
C.2  Spatial Panel Data Models 

J. Paul Elhorst 

C.2.1  Introduction 

In recent years, the spatial econometrics literature has exhibited a growing interest 
in the specification and estimation of econometric relationships based on spatial 
panels. Spatial panels typically refer to data containing time series observations of 
a number of spatial units (zip codes, municipalities, regions, states, jurisdictions, 
countries, etc.). This interest can be explained by the fact that panel data offer re-
searchers extended modeling possibilities as compared to the single equation 
cross-sectional setting, which was the primary focus of the spatial econometrics 
literature for a long time. Panel data are generally more informative, and they con-
tain more variation and less collinearity among the variables. The use of panel 
data results in a greater availability of degrees of freedom, and hence increases ef-
ficiency in the estimation. Panel data also allow for the specification of more 
complicated behavioral hypotheses, including effects that cannot be addressed us-
ing pure cross-sectional data (see Hsiao 2005 for more details). 

Elhorst (2003) has provided a review of issues arising in the estimation of four 
panel data models commonly used in applied research extended to include spatial 
error autocorrelation or a spatially lagged dependent variable: fixed effects, ran-
dom effects, fixed coefficients, and random coefficients models. In addition, Mat-
lab routines to estimate the fixed effects and random effects models have been 
provided at his website, see <www.regroningen.nl/elhorst> or <http://www.rug.nl/ 
staff/j.p.elhorst/projects>. Many studies have applied these routines by now to es-
timate regional labor market models, economic growth models, public expendi-
tures or tax setting models, and agricultural models. These applications have led to 
new insights, developments and extensions, but also to new questions and misun-
derstandings. This chapter reviews and organizes these recent methodologies. It 
deals with the possibility to test for spatial interaction effects in standard panel 
data models, the estimation of fixed effects and the determination of their signifi-
cance levels, the possibility to test the fixed effects specification against the ran-
dom effects specification of panel data models extended to include spatial error 
autocorrelation or a spatially lagged dependent variable using Hausman's specifi-
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cation test, the determination of the variance-covariance matrix of the parameter 
estimates of these extended models, the determination of goodness-of-fit measures 
and the best linear unbiased predictor when using these models for prediction pur-
poses. For reasons of space, attention is limited to models with spatial fixed ef-
fects or spatial random effects. The concluding section also briefly discusses the 
possibility to test for endogeneity of one or more of the explanatory variables and 
the possibility to include dynamic effects. 

C.2.2  Standard models for spatial panels 

First, a simple pooled linear regression model with spatial specific effects is con-
sidered, but without spatial interaction effects 

 

itiitit μy ���� �X  (C.2.1)

 
where  i   is  an  index  for   the  cross-sectional   dimension  (spatial  units),   with  
i = 1, ..., N,   and  t  is  an  index   for  the  time   dimension   (time  periods),  with  
t = 1, ..., T. yit is an observation on the dependent variable at i and t, Xit an 1-by-K 
row vector of observations on the independent variables, and � a matching K-by-1 
vector of fixed but unknown parameters. �it is an independently and identically 
distributed error term for i and t with zero mean and variance � 2, while μi denotes 
a spatial specific effect. The standard reasoning behind spatial specific effects is 
that they control for all space-specific time-invariant variables whose omission 
could bias the estimates in a typical cross-sectional study. 

When specifying interaction between spatial units, the model may contain a 
spatially lagged dependent variable or a spatial autoregressive process in the error 
term, known as the spatial lag and the spatial error model, respectively. The spatial 
lag model posits that the dependent variable depends on the dependent variable 
observed in neighboring units and on a set of observed local characteristics 
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where � is called the spatial autoregressive coefficient and Wij is an element of a 
spatial weights matrix W describing the spatial arrangement of the units in the 
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sample. It is assumed that W is a pre-specified non-negative matrix of order N.1 
According to Anselin et al. (2006, p.6), the spatial lag model is typically consid-
ered as the formal specification for the equilibrium outcome of a spatial or social 
interaction process, in which the value of the dependent variable for one agent is 
jointly determined with that of the neighboring agents. In the empirical literature 
on strategic interaction among local governments, for example, the spatial lag 
model is theoretically consistent with the situation where taxation and expendi-
tures on public services interact with taxation and expenditures on public services 
in nearby jurisdictions (Brueckner 2003).  

The spatial error model, on the other hand, posits that the dependent variable de-
pends on a set of observed local characteristics and that the error terms are corre-
lated across space 
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where it�  reflects the spatially autocorrelated error term and 	 is called the spatial 
autocorrelation coefficient. According to Anselin et al. (2006, p.7), a spatial error 
specification does not require a theoretical model for a spatial or social interaction 
process, but, instead, is a special case of a non-spherical error covariance matrix. 
In the empirical literature on strategic interaction among local governments, the 
spatial error model is consistent with a situation where determinants of taxation or 
expenditures on public services omitted from the model are spatially autocorre-
lated, and with a situation where unobserved shocks follow a spatial pattern. A 
spatially autocorrelated error term may also be interpreted to reflect a mechanism 
to correct rent-seeking politicians for unanticipated fiscal policy changes (Allers 
and Elhorst 2005). 

In both the spatial lag and the spatial error model, stationarity requires that 
1/�min < � < 1/�max and 1/�min < � < 1/�max , where �min and �max denote the small-
est (i.e., most negative) and largest characteristic roots of the matrix W. While it is 
often suggested in the literature to constrain � or 	 to the interval (–1, +1), this 
may be unnecessarily restrictive. For row-normalized spatial weights, the largest 
characteristic root is indeed +1, but no general result holds for the smallest charac-
teristic root, and the lower bound is typically less than –1. See also the lively dis-

                                                           
1  The regularity conditions W should satisfy in a cross-sectional setting have been derived 

by Lee (2004), but some of these regularity conditions may change in a panel data setting 
(Yu et al. 2007). 
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cussion at GeoDa's Openspace mailing list about the bounds on the spatial lag co-
efficient. 

As an alternative to row-normalization, W might be normalized such that the 
elements of each column sum to one. This type of normalization is sometimes 
used in the social economics literature (Leenders 2002). Note that the row ele-
ments of a spatial weights matrix display the impact on a particular unit by all 
other units, while the column elements of a spatial weights matrix display the im-
pact of a particular unit on all other units (see Chapter C.1 for a more detailed dis-
cussion of this issue). Consequently, row normalization has the effect that the im-
pact on each unit by all other units is equalized, while column normalization has 
the effect that the impact of each unit on all other units is equalized. 

If W0 denotes the spatial weights matrix before normalization, one may also 
divide the elements of W0 by its largest characteristic root �0,max to get W = 
(1/�0,max)W0, or normalize W0 by W = D–1/2W0 D

–1/2, where D is a diagonal matrix 
containing the row sums of the matrix W0. The first operation may be labeled ma-
trix normalization, since it has the effect that the characteristic roots of W0 are also 
divided by �0,max, as a result of which �max=1, just like the largest characteristic 
root of a row- or column-normalized matrix. The second operation has been pro-
posed by Ord (1975) and has the effect that the characteristic roots of W are iden-
tical to the characteristic roots of a row-normalized W0. Importantly, the mutual 
proportions between the elements of W remain unchanged as a result of these two 
alternative normalizations. This is an important property when W represents an in-
verse distance matrix, since scaling the rows or columns of an inverse distance 
matrix so that the weights sum to one would cause this matrix to lose its economic 
interpretation for this decay (Anselin 1988, pp.23-24). One concomitant advantage 
of spatial weights matrices that do not lose their property of symmetry as a result 
of normalization is that notation, in some cases, is considerably simplified and that 
computation time will speed up (Elhorst 2001, 2005a).  

Two main approaches have been suggested in the literature to estimate models 
that include spatial interaction effects. One is based on the maximum likelihood 
(ML) principle and the other on instrumental variables or generalized method of 
moments (IV/GMM) techniques. Although IV/GMM estimators are different from 
ML estimators in that they do not rely on the assumption of normality of the er-
rors, both estimators assume that the disturbance terms �it are independently and 
identically distributed for all i and t with zero mean and variance �2. The Jarque-Bera 
(1980) test may be used to investigate the normality assumption when applying 
ML estimators.2 One disadvantage of IV/GMM estimators is the possibility of 

                                                           
2  This test has a chi-squared distribution with one degree of freedom. In addition, the Jar-

que-Bera test may be used to test for serial independence and homoskedasticity of the re-
gression residuals. These tests have a chi-squared distribution with p degrees of freedom 
when testing for p-order serial autocorrelation, and q degrees of freedom when testing for 
homoskedasticity, one degree for every variable that might explain heteroskedasticity. 
Although informative, it should be noted that these tests were not developed in the con-
text of a model with spatial interaction effects. 
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ending up with a coefficient estimate for � or for 	 outside its parameter space 
(1/�min,1/�max). Whereas this coefficient is restricted to its parameter space by the 
Jacobian term in the log-likelihood function of ML estimators, it is unrestricted 
using IV/GMM since these estimators ignore the Jacobian term.  

Franzese and Hays (2007) compare the performance of the IV estimator and 
the ML estimator of panel data models with a spatially lagged dependent variable 
in terms of unbiasedness and efficiency, but unfortunately without considering 
spatial fixed or random effects. They find that the ML estimator offers weakly 
dominant efficiency and generally solid performance in unbiasedness, although it 
sometimes falls a little short of IV on unbiasedness grounds at lower values of �.  

The main focus in this chapter will be on ML estimation, because the number 
of studies considering IV/GMM estimators of spatial panel data models is still 
relatively sparse. One exception is Kelejian et al. (2006), who considered IV esti-
mation of a spatial lag model with time period fixed effects. They point out that 
this model cannot be combined with a spatial weights matrix whose non-diagonal 
elements are all equal to 1/(N–1). In this situation, the spatially lagged dependent 
variable can be written in vector form as 

 


 �T
1111

11
1

11
1

111
1

111
1 ...,, ..., ,...,, �������� ���� ���� Nj jTNj NjTNj NjNj NjN

NTTN yyyy yyyy  

(C.2.4) 

 
which is asymptotically proportional and thus collinear with the time period fixed 
effects as N goes to infinity. Another exception is Kapoor et al. (2007), who con-
sidered the GMM estimator of a spatial error model and time period random ef-
fects. However, neither of these studies considered spatial fixed or random effects, 
while just these effects often appear to be important in panel data studies. 

One shortcoming of the spatial lag model and the spatial error model is that 
spatial patterns in the data may be explained not only by either endogenous inter-
action effects or correlated error terms, but also by endogenous interaction effects, 
exogenous interaction effects and correlated error terms at the same time (Manski 
1993). The best strategy would, therefore, seem to be to include the spatially 
lagged dependent variable, the K spatially lagged independent variables, and the 
spatially autocorrelated error term simultaneously.3 However, Manski (1993) has 
also pointed out that at least one of these 2+K spatial interaction effects must be 
excluded, because otherwise their interaction parameters are not identified. In ad-

                                                           
3  In his keynote speech at the First World Conference of the Spatial Econometrics Asso-

ciation 2007, Harry Kelejian advocated models that include both a spatially lagged de-
pendent variable and a spatially autocorrelated error term, while James LeSage in his 
Presidential Address at the 54th North American Meeting of the Regional Science Asso-
ciation International 2007 advocated models that include both a spatially lagged depend-
ent variable and spatially lagged independent variables. 
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dition to this, the spatial weights matrix of the spatially lagged dependent variable 
must be different from the spatial weights matrix of the spatially autocorrelated er-
ror term, an additional requirement for identification when applying ML estima-
tors (Anselin and Bera 1998). One ostensible advantage of IV/GMM estimators is 
that the same spatial weights matrix can be used to estimate a model extended to 
include a spatially lagged dependent variable and a spatially autocorrelated error 
term (Kelejian and Prucha 1998; Lee 2003). However, these estimators on their 
turn are unable to estimate models with spatially lagged independent variables, 
since they use these variables as instruments.  

Alternatively, one may first test whether spatially lagged independent vari-
ables must be included and then whether the model should be extended to include 
a spatially lagged dependent variable or a spatially autocorrelated error term 
(Florax and Folmer 1992; Elhorst and Freret 2009) or adopt an unconstrained spa-
tial Durbin model and then test whether this model can be simplified (Elhorst et al. 
2006; Ertur and Koch 2007). An unconstrained spatial Durbin model with spatial 
fixed effects takes the form 
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where �, just as �, is a K-by-1 vector of fixed but unknown parameters. The hy-
pothesis H0: � = 0 can be tested to investigate whether this model can be simplified 
to the spatial lag model and the hypothesis H0: � + �� = 0 whether it can be sim-
plified to the spatial error model. A simulation study by Florax et al. (2003) 
showed that the specific-to-general approach outperforms the general-to-specific 
approach when using cross-sectional data. However, one objection to this study is 
that the comparison between the two approaches is invalid because the null rejec-
tion frequencies have not been standardized (Hendry 2006). Another objection is 
that the model that has been used as point of departure did not include spatially 
lagged independent variables. Hence, a more careful elaboration of the relative 
merits of both approaches when using spatial panel data remains a topic of further 
research. 

C.2.3  Estimation of panel data models 

The spatial specific effects may be treated as fixed effects or as random effects. In 
the fixed effects model, a dummy variable is introduced for each spatial unit, 
while in the random effects model, μi is treated as a random variable that is inde-
pendently and identically distributed with zero mean and variance 
�

2 . Further-
more, it is assumed that the random variables μi and �it are independent of each 
other. �
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Throughout this chapter it is assumed that the data are sorted first by time and then 
by spatial units, whereas the classic panel data literature tends to sort the data first 
by spatial units and then by time. When yit and Xit of these T successive cross-
sections of N observations are stacked, we obtain an NT-by-1 vector for y and an NT-
by-K matrix for X. 

Fixed effects model 

If the spatial specific effects are treated as fixed effects, the model in Eq. (C.2.1) 
can be estimated in three steps. First, the spatial fixed effects μi are eliminated 
from the regression equation by demeaning the dependent and independent vari-
ables. This transformation takes the form 
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Second,  the transformed regression equation y*

it = X*
it � + � *

it is estimated by OLS: 
� = (X*T X*)–1 X*T y* and 
 2= (y* – X* �)T (y*–X* �) /(NT–N–K). This estimator is 
known as the least squares dummy variables (LSDV) estimator. The main advan-
tage of the demeaning procedure is that the computation of � involves the inver-
sion of a K-by-K matrix rather than (K+N)-by-(K+N) as in Eq. (C.2.1). This would 
slow down the computation and worsen the accuracy of the estimates considerably 
for large N. 

Instead of estimating the demeaned equation by OLS, it can also be estimated 
by ML. Since the log-likelihood function of the demeaned equation is  
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the ML estimators of � and 
 2 are � = (X*T X*)–1 X*T y* and 
 2 = (y* – X*�)T (y*–
X*�) / NT, respectively. In other words, the ML estimator of 
 2 is slightly different 
from the LSDV estimator in that it does not correct for degrees of freedom. The 
asymptotic variance matrix of the parameters is (see Greene 2008, p.519) 
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Finally, the spatial fixed effects may be recovered by 
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It should be stressed that the spatial fixed effects can only be estimated consis-
tently when T is sufficiently large, because the number of observations available 
for the estimation of each μi is T. Also note that sampling more observations in the 
cross-sectional domain is no solution for insufficient observations in the time do-
main, since the number of unknown parameters increases as N increases, a situa-
tion known as the incidental parameters problem. Fortunately, the inconsistency of 
μi is not transmitted to the estimator of the slope coefficients � in the demeaned 
equation, since this estimator is not a function of the estimated μi. Consequently, 
the incidental parameters problem does not matter when � are the coefficients of 
interest and the spatial fixed effects μi are not, which is the case in many empirical 
studies. Finally, note that the incidental parameters problem is independent of the 
extension of the model with spatial interaction effects. 

In case the spatial fixed effects μi do happen to be of interest, their standard er-
rors may be computed as the square roots of their asymptotic variances (see 
Greene 2008, p.196) 
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An alternative and equivalent formulation of Eq. (C.2.1) is to introduce a mean in-
tercept �, provided that �i μi = 0. Then the spatial fixed effect μi represents the de-
viation of the ith spatial unit from the individual mean (see Hsaio 2003, p.33). 

To test for spatial interaction effects in a cross-sectional setting, Anselin et al. 
(1996) developed Lagrange multiplier (LM) tests for a spatially lagged dependent 
variable, for spatial error correlation, and their counterparts robustified against the 
alternative of the other form.4 These tests have become very popular in empirical 
research. Recently, Anselin et al. (2006) also specified the first two LM tests for a 
spatial panel 

 

                                                           
4  Software programs, such as SpaceStat and GeoDa, have built-in routines that automati-

cally report the results  of these tests.  Matlab routines  have been made available by 
Donald Lacombe at �http://oak.cats.ohiou.edu/~lacombe/research.html�. 
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where the symbol � denotes the Kronecker product, IT denotes the identity matrix 
and its subscript the order of this matrix, and e denotes the residual vector of a 
pooled regression model without any spatial or time-specific effects or of a panel 
data model with spatial and/or time period fixed effects. Finally, J and WT  are de-
fined by 
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where trace denotes the trace of a matrix. In view of these formulas, the robust 
counterparts of these LM tests for a spatial panel will take the form 
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Note that the performance of these tests when having panel data instead of cross-
sectional data and when having a model extended to include spatially lagged inde-
pendent variables must still be investigated. 

Applied researchers often find weak evidence in favor of spatial interaction 
effects when time period fixed effects are also accounted for. The explanation is 
that most variables tend to increase and decrease together in different spatial units 
along the national evolution of these variables over time. The labor force partici-
pation rate and its evolution over the business cycle is one of the best examples 
(Elhorst 2008a). In the long term, after the effects of shocks have been settled, 
variables return to their equilibrium values. In equilibrium, neighboring values 
tend to be more similar than those further apart, but this interaction effect is often 
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weaker than its counterpart over time. The mathematical explanation is that time 
period fixed effects are identical to a spatially autocorrelated error term with a 
spatial weights matrix whose elements are all equal to 1/N, including the diagonal 
elements. When this spatial weights matrix would be adopted, one obtains 
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which is equivalent to the demeaning procedure of Eq. (C.2.6) but then for fixed 
effects in time. Even though spatial weights matrices with non-zero diagonal ele-
ments are unusual in spatial econometrics, these expressions show that accounting 
for time period fixed effects is one way to correct for spatial interaction effects 
among the error terms. If, in addition to time period fixed effects, a spatial error 
term is considered with a spatial weights matrix with zero diagonal elements, the 
magnitude of this spatial interaction effect will automatically fall as a result.  

Applied researchers also often find significant differences among the coeffi-
cient estimates from models with and without spatial fixed effects. These models 
are different in that they utilize different parts of the variation between observa-
tions. Models with controls for spatial fixed effects utilize the time-series compo-
nent of the data, whereas models without controls for spatial fixed effects utilize 
the cross-sectional component of the data. As a result, some studies argue that 
models with controls for spatial fixed effects tend to give short-term estimates and 
models without controls for spatial fixed effects tend to give long-term estimates 
(Baltagi 2005, pp.200-201; Partridge 2005). A related problem of controlling for 
spatial fixed effects is that any variable that does not change over time or only var-
ies a little cannot be estimated, because it is wiped out by the demeaning trans-
formation. This is the main reason for many studies not controlling for spatial 
fixed effects.  

On the other hand, if one or more relevant explanatory variables are omitted 
from the regression equation, when they should be included, the estimator of the 
coefficients of the remaining variables is biased and inconsistent (Greene 2008, 
pp.133-134). This also holds true for spatial fixed effects and is known as the 
omitted regressor bias. One can test whether the spatial fixed effects are jointly 
significant by performing a Likelihood Ratio (LR) test of the hypothesis H0: μ1 = 
… = μN = �, where � is the mean intercept. The corresponding test statistic is –2s, 
where s measures the difference between the log-likelihood of the restricted model 
and that of the unrestricted model. The LR test has a chi-squared distribution with 
degrees of freedom equal to the number of restrictions that must be imposed on 
the unrestricted model to obtain the restricted model, which in this particular case 
is N–1. Thanks to the availability of the log-likelihood of the restricted as well as 
of the unrestricted model, the LR test can be carried out instead of, or in addition 
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to, the classical F-test spelled out in Baltagi (2005, p.13). It is another advantage 
of estimating models by ML. 

Random effects model 

A compromise solution to the all or nothing way of utilizing the cross-sectional 
component of the data is the random effects model. This model avoids the loss of 
degrees of freedom incurred in the fixed effects model associated with a relatively 
large N and the problem that the coefficients of time-invariant variables cannot be 
estimated. However, whether the random effects model is an appropriate specifica-
tion in spatial research remains controversial. When the random effects model is im-
plemented, the units of observation should be representative of a larger population, 
and the number of units should potentially be able to go to infinity. There are two 
types of asymptotics that are commonly used in the context of spatial observations: 
(a) the ‘infill’ asymptotic structure, where the sampling region remains bounded as 

��N . In this case more units of information come from observations taken 
from between those already observed; and (b) the ‘increasing domain’ asymptotic 
structure, where the sampling region grows as ��N . In this case there is a 
minimum distance separating any two spatial units for all N.  

According to Lahiri (2003), there are also two types of sampling designs: (a) 
the stochastic design where the spatial units are randomly drawn; and (b) the fixed 
design where the spatial units lie on a nonrandom field, possibly irregularly 
spaced. The spatial econometric literature mainly focuses on increasing domain 
asymptotics under the fixed sample design (Cressie 1993, p.100; Griffith and 
Lagona 1998; Lahiri 2003). Although the number of spatial units under the fixed 
sample design can potentially go to infinity, it is questionable whether they are 
representative of a larger population. For a given set of regions, such as all coun-
ties of a state or all regions in a country, the population may be said ‘to be sam-
pled exhaustively’ (Nerlove and Balestra 1996, p.4), and ‘the individual spatial 
units have characteristics that actually set them apart from a larger population’ 
(Anselin 1988, p.51). According to Beck (2001, p.272), ‘the critical issue is that 
the spatial units be fixed and not sampled, and that inference be conditional on the 
observed units’. In addition, the traditional assumption of zero correlation between 
μi in the random effects model and the explanatory variables, which also needs to 
be made, is particularly restrictive. 

An iterative two-stage estimation procedure may be used to obtain the ML es-
timates of the random effects model (Breusch 1987). Note that the random effects 
model also includes a constant term, as a result of which the number of independ-
ent variables is K+1. The log-likelihood of the random effects model in Eq. 
(C.2.1) is 
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where � denotes the weight attached to the cross-sectional component of the data, 
with 0   � ² = 
 ² / (T
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 ²)   1, and the symbol � denotes a transformation of 
the variables dependent on � 
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If � = 0, this transformation simplifies to the demeaning procedure of Eq. (C.2.6) 
and hence the random effects model to the fixed effects model.  

Given �, �  and 
 2  can be solved from their first-order maximizing condi-
tions: � = (X•T X•)–1 X•T y• and 
 2 = (Y• – X• �)T (Y• – X• �) / NT. Conversely, � may 
be estimated by maximizing the concentrated log-likelihood function with respect 
to �, given � and �2,  
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The use of  � 2  instead of  �   ensures  that  both  the  argument of  ln (� 2) and of 
�'(�( (((� 2)

��
 are positive (see Magnus 1982 for details). The asymptotic variance ma-

trix of the parameters is 
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One can test whether the spatial random effects are significant by performing a LR 
test of the hypothesis H0: � = 1.5 This test statistic has a chi-squared distribution 
with one degree of freedom. If the hypothesis is rejected, the spatial random ef-
fects are significant. 

C.2.4  Estimation of spatial panel data models 

This section outlines the modifications that are needed to estimate the fixed effects 
model and the random effects model extended to include a spatially lagged de-
pendent variable or a spatially autocorrelated error. It is assumed that W is con-
stant over time and that the panel is balanced. Although the estimators can be 
modified for a spatial weights matrix that changes over time, as well as for an un-
balanced panel, their asymptotic properties, in the event of an unbalanced panel, 
may become problematic if the reason why data are missing is not known.  

Fixed effects spatial lag model 

According to Anselin et al. (2006), the extension of the fixed effects model with a 
spatially lagged dependent variable raises two complications. First, the endogene-
ity of  �j Wij yjt  violates  the  assumption of  the  standard  regression  model that  
E [(�j Wij yjt) �it] = 0. In model estimation, this simultaneity must be accounted for. 
Second, the spatial dependence among the observations at each point in time may 
affect the estimation of the fixed effects. 

In this section,  we derive the ML  estimator to account for the endogeneity of 
�j Wij yjt. The log-likelihood function of the model in Eq. (C.2.2) if the spatial spe-
cific effects are assumed to be fixed is 
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where the second term on the right-hand side represents the Jacobian term of the 
transformation from �  to y  taking into account the endogeneity of �j Wij yjt 
(Anselin 1988, p.63).  

The partial derivatives of the log-likelihood with respect to μi are 

 

                                                           
5  � = 1 implies 02 ��
 , since 2

�
  may be calculated from � by [(1 – � ²)/� ²] [
 ²/T]. 
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When solving μi from Eq. (C.2.22), one obtains 

 

....,,1)
1 1

1 NiyWyμ
T

t

N

j
itjtijitTi �

�
�
�

�

�
�
�

�
��� � �

� �

�X�     (C.2.23)

 
This equation shows that the standard formula for calculating the spatial fixed ef-
fects, Eq. (C.2.9), applies to the fixed effects spatial lag model in a straightforward 
manner. Corrections for the spatial dependence among the observations at each 
point in time, other than the addition of the spatially lagged dependent variable to 
these formulas, are not necessary.6 

Substituting the solution for μi into the log-likelihood function, and after rear-
ranging terms, the concentrated log-likelihood function with respect to �, � and 
 2 
is obtained 
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where the asterisk denotes the demeaning procedure introduced in Eq. (C.2.6).  

Anselin and Hudak (1992) have spelled out how the parameters �, � and 
 2 of 
a spatial lag model can be estimated by ML starting with cross-sectional data. This 
estimation procedure can also be used to maximize the log-likelihood function in 
Eq. (C.2.24) with respect to � , � and 
 2. The only difference is that the data are 
extended from a cross-section of N observations to a panel of NT observations. 
This estimation procedure consists of the following steps. 

First, stack the observations as successive cross-sections for t = 1, …, T to ob-
tain NT-by-1 vectors for y* and (IT � W)y*, and an NT-by-K matrix for X* of the 
demeaned variables. Note that these calculations have to be performed only once 
and that the NT-by-NT diagonal matrix (IT � W) does not have to be stored. This 
would slow down the computation of the ML estimator considerably for large data 
sets. Second, let b0 and b1 denote the OLS estimators of successively regressing y* 

                                                           
6  Anselin et al. (2006) asked for a more careful elaboration of this. 
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and (IT � W)y* on X*, and e*
0 and e*

1  the corresponding residuals. Then the ML es-
timator of � is obtained by maximizing the concentrated log-likelihood function 
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where C is a constant not depending on �. Unfortunately, this maximization prob-
lem can only be solved numerically, since a closed-form solution for � does not 
exist. However, since the concentrated log-likelihood function is concave in �, the 
numerical solution is unique (Anselin and Hudak 1992). To speed up computation 
time and to overcome numerical difficulties one might face in evaluating ln | IN – 
�W|, Pace and Barry (1997) propose to compute this determinant once over a grid 
of values for the parameter � ranging from 1/2min to one prior to estimation, pro-
vided that W is normalized. This only requires the determination of the smallest 
characteristic root of W. They suggest a grid based on 0.001 increments for � over 
the feasible  range. Given these predetermined values for the log determinant of 
(IN – �W), they point out that one can quickly evaluate the concentrated log-
likelihood function for all values of � in the grid and determine the optimal value 
of � as that which maximizes the concentrated log-likelihood function over this 
grid.7 

Third, the estimators of � and 
 2 are computed, given the numerical estimate 
of �, 

 

� = b0 – � b1 = (X*T X*)–1 X*T [y* – � (IT � W) y*] (C.2.26a) 

)()( ****
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12 eeee ��
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. (C.2.26b) 

 
Instead of the demeaned variables, one may also use the original variables y and 
X, since y*= Qy, (IT � W) y* = Q (IT � W) y, and X*= QX, where Q denotes the 
demeaning operator in matrix form 

 

NTTTNT I��IQ ��� T1  (C.2.27) 

 

                                                           
7  The computation of the log determinant may be carried out using the Matlab routine 

‘lndet’ from LeSage's website <www.spatial-econometrics.com> (LeSage 1999). 
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and 3T is a vector of ones whose subscript denotes the length of this vector. Since 
Q is a symmetric idempotent matrix, the estimator of � starting with the original 
variables may also be written as  

 
� = (XT QT Q X)–1 XT QT Q [y – � (IT � W) y] =  
 
         (XT Q X)–1 XT Q [y – � (IT � W) y]. (C.2.28)

 
Anselin et al. (2006) have pointed out that this estimator may also be seen as the 
GLS estimator of a linear regression model with disturbance covariance matrix 

2Q, but the difficulty of this interpretation is that Q is singular. Their conclusion 
that the singularity of Q also limits the practicality of this model has been contra-
dicted by Hsaio (2003, p.320), Magnus and Neudecker (1988, pp.271-273) and 
Baltagi (1989) in that Q may be replaced by its general inverse,8 which again pro-
duces (C.2.28).  

Finally, the asymptotic variance matrix of the parameters is computed for in-
ference (standard errors, t-values). This matrix has been derived by Elhorst and 
Freret (2009) and takes the form (since this matrix is symmetric the upper diago-
nal elements are left aside) 
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where 1)(~ ��� WWW �NI . The differences with the asymptotic variance matrix of 
a spatial lag model in a cross-sectional setting (see Anselin and Bera 1998; Lee 
2004) are the change in dimension of the matrix X* from N to NT observations and 
the summation over T cross-sections involving manipulations of the N-by-N spa-

                                                           
8  Q+  is called  the generalized  (Moore-Penrose)  inverse of  Q if it satisfies the conditions:  

Q Q+ Q = Q, Q+ Q Q+ = Q+, (Q+ Q)T = Q+ Q and (Q Q+)T = Q Q+ (Magnus and Neu-
decker 1988, p.32). 
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tial weights matrix W. For large values of N the determination of the elements of 
the variance matrix may become computationally impossible. In that case the in-
formation may be approached by the numerical Hessian matrix using the maxi-
mum likelihood estimates of �, � and 
 2. 

Fixed effects spatial error model 

Anselin and Hudak (1992) have also spelled out how the parameters � , 	 and 
 2 
of a linear regression model extended to include a spatially autocorrelated error 
term can be estimated by ML starting with cross-sectional data. Just as for the spa-
tial lag model, this estimation procedure can be extended to include spatial fixed 
effects and from a cross-section of N observations to a panel of NT observations. 
The log-likelihood function of model in Eq. (C.2.3) if the spatial specific effects 
are assumed to be fixed is  
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Given 	, the ML estimators of � and 
 2 can be solved from their first-order maxi-
mizing conditions, to get 

 
� = {[X* – 	 (IT � W) X*]T [X* – 	 (IT � W) X*]}–1 

 

[X* – 	 (IT � W) X*]T [y* – 	 (IT � W) y*] (C.2.31a) 
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�  (C.2.31b) 

 
where e (	) = y* – 	 (IT � W) y* – [X* – 	 (IT � W) X*] �. The concentrated log-
likelihood function of 	 takes the form 
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Maximizing this function with respect to 	 yields the ML estimator of 	, given � 
and 
 2. An iterative procedure may be used in which the set of parameters � and 

 2 and the parameter 	 are alternately estimated until convergence occurs. The as-
ymptotic variance matrix of the parameters takes the form 
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where 1)(
~~ ��� WIWW 	N . The spatial fixed effects can finally be estimated by 
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Random effects spatial lag model 

The log-likelihood of model in Eq. (C.2.2) if the spatial effects are assumed to be 
random is 
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where the symbol � denotes the transformation introduced in Eq. (C.2.18) depend-
ent on �. Given �, this log-likelihood function is identical to the log-likelihood 
function of the fixed effects spatial lag model in Eq. (C.2.24). This implies that the 
same procedure can be used to estimate �, � and �2 as described above [Eqs. 
(C.2.25), (C.2.26a) and (C.2.26b)], but that the superscript * must be replaced by �. 
Given �, � and �2, � can be estimated by maximizing the concentrated log-
likelihood function with respect to � 
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2
22 ln)]()([lnln ��� NTNTL ��� ee  (C.2.36)

 
where the typical element of e(�) is 
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Again an iterative procedure may be used where the set of parameters �, � and �2 
and the parameter � are alternately estimated until convergence occurs. This pro-
cedure is a mix of the estimation procedures used to estimate the parameters of the 
fixed effects spatial lag model and those of the non-spatial random effects model. 

The asymptotic variance matrix of the parameters takes the form  
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Random effects spatial error model 

The log-likelihood of model in Eq. (C.2.3) if the spatial effects are assumed to be 
random is (Anselin 1988; Elhorst 2003; Baltagi 2005) 
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where V=T 	 IN + (BT B)–1 with 	 = 
2

μ /
2,9 B = IN – � W and e = y – X �. It is the 
matrix V that complicates the estimation of this model considerably. First, the 
Pace and Barry (1997) procedure to overcome numerical difficulties one might 
face in evaluating ln|B| = ln|IN – � W| cannot be used to calculate ln|V| = ln|T 	 IN + 
(BT B)–1|. Second, there is no simple mathematical expression for the inverse of V. 
Baltagi (2006) solves these problems by considering a random effects spatial error 
model with equal weights, i.e., a spatial weights matrix W whose non-diagonal 
elements are all equal to 1/(N–1). Due to this setup, the inverse of V and a feasible 
GLS estimator of � can be determined mathematically. Furthermore, by consider-
ing a GLS estimator the term ln|V| in the log-likelihood function does not have to 
be calculated.  

Elhorst (2003) suggests to express ln|V| as a function of the characteristic 
roots of W based on Griffith (1988, Table 3.1) 
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Furthermore, he suggests to adopt the transformation 
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and the same for the variables Xit, where pij is an element of an N-by-N matrix P 
such that PT P = V–1. P can be the spectral decomposition of V–1, P = �–1/2R, where 
R is an N-by-N matrix of which the ith column is the characteristic vector ri of V, 
which is the same as the characteristic vector of the spatial weights matrix W (see 
Griffith 1988, Table 3.1), R = (r1, …, rN), and �  an N-by-N diagonal matrix with 
the ith diagonal element the corresponding characteristic root, ci = T	 + (1 – ��i)

–2. 

                                                           
9  Note that 	=�


2/�2 is different from �2 in the random effects model and in the random effects 
spatial lag model. 
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A similar procedure has been adopted by Yang et al. (2006). It is clear that for 
large N the numerical determination of P can be problematic. However, Hunne-
man et al. (2007) find that if W is kept symmetric by using one of the alternative 
normalizations discussed in Section C.2.2, this procedure works well within a rea-
sonable amount of time for values of N up to 4,000. 

As a result of Eqs. (C.2.40) and (C.2.41), the log-likelihood function simpli-
fies to 
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where eo = yo – Xo �. � and 
2 can be solved from their first-order maximizing con-
ditions:  � = (XoT Xo)–1XoT yo and 
2=(yo – Xo �)T (yo–Xo �)/NT. Upon substituting � 
and 
 2 in the log-likelihood function, the concentrated log-likelihood function of � 
and 5 is obtained 
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where C is a constant not depending on 	 and 5 and the typical element of e (�, 	) 
is 
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The notation pij = p (�, 	)ij is used to indicate that the elements of the matrix P de-
pend on � and 	. One can iterate between � and 
 2 on the one hand, and � and 	 
on the other, until convergence. The estimators of � and 
 2, given � and 	, can be 
obtained by OLS regression of the transformed variable yo on the transformed 
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variables Xo. However, the estimators of � and 	, given � and 
 2, must be attained 
by numerical methods because the equations cannot be solved analytically.  

The asymptotic variance matrix of this model has been derived by Baltagi et al. 
(2007). They develop diagnostics to test for serial error correlation, spatial error 
correlation and/or spatial random effects. They also derive asymptotic variance ma-
trices provided that one or more of the corresponding coefficients are zero. One ob-
jection to this study is that serial and spatial error correlation are modeled sequen-
tially instead of jointly. Elhorst (2008b) demonstrates that jointly modeling serial 
and spatial error correlation results in a trade-off between the serial and spatial 
autocorrelation coefficients and that ignoring this trade-off causes inefficiency and 
may lead to non-stationarity. However, if the serial autocorrelation coefficient is 
set to zero, this problem disappears. Consequently, the asymptotic variance matrix 
that is obtained if the serial autocorrelation coefficient is set to zero exactly hap-
pens to be the variance matrix of the random effects spatial error model. 

One difference is that Baltagi et al. (2007) do not derive the asymptotic vari-
ance matrix of �, 	, 5  and 
 2, but of �, 	, 



2 and 
 2. This matrix takes the fol-
lowing form10 
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where 6  = (WT B + BT W) (BT B)–1  and  � = V-1 (BT B)–1. Since 5 = 
 2

μ /
 2, the 
asymptotic variance of 5 can be obtained using the formula (Mood et al. 1974, 
p.181) 
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10  Note that the matrix Z0 in Baltagi et al. (2007, pp.39-40) has been replaced by 

.])([])([ 1111T111T22
0 22

����� ����� VBBIBBIZ


� 5

 NN TT  



C.2     Spatial panel data models     399 

In conclusion, we can say that the estimation of the random effects spatial error 
model is far more complicated than that of the other spatial panel data models. 
Since a spatial error specification also does not require a theoretical model for a 
spatial or social interaction process, but is a special case of a non-spherical error 
covariance matrix, and the random effects models in spatial research is controver-
sial, the random effects spatial error model will probably be of limited value in 
empirical research. 

C.2.5  Model comparison and prediction 

This section sets forth Hausman’s specification test for statistically significant dif-
ferences between random effects models and fixed effects models, two goodness-
of-fit measures, one that includes the impact of spatial fixed or random effects and 
the impact of a spatial lag and one that does not, and the best linear unbiased pre-
dictor of the different models.  

Random effects versus fixed effects 

The random effects model can be tested against the fixed effects model using 
Hausman's specification test (Baltagi 2005, pp.66-68). The hypothesis being tested 
is H0: h = 0, where 
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(C.2.47) 
 
Note the reversed sequence with which d and var(d) are calculated. This test sta-
tistic has a chi-squared distribution with K degrees of freedom (the number of ex-
planatory variables in the model, excluding the constant term). Hausman's specifi-
cation test can also be used when the model is extended to include spatial error 
autocorrelation or a spatially lagged dependent variable. Since the spatial lag 
model  has one  additional  explanatory  variable,  one  might calculate d by d = 
[�

^T �
^
]T

FE – [�
^T �

^
]T

RE to obtain a test statistic that has a chi-squared distribution with 
K+1 degrees of freedom. To calculate var(d) in this particular case, one should ex-
tract the first K+1 rows and columns of the variance matrices in Eqs. (C.2.29) and 
(C.2.38). If the hypothesis is rejected, the random effects models must be rejected 
in favor of the fixed effects model. 
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Goodness-of-fit 

The computation of a goodness-of-fit measure in spatial panel data models is dif-
ficult because there is no precise counterpart of the R2 of an OLS regression model 
with disturbance covariance 
 2I to a generalized regression model with distur-
bance covariance matrix 
 27 (7  8 I). Most people use  
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where y  denotes the overall mean of the dependent variable in the sample and e is 
the residual vector of the model. Alternatively, eT� e can be replaced by the resid-
ual sum of squares of transformed residuals ~eT  ~ e.�

One objection to the measures in Eq. (C.2.48) is that there is no assurance that 
adding (eliminating) a variable to (from) the model will result in an increase (de-
crease) of R2. This problem is at issue in the fixed effects spatial error model, the 
random effects spatial lag model and the random effects spatial error model, be-
cause the coefficients 	, � or 5 may change when changing the set of independent 
variables. The problem is not at issue in the fixed effects spatial lag model, even 
though it may be seen as a linear regression model with disturbance covariance 
matrix 
 2Q. This is because the demeaning procedure was only meant to speed up 
computation time and to improve the accuracy of the estimates of �. If the R2 is 
calculated after the spatial fixed effects have been added back to the model, it will 
have the same properties as the R2 of the OLS model. 

An alternative goodness-of-fit measure that meets the above objection is the 
squared correlation coefficient between actual and fitted values (Verbeek 2000, 
p.21) 
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where ^y is an NT-by-1 vector of fitted values. Unlike the R2, this goodness-of-fit 
measure ignores the variation explained by the spatial fixed effects. The argumen-
tation is that the estimator of � in the fixed effects model is chosen to explain the 
time-series rather than the cross-sectional component of the data, as well as that 
the spatial fixed effects capture rather than explain the variation between the spa-
tial units (Verbeek 2000, p.320). This is also the reason why the spatial fixed ef-
fects are often not computed, let alone reported. The difference between R2 and 
corr2 indicates how much of the variation is explained by the fixed effects, which 
in many cases is quite substantial. A similar type of argument applies to spatial 
random effects. 
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Another difficulty is how to cope with a spatially lagged dependent variable. If the 
spatial lag is seen as a variable that helps to explain the variation in the dependent 
variable, the first measure (R2) should be used. By contrast, if the spatial lag is not 
seen as variable that helps to explain the variation in the dependent variable, sim-
ply because it is a left-hand side variable in principle, the second measure (corr2) 
should be used. The latter measure is adopted by LeSage (1999) to calculate the 
goodness-of-fit of the spatial lag model in a cross-sectional setting.11 In vector no-
tation, the reduced form of the spatial lag model in Eq. (C.2.2) is  
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where μ is an N-by-1 vector of the spatial specific effects, 
 = (
1, …, 
N)T. From 
this equation it can be seen that the squared correlation coefficient between actual 
and fitted values in spatial lag models, no matter whether 
 is fixed or random, 
should also account for the spatial multiplier matrix [INT – � (IT � W)]–1.  

Table C.2.1. Two goodness-of-fit measures of the four spatial panel data models 

Fixed effects spatial lag model 
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Fixed effects spatial error model 
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Random effects spatial lag model 
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Random effects spatial error model 

)~(2 eR  �Xye ˆ~ oo ��  

Corr2 )ˆ,(2 �Xycorr  

Notes:  R2 (e, IN) and R2 (~e) are defined by Eq. (C.2.48), corr2 is defined by Eq. (C.2.49)�

                                                           
11   See the routine ‘sar’ posted at LeSage's website <www.spatial-econometrics.com> 
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The two measures for the different spatial panel data models are listed in Table 
C.2.1. It shows that in the fixed and random effects spatial lag model not only the 
spatially lagged dependent variable, but also the spatial fixed or random effects 
are ignored when calculating the squared correlation coefficient between actual 
and fitted values. 

Prediction 

Finally, prediction formulas are presented for fixed effects and random effects 
models with spatial interaction effects. Goldberger (1962) shows that the best 
linear unbiased predictor (BLUP) for the cross-sectional units in a linear 
regression model with disturbance covariance matrix 7 at a future period T+C is 
given by 

 

e��Xy 1Tˆˆ �
�� �� �CTCT  (C.2.51)

 
where � = E (	T +C 	) is the covariance between the future disturbance 	T+C  and the 
sample disturbances 	, X covers the independent variables of the model, �

^ 
is the 

estimator of �, and e denotes the residual vector of the model. Baltagi and Li 
(2004) derive the prediction formulas for the fixed effects and random effects 
model with spatial autocorrelation. Here, we also present these formulas for the 
fixed effects and random effects model extended to include a spatially lagged 
dependent variable based on own derivations. The prediction formulas are listed in 
Table C.2.2. 

Baltagi and Li (2004) point out that � = 0 in the fixed effects model, provided 
that error terms are not serially correlated over time. Unlike the fixed effects 
model, the correction term �T�e in the random effects model is not zero. In the 
random effects spatial lag model, the correction term �T� e is identically equal to 
its counterpart in a standard random effects model, which has been reported in 
Baltagi and Li (2004). To calculate this correction term (see Table C.2.2), the re-
siduals of each spatial unit are first averaged over the sample period and then mul-
tiplied with (1–�2), a factor that can take values between zero and one.12 However, 
in addition to the standard random effects model, both XT+C �

^
 and the correction 

term  should  also  be  premultiplied with the  N-by-N  spatial multiplier matrix 
(INT – �W)–1.  

 

                                                           
12  Note that (1 – � 2) = T
 2

μ / (T
 2
μ + 
 2) (see Baltagi 2005, p. 20, for the second part of this 

formula). 
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Table C.2.2. Prediction formula of the four spatial panel data models 

Fixed effects spatial lag model 
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Random effects spatial error model 
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Just as in the random effects spatial lag model, the residuals in the random effects 
spatial error model are first averaged over the sample period (see Table C.2.2). 
However, the sum of the residuals is not just divided by T, but premultiplied by V–

1=[T	IN + (BTB)–1]–1, a matrix that also accounts for the interaction effects among 
the residuals. Finally, the ‘average’ residuals are multiplied by 5, which measures 
the ratio between �


2 and �2. 
One problem of predictors based on fixed or random effects models is that one 

has no information on the spatial fixed effects or the averaged residuals of spatial 
units outside the sample. For this reason, some researchers abandon fixed or ran-
dom effects models. However, they better stick to the fixed effects or random ef-
fects models, provided that these effects appear to be (jointly) significant, and set 
the spatial fixed effects or the averaged residuals of spatial units outside the sam-
pling region to zero or, alternatively, try to approach them from proximate spatial 
units within the sample region. 

C.2.6  Concluding remarks 

The spatial econometrics literature has exhibited a growing interest in the specifi-
cation and estimation of econometric relationships based on spatial panels. Many 
empirical studies have found their way to the Matlab routines of the fixed effects 
and random effects models the author of this chapter has provided at his website. 
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Updated versions have been made available and include the (robust) LM tests, the 
estimation of fixed effects and the determination of their significance level, the de-
termination of the variance-covariance matrix of the parameters estimates, the de-
termination of good-of-fit measures, Hausman's specification test and the formulas 
for the best linear unbiased predictor, as discussed in this chapter. 

Two other areas where more insight has been gained into the extension of spa-
tial panel data models with spatial interaction effects is the possibility to test for en-
dogeneity of one or more of the explanatory variables and the possibility to include 
dynamic effects. However, this literature has not yet been crystallized. 

Fingleton and LeGallo (2007) consider models including an endogenous spa-
tial lag, additional endogenous variables due to a system feedback and an autore-
gressive or a moving average error process, and suggest an IV/GMM estimator 
based on Kelejian and Prucha (1998) and Fingleton (2008). Elhorst et al. (2007) 
present a framework to determine the best of three estimators (2SLS, fixed effects 
2SLS and first-difference 2SLS) in the presence of potential endogeneity using 
two Hausman type test-statistics. Using this framework, they conclude that the 
first-difference 2SLS is the preferred estimator of the East German wage curve, 
since the regional unemployment rate, the main explanatory variable of the wage 
rate, is not strictly exogenous and the spatial specific effects are not uncorrelated 
to the explanatory variables. To investigate the possible endogeneity of the re-
gional unemployment rate in combination with time-specific effects, a similar 
framework is used, except for the first-difference 2SLS estimator. This is because 
first differencing does not assist in eliminating time specific effects. For this rea-
son, they develop a spatial first-difference 2SLS estimator where the values of y 
and X in every spatial unit are taken in deviation of y and X in one reference spa-
tial unit.  

Finally, Elhorst (2008a) adopts the use of matrix exponentials, a transforma-
tion recently introduced by LeSage and Pace (2007). This transformation is differ-
ent from the spatial lag model in Eq. (C.2.2) or the spatial error model in Eq. 
(C.2.3) in that its Jacobian term is zero. This zero Jacobian term opens the oppor-
tunity to use an estimation method partly based on IV and partly based on ML to 
control for endogeneity of one or more of the explanatory variables. 

There has also been a growing interest in the estimation of dynamic panel data 
models. Elhorst (2005a) derives the ML estimator and Su and Yang (2007) the 
corresponding regularity conditions of a dynamic panel data model extended to 
include spatial error autocorrelation. Elhorst (2005b), Korniotis (2005), Yu et al. 
(2007) and Vrijburg et al. (2007) consider a dynamic panel data model extended to 
include a spatially lagged dependent variable. Up to now, the first of these six 
studies has also been applied successfully in the empirical work of other research-
ers (Kholodilin et al. 2008). 
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