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ABSTRACT: Quantitative empirical research in political science frequently involves the analysis 
of interdependent outcomes.  The endogenous variables that we want to explain are dependent on 
other endogenous variables, either outcomes observed for other units, other variables, or both. In 
some instances, this interdependence is viewed as a nuisance and great effort is taken to purge 
the data of the connections, but much of the time, the interdependence itself is an important part 
of the politics that we aim to study. Unfortunately, empirical models that incorporate political 
and other forms of interdependence can be difficult to estimate and use for analytical purposes.  
This is particularly true when the endogenous variables are qualitative or limited in some way.  
Not surprisingly, the available methods are rarely used and remain underdeveloped. I discuss one 
way to use simulation methods to estimate and analyze simultaneous equation models with 
limited and qualitative dependent variables.  I illustrate these techniques with an application to 
WWI participation and entry timing decisions.      
 
 
 
 
 
 
 

 

 

*This paper is based on joint methodological work with Rob Franzese and Aya Kachi.  The 
application to WWI participation and entry timing is based on work with Sang-hyun Chi , Paul 
Diehl, Colin Flint, Jürgen Scheffran, and John Vasquez.  The errors are my own. 
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Quantitative empirical research in political science frequently involves the analysis of 

interdependent outcomes.  The endogenous variables that we want to explain are dependent on 

other endogenous variables—outcomes observed for other units, other variables, or both. In 

some applications, this interdependence is viewed as a nuisance and great effort is taken to purge 

it from the data, but much of the time, the interdependence itself is an important part of the 

politics that we aim to study. There are numerous examples of substantively important 

interdependence among political actors.  The strategies of candidates in electoral contests depend 

on the strategies of their opponents; individual legislators’ votes depend on others’ votes or 

expected votes; and states’ entry decisions with respect to wars, alliances, and international 

organizations depend on the decisions made by other states. Globalization implies strategic 

interdependence in national-level macroeconomic policymaking. There are equally many 

examples of interdependence among endogenous variables.  Perhaps, the best known involve the 

simultaneity of politics, policy, and institutions.  The political approval of politicians, for 

instance, determines the likelihood that they adopt particular sets of policies and undertake 

institutional reforms at the same time that the policies and reforms affect the popularity of the 

politicians who choose to implement them. These are all examples of politically important 

simultaneous relationships.  Unfortunately, empirical models that incorporate this kind 

interdependence can be difficult to estimate and use for analytical purposes. This is particularly 

true when the endogenous variables are qualitative or limited in some way.  Not surprisingly, the 

available methods are rarely used and remain underdeveloped.  

This paper explores one way of using simulations to estimate and analyze simultaneous 

equation models with limited and qualitative dependent variables. To illustrate, I model the 

decisions of states to enter WWI.  One can treat these decisions as independent and driven by 
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domestic and international structural factors such as regime type, trade dependence, and relative 

military capabilities, but this is approach unsatisfactory.  In the end, each state’s decision is 

heavily influence by the entry decisions of others, and many of the more interesting 

counterfactual questions address this interdependence specifically. How did America’s decision 

to participate affect the participation of other states?  To what extent did Italy’s decision to enter 

the war in mid-1915 affect the probability that Bulgaria and Romania would be drawn into the 

conflict before the fighting stopped? 

 The paper is organized as follows.  In the first section, I cover familiar ground, describing 

the basic approach to estimating simultaneous equation models with continuous dependent 

variables.  I highlight the key differences between the continuous and qualitative and limited 

dependent variable cases in the second section, using the simultaneous probits and censored 

simultaneous duration models as examples.  In the third section, I discuss recursive importance 

sampling as a method for estimating these models.  I explore the possibility of using simulations 

for counterfactual analysis in the fourth section.  I illustrate these techniques in an analysis of 

WWI participation and entry timing decisions in the fifth section and conclude in the sixth. 

     

I. Estimating Systems of Equations with Continuous Dependent Variables 

I begin with simultaneous equations models for continuous dependent variables.  This 

framework provides the basis for everything that follows. In matrix notation, the system takes the 

form  

 = + +y Ay Xβ u  (1) 

where y  is an 1NP×  vector of observations on N units and P endogenous variables. The matrix 

A  contains values that express the interdependence among units, endogenous variables, or both; 
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the NP K×  matrix X  contains the independent variables; and the column-vector β  contains 

coefficients.1 The 1NP×  vector u  contains i.i.d. disturbances.  The reduce form of this model is 

 

1 1( ) ( )− −= +
= +
= +

y I - A Xβ I - A u
ΓXβ Γu
ΓXβ v

 (2) 

The basic econometric problem is that the reduced form disturbances in v are interdependent and 

heteroscedastic. The likelihood is derived using the multivariate version of the change of 

variables theorem, which requires only the inverse function for u  and the determinant of the 

corresponding Jacobian matrix. These are 

 1 1( )g − −= = −u y Γ y Xβ  (3) 

and 
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 (4) 

respectively, and the log-likelihood is 

 
1 1

ln ln ( ) ln
N P

np
n p

L f u
= =

= +∑∑ I - A . (5) 

 

II. Systems of Equations with Limited and Qualitative Dependent Variables 

Analytically transforming an assumed joint density for independent disturbances into a joint 
                                                 
1 When the system contains multiple endogenous variables (P>1) and multiple sets of independent 

variables, the observations in y are stacked by the left-hand-side variable (the first N observations are for 

the first endogenous variable, the second N observations are for the second endogenous variable, etc.), X 

is block diagonal, and K is the sum of independent variables in the system as a whole. 
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density for interdependent disturbances is tractable, making estimation relatively simple. The 

problem with systems of equations that have limited and qualitative dependent variables is that 

we do not always observe the continuous realizations of the endogenous variables. Given this 

censoring problem, it should not come as a surprise that it is more difficult to estimate the 

interdependence among the endogenous variables.  We need to integrate over multivariate 

distributions, and so the likelihoods contain high-order integrals on the right-hand-side.  

Simulation can be a useful way to calculate the likelihood in these cases.2   

Consider the simultaneous probits model. The structural model for the latent endogenous 

variables takes the form: 

 * *= + +y Ay Xβ u , (6), 

which reduces to: 

 *   ,  with = + =y ΓXβ v v Γu . (7), 

The latent-variable *y  links to the observed binary-outcome, y , through the measurement 

equation: 

 {1 if * 0  ;  0 if * 0}i i iy y y= > ≤ . (8). 

The probabilities that the ith observations are one are calculated as follows: 

 
[ ] [ ]( )

[ ]( ) [ ]{ }
( 1| ) 0i i i

i i ii i

p y p

p v σ σ

= = + >

= < =

X ΓXβ Γu

ΓXβ Φ ΓXβ
 (9).3 

                                                 
2 See Gill’s (2002) chapter 8 and Stern’s (1997) for excellent introductions to simulation techniques. This 

approach is typically called maximum simulated likelihood (MSL) estimation. 
3 In the middle step, note that the symmetry about zero of u , and so of v , implies that 

( ) ( )pr x pr x  i iv v− < = < for any x.  
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As in the standard probit, a cumulative-normal distribution, { }Φ i , gives the marginal probability 

(integrating over the other ~iv ) that the systematic component, [ ] /i iσΓXβ , exceeds the 

stochastic component, iv . The disturbances in u  are distributed multivariate normal with mean 0 

and spherical variance-covariance 2σ I , with 2σ  normalized to 1 as usual for a probit model. 

However, in the simultaneous equations probit, the interdependence of the *
iy  induces a non-

sphericity of the stochastic components; specifically, v  is distributed multivariate normal with 

variance-covariance matrix ′=Ω Γ Γ  (and mean 0).  

To simplify the expression for the likelihood, define **=v Qv , where 1 2ij iq y= −  for i 

= j and 0 otherwise, and Z = QΓXβ .4  This allows us to write (8) and (9) in terms of upper 

bounds only. The likelihood for this model is 

 ln ln ( **;0, )nL f dv
−∞

= ∫
Z

v Ω  (10) 

 Next, consider the simultaneous durations model. Without censoring, the log-linear 

representation of several of the standard models can take the same form as (1), although it is 

useful to add a shape parameter so that we have   

 σ= + +y Ay Xβ u . (11) 

If we assume that u is distributed type-1 extreme value, we have a Weibull model.  If we assume 

that u  is distributed as a standard normal, we have a log-normal model.  To estimate, we simply 

transform an assumed joint density for the independent u  into a joint density for the 

interdependent v .5  Formally, the log-likelihood without censoring is 

                                                 
4 Multiplying by Q selects the right sign on the systematic component up to which to integrate the 

distribution of the stochastic component v.  
5 Hays and Kachi (2009) focus on the Weibull model.  In this paper, I consider the log-normal model 
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1

ln ln ( )
N

i
n

L f v
=

=∑  (12) 

With censoring, the likelihood becomes 

 { } ( ) { }
1

ln ln ( ) 1 ln ( )
N

i i i i
n

L f v S vδ δ
=

= + −∑  (13) 

where ( )S v , the survival function, is 
0

( ) 1 ( ) 1 ( ) Pr( )
v

S v F v f v dv V v= − = − = ≥∫  and iδ  is an 

indicator variable that takes a value of 1 when a failure is observed and 0 otherwise.  The integral 

makes estimation, the topic I turn to next, difficult. I start with a general discussion of sampling 

methods and then describe two specific estimators for the spatial-lag probit and duration models. 

 

III. Recursive Importance Sampling 

How should we estimate these models? In theory, we could draw vectors of reduced-form 

disturbances and calculate the joint probabilities (i.e., relative frequencies) of observing any 

combination of 1’s and 0’s conditional on the model parameters and data, but this “brute force” 

approach is not a feasible strategy for estimation.  In the case of a binary outcome for N units, for 

example, there are 2N  possible combinations. To estimate the underlying probabilities using 

sample frequencies, we would need considerably more than 2N  draws from the distribution of 

reduced-form disturbances, and to maximize this simulated likelihood, we would need to 

recalculate the probabilities every time we updated the parameter vector.  The computational 

costs are simply too high to proceed in this way.  Moreover, this simulator is not continuous nor 

is it differentiable with respect to the parameters.6  The RIS estimator provides a feasible 

                                                                                                                                                             
only. 
6 See Lerman and Manski (1981) for this kind of “brute force” strategy. 



 7

alternative. 

Recursive Importance-Sampling (RIS) uses simulation and decomposition to estimate 

multivariate integrals that are difficult to calculate analytically, and can be employed to estimate 

models like those described above. I introduce RIS following Vijverberg’s (1997) notation. To 

approximate an n-dimensional cumulative multivariate-normal distribution, e.g., 

 
0

( ) np f d
−∞

= ∫
x

x x , (14), 

where ( )nf x  is the density and [ ]0,−∞ x  the interval over which we want to integrate, we first 

choose a n-dimensional sampling-distribution with well-known properties.  We work with a 

truncated sampling distribution with support over [ ]0,−∞ x . Defining ( )c
ng x  as the density for 

this n-dimensional truncated sampling distribution, we then multiply and divide the right-hand-

side of the integral we wish to calculate, (14), by this density, which simply restates (14) as: 

 
0 ( ) ( ) 

( )
cn
nc

n

fp g d
g−∞

= ∫
x x x x

x
 (15). 

By definition, the solution to this integral is a mean because ( )c
ng x  is a valid pdf over the 

integral’s range, so (15) gives the probability sought, p, as the mean of ( ) ( )c
n nf gx x , which we 

can estimate using a sample of R draws of the 1n×  vector x from the importance distribution. 

Formally: 

 
1

( ) ( )1 ˆ
( ) ( )

R
n n r
c c

rn n r

f fp E p
g R g=

⎡ ⎤
= ≈ ≡⎢ ⎥

⎣ ⎦
∑x x

x x
�
�

 (16). 

To implement the RIS estimator, we simply draw x from the importance-distribution, for which 
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we will use a truncated multivariate (independent) normal,7 and calculate ( ) ( )c
n nf gx x .   Since 

( )c
ng x  is a density for a truncated normal, the ratio ( ) ( )c

n nf gx x  simplifies to ( ) ( )G =x Φ x . 

 To illustrate this strategy I describe how to use importance sampling to estimate the 

spatial-lag duration and probit models. These models substitute ρWy  and *ρWy  for Ay  and 

*Ay  in equations (1) and (6) respectively.  The parameter ρ  is the spatial autoregressive 

coefficient and W  is an ×N N  spatial-weighting matrix, with elements ijw  reflecting the relative 

degree of connection from unit j to i. Wy is thus the spatial lag. For each observation 

ity , Wy gives a weighted sum of the jty , with weights, ijw , given by the relative connectivity 

from j to i. Notice how Wy provides a way to directly model the interdependence of outcomes 

and behavior in our data. 

I begin with the spatial-lag probit.  In the standard probit-model with independent errors, 

the numerator would simply sum n univariate cumulative standard-normal distributions, which is 

manageable. In spatial-lag probit, with its interdependent errors, however, the numerator is a 

single n-dimensional cumulative-normal: 

 ( )p <v Z  (17), 

with v the 1n×  vector of errors distributed ( ),MVN 0 Ω  and ( ) ( )
1

ρ ρ
−

⎡ ⎤′= − −⎢ ⎥⎣ ⎦
Ω I W I W  and Z,  

the 1n×  vector defined above.  

The RIS estimator for spatial-lag probit exploits the fact that, as a variance-covariance 

matrix, Ω  is positive definite, and so a Cholesky decomposition exists such that 1− ′=Ω A A , 

                                                 
7 Other importance distributions, such as a t or a uniform may be used. With a normal importance-

distribution, RIS is equivalent to the better-known GHK (Geweke-Hajivassiliou-Keane) simulation 

estimator. 
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with A being an upper-triangular matrix and =η Av  giving n independent standard-normal 

variables, η . (This exploitation is familiar as the same one applied in GLS.) Let 1−≡B A ; 

substituting = ≡-1v A η Bη  into (17) then gives: 

 ( )

1,1 1,2 1, 1 1

2,2

-1, -1 -1, -1 -1

,

0
0Pr Pr

0 0 0

n

n n n n n n

n n n n

b b b z
b

b b z
b z

η

η
η
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⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥< = <
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠

Bη Z

" "
% % # # #

% % % # # #
# % %

"

 (18). 

The elements of the 1n×  vector η  are independent, so the probability in (18) can be calculated 

by first evaluating the cumulative-normal distribution function at the implied upper bounds, 

which are determined recursively starting with the last observation, and then multiplying these 

probabilities. To determine these upper bounds, start by solving the inequalities in (18) for the 

vectorη : 

 

( )

1
1,1 1 1,

21, 1 1
1

-1 -1
-1, -1 -1 -1, 1

-1, -1 -1 -1,
, 1

,

Pr Pr

n
n

i i
ii i

i

n n
n n n n n n

n n n n n nn n
n n n

n n n

b v b
b z

z
b b

b v bz
b

b v

η
η η

η
η η

ηη
η

−

=
=

−

−

⎛ ⎡ ⎤⎛ ⎞
−⎛ ⎞⎡ ⎤ ⎢ ⎥⎜ ⎟

⎝ ⎠⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥< = <
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∑∑
## ##
#

⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (19) 

Next, calculate the upper bound for the truncated-normal distribution of the nth 

observation, which is 1
,n n nb z− . Call the cumulative standard-normal evaluated at this upper bound 

pn. Then take a draw from the standard-normal distribution truncated at 1
,n n nb z− ; call that draw nη�  

and use it to calculate the upper bound for the truncated-normal distribution for the (n-1)th  

observation conditional on the nth as 1
-1, -1 -1 -1,n n n n n nb v b η− ⎡ ⎤−⎣ ⎦� . Evaluate the cumulative standard-

normal at this upper bound and call it pn-1. Then use the first two draws to calculate the (n-2)th 
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upper bound and calculate pn-2 analogously, and so on through all n observations. Formally, this 

recursive process for calculating the upper bounds is: 

 

1
,

1
-1 -1, -1 -1 -1, -1 1

, ,1
1-2 -2, -1 -2 -2, -1 -1 -2, -2

n n n n n

n
n n n n n n n n

j j j j j i i j
i jn n n n n n n n n n n

b z

b z b
b z b

b z b b

η ζ

η η ζ
η η ζ

η η η ζ
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−
= +

⎫< ≡
⎪

⎡ ⎤< − ≡ ⎡ ⎤⎪⎣ ⎦ ⇒ < − ≡⎬ ⎢ ⎥
⎡ ⎤< − − ≡ ⎣ ⎦⎪⎣ ⎦

⎪
⎭

∑
�

�
� �

#

 (20). 

The probability of observing a given sample of ones and zeros can now be found by evaluating 

the univariate cumulative-normal distribution function at each of these bounds, pi, and then 

multiplying those probabilities: ( )
1 1

n n

j j
j j

p ζ
= =

= Φ∏ ∏ . Repeating the entire process R times and 

averaging gives the RIS estimate for the joint probability, i.e., the simulated likelihood, as this 

mean: 

 ( ) ( ),
1 1

ˆ 1
nR

j r
r j

l R ζ
= =

⎡ ⎤
= Φ⎢ ⎥

⎣ ⎦
∑ ∏  (21). 

One can then maximize this simulated likelihood by any standard optimization routine to 

estimate parameters and apply standard ML estimators for the variance-covariance (e.g., the 

observed information matrix, 1ˆ[ ( )]l −− H ). 

 I present some preliminary Monte Carlo results in Table 1 and compare these with earlier 

experimental results provided in Beron and Vijverberg (2004).  The data generating process is 

(7)-(8).  The sample size is 48, and I use the row-standardized binary-contiguity weights matrix 

for the lower 48 US states. My experiments use slightly different parameter values and a 

different X than Beron and Vijverberg.  They also use antithetical sampling and a much larger R 

than I do (2000 vs. 100). Nevertheless, the results are similar.  Like Beron and Vijverberg, I find 

that ρ  is underestimated, although their RIS estimates are closer to the truth on average than 
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mine.  The also provide results for a simple (spatial) linear probability model (LPM), which I 

report as well.  Beron and Vijverberg do not report results for standard-error estimation.  

However, I find that the observed information matrix provides good estimates for the variance of 

the sampling distribution.   

 [Table 1 Here] 

Can we use this technique to simulate the likelihood in (13)?  With the log-normal 

spatial-lag duration model, we have interdependent failures with probabilities determined by the 

multivariate normal distribution.  In some cases we observe the failures and in other cases we do 

not.  One strategy is to sample from the multivariate normal distribution using the recursive 

approach described above.  When we observe a failure, we calculate the density at that point.  

When we are censored, we calculate the survival function at that point, and then sample from the 

truncated distribution.  See McCarty and Rothenberg (2000) for a similar approach to estimating 

a Tobit model with interdependent disturbances. 

 I provide preliminary Monte Carlo results in Table 2 that compare the standard ML 

(using the likelihood in (12)) and MSL estimators with and without censoring.  The data-

generating process is mostly the same as that used previously mutatis mutandis. In the no-

censoring case, the standard ML likelihood is properly specified, and so the estimator should 

give the correct estimates on average.  This experiment simply compares the Jacobian 

transformation and Cholesky decomposition approaches to modeling the reduced-form 

disturbances.  With censoring only the maximum simulated likelihood estimator should give the 

correct estimates on average.  This is exactly what I find.  Both approaches give reasonably good 

estimates on average when there is no censoring. But the ML estimator is biased for all the 

parameters in the model when there is censoring.  The MSL estimator is unbiased and relatively 
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efficient on β   and the spatial lag coefficient ρ .  The standard ML estimator weakly dominates 

the MSL estimator in MSE terms when there is no censoring, whereas the MSL estimator 

dominates the ML estimator in MSE when censoring is present. 

[Table 2 Here] 

 

IV. Calculating Effects 

Estimating parameters is an important first step in any analysis, but ultimately we are interested 

in calculating the effects implied by our estimates.  Returning to the spatial probit model, Beron 

and Vijverberg (2004) give the marginal effect of iX  on the probability that iy  equals one as 

 ( )1/2 1/2
, ,

Pr[ 1| , ] [ ]i
ii i ii

i

d y X X
dX α α α αφ β β− −=

= Ω Γ Ω Γ
W  (22) 

where φ  is the univariate density function for the standard normal distribution , 
*

( )i

dy
d Xα β

Γ = , 

and  [ ]iXα βΓ  is the ith element of the vector Xα βΓ .  Note that changes in jX  also effect *
iy , so 

the quantity Pr[ 1| , ]i

j

d y X
dX
= W  is of interest.  Beron and Vijverberg argue that it is inappropriate 

to condition the effects of changes in X on the probability iy  equals one on the other jy  because 

the jy  are responding endogenously to the changes in X.   

This seems unnecessarily restrictive given that, after we estimate the model, we can 

easily sample from the distribution of disturbances using the reduced-form, generate y’s 

according to the measurement equation, and calculate conditional frequencies.  In other words, 

we can use the model to generate counterfactual values of the dependent variable for a given set 

of X and W, and then estimate the probabilities Pr[ 1| , , 1]i jy X y= =W  and 
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Pr[ 1| , , 0]i jy X y= =W  using relatively frequencies.  While this sampling strategy was 

infeasible for estimating the model’s parameters, once we have the parameters and a relatively 

specific counterfactual, the computation costs are relatively low.  I give an example of this 

approach to counterfactual analysis in the illustration below. 

 

V. World War I Participation and Entry Timing Decisions 

In this section, I model the decisions of states to enter WWI.  One can treat these decisions as 

independent and driven purely by domestic and international structural factors such as regime 

type, trade exposure, and relative military capabilities, but this is approach unsatisfactory.  

Ultimately, each state’s decision was heavily influence by the entry decision of others, and any 

empirical analysis should take this interdependence into account.  I incorporate four forms of 

interdependence into my models: contiguity, territorial dispute, rivalry, and targeted alliances. 

These sources of interdependence suggest that a state will be influenced by the participation and 

entry timing decisions of those states with which it shares a border or a pre-existing territorial 

dispute or those states that are rivals or the targets of alliances.  One might expect the 

interdependence to be positive, but negative interdependence, suggesting free-riding behavior, is 

plausible as well.  Take the case of rivals as an example.  A participating state’s rivals may stay 

out of the conflict hoping for a favorable outcome—that the participant will lose the war and 

suffer a decrease in power—at no cost to the non-participating rival. 

Unfortunately, due to a lack of variation in WWI participation among states involved in 

disputes, rivalries, and alliances, I am unable to estimate the effects of these forms of 

interdependence on the binary participation choice variable, but I am able to estimate the full set 

of duration models, and I am able to estimate a contiguity spatial-lag probit model as well.  The 
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results are presented in Table 3.  For controls I include national capabilities, democracy, trade, 

and a Europe dummy variable.  (These variables are described in the notes to Table 3.) I find 

statistically significant positive interdependence in the contiguity probit model.  In the duration 

models, the contiguity spatial lag has a positive coefficient (z-stat > 1.6) while the territorial 

disputes lag coefficient is negative, although the size of the latter estimate is outside of 

traditionally accepted bounds, making interpretation difficult.8  The contiguity results are 

consistent with theories of war as a contagion.  The territorial dispute result (negative 

interdependence) is consistent with free-riding behavior.  The set of territorial disputes prior to 

the onset of WWI were clustered in the Balkans.  Two of the countries involved these disputes, 

Turkey and Serbia, joined the war early.  The others—Greece, Bulgaria, and Romania—were 

late joiners.  This pattern is the source of the negative spatial-lag coefficient estimate, but it is too 

early to conclude that this reflects true negative interdependence.   To give a concrete example, 

the free-riding argument would say that Greece stayed out of the war as long as possible hoping 

that the Central Powers would be defeated and its territorial dispute with the Ottoman Empire 

would be resolved favorably at no cost.    

 [Table 3 Here] 

There are many interesting counterfactual questions related to the interdependence of 

states’ participation and entry-timing decisions. How did America’s decision to participate affect 

the participation of others?  To what extent did Italy’s decision to enter the war in mid-1915 

affect the probability that Bulgaria and Romania would be drawn into the conflict before the 

fighting stopped?  I address the latter question using the spatial probit estimates from Table 3.  In 

                                                 
8 Specifically, the estimate falls outside the “bounds of singularity” for the ( )ρ−I W  matrix.  The lower 

bound is negative one over the absolute value of the minimum eigenvalue for the weights matrix.  The 

multiplier can be calculated, but the interpretation of effects is not straightforward.  
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terms of the model, the question becomes, given that Italy’s reduced-form disturbance is above 

or below its reduced-form cutpoint, what is the probability that Romania’s reduced-form 

disturbance will be above or below its reduced-form cutpoint?  To answer this question, I sample 

from the reduced form disturbances.  More specifically, I draw 1,000 times from a (0,1)N  for 

each of the 44 states in the sample.  This gives a 44 1000× matrix of i.i.d. standard normal 

disturbances. Then I pre-multiply this disturbance matrix by the 44 44×  spatial multiplier, which 

gives  1( )ρ −= −V I W U .  Since the counterfactual question involves the participation of Italy 

and Romania, I take a bivariate slice of the resulting 44-dimensional multivariate distribution. 

The vector of reduced-form cupoints is calculated as ΓXβ . A country participates if its 

reduced-form disturbance is greater than the negative value of its reduced-form cuptoint.  Given 

their covariates, Italy's cutpoint is .505 and Romania's is .844.  In the simulation, Romania's 

disturbances are above the critical level 75% of the time when Italy's disturbances are below its 

critical level and above 80% of the time when Italy's disturbances are above its critical level.  

The reduced form disturbances are plotted in Figure 1.  The linear correlation between them is 

about .15.  The model suggests that Italy’s participation in the War is associated with a 5% 

increase in Romania’s participation.  Or, viewed the other way, had Italy not entered the War, the 

probability that Romania would have stayed out increases by 5%.  It should be noted that Italy 

and Romania did not share a border, and therefore, these are second-order (neighborhood) 

effects.   

 

VI. Conclusion 

Quantitative empirical research in political science frequently involves the analysis of 

interdependent data.  In some applications, this interdependence is viewed as a nuisance and 



 16

great effort is taken to purge the data of these connections, but much of the time, the 

interdependence itself is an important part of the politics that we aim to study. Unfortunately, 

empirical models that incorporate political and other forms of interdependence can be difficult to 

estimate and use for analytical purposes.  Not surprisingly, the available methods are rarely used 

and underdeveloped. In this paper, I discuss how to use simulation methods to estimate and 

analyze simultaneous equation models with limited and qualitative dependent variables. To 

illustrate, I modeled the decisions of states to enter WWI using both a spatial-probit and spatial-

duration model with right-censoring.  The patterns of participation provide support for both the 

contagion and free-rider hypotheses. 
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Table 1. Spatial Probit Monte Carlo Results (100 Samples)  

Parameter Result B&V(RIS) B&V(LPM) Hays(RIS) Hays(Wy) 
      
  

mean 
 

3.29 / .85* 
 

.89* 
 

.95 
 

.91 
  

s.d. 
 

1.08 
 

.17 
 

.27 
 

.26 
ˆ& : 3

ˆ: 1

B V

Hays

β

β

=

=
 

 
rmse 

 
1.12 

 
N.A. 

 
.28 

 
.28 

  
mean m. .s e  

 
N.A. 

 
N.A. 

 
.28 

 
.27 

  
overconfidence 

 
N.A. 

 
N.A. 

 
.97 

 
.96 

      
  

mean 
 

.41 
 

.25 
 

.35 
 

.40 
  

s.d. 
 

.22 
 

.16 
 

.20 
 

.36 
 

ˆ .5ρ =  
 

rmse 
 

.24 
 

.30 
 

.25 
 

.37 
  

mean m. .s e  
 

N.A. 
 

N.A. 
 

.20 
 

.36 
  

overconfidence 
 

N.A. 
 

N.A. 
 

1.00 
 

.99 
Notes: R=2000 vs. R=100, N=50 vs. N=48 ; * marginal effects  
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Table 2. Spatial Duration Monte Carlo Results  (100 Samples) 
  No Censoring Censoring* 

Parameter Result ML MSL ML MSL 
      
  

mean 
 

1.03 
 

.950 
 

.819 
 

1.03 
  

s.d. 
 

.138 
 

.157 
 

.246 
 

.226 
 

1β =  
 

rmse 
 

.142 
 

.165 
 

.305 
 

.227 
  

mean m. .s e  
 

.147 
 

.154 
 

.132 
 

.197 
  

overconfidence 
 

.939 
 

1.02 
 

1.86 
 

1.14 
      
  

mean 
 

.484 
 

.532 
 

.614 
 

.473 
  

s.d. 
 

.071 
 

.080 
 

.160 
 

.095 
 
.5ρ =  

 
rmse 

 
.073 

 
.086 

 
.197 

 
.099 

  
mean m. .s e  

 
.076 

 
.081 

 
.072 

 
.090 

  
overconfidence 

 
.934 

 
.994 

 
2.24 

 
1.05 

      
  

mean 
 

.984 
 

.980 
 

.708 
 

1.02 
  

s.d. 
 

.096 
 

.095 
 

.103 
 

.153 
 

1σ =  
 

rmse 
 

.097 
 

.097 
 

.310 
 

.154 
  

mean m. .s e  
 

.101 
 

.100 
 

.077 
 

.157 
  

overconfidence 
 

.950 
 

.950 
 

1.34 
 

.97 
Notes: N=48, R=100.  *Durations larger than 4 were censored.  In the experiments, on 
average, this amounted to 50% of the durations being observed and 50% being censored.    
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Table 3. Spatial Models of WWI Participation and Entry Timing 
 (1) (2) (3) (4) (5) 
 
Constant 
 

 
-.806 
(.611) 

 

 
8.19*** 
(2.21) 

 
9.87*** 
(2.19) 

 
9.81*** 
(2.14) 

 
11.58*** 

(2.54) 

Shape Parameter 
 
 

 3.33*** 
(.650) 

3.42*** 
(.685) 

3.40*** 
(.676) 

3.32*** 
(.656) 

Contiguity 
Spatial Lag 
 

.482** 
(.217) 

.289 
(.180) 

   

Targeted Alliance  
Spatial Lag 
 

  .180 
(1.32) 

  

Rivalry 
Spatial Lag 
 

   .288 
(.491) 

 

Territorial Dispute 
Spatial Lag 
 

    -2.42** 
(1.21) 

National Capabilities 
 
 

18.48*** 
(6.61) 

-41.45*** 
(15.62) 

-38.03** 
(17.98) 

-39.68** 
(15.69) 

-38.18** 
(15.37) 

Democracy 
 
 

-.055 
(.137) 

.045 
(.118) 

.081 
(.129) 

.09 
(.116) 

.040 
(.119) 

Trade 
 
 

-.156* 
(.088) 

-.088 
(.331) 

-.178 
(.336) 

-.149 
(.338) 

-.469 
(.370) 

Europe 
 

1.54** 
(.648) 

 

-4.52*** 
(1.65) 

-5.48*** 
(1.77) 

-5.47*** 
(1.65) 

-4.51*** 
(1.66) 

Model Probit Weibull Weibull Weibull Weibull 
Observations 44 44 44 44 44 
Log-Likelihood -14.616 -48.151 -49.332 -49.190 -47.079 
Notes: In the probit case, the dependent variable reflects participation in WWI (0=No, 1=Yes).  For 
the duration models, the dependent variable is the number of months before entering WWI. Of the 44 
sample countries, 15 enter the War.  All the spatial weights matrices are row-standardized.  National 
Capabilities are the COW CINC index scores.  Democracy is Polity measures of regime type.  Trade 
is the value of total trade in current US dollars (Source: Barbieri 2002). Europe is a dummy variable 
that takes a value of 1 for countries located on the continent, including the United Kingdom. 
Parentheses contain standard error estimates. ***significant at 1%; **significant at 5%; *significant 
at 10%. 
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Figure 1. Scatterplot of Reduced-Form Cutpoints and Disturbances for Italy and Romania  
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Appendix: MATLAB Code (Likelihood Evaluators) 
 
function LL_normal = sprobit09_llf_finaledit(p) 
global k rand_mat n Q W X i_n r  
  
%dbstop in sprobit09_llf_finaledit at 72 
A_Like = (i_n-p(1,k)*W); 
mult = inv(A_Like); 
vcov = Q'*inv(A_Like'*A_Like)*Q; 
ACH = chol(inv(vcov)); 
BCH = inv(ACH); 
mx = mult*X(:,1:k-1); 
V = -Q*mx*p(1,1:k-1)'; 
  
for j = 1:r    
     
    nu0(n,j) = (1/BCH(n,n))*V(n,1); 
    if nu0(n,j) < -8 
        nu0(n,j) = -8; 
    else 
        nu0(n,j) = nu0(n,j); 
    end 
    if nu0(n,j) > 8 
        nu0(n,j) = 8; 
    else 
        nu0(n,j) = nu0(n,j); 
    end 
    ln_prob(n,j) = log(norm_cdf(nu0(n,j))); 
    nu(n,j) = norm_inv(rand_mat(n,j)*(norm_cdf(nu0(n,j))));   
     
    if nu(n,j) < -8 
        nu(n,j) = -8; 
    else 
        nu(n,j) = nu(n,j); 
    end 
    if nu(n,j) > 8 
        nu(n,j) = 8; 
    else 
        nu(n,j) = nu(n,j); 
    end 
        for z = 1:n-1 
        sumterm = 0; 
            for m=1:z 
                sumterm1 = BCH(n-z,n-z+m)*nu(n-z+m,j); 
                sumterm = sumterm+sumterm1; 
            end 
                nu0(n-z,j) = (1/BCH(n-z,n-z))*(V(n-z,1)-sumterm); 
                if nu0(n-z,j) < -8 
                    nu0(n-z,j) = -8; 
                else 
                    nu0(n-z,j) = nu0(n-z,j); 
                end 
                if nu0(n-z,j) > 8 
                    nu0(n-z,j) = 8; 
                else 
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                    nu0(n-z,j) = nu0(n-z,j); 
                end 
                 
                ln_prob(n-z,j) = log(norm_cdf(nu0(n-z,j))); 
                nu(n-z,j) = norm_inv(rand_mat(n-z,j)*(norm_cdf(nu0(n-z,j))));      
                 
                if nu(n-z,j) < -8 
                    nu(n-z,j) = -8; 
                else 
                    nu(n-z,j) = nu(n-z,j); 
                end 
                if nu(n-z,j) > 8 
                    nu(n-z,j) = 8; 
                else 
                    nu(n-z,j) = nu(n-z,j); 
                end 
        end  
end  
jnt_prob = sum(ln_prob); 
LL_normal = -(mean(jnt_prob')); 
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function LL_normal = spdur09_llf2_desktop2(p) 
global k rand_mat n W X r i_n durs censor; 
  
A_Like = (1/(p(1,k+2)))*(i_n - p(1,k+1)*W); 
mult = inv(i_n - p(1,k+1)*W); 
ACH = chol(A_Like'*A_Like); 
BCH = inv(ACH); 
mx = mult*X(:,1:k); 
v = durs - mx*p(1,1:k)'; 
  
for j = 1:r 
    nu0(n,j) = (1/BCH(n,n))*v(n,1); 
     
    if nu0(n,j) > 10 
          nu0(n,j) = 10; 
    else 
          nu0(n,j) = nu0(n,j); 
    end 
     
    if nu0(n,j) < -10 
          nu0(n,j) = -10; 
    else 
          nu0(n,j) = nu0(n,j); 
    end 
     
        if censor(n,1) == 1 
            prob(n,j) = 1 - norm_cdf(nu0(n,j)); 
        else 
            prob(n,j) = (1/(p(1,k+2)))*norm_pdf(nu0(n,j)); 
        end 
            if prob(n,j) < .00000000001; 
                prob(n,j) = .00000000001; 
            else 
                prob(n,j) = prob(n,j); 
            end 
         
    ln_prob(n,j) = log(prob(n,j)); 
                 
        if censor(n,1) == 1 
            nu(n,j) = -norm_inv(rand_mat(n,j)*(norm_cdf(-nu0(n,j)))); 
              
        else 
            nu(n,j) = nu0(n,j);   
        end 
  
        for z = 1:n-1 
        sumterm = 0; 
            for m=0:z 
                sumterm1 = BCH(n-z,n-z+m)*nu(n-z+m,j); 
                sumterm = sumterm+sumterm1; 
            end 
                nu0(n-z,j) = (1/BCH(n-z,n-z))*(v(n-z,1)-sumterm); 
                 
                if nu0(n-z,j) > 10 
                    nu0(n-z,j) = 10; 
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                else 
                    nu0(n-z,j) = nu0(n-z,j); 
                end 
                if nu0(n-z,j) < -10 
                    nu0(n-z,j) = -10; 
                else 
                    nu0(n-z,j) = nu0(n-z,j); 
                end 
                 
                if censor(n-z,1) == 1 
                    prob(n-z,j) = 1 - norm_cdf(nu0(n-z,j)); 
                else 
                    prob(n-z,j) = (1/(p(1,k+2)))*norm_pdf(nu0(n-z,j)); 
                end 
                 
                if prob(n-z,j) < .00000000001; 
                    prob(n-z,j) = .00000000001; 
                else 
                    prob(n-z,j) = prob(n-z,j); 
                end 
         
          ln_prob(n-z,j) = log(prob(n-z,j)); 
                 
                if censor(n-z,1) == 1 
                    nu(n-z,j) = - norm_inv(rand_mat(n,j)*(norm_cdf(-nu0(n-
z,j)))); 
                else 
                    nu(n-z,j) = nu0(n-z,j);    
                end      
                 
        end 
end 
LL_normal= -(mean(sum(ln_prob))); 
 
 
 


