root of 

( )ˆ
xV β  is in “_se[x]”, and the square root of ( )ˆ

xzV β  is in “_se[xz]”. ( )ˆ ˆ,x xzC β β is stored as the 
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element in the row and column corresponding to x and xz in the estimated variance-covariance 

matrix of the coefficient estimates, vce. In this particular case, given the order of the variables in the 

estimated equation, it is in the third row, first column (and, because the variance-covariance matrix 

is symmetric, also in the first row, third column).  

Create a matrix V to represent the variance-covariance matrix of the coefficient estimates, VCE. 

matrix V = get(VCE) 

We can pull out the stored element ˆ ˆ( , )x xzC β β  and convert it into a column vector by multiplying 

the scalar ( ˆ ˆ( , )x xzC β β ) by an identity matrix of dimension v, and then creating a v x 1 column vector  

built from the diagonals of the resulting matrix: 

matrix C_x_xz=(vecdiag((V[3,1])*I(v)))’ 

Note, that the (v) argument for the identity matrix, I, must be filled in by the user and will be 

determined by the number of observations in the simulated dataset. The vecdiag command creates a 

row vector from the selected element of the variance-covariance matrix of the coefficient estimates, 

multiplied by the identity matrix. Because we want a column vector rather than a row vector, a 

transpose appears at the end of the command.  

The vector C_x_xz contains the value of ˆ ˆ( , )x xzC β β  in all v rows. Finally, we convert the vector 

into a variable C_x_xz, which contains the covariance of interest. 

svmat C_x_xz, name(C_x_xz) 

The estimated variance (and standard error) of each estimated marginal effect can thus be 

calculated as: 

gen vardydx=(_se[x])^2+(z*z)*(_se[xz]^2)+2*z*C_x_xz 

gen sedydx=sqrt(vardydx) 

A table of marginal effects with accompanying standard errors could be generated as follows: 

tabdisp z, cellvar(dydx sedydx) 
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This command line would present a table featuring all v values of z, with the appropriate 

marginal effect and standard error of the marginal effect. This table is likely to be useful for the 

researcher for interpretation, but for presentational purposes, only a set of selected values of z might 

be incorporated into an abbreviated table. 

Alternatively, marginal effects can be graphed. Recall that confidence intervals can be generated 

with the following formula: ,ˆ ˆ/ ( / )df py x t V y x∂ ∂ ± ∂ ∂ . STATA stores the degrees of freedom from the 

previous estimation as “e(df_r)” and the researcher can use the inverse t-distribution function to 

create pdft , . For a 95% confidence interval, the lower and upper bounds are calculated as: 

gen LBdydx=dydx-invttail(e(df_r),.05)*sedydx 

gen UBdydx=dydx+invttail(e(df_r),.05) *sedydx 

This command graphs estimated marginal effects with confidence intervals, along values of z: 

twoway connected dydx LBdydx UBdydx z 

These procedures are summarized in Table B1.  

/INSERT TABLE B1 HERE/ 

Differences in predicted values can generated by multiplying the marginal effects calculated 

above by x∆ (recall that ( )0
ˆ ˆ

x xzy x zβ β∆ = ∆ +  so long as x enters linearly into the interaction). The 

estimated variance of these differences in predicted values, similarly, is calculated by multiplying the 

estimated variance of the estimated marginal effect by 2x∆ . For example: 

gen diffyhat = a(dydx) 

gen vardiffyhat = (a^2)*vardydx 

Where a is x∆ , e.g., (“2”). 

B. Predicted Values, Standard Errors, and Confidence Intervals. 

The predicted values, ŷ , are generated by summing the products between the right-hand-side 
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variables, set at particular values, and their corresponding coefficients: ŷ = hM β , where Mh is a 

matrix of values at which x, z, and any other variables in the model are set. 

We advise creating a simulation dataset that contains the values at which x, z, and any other 

variables in the model are to be set. Begin by determining the number of observations that will be 

contained in the dataset.  A researcher might want to calculate the estimated predicted values as z 

ranges from its minimum to its maximum, at evenly spaced increments (e.g., if the variable z ranges 

from 1 to 10, and the user wishes z to vary in 1 unit increments, this would imply 10 observations). 

We advise selecting a manageable number of values (5-100). Open Stata, and create a new dataset 

by setting the number of observations, v, to be included: 

set obs v 

One could manually enter each evenly spaced value into a dataset (e.g., 1; 2; 3; etc.) using the 

data editor. A more efficient way of setting values of z is easily found: 

gen z = _n 

This command creates a variable z that ranges from 1 to 10, based on _n, the stored observation 

number. If, following our government-durability example, z is to range between 40 and 80 and rise 

by 5 unit increments, then we would need 9 observations, and we would run the following command 

line to generate values of z: gen z = ((_n-1)/(9-1))*(40)+40. Or, more generally: 

(_ 1) (max min) min
( 1)

nz
v
−

= − +
−

, where “min” and “max” indicate the endpoints of the range across 

which z will span. 

Set the other variables at the desired level, e.g., the means, or modes, or substantively interesting 

values, using the generate command. To generate predicted probabilities based on a model that 

contains k regressors (including the constant), k total variables must be created. In this example, we 

create variable x that takes the value c1 (e.g., “10”), variable w that takes the value c2 (e.g., “-2”), 
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and variable col1 that takes the value of 1 (later, to be multiplied by the intercept).  
gen x=c1 

gen w=c2 

gen col1=1 

Note that each of these variables in the dataset will be set at constant values: the only variable 

that will vary is z; all other variables (aside from the interaction term) are held constant.89  Create the 

interaction term that reflects the values to which x and z are held, and save the dataset. 

gen xz=x*z 

save yhatdata.dta 

Open the real dataset:  

use realdata.dta 

To estimate the following “standard model,” given variables y, x, and z in the dataset.  

εββββ ++++= xzzxy xzzx0  

Generate the multiplicative term, xz, and save the dataset. 

gen xz = x*z 

save realdata, replace 

Estimate the linear regression model: 

regress y x z xz w 

Open the simulation dataset:  

use yhatdata.dta 

Assemble the variables into a matrix:90 

mkmat x z xz w col1, matrix(Mh) 

This command creates matrix Mh which contains the specified values at which our variables are 

set: x is fixed at the value c1, z varies at regular intervals between some minimum and maximum, 

and xz correspondingly varies, as it is the product of x (which is held at c1) and z (which varies). 
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Recall that ŷ = hM β . Although β  is a column vector of coefficients, STATA stores the 

estimated coefficients as a 1 x k row vector, e(b). So we want to create B, a column vector with k x 1 

dimensions, that takes the stored coefficients and transposes them into (β ): 

matrix B=e(b)’ 

Calculating the predicted values is simply a matter of multiplying Mh by B:  

matrix yhat=Mh*B 

Then convert the resulting column vector into a variable, yhat.  

svmat yhat, name(yhat) 

Recall that ˆ = h hV(y) M V[β]M ' . STATA stores the estimated variance-covariance matrix of the 

estimated coefficients, V[β] , as VCE in its memory. We create a matrix V consisting of V[β]:  

matrix V=VCE 

We can now calculate the variance of the predicted values as follows: 

matrix VCEYH=Mh*V*Mh’ 

This command creates a matrix, VCEYH, that contains the variances and covariances of the 

predicted values. The diagonal elements in the variance-covariance matrix of predicted values are 

those of interest to us, as they correspond with the estimated variance of the predicted values. We 

want to extract these diagonal elements into a vector: 

matrix VYH= (vecdiag(VCEYH))’ 

The vecdiag command creates a row vector from the diagonal elements of the variance-

covariance matrix of the predicted values. Because we want a column vector rather than a row 

vector, a transpose appears at the end of the command.  

We then create a new variable, vyhat, which contains a unique estimated variance to correspond 

with each predicted value yhat.  

svmat VYH, name(vyhat) 



 

 

134

Taking the square root produces the estimated standard error of each predicted value yhat. 

gen seyhat = sqrt(vyhat) 

The researcher can next present a table of predicted values with corresponding standard errors: 

tabdisp z, cellvar(yhat seyhat) 

Predicted values are effectively displayed when graphed with confidence intervals. The 

confidence intervals around predicted values ŷ  can be constructed as: ,ˆ ˆ( )df py t V y± , where ŷ  

corresponds with the values in yhat, ˆ( )V y  corresponds with the values in seyhat, and pdft ,  refers 

to the relevant critical value from the t-distribution. STATA stores the degrees of freedom from the 

previous estimation as “e(df_r),” and the researcher can utilize the inverse t-distribution function to 

create the multiplier pdft , .  

For a 95% confidence interval, the lower and upper bounds are calculated as follows: 

gen LByhat=yhat-invttail(e(df_r),.05)*seyhat 

gen UByhat=yhat+invttail(e(df_r),.05)*seyhat 

The predicted values and confidence intervals can be graphed along values of z as follows: 

twoway connected yhat LByhat UByhat z 

These procedures are summarized in Table B2.  

/INSERT TABLE B2 HERE/ 

C. Marginal Effects, Using “Lincom”  

The Stata command “lincom” provides a shortcut for calculating marginal effects and their 

estimated standard errors. It calculates a linear combination of estimators following regression. The 

disadvantage to “lincom” is that it can be cumbersome to use when the user desires to calculate 

marginal effects across several values. Here, we provide a looping command that applies lincom 

across a range of values. In the example, the marginal effects of x are calculated across values of z 
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(for clarity, denoted as zvalues), as z takes on values between 0 and 6. The programming loop will 

post four results to a dataset called lincomresults.dta: the marginal effect estimates from 

lincom, the associated standard errors, the value of zvalues applied, and the degrees of freedom in 

the model (this will be constant throughout, but it helps to have Stata collect it). 

program define lincomrange 
 version 9 
 tempname dydx 
 postfile `dydx' dydx sedydx zvalues df using lincomresults, replace 
 quietly { 
  forvalues z = 0/6 { 
   drop _all 
   use realdata.dta 
   reg y x z xz  
   lincom x +`zvalues'*xz 
   post `dydx' (r(estimate)) (r(se)) (`zvalues') (e(df_r)) 
    } 
   } 
postclose `dydx' 
end 
lincomrange 
clear 
use lincomresults 
tabdisp zvalues, c(dydx sedydx) 
gen LBdydx = dydx-invttail(df,.05)*sedydx 
gen UBdydx = dydx+invttail(df,.05)*sedydx 
twoway connected dydx LBdydx UBdydx zvalues 
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IX. Notes 

1. For expositional ease and clarity, the discussion below primarily focuses on a single variable, 

x, and a single variable, z, as they relate to a single dependent variable, y. The general claims 

extended naturally to vectors X, Z, and Y. 

2. Scholars also refer to the interactive term as the multiplicative or product term, or the 

moderator variable, depending on the discipline. We use interactive term and multiplicative term 

interchangeably. In the field of psychology, distinctions are made between mediator and moderator 

variables (Baron and Kenny 1986). The distinction is similar to that made in other disciplines, 

including sometimes in political science, between intervening and interactive variables, but this 

terminology is not consistently applied across, or sometimes even within, discipline. Our discussion 

applies to moderator and interactive variables, which Baron and Kenny (1986) define as “a 

qualitative… or quantitative… variable that affects the direction and/or strength of the relation 

between an independent or predictor variable and a dependent or criterion variable” (1174). We 

reiterate that interactive terms apply when scholars theorize that z affects the existence or magnitude 

of the relationship between x and y, not when scholars believe some variable z affects the level of 

some variable x that in turn relates to y. This latter argument represents z as a mediating or 

intervening variable and an interaction term is not the appropriate way to model it. Instead, 

mediation is more appropriately modeled by linear-additive regression in various sorts of path-

analysis; moderation implies interactions. 

3. For a refresher on the linear-additive regression model, the interested reader might consult 

Achen (1982).  

4. The American Political Science Review, American Journal of Political Science, and Journal 

of Politics. 
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5. Incidentally, these shares likely dramatically understate the mathematical technical nature of 

the field since our denominator includes pure-theory articles, formal and philosophical, and our 

numerator excludes formal theory. The share of statistical and formal-theoretical articles in these 

journals likely approaches 75% of all non-political-philosophy articles. 

6. We intend the term positive as opposed to normative here and do not intend it to connote 

formal necessarily. 

7. Extending the list of synonyms might prove a useful means of identifying interactive 

arguments. When one says x alters, changes, modifies, magnifies, augments, increases, intensifies, 

inflates, moderates, dampens, diminishes, reduces, deflates, etc. some effect (of z) on y, one has 

offered an interactive argument. 

8. Institutions seem most often to condition the impact of structural variables: e.g., interest, 

demographic, economic, party-system structure, etc. We suspect this reflects some as-yet unstated 

general principle of institutional analysis. 

9. Franzese (1999, 2002) shows how to use nonlinear regression to mitigate the estimation 

demands of such highly interactive propositions. 

10. These last will also often imply spatial interdependence; see the following for 

methodological issues implied: Franzese and Hays (2005), Beck, Gleditsch, and Beardsley (2006), 

and contributions to Political Analysis 10(3). For multilevel contextual models, see Section V.C. 

below and the contributions to Political Analysis 13(4). 

11. We begin with the simplest case, where the effects of x and of z are deterministically 

dependent on, respectively, z and x. Below, we relax this assumption to discuss probabilistic 

dependence (i.e., with error). 

12. To complete the list: a model in which y is a linear-additive function of z and the effect of z 
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and the intercept depends on x, or one where the effect of x depends on z or the effect of z depends 

on x (and each effect may be nonzero when the other variable equals zero) also produce this same 

linear-interactive regression-model. 

13. Note: the linear-interactive model is not the only model form that would imply that the 

effects of x depend on z and vice versa, but, absent further theoretical elaboration that might suggest 

a more specific form of interaction, additive linear-interactive models like [2] are the logical, simple 

default in the literature. 

14. We discuss this type of model further in Section IV.A. 

15. Mathematically, the proof of this logically necessary symmetry in all interactions is simply: 
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16. Note that the terms involving ε1x and ε2z can be removed from the expression for the 

composite error, ε*, and replaced by appending +ε1 to the expression for βx and +ε2 to that for βz, to 

give another common expression of the random-coefficients/random-effects model. 

17. To be precise, OLS standard-error estimates, as estimates of the true variation across 

repeated samples of the OLS coefficient estimates under the CLRM assumptions, are always 

inefficient and, when the heteroskedasticity is a function of the regressors, as is the case here, biased 

and inconsistent as well. 

18. Effective numbers are simply size-weighted counts of items. The effective number of social 

groups, for example, is 
1
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∑ , where gi is the group i’s fraction of the population. The effective 

number of candidates is 
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∑ , where vi is candidate i’s fraction of the vote total. 

19. We selected this dataset because it is freely available (at http://dodgson.ucsd.edu/lij/pubs/) so 
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researchers can easily replicate our results and because of its very manageable size. The small N, 

however, makes finding any strong statistical significance rather unlikely but weak significance 

hardly hampers our pedagogical purposes. 

20. To avoid some tiresome repetition, we henceforth drop the adjectives effective, although they 

remain applicable. 

21. Note that some of this terminology also refers to path-analytic models, which specify that 

some variable x affects the level (rather than, or in addition to, the effect) of some variable z which 

then determines y. This overlap in terminology provides even more confusion for the researcher.  

22. Although, technically, one cannot strictly differentiate with respect to non-continuous 

variables, such as dummy variables, one can proceed ignoring this technicality without being misled. 

(Do remember, however, that marginal increases cannot actually occur, only unit increases from 0 to 

1 can.) Alternatively, one can calculate differences in predicted values with, which we discuss next. 

For more detail, see Note 27. 

23. Although the sample maximum is 2.756, Ethnic Groups does extend beyond this value when 

we examine non-presidential systems (which Cox (1997) analyzes as well).  

24. Ordinal independent variables mildly complicate interpretation of linear-regression estimates, 

whether of purely linear-additive or of linear-interactive form, because linear regression treats all 

independent-variable information as cardinal. In practice, researchers often assume ordinal variables 

to give cardinal, or close enough to cardinal, information. Nominal variables complicate linear-

regression interpretation similarly. For binary nominal (i.e., dummy) variables, the researcher need 

only remember the variable’s binary nature when turning to consider substantively meaningful 

ranges of or changes in those variables. Since a unit change is the only change possible, whether that 

unit offers nominal, ordinal, or cardinal information does not alter the mechanics of interpretation. 
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For nominal variables with more than two categories, increases or decreases in the variable’s value 

do not correspond to any substantive notion of increase or decrease, so their direct use in linear-

regression, again whether of purely linear-additive or of linear-interactive form, is not even 

approximately appropriate. For use in regression analysis, researchers would first decompose such 

multinomial variables into sets of binary variables, each indicating one of the categories. 

25. The one exception is that a dummy variable interacted with itself just gives itself back, so x 

and x2 are identical if x is a dummy. 

26. We provide this very simple example for pedagogical purposes; a more fully specified model 

would of course be more compelling. The dependent variable is compiled from support for services 

and spending, government provision of jobs and a standard of living, support for federal spending on 

welfare programs, social security, public schools, child care, and assistance to the poor, rescaled to 

range from 0 (least supportive) to 1 (most supportive). 

27. Recall that derivatives are the limit of y x∆ ∆ as x∆ approaches zero. For a dichotomous 

variable, this is intuitively unappealing; given that the variable only takes only two discrete values, 0 

and 1, x∆ can only be 1 or -1. However, as Greene (2003) notes, “The computation of the derivatives 

of the conditional mean function [i.e., the regression equation] is useful when the variable in 

question is continuous and often produces a reasonable approximation for a dummy variable” (676). 

Indeed, the differentiation method will produce the correct mathematical formula for the conditional 

effects of a marginal change in x, so the only issue here involves the meaningfulness of a marginal 

change. For linear interactions, one can simply determine the formula for the conditional effect by 

differentiation and then consider only discrete changes in the conditioning variable. For nonlinear 

interactions, however, the amount by which the conditional effect changes as the indicator or other 

discrete conditioning variable increases by one will not be constant over that unit range, so the effect 
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of a marginal change is not as substantively interesting and the difference method is more revealing.  

28. The dummy-variable PD reflects our own coding of party discipline in these democracies. 

29. In the sample, Austrian and especially Swiss governments exceed 67% average 

parliamentary support appreciably, and governments in Luxembourg do so slightly. Reinforcing the 

explanation in the text, Swiss governments serve terms that are not determined by standard 

parliament processes. 

30. Recall that (ln ) 1x
x x

∂
∂ = , and the chain rule for nested functions specifies: 

( )( ( ) ( ) ( )f g x f g g x
x g x

∂ ∂ ∂
∂ ∂ ∂= × , producing ( )( ) ( ) ( )( ) 1ln( ) ( ln( ) ) ln( ) ( )x xz x xz xy x x z x x x zβ β β β∂ ∂ = + ∂ ∂ = + . 

Please see Appendix A for further description of these differentiation rules. 

31. Specifically, the difference in predicted values of ŷ , as x increases from xa to xc is: 

( ) ( )( )
( ) ( )

0 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ln( ) ln( ) ln( ) ln( )

ˆ ˆ ˆ ˆln( ) ln( ) ln( ) ln( )
ˆ ˆln( / ) ln( / )

c a x c z xz c x a z xz a

x c x a xz c xz a

x c a xz c a

y y x z x z x z x z
x x x z x z
x x z x x

β β β β β β β β
β β β β
β β

− = + + + − + + +

= − + −
= +

 

32. We thank an anonymous reviewer for suggesting this name for such models. 

33. A model with k unique independent variables and all their pairwise interactions will comprise 

kk
k +− )!2(2

!  regressors. 

34. A model with k unique independent variables and all possible unique interactions of all 

subsets (including the whole set) of those k factors will comprise 2k-1 regressors. 

35. Alternatively, the researcher could simply estimate a linear-additive model that omits the 

interaction in question and test whether the coefficient on x or z significantly differs from zero in the 

usual manner. If the interaction truly exists, the linear-additive model would tend to produce for 

coefficients on x and z their average effect across the sample values of the other variable. If the 

interaction does truly exist, however, the researcher must note that this linear-additive model is mis-
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specified, with the coefficient estimates on x and z therefore likely subject to attenuation bias and 

inefficiency. Accordingly, these tests would tend to be biased toward failing to reject. 

36. Recognizing this issue, we suggest below that researchers plot the estimated effects of x 

across meaningful ranges of z, along with confidence intervals, and then consider the share of these 

confidence intervals’ covered area that lies above (or below) zero as indication of how strongly the 

evidence supports the proposition. Since “generally” is imprecise and involves judgment, this test is 

imprecise and involves judgment too, but visualizing graphically the proportion of a confidence area 

that lies above or below zero should help in rendering this judgment. 

37. Recall that the classical linear-regression model assumes that z is fixed in repeated sampling, 

or that, if z is stochastic, we interpret our estimates as conditioning on z (i.e., given z or holding z 

constant). Either way, in our estimated effects, z is fixed; β̂  is what varies due to estimation 

uncertainty. 

38. One must distinguish between the variance of the estimated marginal effect of x on y given z, 

( )x
zxyEV ∂

∂ ),|( ; the variance of the estimated effect of a discrete change in x on y given z, ( )x
zxyEV ∆

∆ ),|( ; the 

variance of the prediction or estimate itself, [ ]),|( zxyEV ; and the variance of the prediction or 

forecast error, [ ]),|( zxyEyV − . Both estimation error in β̂  and stochastic residual or error term in 

the model, ε, arise in the fourth case (variance of the prediction or forecast error). The variances of 

estimates and of estimated effects, i.e., all of the other cases, involve only the estimation error in β̂ .  

39. Given some constant c and some random variable r, 2( ) ( )V cr c V r= . Given some constant c and 

two random variables r1 and r2, the variance of the expression 2
1 2 1 2 1 2( ) ( ) ( ) 2 ( , )V r cr V r c V r cC r r+ = + + . In our 

context, the x and z are fixed in repeated sampling, per the standard OLS assumptions, and the 

estimated coefficients are the random variables. More generally, for a vector of random variables, β̂ , 
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and a constant vector, m , the variance of the linear-additive function βm ˆ′  is )mβV(mβm ˆ)ˆ( ′=′V . 

Expression [26] is just one specific example of this more general formula.  

40. In OLS, the variance-covariance matrix of the estimated coefficient vector is 2s -1(X'X) , 

where s2 is our estimate of 2σ , the variance of ε .  

41. In Stata, this command is “vce”. 

42. Section IV.A. shows this hypothesis also corresponds to the standard t-statistic reported for 

the coefficient on x* in an interactive model where x and z have been mean-centered (had their 

sample means subtracted) to x* and z*. 

43. Section III.D. discusses how to construct confidence intervals. 

44. An alternative strategy would be to estimate a different model, one without the interaction 

term(s), and simply evaluate the usual t-test on the appropriate coefficient, on x or on z. This 

alternative would reveal directly whether, on average or generally, x or z had a non-zero effect on y. 

However, if the true relationship really is interactive, then this alternative model is mis-specified, so 

these t-tests would be, at minimum, inefficient. See note 36. 

45. Since assuming directionality in this way lowers the empirical hurdle for statistical rejection, 

many scholars opt more conservatively for always employing non-directional hypotheses and two-

tailed tests. 

46. The order of differentiation in a cross-derivative never matters, so this symmetry does not 

rely on the linear-multiplicative form specifically. In any logical proposition/mathematical model, 

the effect of x depends on z implies that the effect of z depends, in identical fashion, on x: 

( ) ( )y x z y z x∂ ∂ ∂ ∂ ≡ ∂ ∂ ∂ ∂  for any function y(x,z). In this case, the effect of x on y, or how y changes 

as x changes, is x xzy x zβ β∂ ∂ = + . The effect of z on that effect of x on y, or how z changes the effect 

of x on y, is analogously ( ) ( )x xz xzy x z z zβ β β∂ ∂ ∂ ∂ = ∂ + ∂ = . The converses for the effect of z on y and how 
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x modifies this effect are z xzy z xβ β∂ ∂ = +  and. ( ) ( )z xz xzy z x x xβ β β∂ ∂ ∂ ∂ = ∂ + ∂ =  

47. In our notation, F is the calculated F-statistic, and Prob(Fn,m>F) is the probability, under the 

null, of a value greater than F in an F-distribution with n and m degrees of freedom; i.e., the p-level 

at which the null is rejected. 

48. A less-strictly classical approach to hypothesis testing would simply report the p-level and 

leave the reader to determine how much weight to assign a result with this level of statistical 

significance. 

49. Appendix B provides step-by-step STATA commands. 

50. ( )ln( )
ˆ

psV β  and ( )ln( )
ˆ

np psV β  are the squares of the standard errors reported in Table 8. 

( )ln( ) ln( )
ˆ ˆ,ps np psC β β  is obtained by calling up the variance-covariance matrix (not 

shown), ( )ln( ) ln( )
ˆ ˆ,ps np psC β β = -302.8. 

51. For example, in Stata, the post-estimation command lincom will report estimates, standard 

errors, t-statistics, p-levels, and a 95% confidence interval for any linear combination of coefficients. 

Appendix C contains syntax that will apply lincom across a range of values. 

52. We emphasize that the researcher should verify that the uncertainty estimates produced by 

these procedures do not, as some unfortunately do, erroneously add stochastic error to estimation 

error in calculating the uncertainty of estimated effects in models with additively separable 

stochastic components (like linear regression). 

53. This strong warning is especially important when interpreting the effects of interactive 

variables.  Pre-programmed commands that produce marginal effects of variables of interest will 

likely not recognize that a set of the variables are interactive. As such, these commands may 

generate a marginal effect for some covariate, naively assuming all other variables (including the 
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interactive term!) are held constant. This ignores the central fact that the interpretation of the effect 

of x requires taking into account both the coefficient on x, the coefficient on xz, and values of z—

underscoring our point that coefficients are not effects in models including interaction terms. 

54. Researchers might also consider plotting normal distributions with means given by the 

estimated effects and standard deviations by the standard errors of those estimated effects. (Least-

squares estimates are at least asymptotically normally distributed thusly.) Another option is a “box-

and-whiskers” plot, with the center dots given by the estimated effects, the box around that by a 

confidence interval or some other multiple of the standard-error range (e.g., plus or minus one 

standard error), and the whiskers extending to a greater-confidence interval or greater multiple of the 

standard-error range (plus or minus two standard errors). We prefer the simplicity of Figures 6 and 7. 

55. Indeed, in this case, the linear and the non-linear models are non-nested and have the same 

degrees of freedom, so empirical comparison of the linear vs. nonlinear models must proceed on 

other bases entirely. 

56. Using the now-familiar procedures, the estimated variance of the effect is calculated as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 , 2 , 2 ,GD
pd nppd pspd pd nppd pd pspd nppd pspdPDV V V NP V PS C NP C PS C NP PSβ β β β β β β β β∂

∂ = + + + + + ⋅

Accordingly, the confidence interval is the estimated effect from the text plus or minus the t critical 

value times the square root of this expression. 

57. The expressions for the estimated marginal effect of one variable in a generic three-way 

fully-interactive model and the estimated variance of that estimated effect are: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2 2

2 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 , 2 , 2 ,

ˆ ˆ ˆ ˆ ˆ ˆ2 , 2 , 2 ,

y
x xz xw xzwx

y
x xz xw xzw x xz x xw x xzwx

xz xw xz xzw xw xzw

z w zw

V V V z V w V z w C z C w C zw

C zw C z w C zw

β β β β

β β β β β β β β β β

β β β β β β

∂
∂

∂
∂

= + + +

= + + + + + +

+ + +

 

To complete the set of graphs, the marginal effect of PS can also be graphed following similar 
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procedures. 

58. Note 39 gives the more general, linear-algebraic formula for variances of linear combinations 

of random variables and constants.   

59. These are variances and confidence intervals for E(y|x,z=z0) and not forecast or prediction 

errors, which would include also some uncertainty due to the variance of the regression’s error term. 

See note 39. 

60. Appendix B provides step-by-step STATA commands. 

61. In fact, in our “log-transformed” model of government duration from Table 8, the effect of a 

unit increase in the number of governing parties, which itself enters the model of linearly, is linear in 

the natural log of parliamentary support, so, had ln(PS) been the x-axis of Figure 12, the same would 

apply for that presentation. 

62. We can focus only on the terms that would involve x∆ because the rest of the equation drops 

from these differences. 

63. The computational issue here involves matrix inversion, namely the 1( )−X'X  in OLS formulae 

for coefficient and standard-error estimates, some of whose columns (i.e., independent variables) 

may correlate nearly perfectly. If columns of X correlate perfectly, the determinant of ( )X'X , which 

appears in the denominator of the formula for 1( )−X'X , is zero. Division by zero is, of course, 

impossible; therefore, obtaining distinct coefficient estimates (and so standard errors) when (some) 

columns of X correlate perfectly is impossible. All modern regression software warns of perfect 

colinearity when it obtains a zero determinant before allowing the computer to crash trying to divide 

by zero. Most warn of near-perfect colinearity well short of obtaining identically zero for that critical 

determinant, i.e., well short of perfect colinearity, because, the translation from your base-10 data-

matrix to the binary of computers involves rounding error. When something near zero appears in a 
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denominator and contains slight rounding error, the final answer could exhibit massive error. This is 

the concern Cronbach raises. The multiplicative terms in interactive regressions, he feared, could be 

near enough to perfect collinearity to cause severe binary-to-base-ten rounding-error problems. 

However, since his writing, computers have become many thousands of times more exact in their 

binary calculations’ approximation to base-10, meaning even this computational concern is no longer 

present in any practical social-science context. 

64. See Franzese (2005) for further, formal discussion of these issues and those in Section V.C. 

65. Indeed, sometimes, even ordinal or cardinal variables are separated into high(er) and low(er) 

categories for sample splitting in this manner. In addition to the considerations to be discussed 

below, this will typically entail inefficiency as the gradations of ordinal or cardinal information are 

thrown away in the conversion to nominal categorization, although the practice may be justifiable in 

some cases (we suspect rarely) on other grounds. 

66. Researchers may also conduct the joint-hypothesis test that all of the coefficients are equal 

across subsamples, 0
ˆ ˆH : m fβ = β , with a standard F-test: 

1

,
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ~ k n kF

−

−
 ′− − −  m f m f m fβ β V β β β β . 

67. Likewise, the standard F-test on the set of interaction terms tests whether the set of effects of 

X jointly differ across subsamples; see note 66. 

68. In this case, the efficiency gains imply that estimated standard errors will be more accurate 

not necessarily lower. As pooling borrows strength from the other subsamples to improve standard-

error estimates, generally one (some) estimated effect(s) will be lower and (some) other(s) higher. 

69. To our knowledge, only some relatively complicated iterative procedure, like MCMC 

(Markov-Chain-Monte-Carlo), could succeed in imposing that some fm ββ ˆˆ = , for example, and 

correctly gauge the statistical uncertainty of that, single, coefficient estimate. 

70. In multi-category cases, one can include X, indicators for all the categories except one, and 
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all the interactions of the former with the latter, in which case the excluded category becomes the 

suppressed reference group that serves as the baseline for comparison. Standard t-tests would in this 

case refer to whether the effect in the category in question differs significantly from that base case 

for that category’s indicator. Alternatively, one could block-diagonalize X analogously to the above, 

and then the coefficients would refer directly to the estimated effects of each x in each category, 

whereas tests of significance of any differences in estimated effects would require additional steps. 

In either case, one can interpret these interactive effects by calculating differences in predicted 

probabilities or derivatives (treating the derivatives of non-continuous indicators as approximations). 

71. Similarly, Frant (1991)  reviews Berry and Berry’s (1990) research on state lottery policy 

adoptions. Frant argues that Berry and Berry draw their conclusions about the interaction between 

motivation, obstacles to innovation, and resources to overcome obstacles to innovation from the 

assumption inherent in the probit specification they employ. Berry and Berry (1991), however, 

disagree. They believe that their theory suggests that they estimate a probit model with no 

interactions or a linear probability model with a number of multiplicative terms. However, they 

prefer the probit model because the complexly interactive theory driving their model would require 

“so large a number of multiplicative terms as to render the model useless for empirical analysis 

because of extreme colinearity” (578). To argue that the complexly interactive nature of one’s theory 

debars explicit modeling of it is a very weak defense by itself for applying an arbitrary specific 

functional form (probit) to allow all the independent variables to interact according to that specific 

functional form rather than explicitly to derive the form of these complex interactions from the 

theory. That is, as we suggest in the next paragraph and Frant (1991) notes, a stronger argument in 

defense would have been to demonstrate directly and explicitly that the theory implied specifically a 

set of interactions like those entailed inherently in a probit model, which, indeed, seems possible in 
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this case. To generalize the example to a form common in many contexts, an argument might 

involve some overcoming of resistance from a broad set of conditions (explanatory factors) being 

necessary to produce an outcome. It might also then invoke some notion of a tipping point set by 

some values of this set of conditions, and possibly even consider the outcome to become 

increasingly ‘overdetermined’ as the factors all push for the outcome. Such an argument, which 

seems similar to Berry and Berry’s would indeed imply an S-shaped relation, such as logit or probit, 

between the explanatory factors and the outcome. Alternative sources or types of interactions, 

however, would not be inherent in sigmoid functions lacking those further, explicit interactions. 

72. Note the distinction here between conceptualizing effects of a one-unit change in x literally 

computed (i.e., ˆ ˆc ap p− ) versus marginal effects, i.e., effects of an infinitesimal change in x, y x∂ ∂ . 

Generally, the former is recommended for discrete variables, and the latter for continuous variables. 

(See Greene 2003 for elaboration.) 

73. The derivative of any cumulative probability distribution function (cdf), F, is the 

corresponding probability density function (pdf), f, so the derivative of Φ , the cdf of the standard 

normal, is φ , the pdf of the standard normal. 

74. Here, as is common in such cases, we are treating the ordinal information on partisan 

leanings recorded by this measure as interval (or effectively interval, plus only some unimportant 

and unproblematic noise) by giving it simple linear coefficients in x'β .  

75. For confidence intervals around predicted levels, p̂ , a simpler expedient of calculating 

confidence intervals for the linear ˆx'β  and then translating those bounds to probability space using 

the link function will also suffice and, indeed, would have the advantage of constraining the 

confidence interval bounds to lie between zero and one, which the delta-method’s linearization 

strategy would not. That expedient would seem unavailable for confidence intervals around marginal 
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effects and differences, however. 

76. The derivative a function with respect to a vector of its arguments is called a gradient and 

denoted ∇β , but we eschew this terminology and notation as probably less familiar to many readers. 

77. In the simple case that contains no explicit interaction, ( ) ( )ˆ ˆ ˆ ˆ ˆ1 1 x
p p p p p
x x

β∂ ∂
= − = −

∂ ∂
x'β . 

When x interacts with another variable, z, as in Equation [44], then ( )( )ˆ ˆ ˆ1 x xz
p p p z
x

β β∂
= − +

∂
. 

78. Recall that ( )( ) ( ) ( ) ( )( ) ( )
f x g x f x g xg x f x

x x x
∂ ∂ ∂

= +
∂ ∂ ∂

 

79. For more thorough discussion of these issues, see Franzese (2005). 

80. ( ) ( ) ( ) ( )* *ˆ ( ) 0olsE E E Eε ε= = + = + = + =-1 -1 -1β (X'X) X'y (X'X) X' Xβ β (X'X) X' β β  if each 

component of *ε  has mean zero and does not covary with x. See Franzese (2005) for a fuller 

discussion of the proof.  

81. Some current literature even suggests that OLS is biased in the presence of such multi-level 

random effects. This is false if biased refers to the OLS coefficient estimates. Provided that the 

context-specific or other components of the composite error term do not correlate with the 

regressors, OLS coefficient estimates will remain unbiased and consistent, although inefficient. The 

fact that Zj and εj are both common to all individuals in context j implies that the pattern of the non-

sphericity in the composite V(ε*) relates to a regressor, Z, producing biased, inconsistent, and 

inefficient OLS standard-error estimates, but that does not imply that C(Zj,ε*) is non-zero, which is 

the condition that would bias OLS coefficient estimates. The “problem” with OLS for hierarchical 

models therefore resides solely in the inefficiency of OLS coefficient-estimates and in the generally 

poor properties of the OLS estimates of ( )ˆV β . The problem is similar to that typically induced by 
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strong temporal or spatial correlation: OLS coefficient estimates are unbiased and consistent but 

inefficient; standard errors are biased, inconsistent, and inefficient. The inefficiency in coefficient 

estimates can be dramatic if the within-context correlation of individual errors is great, perhaps 

dramatic enough to render unbiasedness and consistency of little practical comfort, but, even so, the 

problem is efficiency, not bias or inconsistency. 

82. Again, Franzese (2005) discusses this matter further. 

83. The “square-root inverse” of a matrix with non-zero off-diagonal elements is not a simple 

inversion of the square root of each of the elements, as it is in the FWLS case where ( )V ε  is 

diagonal. However, most statistical software packages will find the “square-root inverse” of a 

matrix, so we need not detain the reader with these computations. 

84. One could also iterate the FWLS or FGLS procedures, and common practice is to do so, even 

though, statistically, the iterated and one-shot strategies have identical properties. 

85. The variance-covariance matrix for coefficients estimated with the particular robust cluster 

we implemented (using Stata) is: ( )ˆ = -1 -1
JV β (X'X) S (X'X)  where Sj = 

1

J

j=
= ∑j j jS u 'u and where uj = 

1

e
nj

ij ij
i=

= ∑ju x . We estimated the random effects model using HLM software.  

86. These sample sizes and dimensions come from consideration of the small-sample 

adjustments some statisticians have recommended to these robust estimators, multiplying Whites by 

a term involving N/(N-1)  and robust-cluster by a term involving [N/(N-1)][ J/(J-1)]. Franzese (2005) 

discusses these considerations in far greater depth. See also Achen (2005) who correctly stresses the 

possible reliance upon linearity for many of these results and conclusions. 

87. This syntax is valid for Stata version 9. 

88. Users can also take advantage of Stata’s programmed post-estimation commands. The command 
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lincom will report estimates, standard errors, t-statistics, p-levels, and a 95% confidence interval 

for any linear combination of coefficients. So, lincom can be used to calculated marginal effects at 

selected values of z: lincom x zvalue*xz will calculate ˆ ˆ
x xz zβ β+  at the z-value entered into 

the command line. For a handful of marginal effects, lincom is a useful shortcut; the disadvantage 

is that each z-value must be entered one at a time. If more than a handful of effects are desired (or if 

graphing is desired), then the procedure outlined in the text will be more serviceable. Alternatively, 

lincom  can be written into a looping program, and the results stored in a dataset that will allow 

graphing. Appendix C contains this programming syntax. 

89. To generate several blocks of set values that allow z to range from its minimum to its maximum, 

but also allow x to take on different values, the user could take advantage of the expand command.  

Generate the first block of values following the instructions above and setting x to xa. Then expand 

the dataset by two: expand 2. This command line will create a block of v additional observations 

that will exactly match the first. Then replace the value of x in the new block of observations: 

replace x=newvalue in (v+1)/2v (e.g., replace x = 4 in 11/20). 

90. A shortcut is provided by the predict command. Estimate the regression on the original data, 

open the simulated data, and enter predict yhat (bypassing creation of Mh) The predict 

command line generates predicted values using the stored regression coefficients and the values of 

the variables in the current dataset. So long as the variables in the simulation dataset have the same 

name as the variables in the original dataset, the predict command line will produce the desired 

results. Entering predict seyhat, stdp will generate standard errors around the predicted values.  

91. The mathematical expression refers to the standard linear-interactive model, as in Equation [2]. 

92. The mathematical expression refers to the standard linear-interactive model, as in Equation [2]. 

93. The mathematical expression refers to the standard linear-interactive model, as in Equation [2]. 
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XI. Tables 

Table 1. OLS Regression Results, Number of Presidential Candidates  

 
Coefficient 

(standard error) 
p-value 

Ethnic Groups 
-0.979 
(0.770) 
0.228 

Runoff 
-2.491 
(1.561) 
0.136 

Ethnic Groups ×  Runoff 
2.005 

(0.941) 
0.054 

Intercept 
4.303 

(1.229) 
0.004 

N (degrees of freedom) 16 (12) 
Adjusted R2 0.203 

P>F 0.132 
Note: Cell entries are the estimated coefficient, with standard error in parentheses, and two-sided p-level (probability 
|T|>t) referring to null hypothesis that β=0 in italics. 
 
Table 2. Predicted Number of Presidential Candidates 

 Runoff = 0 Runoff = 1 
Groups = 1 3.324 2.838 

Groups = 1.5 2.835 3.351 
Groups = 2 2.345 3.865 

Groups = 2.5 1.855 4.378 
Groups = 3 1.366 4.891 
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Table 3. OLS Regression Results, Support for Social Welfare  

 
Coefficient 

(standard error) 
p-value 

Female 
-0.0031 
(0.0144) 

0.828 

Republican 
-0.2205 
(0.0155) 

0.000 

Female ×  Republican 
0.0837 

(0.0214) 
0.000 

Intercept 
0.7451 

(0.0110) 
0.000 

N (d.f.) 1077 (1073) 
Adjusted R2 0.223 

P>F 0.000 
Note: Cell entries are the estimated coefficient, with standard error in parentheses, and two-sided p-level (probability 
|T|>t) referring to null hypothesis that β=0 in italics. 
 
Table 4. Predicted Support for Social Welfare  

 Democrats, 
(Republican = 0) 

Republicans, 
(Republican = 1) 

Males (Female =0) 0.745 0.525 
Females (Female =1) 0.742 0.605 
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Table 5. OLS Regression Results, Government Duration: Simple Linear-Interaction Model 

 
Coefficient 

(standard error) 
p-value 

Number of Parties (NP) 
-31.370 
(11.345) 

0.013 

Parliamentary Support (PS) 
-0.586 
(0.454) 
0.214 

Number of Parties ×  
Parliamentary Support 

(NP×PS) 

0.468 
(0.186) 
0.022 

Party Discipline 
9.847 

(3.204) 
0.007 

Intercept 
59.273 

(26.455) 
0.039 

N (d.f.) 22 (17) 
Adjusted R2 0.511 

P>F 0.002 
 
Table 6. Predicted Government Duration 

 PS=40 PS=50 PS=60 PS=70 PS = 80 
NP=1 33.05 31.87 30.70 29.52 28.34 
NP=2 20.42 23.93 27.44 30.95 34.46 
NP=3 7.79 15.99 24.18 32.38 40.57 
NP=4 -4.84 8.05 20.93 33.81 46.69 

Note: Predicted values are calculated at given values, setting PD=1. 
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Table 7. OLS Regression Results, Government Duration: Quadratic-Term Model 

 
Coefficient 

(standard error) 
p-value 

Parliamentary Support (PS) 
-2.734 
(2.061) 
0.200 

Parliamentary Support, squared 
(PS2) 

0.0257 
(0.168) 
0.142 

Intercept 
95.20 

(62.44) 
0.144 

N (d.f.) 22 (19) 
Adjusted R2 0.158 

P>F 0.075 
Note: Cell entries are the estimated coefficient, with standard error in parentheses, and two-sided p-level (probability 
|T|>t) referring to null hypothesis that β=0 in italics. 
 
Table 8. OLS Regression Results, Government Duration: Log-Transformation Interactive 
Model 

 
Coefficient 

(standard error) 
p-value 

Number of Parties (NP) 
-136.97 
(48.984) 

0.012 
ln(Parliamentary Support) 

( )ln( )PS  

-43.410 
(27.417) 

0.132 
Number of Parties ×  

ln(Parliamentary Support) 
( )ln( )NP PS×  

32.710 
(11.956) 

0.014 

Party Discipline (PD) 
9.960 

(3.172) 
0.006 

Intercept 
201.41 

(111.16) 
0.088 

N (d.f.) 22 (17) 
Adjusted R2 0.520 

P>F 0.002 
Note: Cell entries are the estimated coefficient, with standard error in parentheses, and two-sided p-level (probability 
|T|>t) referring to null hypothesis that β=0 in italics. 
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Table 9. OLS Regression Results, Government Duration: Three-Way Interactive Models 

 Chained-Interaction 
Model 

Pairwise-Interaction 
Model 

Fully Interactive 
Model 

Number of Parties (NP) 
-33.810 
(12.013) 

0.012 

-27.766 
(11.535) 

0.029 

-51.265 
(41.342) 

0.235 

Parliamentary Support (PS) 
-.66773 
(.47518) 

0.179 

-1.5115 
(.61940) 

0.028 

-2.0949 
(1.1699) 

0.095 

Party Discipline (PD) 
14.859 
(7.758) 
0.073 

-48.690 
(33.670) 

0.169 

-86.847 
(72.969) 

0.254 
Number of Parties ×  

Parliamentary Support 
(NP×PS) 

.52785 
(.20651) 

0.021 

.43443 
(.1970) 
0.043 

.84262 
(.7171) 
0.260 

Number of Parties ×  
Party Discipline 

(NP×PD) 

-2.6514 
(3.7263) 

0.487 

-3.4973 
(3.4716) 

0.330 

22.233 
(43.531) 

0.617 
Party Discipline ×  Parliamentary 

Support 
(PD×PS) 

 
1.1624 

(.60174) 
0.073 

1.8219 
(1.2709) 

0.174 
Number of Parties ×  

Parliamentary Support ×  
Party Discipline (NP×PS×PD) 

  
-.44313 
(.74719) 

0.563 

Intercept 
62.191 

(27.159) 
0.036 

108.039 
(34.545) 

0.007 

141.495 
(66.556) 

.052 
N (d.f.) 22 (16) 22 (15) 22 (14) 

Adjusted R2 .4967 .5701 .5507 
P>F .0053 .0031 .0069 

Note: Cell entries are the estimated coefficient, with standard error in parentheses, and two-sided p-level (probability 
|T|>t) referring to null hypothesis that β=0 in italics. 
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Table 10. Does y Depend on x or z? 
Hypothesis Mathematical Expression91 Statistical test 

x affects y, or 
y is a function of (depends on) x 

y=f(x) 
0x xzy x zβ β∂ ∂ = + ≠  

F- test: 
H0: 0x xzβ β= =  

x increases y 0x xzy x zβ β∂ ∂ = + >  Multiple t-tests: 
H0: 0x xz zβ β+ ≤  

x decreases y 0x xzy x zβ β∂ ∂ = + <  Multiple t- tests: 
0x xz zβ β+ ≥  

   
z affects y, or 

y is a function of (depends on) z 
y=g(z) 

0z xzy z xβ β∂ ∂ = + ≠  
F- test: 

H0: 0z xzβ β= =  

z increases y 0z xzy z xβ β∂ ∂ = + >  Multiple t-tests: 
H0: 0z xz xβ β+ ≤  

z decreases y 0z xzy z xβ β∂ ∂ = + <  Multiple t- tests: 
H0: 0z xz xβ β+ ≥  

 
Table 11: Is y’s Dependence on x Conditional on z and vice versa? How? 

Hypothesis Mathematical Expression92 Statistical test 

The effect of x on y depends on z 
y=f(xz,•) 

( )x xzy x z g zβ β∂ ∂ = + =  

( ) 2 0xzy x z y x z β∂ ∂ ∂ ∂ = ∂ ∂ ∂ = =
t-test: H0: 0xzβ =  

The effect of x on y increases in z ( ) 2 0xzy x z y x z β∂ ∂ ∂ ∂ = ∂ ∂ ∂ = > t-test: H0: 0xzβ ≤  
The effect of x on y decreases in 

z ( ) 2 0xzy x z y x z β∂ ∂ ∂ ∂ = ∂ ∂ ∂ = <  t-test: H0: 0xzβ ≥  

The effect of z on y depends on x 
y=f(xz,•) 

( )z xzy z x h xβ β∂ ∂ = + =  

( ) 2 0xzy z x y z x β∂ ∂ ∂ ∂ = ∂ ∂ ∂ = =
t-test: H0: 0xzβ =  

The effect of z on y increases in x ( ) 2 0xzy z x y z x β∂ ∂ ∂ ∂ = ∂ ∂ ∂ = > t-test: H0: 0xzβ ≤  
The effect of z on y decreases in 

x ( ) 2 0xzy z x y z x β∂ ∂ ∂ ∂ = ∂ ∂ ∂ = <  t-test: H0: 0xzβ ≥  

 
Table 12: Does y Depend on x, z, or Some Combination Thereof? 

Hypothesis Mathematical Expression93 Statistical Test 
y is a function of (depends on) z, 

z, and/or their interaction y=f(x,z,xz) F-test: H0: 0x z xzβ β β= = =  
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Table 13. Variance-Covariance Matrix of Coefficient Estimates, Predicting Number of 
Presidential Candidates 

 Groups Runoff Groups ×  Runoff Intercept 
Groups 0.593    
Runoff 0.900 2.435   

Groups×  Runoff -0.593 -1.377 0.885  
Intercept -0.900 -1.509 0.900 1.509 

 
Table 14. Hypothesis Tests of Whether Groups Affects Number of Presidential Candidates 

 ∂Y/∂G s.e. 
(∂Y/∂G) t-statistic 

One-tailed p-value 
H0: 0G G R Runoffβ β ⋅+ ≤  

One-tailed p-value 
H0: 0G G R Runoffβ β ⋅+ ≥  

90% 
Conf. Interval 

Runoff = 0 -0.979 0.770 -1.260 0.884 0.116 [-2.352, 0.394] 
Runoff = 1 1.026 0.540 1.900 0.041 0.959 [0.064, 1.988] 

 
Table 15. Hypothesis Tests of Whether Runoff Affects Number of Presidential Candidates 

 ∂Y/∂R s.e. 
(∂Y/∂R) t-statistic 

One-tailed p-value 
H0: 0R G RGroupβ β ⋅+ ≤  

One-tailed p-value 
H0: 0R G RGroupβ β ⋅+ ≥  

90% 
Conf. Interval 

Groups = 1 -0.486 0.752 -0.646 0.735 0.265 [-1.826, 0.854] 
Groups = 1.5 0.517 0.542 0.954 0.180 0.820 [-0.449, 1.483] 
Groups = 2 1.520 0.682 2.229 0.023 0.977 [0.305, 2.735] 

Groups = 2.5 2.522 1.038 2.430 0.016 0.984 [0.672, 4.373] 
Groups = 3 3.525 1.461 2.413 0.016 0.984 [0.922, 6.128] 

 
Table 16. Variance-Covariance Matrix of Coefficient Estimates, Predicting Support for Social 
Welfare  

 Female Republican Female ×  Republican Intercept 
Female 0.00021    

Republican 0.00012 0.00024   
Female ×  Republican -0.00021 -0.00024 0.00046  

Intercept -0.00012 -0.00012 0.00012 0.00012 
 
Table 17. Hypothesis Tests of Whether Female Affects Support for Social Welfare  

 ∂Y/∂F s.e. 
(dY/dF) 

t-
statistic 

One-tailed p-value 
H0: Republican 0

F F R
β β

⋅
+ ≤

One-tailed p-value 
H0: Republican 0

F F R
β β

⋅
+ ≥  

95% 
Conf. 

Interval 
Republican 

= 0 -0.003 0.0144 -0.218 0.586 0.414 [-0.031, 
0.025] 

Republican 
= 1 0.081 0.0158 5.109 0.000 0.999 [0.050, 

0.111] 
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Table 18. Hypothesis Tests of Whether Republican Affects Support for Social Welfare  

 ∂Y/∂R s.e. 
(∂Y/∂R) t-statistic 

One-tailed p-value 
H0: 0R F R Femaleβ β ⋅+ ≤  

One-tailed p-value 
H0: 0R F R Femaleβ β ⋅+ ≥  

95% 
Conf. Interval 

Female=0 -0.220 0.0155 -14.18 0.999 0.000 [-0.251, -0.190] 
Female=1 -0.137 0.0147 -9.33 0.999 0.000 [-0.166, -0.108] 

 
Table 19. Variance-Covariance Matrix of Coefficient Estimates, Predicting Government 
Duration 

 Number of 
Parties 

Parliamentary 
Support NP×PS Party 

Discipline Intercept 

Number of 
Parties (NP) 128.712     

Parliamentary 
Support (PS) 4.564 0.206    

NP×PS -2.089 -0.078 0.035   
Party 

Discipline 2.980 0.080 -0.058 10.265  

Intercept -274.906 -11.870 4.587 -10.667 699.881 
 
Table 20. Hypothesis Tests of Whether Number of Parties Affects Government Duration 

 ∂Y/∂NP s.e. 
(∂Y/∂NP) 

t-
statistic 

One-tailed p-value 
H0: 0np npps PSβ β+ ≤  

One-tailed p-value 
H0: 0np npps PSβ β+ ≥  

90% 
Conf. Interval 

PS= 40 -12.628 4.135 -3.054 0.996 0.004 [-19.822, -5.434] 
PS= 50 -7.942 2.558 -3.104 0.997 0.003 [-12.393, -3.492] 
PS= 60 -3.257 1.711 -1.903 0.963 0.037 [-6.233, -0.280] 
PS= 70 1.429 2.500 0.572 0.288 0.712 [-2.920, 5.778] 
PS= 80 6.115 4.063 1.505 0.075 0.925 [-0.954, 13.183] 

 
Table 21. Hypothesis Tests of Whether Parliamentary Support Affects Government Duration 

 dY/dPS s.e. 
(dY/dPS) 

t-
statistic 

One-tailed p-value 
H0: 0ps npps NPβ β+ ≤  

One-tailed p-value 
H0: 0ps npps NPβ β+ ≥  

90% 
Conf. Interval 

NP=1 -0.118 0.293 -0.402 0.654 0.346 [-0.627, 0.392] 
NP=2 0.351 0.185 1.897 0.037 0.963 [0.029, 0.673] 
NP=3 0.820 0.228 3.587 0.001 0.999 [0.422, 1.217] 
NP=4 1.288 0.374 3.448 0.002 0.998 [0.638, 1.938] 

 
Table 22. Confidence Intervals for Predicted Number of Presidential Candidates  
 Runoff = 0 Runoff = 1 

 ŷ  
 

s.e.( ŷ ) 90%  
Conf. Interval 

ŷ  s.e.( ŷ ) 90%  
Conf. Interval 

Groups = 1 3.324 0.550 [2.345, 4.304] 2.838 0.512 [1.923,3.754] 
Groups = 1.5 2.835 0.380 [2.160, 3.509] 3.351 0.387 [2.657, 4.046] 
Groups = 2 2.345 0.532 [1.400, 3.290] 3.865 0.437 [3.096, 4.633] 

Groups = 2.5 1.855 0.847 [0.348, 3.363] 4.378 0.600 [3.299, 5.456] 
Groups = 3 1.366 1.204 [-0.777, 3.509] 4.891 0.827 [3.408, 6.373] 
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Table 23. Confidence Intervals for Predicted Support for Social Welfare 
 Republican= 0 Republican= 1 

 ŷ  s.e.( ŷ ) 95% Conf. Interval ŷ  s.e.( ŷ ) 95% Conf. Interval 
Female = 0 0.745 0.0110 [0.719, 0.771] 0.525 0.0110 [0.499, 0.551] 
Female = 1 0.742 0.0094 [0.720, 0.764] 0.605 0.0113 [0.579, 0.632] 

  
Table 24. Confidence Intervals for Predicted Government Duration 

 NP=1 NP=2 NP= 3 NP= 4 
 ŷ  90% 

Conf. Interval 
ŷ  90% 

Conf. Interval 
ŷ  
 

90% 
Conf. Interval 

ŷ  90% 
Conf. Interval 

PS = 40 33.05 [21.80, 44.29] 20.42 [12.48, 28.36] 7.79 [-4.66, 20.25] -4.84 [-24.90, 15.23] 
PS = 50 31.87 [25.40, 38.34] 23.93 [18.94, 28.92] 15.99 [7.77, 24.20] 8.05 [-4.98, 21.07] 
PS = 60 30.70 [24.78, 36.62] 27.44 [23.21, 31.67] 24.18 [18.96, 29.41] 20.93 [12.97, 28.89] 
PS = 70 29.52 [19.22, 39.82] 30.95 [24.47, 37.42] 32.38 [26.50, 38.26] 33.81 [24.64, 42.97] 
PS = 80 28.34 [12.37, 44.31] 34.46 [24.60, 44.31] 40.57 [31.13, 50.02] 46.69 [31.48, 61.90] 
Note: Predicted values are calculated at given values, setting PD=1. 
 
Table 25. Confidence Intervals for Differences in Predicted Number of Candidates 
 Runoff = 0 Runoff = 1 

 ˆ ˆc ay y−  s.e.( ˆ ˆc ay y− ) 90% 
Conf. Interval 

ˆ ˆc ay y−  s.e.( ˆ ˆc ay y− ) 90% 
Conf. Interval 

1Groups∆ =  -0.979 0.770 [-2.352, 0.394] 1.026 0.540 [0.064, 1.988] 
2Groups∆ =  -1.958 1.541 [-4.704, 0.787] 2.052 1.079 [0.129, 3.976] 

 
Table 26. OLS Regression Results, Support for Social Welfare, Pooled- and Split-Samples 

 

Pooled Sample 
Coefficient 

(standard error) 
p-value 

Males Only 
Coefficient 

(standard error) 
p-value 

Females Only 
Coefficient 

(standard error) 
p-value 

Female 
-0.0031 
(0.0144) 

0.828 
----- ----- 

Republican 
-0.2205 
(0.0155) 

0.000 

-0.2205 
(0.0154) 

0.000 

-0.1368 
(0.0148) 

0.000 

Female ×  Republican 
0.0837 

(0.0214) 
0.000 

----- ----- 

Intercept 
0.7451 

(0.0110) 
0.000 

0.7451 
(0.0109) 

0.000 

0.7420 
(0.0094) 

0.000 
N (d.f.) 1077 (1073) 498 (496) 579 (577) 

Adjusted R2 0.223 0.290 0.128 
P>F 0.000 0.000 0.000 

Note: Cell entries are the estimated coefficient, with standard error in parentheses, and two-sided p-level (probability 
|T|>t) referring to null hypothesis that β=0 in italics. 
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Table 27. Logit and Probit Regression Results, Turnout 

 

Logit Estimates 
Coefficient 

(standard error) 
p-value 

Probit Estimates 
Coefficient 

(standard error) 
p-value 

Years of Schooling 
0.310 

(0.065) 
0.000 

0.190 
(0.037) 
0.000 

Strength of Partisanship 
0.904 

(0.445) 
0.042 

0.607 
(0.251) 
0.015 

Years of Schooling ×  
Strength of Partisanship 

-0.021 
(0.034) 
0.536 

-0.019 
(0.019) 
0.321 

Intercept 
-3.842 
(0.852) 
0.000 

-2.340 
(0.489) 
0.000 

N (d.f.) 1065 (1062) 1065 (1062) 
lnL -476.26 -476.04 

P>χ2 0.000 0.000 
Note: Cell entries are the estimated coefficient, with standard error in parentheses, and two-sided p-level (probability 
|T|>t) referring to null hypothesis that β=0 in italics. 
 
Table 28. Marginal Effects of Schooling, Using Logit Results 

 Independents Leaning Partisans Weak Partisans Strong Partisans 
Years of 

Schooling=9 0.059 (0.092) 0.070 (0.056) 0.065 (0.017) 0.046 (0.052) 

Years of 
Schooling=12 0.077 (0.042) 0.067 (0.010) 0.048 (0.015) 0.029 (0.022) 

Years of 
Schooling=15 0.066 (0.038) 0.046 (0.025) 0.029 (0.021) 0.016 (0.018) 

Note: Cell entries are the estimated marginal effect, with standard error in parentheses. 
 
Table 29. Marginal Effects of Strength of Partisanship, Using Logit Results 

 Independents Leaning Partisans Weak Partisans Strong Partisans 
Years of 

Schooling=9 0.137 (0.226) 0.173 (0.065) 0.172 (0.091) 0.135 (0.007) 

Years of 
Schooling=12 0.162 (0.061) 0.152 (0.053) 0.117 (0.047) 0.078 (0.078) 

Years of 
Schooling=15 0.125 (0.139) 0.093 (0.063) 0.092 (0.096) 0.039 (0.073) 

Note: Cell entries are the estimated marginal effect, with standard error in parentheses. 
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Table A1. Some Useful Differentiation Rules 
Expression y x∂ ∂  Explanation Example 

y c=  0c x∂ ∂ =  The derivative of a constant 
is zero. 7 0x∂ ∂ =  

y cz=  ( ) 0cz x∂ ∂ =  
The derivative of a term 

that does not depend on x is 
zero. 

( )3 0z x∂ ∂ =  

y cx=  ( )cx x c∂ ∂ =  

The derivative of a term 
involving a linear 

coefficient and x is that 
coefficient. 

( )3 3x x∂ ∂ =  

ay cx=  ( ) 1a acx x acx −∂ ∂ =  

The derivative of a term 
involving a linear 

coefficient and x raised to 
the ath power is the product 
of a, c, and x raised to the 

(a-1) power. 

( )5 43 15x x x∂ ∂ =  

y cxz=  ( )cxz x cz∂ ∂ =  

The derivative of a term 
involving a linear 

coefficient, x, and another 
variable z is the product of 

the coefficient and the 
variable (we can treat the 

other variable as a constant 
with respect to x here). 

( )3 3xz x z∂ ∂ =  

y cxzw=  ( )cxzw x czw∂ ∂ =  

The result extends to 
higher-order interactions, 
where again variables that 
are not a function of the 
variable with respect to 

which one is differentiating 
are fixed. 

( )3 3xzw x zw∂ ∂ =  

ln( )y x=  ( )ln( ) 1x x x∂ ∂ =  
The derivative of a logged 
variable is the inverse of 

that variable. 
( )3ln( ) 3x x x∂ ∂ =  

xy e=  ( )x xe x e∂ ∂ =  
The derivative of base e 

raised to a variable is base e 
raised to that variable. 

( )3 3x xe x e∂ ∂ =  

0 x z xzy b b x b z b xz= + + +  

( )
( ) ( )

0 x

z xz

x xz

b x b x x

b z x b xz x
b b z

∂ ∂ +∂ ∂

+∂ ∂ +∂ ∂

= +

 

The derivative of some 
linear additive function 
equals the sum of the 

derivative of each of the 
terms. 

( )1 2 3 4
2 4

x z xz x
z

∂ + + + ∂
= +

 

( ) ( )y f x g x= ×  

( )

( )

( )

( ) ( )

( )
( )

( )
( )

f x g x x

f x
g x

x
g x

f x
x

∂ × ∂

∂
=

∂
∂

+
∂

 

The derivative of the 
product of two functions 

equals the sum of 
derivative of the first 

function, multiplied by the 
undifferentiated second 

function; plus the 
derivative of the second 

function, multiplied by the 
undifferentiated first 

function. 

( ) ( )( )

( )( ) ( )
( ) ( )

2 5 3ln( )

2 5
3ln( )

3ln( )
2 5

2(3ln( )) (3 )(2 5)

x

x

x

x x

x
x

x
x

x x x

∂ × ∂

∂
=

∂
∂

+
∂

+

+

+

= + +
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( ( ))y f g x=  df dg
dg dx

   ×   
  

 This is the chain rule for 
nested functions. 

( )( )

( )( )

2

2(3ln ) 5

2( ) 5

3 6

x
x

g g
g x

x x
= ×

∂ +

∂
∂ + ∂

= ×
∂ ∂

=

 

F≡ a cumulative 
probability function for the 
probability density function 

f. 

( ) ( )xf
x
xF

=
∂

∂
 

The derivative of any 
cumulative probability 

function is the 
corresponding probability 

density function. 

( ) ( )x
x
x φ=

∂
Φ∂
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Table B1. STATA Commands for Calculating Marginal Effects of x on y, Standard Errors of 
Those Effects, and Confidence Intervals Around Those Effects 

Procedures Command syntax 

Create simulation dataset: v 
evenly spaced values for z from 
its minimum to its maximum. 

Save the dataset. 

set obs v 
gen z = ((_n-1)/(v-1))*(max-min) +min 

save dydxdata.dta 

Open the original data, generate 
the multiplicative term, save the 

data, and estimate the linear 
regression model. 

use realdata.dta 
gen xz = x*z 
save, replace 

regress y x xz w 

Open the simulation dataset and 
calculate the estimated marginal 

effect. 

use dydxdata.dta 
gen dydx=_b[x]+_b[xz]*z 

Create a matrix from the 
estimated covariance matrix of 

the coefficient estimates, pull out 
the stored element ˆ ˆ( , )

x xz
C β β , and 

create a column vector containing 
it. 

matrix V = get(VCE) 
matrix C_x_xz=(vecdiag((V[3,1])*I(v)))’ 

Convert the vector into a variable. svmat C_x_xz, name(C_x_xz) 

Calculate the estimated variance 
(and standard error) of each 
estimated marginal effect. 

gen vardydx=(_se[x])^2+(z*z)*(_se[xz]^2)+2*z*C_x_xz
gen sedydx=sqrt(vardydx) 

Generate a table displaying 
estimated marginal effects and 

standard errors for all v values of 
z 

tabdisp z, cellvar(dydx sedydx) 
 

Generate lower and upper 
confidence interval bounds. 

gen LBdydx=dydx-invttail(e(df_r),.05)*sedydx 
gen UBdydx=dydx+invttail(e(df_r),.05) *sedydx 

Graph the estimated marginal 
effects and the upper and lower 

confidence intervals along values 
of z. 

twoway connected dydx LBdydx UBdydx z 
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Table B2. STATA Commands for Calculating Predicted Values of y, Standard Errors for 
Those Predicted Values, and Confidence Intervals Around Those Predicted Values 

Procedures Command syntax 

Create simulation dataset that contains k 
total variables. Begin with v evenly spaced 

values for z from its minimum to its 
maximum. Create variables that set the 

remaining covariates at meaningful values, 
including a column of 1’s for the intercept. 

Create the interaction term. Save the 
dataset. 

set obs v 
gen z = ((_n-1)/(v-1))*(max-min) +min 

gen x = c1 
gen w = c2 
gen col1 = 1 
gen xz = xz 

save yhatdata.dta 

Open the original data, generate the 
multiplicative term, save the data, and 
estimate the linear regression model. 

use realdata.dta 
gen xz = x*z 
save, replace 

regress y x xz w 
Open the simulation dataset and assemble 

the matrix of set values. 
use yhatdata.dta 

mkmat x z xz w col1, matrix(Mh) 

Create a column vector containing the 
coefficient estimates. 

matrix B=e(b)’ 

Create a column vector of predicted values. matrix yhat=Mh*B 

Convert the column vector into a variable. svmat yhat, name(yhat) 
 

Create a matrix from the estimated 
covariance matrix of the coefficient 

estimates. 
matrix V = get(VCE) 

Calculate the variance of the predicted 
values. 

matrix VCEYH=Mh*V*Mh’ 

Extract the diagonal elements of the 
variance-covariance matrix of predicted 

values into a column vector. 
matrix VYH= (vecdiag(VCEYH))’ 

Convert the column vector into a variable. svmat VYHAT, name(vyhat) 

Calculate the estimated standard error of 
each predicted value. 

gen seyhat = sqrt(vyhat) 

Present a table of predicted values with 
corresponding standard errors. 

tabdisp z, cellvar(yhat seyhat) 

Generate lower and upper confidence 
interval bounds. 

gen LByhat=yhat-invttail(e(df_r),.05)*seyhat
gen UByhat=yhat+invttail(e(df_r),.05)*seyhat

Graph the predicted values and the upper 
and lower confidence intervals along 

values of z 
twoway connected yhat LByhat UByhat z 
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XII. Figures 

Figure 1. Quadratic Terms in Linear-Regression Models 
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Figure 2. Estimated Government Duration, as a Quadratic Function of Parliamentary Support 
for Government 
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Figure 3. Marginal Effect of Parliamentary Support for Government, Log-Transformation 
Model 
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Figure 4. Marginal Effect of Runoff, with 90% Confidence Interval 
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Figure 5. Marginal Effect of Runoff, Extending the Range of Groups 
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Figure 6. Marginal Effect of Groups, with 90% Confidence Intervals 
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Figure 7. Marginal Effect of Female and Republican, with 95% Confidence Intervals 
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Figure 8. Marginal Effect of Number of Parties, with 90% Confidence Intervals 
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Figure 9. Marginal Effect of Parliamentary Support for Government, with 90% Confidence 
Interval 
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Figure 10. Marginal Effect of Parliamentary Support and Predicted Government Duration, 
Quadratic-Term Model, with 90% Confidence Interval 
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Figure 11. Marginal Effect of Parliamentary Support for Government, Log–Transformation 
Interactive Model, with 90% Confidence Intervals 
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Figure 12. Marginal Effect of Number of Parties, Log–Transformation Interactive Model, with 
90% Confidence Interval 
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Figure 13. Marginal Effect of Number of Parties, Chained-Interaction Model, with 90% 
Confidence Intervals 

PD=0
PD=1

-30

-20

-10

0

10

20

40 50 60 70 80

Parliamentary Support for Government (PS)

d(
G

ov
er

nm
en

t D
ur

at
io

n)
/d

(N
um

be
r o

f P
ar

tie
s)

 



 

 

185

Figure 14. Marginal Effect of Parliamentary Support for Government, Pairwise-Interaction 
Model, with 90% Confidence Intervals 
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Figure 15. Marginal Effect of Party Discipline, Pairwise-Interaction Model, with 90% 
Confidence Intervals 
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Figure 16. Marginal Effect of Parliamentary Support for Government, Fully Interactive Model, 
with 90% Confidence Intervals 
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Figure 17. Marginal Effect of Party Discipline, Fully Interactive Model, with 90% Confidence 
Intervals 
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Figure 18. Predicted Number of Candidates, with 90% Confidence Intervals 
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Figure 19. Predicted Government Duration, with 90% Confidence Intervals 
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Figure 20. Predicted Government Duration, Log–Transformation Interactive Model, with 90% 
Confidence Intervals 
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