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1 Introduction

Spatial econometrics consists of a subset of econometric methods that is con-
cerned with spatial aspects present in cross-sectional and space-time observa-
tions. Variables related to location, distance and arrangement (topology) are
treated explicitly in model specification, estimation, diagnostic checking and
prediction. More specifically, spatial econometrics deals with two basic forms
of spatial effects in regression models, categorized as spatial dependence and
spatial heterogeneity (Anselin 1988b).

Spatial dependence is a special case of cross-sectional dependence, in the
sense that the structure of the correlation or covariance between observations at
different locations is derived from a specific ordering, determined by the relative
position (distance, spatial arrangement) of the observations in geographic space
(or, in general, in network space). While similar to correlation in the time
domain, the distinct nature of spatial dependence requires a specialized set of
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techniques, that are not a straightforward extension of time series methods to
two dimensions (Anselin 1988b).

Spatial heterogeneity is a special case of observed or unobserved hetero-
geneity, a familiar problem in standard econometrics. In contrast to spatial
dependence, tackling this issue does not require a separate set of methods. The
only spatial aspect of the heterogeneity is the additional information that may
be provided by spatial structure. For example, this may inform models for
heteroskedasticity, spatially varying coefficients, random coefficients and spatial
structural change (spatial regimes). This will not be further considered here.1

The designation of a separate field of “spatial econometrics” was originally
suggested by the Belgian economist Jean Paelinck in the early 1970s, to refer
to methodological aspects associated with incorporating dependence in cross-
sectional multiregional econometric models. An early overview is contained in
the 1979 Spatial Econometrics book by Paelinck and Klaassen (Paelinck and
Klaassen 1979).2 In it, they outlined five important characteristics of the field:
(i) the role of spatial interdependence; (ii) the asymmetry in spatial relations;
(iii) the importance of explanatory factors located in other spaces; (iv) differ-
entiation between ex post and ex ante interaction; and (v) explicit modeling of
space. In Anselin (1988b), these ideas were elaborated upon and situated more
formally within econometric estimation and specification testing.

Initially, the development and application of spatial econometric methods
was largely confined to the applied fields of economics (e.g., urban and regional
economics, environmental economics, real estate economics), regional science
and quantitative economic geography. Early reviews of the state of the art can
be found in, among others, Cliff and Ord (1973, 1981), Hordijk (1974), Anselin
(1980, 1988b, 1992), Upton and Fingleton (1985), Haining (1990), and Anselin
and Florax (1995a). This early work was heavily influenced by the statistical
literature, where the interest in spatial aspects dates back to the early 20th cen-
tury, dealing with concerns about the presence of spatial autocorrelation in the
design of agricultural experiments (see Cressie 1993, p. 7). In spatial statistics,
fundamental results regarding the estimation of spatial models were obtained
by Whittle (1954), Besag (1974), Ord (1975), and Ripley (1981), among others
(for more in-depth overviews, see Cressie 1993, Waller and Gotway 2004).

Arguably, the distinction between spatial statistics and spatial economet-
rics is subtle. As suggested in Anselin (1988b), the main difference lies in the
emphasis on the economic models (and the theory behind them) as the basis
for econometric specification in spatial econometrics, whereas the data tend to
be more central in spatial statistics. A great degree of cross fertilization has
occurred, although distinct emphases remain, especially in terms of a greater
prominence of a Bayesian (hierarchical) perspective in modern spatial statistics
(see, e.g., Waller et al. 1997a,b, Wikle et al. 1998, Royle and Berliner 1999,
Banerjee et al. 2004, and the references cited therein).

1For overviews of the salient issues, see, e.g., Anselin (1988b, 1990), Jones and Casetti
(1992), Casetti (1997), Fotheringham et al. (2002), as well as in the statistical literature,
Gelfand et al. (2003) and Gamerman et al. (2003).

2See also Hordijk and Paelinck (1976), Hordijk (1979).
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The initially somewhat marginal status of spatial econometrics relative to
other subfields of econometrics has changed dramatically. Spurred both by
advances in theory (social and spatial interaction) and in technology (geographic
information systems), interest in spatial modeling has grown considerably in
economics, as evidenced by a large number of both applied and theoretical
papers that have appeared in recent years (for extensive literature reviews, see
Florax and van der Vlist 2003, Anselin et al. 2004b). Several special journal
issues have been devoted to the topic, including Nelson (2002), Anselin (2003a),
Florax and van der Vlist (2003), and LeSage et al. (2004), as well as a number
of edited volumes, Anselin et al. (2004a), Getis et al. (2004), and LeSage and
Pace (2004).

This chapter reviews the basic methodology as well as recent advances in the
specification, estimation and testing of spatial econometric models. It borrows
from, builds upon and extends earlier reviews presented in Anselin and Bera
(1998) and Anselin (2001a,b, 2002). In the next three sections, the basic spec-
ification problem of spatial econometrics is outlined, first motivated in terms
of theory, then with regard to models of spatial error dependence and spatial
lag dependence. This is followed by an overview of estimation and specification
testing, presented in the context of the linear regression model. Two specialized
sections deal with spatial effects in, respectively, panel data settings and models
with limited dependent variables. The chapter closes with some comments on
promising future directions.

2 Theoretical Motivations

In general, spatial regression specifications fall into two broad categories, re-
ferred to in the literature as spatial lag and spatial error models (Anselin 1988b).
Before considering estimation and specification testing, in this section, a few
comments are formulated on the theoretical foundations for such specifications.

To focus the discussion, consider the regression model:

yi = g(yJ , θ) + x′iβ + εi, (1)

where yi is an observation on the dependent variable at location i, i = 1, . . . , n,
g(yJ , θ) is a function of the values of the dependent variable observed at neigh-
boring locations j ∈ J , with j 6= i and with the set J of neighbors to be specified,
xi is a k × 1 vector of observations on explanatory (exogenous) variables, εi is
an error term, and θ and β are vectors of parameters. The function g of ob-
servations on the dependent variable at locations other than i is referred to as
a spatially lagged dependent variable, or spatial lag term. It is typically for-
mulated as a weighted average of neighboring values, where the neighbors are
specified through the use of a so-called spatial weights matrix.3 Specifically, a
mixed regressive, spatial autoregressive model (Anselin 1988b) takes the form

3A more extensive treatment of spatial weights is postponed until Section 3.1.1.
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(in matrix notation):

y = ρWy +Xβ + ε, (2)

where y is a n × 1 vector of observations on the dependent variable, W is a
n×n spatial weights matrix, which specifies the neighbors used in the averaging
(resulting in the spatial lag term, Wy), ρ is a spatial autoregressive parameter,
X a n × k matrix of observations on the explanatory variables, β a matching
vector or parameters, and ε a n× 1 vector of error terms.

The inclusion of the terms g(yJ , θ) or Wy on the right hand side of the
equation is motivated by theory as the equilibrium outcome of processes of
social and spatial interaction, considered in Section 2.1.

The case of spatial error autocorrelation is a special form of a non-spherical
error variance-covariance matrix. Specifically,

E[εiεj ] = σij 6= 0, (3)

for j 6= i, yielding a general variance-covariance matrix E[εε′] = Σ. The non-
zero off-diagonal elements correspond to a notion of spatial covariance when
they follow a given spatial structure or “spatial ordering” (Kelejian and Robin-
son 1992). The spatial ordering specifies for which pairs of locations i, j (with
i 6= j) the covariance will be non-zero. The ordering is based on concepts such
as contiguity (neighbors in space) or on the use of a distance metric. The consid-
eration of spatially correlated disturbance terms is motivated by measurement
error or by the presence of common shocks, reviewed briefly in Section 2.2.

A short overview of identification issues is presented in Section 2.3

2.1 Social and Spatial Interaction

Theoretical economic models of interacting agents and social interaction move
away from the traditional notion of atomistic agents and instead formalize how
interaction among the agents can lead to collective behavior and aggregate pat-
terns. These models have recently received considerable attention, as evidenced
in the development of theoretical frameworks to explain social phenomena such
as peer effects, neighborhood effects, spatial spillovers, network effects, and the
like (for examples and reviews, see, among others, Glaeser et al. 1992, 1996,
Akerlof 1997, Durlauf 1997, 2004, Brock and Durlauf 2001a,b, Manski 2000,
Conley and Topa 2002). In his recent review, Manski (2000) suggests three
specific channels of interaction from an economic perspective: constraint in-
teractions, expectations interactions and preference interactions. This leads to
specifications where the actions of other agents are included in the right hand
side of a model for individual behavior. In the review of Brock and Durlauf
(2001a), a further distinction is made between global interaction, specified as
the average behavior of the population, and local interaction, specified as the
average behavior of a reference group (“neighborhood”). The implications of
these specifications for model identification and estimation are complex, and
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treated at length in Manski (1993, 1995), and Brock and Durlauf (2001a,b),
among others.

In the spatial econometric literature, the spatial lag model is commonly con-
ceptualized as representing the empirical counterpart to the equilibrium solution
of strategic interaction, or, a spatial reaction function (Brueckner 1998, 2003).
The reaction function of Brueckner (2003) takes the form:

yi = R(y−i, xi), (4)

where yi stands for the level of decision variable y for decision maker i, y−i
reflects a function of the decision variables chosen by the other decision makers,
and xi is a vector of exogenous characteristics of i.4 A linear functional form
for R readily yields a specification such as equation (1) or (2).

Brueckner (2003) demonstrates how the reaction function (4) can be ob-
tained through two different behavioral mechanisms for strategic interaction.
In one, termed spillover, the level of the decision variable chosen by the other
agents (y−i) enters directly into the utility (objective function) of each individ-
ual agent. This yields a utility function such as:

U(yi, y−i;xi). (5)

This model can be extended to apply to a representative agent for an aggregate
spatial unit, such as a state, e.g., in the widely cited study of spillovers among
state expenditures in Case et al. (1993). Other examples in the literature apply
this framework as the motivation for the use of a spatial lag specification in
studies of the demand for public goods, pollution abatement and other forms of
yardstick competition (e.g., Besley and Case 1995, Murdoch et al. 1993, 1997,
Bivand and Szymanski 1997).

A second behavioral mechanism is termed resource flow by Brueckner (2003).
In this approach, the agent’s decision variable is indirectly affected by the deci-
sions of other agents, through their impact on an available resource. The utility
function thus becomes:

U(yi, si, xi), (6)

where si is the contribution of the resource used by the agent to the agent’s
utility. Interaction is induced through the effect of the actions of other agents
on the resource use. Specifically, each agent’s resource use is constrained by the
actions taken by other agents, as in

si = H(yi, y−i;xi). (7)

After substituting this into the utility function, the same reaction function as in
(4) obtains, again suggesting a spatial lag specification. Several tax competition
and related strategic interaction models can be categorized as resource flow

4Note that both global or local interaction can be implemented in this framework, by
specifying y−i either as a population mean or as the mean in a subset of the population.
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interactions (for further examples, see Brueckner 1998, 2003, Saavedra 2000,
Brueckner and Saavedra 2001).

In these frameworks, the use of the spatial lag specification follows from for-
mal economic reasoning. However, the model itself cannot distinguish between
which mechanism led to the equilibrium under consideration. The two processes
are observationally equivalent and cannot be identified empirically. This is one
example of many identification problems associated with spatial econometric
model specifications (see Section 2.3). In the statistical literature, it is referred
to as the inverse problem, pervasive in the analysis of cross-sectional spatial
data. It is also known as the problem of distinguishing true from apparent con-
tagion, the latter being a case of spatial heterogeneity. Clusters in space may
occur as the result of various mechanisms, including some that are not based
on interaction or contagion. The information contained in the cross-sectional
sample as such is insufficient to allow for the identification of the underlying
mechanism.5 This is a basic limitation of the cross-sectional setup, which is
somewhat (but not completely) eliminated in spatial panel data settings.

2.2 Measurement Error and Common Shocks

Unlike spatial lag models, spatial error specifications are typically not motivated
by a theoretical economic model, but instead are formulated to deal with data
problems. In other words, it is the cross-sectional nature of the data that
causes correlation problems, not necessarily the “spatial” nature of the model.
Therefore, error autocorrelation is more relevant in practice than lag correlation,
since it pertains to both spatial and non-spatial models.

In many instances in applied econometrics using cross-sectional data, there
is a mismatch between the spatial scale of the process under study (e.g., a hous-
ing market or labor market) and the spatial unit of observation (e.g., a census
tract or county). As a result, measurement errors are likely to systematically
vary across space (Anselin 1988b, p. 12). In addition, the data integration
(combination of observations from different spatial scales) and spatial interpo-
lation that is facilitated by modern geographic information systems will tend to
result in patterns of spatial correlation (Anselin 2001c). The statistical issues
related to the joint consideration of observations at different spatial scales is
referred to as the “change of support problem” (COSP). The incorporation of
these complexities into spatial econometric methodology is still limited to date
(for an overview of the statistical issues, see Gotway and Young 2002).

A theoretical framework for spatially correlated errors is provided by the
general approach based on “common shocks” outlined by Andrews (2003). This
focuses on the properties of estimators in a regression of a dependent variable
Y (γ) on explanatory variables X(γ), where γ is a spatial sample from an ar-
bitrary topological space Γ. Y and X are part of a random vector W (γ) =
(Y (γ), X(γ), S(γ)) that contains observed and unobserved terms S(γ) that are

5See, e.g., Johnson and Kotz (1969), Chapter 9, for a formal discussion of contagious
distributions.
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common to some units in the population. Common shocks are defined as ran-
dom variables C(γ) measurable on a σ-field such that, conditional on this field,
a spatial sample Wi : i = 1, . . . is i.i.d. This general framework includes a wide
range of forms of spatial correlation, as well as group effects and factor struc-
tures.6 Factor structures are increasingly used in recently formulated models to
deal with general forms of cross-sectional correlation in panel data settings (see
Section 3.4).

2.3 Identification Issues

The degree of simultaneity and endogeneity inherent in spatial correlation cre-
ates a number of difficult identification problems. The best known of these is
arguably the “reflection problem” outlined in Manski (1993), where it is shown
that the parameters in models of social/spatial interaction are only identified
under strict conditions. In Manski’s model, three types of social interaction are
considered, referred to as endogenous effects (interaction effects among individ-
ual agents), contextual effects (exogenous group characteristics) and correlated
effects (observed or unobserved characteristics that agents have in common).

A general linear model for social interaction is then (using Manski’s nota-
tion):

y = α+ β E(y|x) + E(z|x)′γ + z′η + u, (8)

where y is the dependent variable (e.g., participation in gangs), x are exogenous
group characteristics (e.g., census tract median income), and z and u are ob-
served and unobserved variables that directly affect y (e.g., age of the individual
as observed, and “culture” as unobserved). The endogenous effect is specified
in terms of the group mean, E(y|x). The unobserved characteristics are further
assumed to be correlated across individuals in the group, with E(u|x, z) = x′δ.
The resulting conditional expectation, or regression, is then:

E(y|x, z) = α+ β E(y|x) + E(z|x)′γ + +x′δ + z′η. (9)

Endogenous effects are present when β 6= 0, contextual effects when γ 6= 0, and
correlated effects when δ 6= 0. The reduced form of this regression yields:

E(y|x) = α/(1− β) + E(z|x)′(γ + η)/(1− β) + x′δ/(1− β), (10)

which demonstrates how, without further restrictions, the different social effects
cannot be separately identified. Manski (1993) outlines the types of constraints
and instruments needed to obtain identification.7

In the spatial lag model, the reflection problem is avoided with a judicious
specification of the spatial weights matrix. An important distinction between
the endogenous effect β E(y|x) in Manski’s model and the spatially lagged effect
ρWy is that the latter only pertains to a subset of the sample, not to the

6For technical details, see Andrews (2003).
7See also Manski (1995, 2000) and Brock and Durlauf (2001a,b) for technical details.
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population conditional expectation (see also Irwin 2004, for further discussion).
Complications remain when both endogenous and correlated effects are present.
An alternative approach to separately identify endogenous effects in the presence
of correlated effects consists of a natural experiment design (Irwin 2004).

While much of the discussion of social interaction is couched in terms of
models for individual agents, in practice estimation is often carried out for ag-
gregate spatial units of observation (e.g., using the device of a representative
agent). This can lead to an ecological fallacy or cross-level bias problem, where
aggregate results are interpreted as if they pertained to individual behavior
(for reviews of this issue, see, e.g., Stoker 1993, King 1997, Greenland 2002).
When both individual characteristics as well as group effects are contained in
a regression specification, estimation at the group level does not allow for the
separate identification of individual and contextual effects (Greenland 2002).
Moreover, the coefficients in a spatial lag specification at the individual level
are not estimated consistently by the coefficients in a spatially aggregate coun-
terpart, as shown in Anselin (2002). Consequently, considerable care is needed
in the specification as well as the interpretation of models for spatial and social
interaction.

3 Specification of Spatial Error Dependence

In the presence of spatial correlation, the error variance-covariance matrix E[εε′] =
Σ contains n variance terms and n× (n− 1)/2 off-diagonal parameters. These
cannot be separately estimated in a single cross-section with n observations.
A fundamental specification problem in spatial econometrics is the need to im-
pose constraints or structure on the elements of Σ such that estimation becomes
possible. Several approaches have been suggested. They can be categorized as
spatial stochastic process models, direct representation, nonparametric distance
models, and error component models. They are considered in turn.

3.1 Spatial Stochastic Processes

A spatial stochastic process, or spatial random field, is a collection of random
variables, indexed by location. Using regression error terms (εi) as an example,
this can be formally expressed as

{εi,∈ D}, (11)

where D is a spatial index set, either a continuous surface or a finite set of
discrete locations. The specification of the spatial process for the regression
error terms gives rise to a particular covariance structure, or pattern of spatial
autocorrelation. A crucial element in the specification is the determination of
the neighbor structure, or, formally, which locations will be represented in the
spatial lag term on the right hand side of the equation. The connectedness
structure is expressed by means of a spatial weights matrix, which is considered
first. This is followed by a brief review of commonly used process specifications.
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3.1.1 Spatial Weights

The spatial weights matrix ia a n × n positive matrix, W, through which the
“neighborhood set” is specified for each observation. A location (observation)
appears both as row and column, with non-zero matrix elements wij indicat-
ing a neighbor relation between observation (row) i and (column) j. By con-
vention, self-neighbors are excluded, such that the diagonal elements wii = 0.
Also, the weights matrix is often used in row-standardized form, with weights
wsij = wij/

∑
j wij .

8 The row-standardization facilitates the interpretation of
the weights as constructing an average of the neighboring values in the so-called
spatial lag operator,

∑
j wijzj (Anselin 1988b, pp. 22–24). Since the traditional

notion of a spatial shift is non-operational in irregular spatial layouts, this av-
eraging is used instead (see Anselin and Bera 1998, pp. 245–246, for a more
in-depth discussion and further references). In matrix notation, the spatial lag
of a random vector z is then Wz. In spatial econometric regression models, a
range of specifications can be obtained by applying the spatial lag operator to
the dependent variable, Wy, the explanatory variables, WX, or the error term,
Wε.

There is very little formal guidance in the choice of the “correct” spatial
weights for a given model specification. Typically, the definition of neighbor
is based on geographic criteria, such as polygons having a common boundary
(contiguity) or points being within a critical distance band. Other geographic
criteria include combinations of contiguity and border length, or k-nearest neigh-
bors. The literature on the specification of spatial weights is extensive, with
early discussions in Cliff and Ord (1973, 1981), Upton and Fingleton (1985),
Anselin (1988b, Chapter 3), and recent technical reviews in Dietz (2002), Leen-
ders (2002) and Anselin (2002, pp. 256–260).

Spatial weights need not be limited to geographic considerations, and exten-
sions to abstract spaces have been suggested, such as those arising from social
networks or economic distance (e.g., Case et al. 1993, Conley and Ligon 2002,
Conley and Topa 2002). For example, the choice of a suitable metric can yield
general measures of distance (dij), which are then converted into inverse dis-
tance spatial weights, as wij = 1/dij . More complex functional forms have been
suggested as well, including negative exponential and gravity-like measures that
combine a “mass” measure at origin and destination with a distance decay effect
(e.g., Anselin 1988b, Ferrándiz et al. 1995, 1999)

An interesting form of “economic” weights follows when a hierarchical or
group structure is suggested by the data, as in Case (1991, 1992). All ob-
servations belonging to the same group (e.g., a region) are considered to be
neighbors, but the neighbor relation does not extend across groups. This re-
sults in a block-diagonal weights matrix with each block consisting of weights
1/(ng−1) (with ng as the number of observations belonging to the group). This
structure has different properties from the distance or contiguity based weights,
with important implications for estimation (see Lee 2002, Kelejian and Prucha
2002).

8In what follows, the notation wij will be used to denote row-standardized weights.
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In order to obtain suitable asymptotic properties for estimators and specifi-
cation tests, the weights matrix is subject to regularity conditions. These regu-
larity conditions boil down to bounds on the weights and sums of the weights.
Specifically, as pointed out in the work of Kelejian and Prucha (e.g., Kelejian
and Prucha 1999, Assumption 3, p. 515), the sums

∑n
i=1 |wij | and

∑n
j=1 |wij |

must be bounded by cw <∞. The bounds are related to summability conditions
typically required to ensure that the error variance-covariance matrix is proper
(see also Mandy and Martins-Filho 1994). Spatial weights based on notions of
contiguity easily satisfy these regularity conditions. For more complex weights,
such as those derived from distance bands in economic space, careful consider-
ation of the regularity conditions is required, especially when the weights also
contain parameters.

3.1.2 Spatial Autoregressive Process – SAR

One of the earliest and simplest specifications considered for a spatial process
is the simultaneous spatial autoregressive model (SAR), suggested by Whittle
(1954). This specification applies to the special case where the data are located
on a regular rectangular lattice. The right hand side of the equation is simply a
weighted sum of the North, South, East and West neighbors in the lattice, each
assigned a separate parameter.

Using ε for the regression error term, and with the locations on the rectan-
gular lattice labeled by row (r) and column (c), this model is:

εr,c = ξ1εr−1,c + ξ2εr+1,c + ξ3εr,c−1 + ξ4εr,c+1 + ur,c, (12)

with ξk, k = 1, . . . , 4, as the spatial autoregressive parameters and u as an
idiosyncratic error term.9 In irregular lattice layouts (such as a cross-section of
counties or city neighborhoods), this simple specification is not applicable, since
the number of neighbors typically varies by observation and the concept of a
spatial shift has no meaning. Instead, a spatial weights matrix is used, as in:

εi = λ
∑
j

wijεj + ui, (13)

with λ as the autoregressive coefficient. Alternatively, in matrix notation, for
the n× 1 vector of error terms, ε:

ε = λWε+ u. (14)

Since

ε = (I − λW )−1u, (15)

the error variance-covariance matrix follows as

E[εε′] = (I − λW )−1E[uu′](I − λW ′)−1. (16)
9See also Cressie (1993, p. 405–7, 456–7) for further details.
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Under the standard assumption of i.i.d. errors u, with E[uu′] = σ2I, this ex-
pression simplifies to (after rearranging terms):

E[εε′] = σ2[(I − λW )′(I − λW )]−1. (17)

In the more general case where E[uu′] = σ2Ω, e.g., to allow heteroskedastic
errors, the full expression is:

E[εε′] = σ2(I − λW )−1Ω(I − λW ′)−1. (18)

Note that in practice, the weights matrix W is typically not symmetric (e.g.,
after row-standardization, or using k-nearest neighbors), so that (I − λW )−1 6=
(I − λW ′)−1. In order to get better insight into the structure of the covariance
matrix induced by this process, consider the case where W corresponds to row-
standardized first order contiguity. With |λ| < 1, the following expansion holds
(also known as the Leontief expansion):

(I − λW )−1 = I + λW + λ2W 2 + λ3W 3 + . . . , (19)

and a similar expression with W ′. The product of the two inverse terms then
yields a sum of cross products of the form

I + λ(W +W ′) + λ2(WW +WW ′ +W ′W ′)
+λ3(WWW +WWW ′ +WW ′W ′) + . . . (20)

The resulting covariance is quite different from the familiar band structure for
first order autoregressive processes in time. It is qualitatively similar, in that
the strength of the covariance decreases (higher powers of λ) for higher orders
of contiguity (powers of W ), but the pattern is considerably more complex (due
to the products of W and W ′). Also, it is important to note that even though
the W in the SAR process may only pertain to the first order neighbors, the
resulting spatial covariance reaches far beyond those first order neighbors, in
fact inducing global spatial autocorrelation.

Most importantly, when the number of neighbors (the nonzero elements in
W ) across locations is not constant (the typical case in practice), the diagonal
elements in (20) are no longer constant, inducing heteroskedasticity. This het-
eroskedasticity is present even when u is i.i.d., greatly complicating estimation
and specification testing.10

3.1.3 Conditional Autoregressive Process – CAR

The probabilistic model behind the SAR specification is based on the joint
distribution of a random vector, such as ε. An alternative approach focuses on
the conditional distribution. While originally outlined in Besag (1974), and very
little used in the spatial econometric literature, this perspective is prevalent in

10For further technical details, see Haining (1990, pp. 81–83), Cressie (1993, pp. 405–407),
Anselin and Bera (1998, pp. 248–249), and Anselin (2003a, pp. 155–156), among others.
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the recent literature on Bayesian hierarchical spatial modeling (e.g., Banerjee
et al. 2004, pp. 76–84). It is used both as a model for spatial correlation itself,
and as a spatial prior for parameters in a hierarchical setup.

In essence, the conditional approach consists of establishing conditions under
which a density for the random variable at a given location, conditional on its
neighbors, yields a proper joint density (Kaiser and Cressie 2000). The formal
result is contained in the Hammersley-Clifford theorem (Cressie 1993, pp. 410–
419).

Assuming normality, and ignoring complications from heteroskedasticiy, the
conditional expectation at location i, conditional upon all the other locations
in the system (j 6= i), is expressed the CAR model as a linear function of the
neighbors:

E[εi|εj , j 6= i] = λ
∑
j

wijεj . (21)

Under the proper constraints on the elements of W (e.g., Cliff and Ord 1981, p.
148, 179–183), this yields a joint multivariate normal distribution with variance

E[εε′] = σ2(I − λW )−1. (22)

Extension to other distributions have been suggested as well, such as auto-
logistic and auto-Poisson, but these only obtain under very restrictive conditions
(Banerjee et al. 2004, pp. 84-84).

Two important characteristics of the variance structure in (22) should be
noted. First, it is required that the spatial weights matrix W be symmet-
ric, which excludes the use of row-standardized weights (or k-nearest neighbor
weights) and affects the parameter space for the autoregressive coefficient λ (typ-
ically making λ much smaller than for corresponding row-standardized weights).
Second, the range and strength of spatial covariance induced by this model is
much smaller than for a corresponding SAR model. This can be seen by com-
paring the expansion in (19), which corresponds to the CAR model, to that in
(20) for the SAR model (see also Wall 2004)

3.1.4 Spatial Moving Average Process – SMA

A third type of spatial stochastic process used to model the structure of spatial
correlation is based on a moving average specification (see Haining 1988, 1990,
pp. 83–84).

For the individual error terms, this model is:

εi = γ
∑
j

uj + ui, (23)

where γ is the moving average parameter. In matrix notation, for the random
vector ε, the corresponding expression is:

ε = γWu+ u. (24)
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Assuming i.i.d. errors u, the resulting error covariance matrix takes on the form:

E[εε′] = σ2[I + γ(W +W ′) + γ2WW ′]. (25)

In contrast to the SAR and CAR specifications, this represents a local pattern of
autocorrelation. Inspection of (25) reveals that the only non-zero off-diagonal
elements correspond to the non-zero elements of W (W ′) and WW ′. In the
case of first order contiguity for W , the matrix product WW ′ contains non-zero
entries for the first and second order neighbors only. As a result, there is no
spatial covariance beyond the second neighbor, hence the local characteristic
(Anselin 2003a, pp. 156–157).

As in the SAR model, a non-constant number of neighbors across observa-
tions will induce heteroskedasticity, even when u is i.i.d.

3.2 Direct Representation

In a direct representation, the covariance between each pair or error terms is
specified as an inverse function of the distance between them. Formally,

E[εiεj ] = σ2f(dij , φ), (26)

with εi,j as the regression error terms, σ2 the error variance, dij the distance
separating i and j, and f a distance decay function. The function f should
be a distance decay function and ensure a positive definite covariance matrix.
This requires ∂f/∂d < 0 and |f(dij , φ)| ≤ 1, with φ ∈ Φ as a p × 1 vector
of parameters on an open subset Φ of Rp. This approach is closely related to
variogram models used in geostatistics, and requires assumptions of stationarity
and isotropy (see Cressie 1993, for an extensive review). The complete variance-
covariance is then:

E[εε′] = σ2Ω(dij , φ). (27)

Note that, in contrast to the SAR and SMA specifications, the spatial auto-
correlation in this model does not induce heteroskedasticity, since the diagonal
terms of Ω are constant.

The direct representation specification of spatial autocovariance dates back
to early papers by Cook and Pocock (1983), Mardia and Marshall (1984),
Warnes and Ripley (1987), and Mardia and Watkins (1989), among others.
Its application in spatial econometrics has been primarily in studies of real es-
tate markets, such as Dubin (1988, 1992) and Basu and Thibodeau (1998) (see
also the review in Dubin et al. 1999).

The choice of the distance decay function is not arbitrary and the require-
ment of ensuring a positive definite covariance matrix imposes constraints on
the functional form and the parameter space, as well as on the metric and
scale used for the distance measure (for technical details, see, e.g., Mardia and
Marshall 1984, pp. 138–139). The extent to which global rather than local
autocorrelation is modeled depends on the slope of the distance decay function.
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A commonly used specification is based on a negative exponential distance
decay:

E[εε′] = σ2[I + γΨ], (28)

with the off-diagonal elements of Ψ, Ψij = e−φdij , and γ as a non-negative
scaling parameter. In order to facilitate interpretation and specification testing,
the diagonal elements of Ψ are often set to zero (the variance is captured by
the term σ2I). The distance metric and parameter space must be such that
elements of e−φdij yield a valid spatial correlation matrix.11

3.3 Nonparametric Distance Models

An alternative to the parametric specification of spatial covariance as a function
of a distance metric is a nonparametric approach. This is an extension to the
spatial domain of the principle behind heteroskedastic and serially autocorre-
lation consistent covariance matrix estimation of Newey and West (1987) and
Andrews (1991), among others.

As in the direct representation approach, the spatial covariance is a func-
tion of the distance separating two observations, but the functional form is left
unspecified. For example, for the regression error terms:12

E[εiεj ] = f(dij), (29)

where dij is a “proper” positive and symmetric distance metric (for regularity
conditions on the distance metric, see Conley 1999, Kelejian and Prucha 2003).

This approach was first used in Conley (1999), and further elaborated upon
in Conley and Ligon (2002) and Conley and Topa (2002). In its simplest form,
the estimator for the familiar term V = n−1X ′ΣX is:

V̂ = n−1
∑
dij<δ

xix
′
j ε̂iε̂j , (30)

where δ is a distance cutoff, xi is a column vector of observations at i, and ε̂i
is a residual at i. This estimator follows essentially the same principle as in
the time series domain by adding up sample spatial autocovariances. In order
to ensure positive definiteness of the estimator, a kernel is applied to the cross-
products. For example, in the recent paper by Kelejian and Prucha (2003), a
general covariance matrix estimator takes on the form:13

V̂ = n−1
∑
i

∑
j

xix
′
j ε̂iε̂jK(dij/d), (31)

11For further details, see Mardia and Marshall (1984, p. 141) and Anselin (2001a, pp.
128–130).

12Since E[ε] = 0, the usual deviations from the mean can be ignored in this example.
13The estimator presented in Kelejian and Prucha (2003) is slightly more general than the

illustration given here in that it pertains to instrumental variable estimation.
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whereK() is a kernel function and d a suitable cutoff distance. Formal properties
of the kernel estimator for a spatial autocovariance were also established in Hall
and Patil (1994) (see also Conley and Ligon 2002, Conley and Topa 2002, for
further elaboration and examples).

Note that this structure results in zero spatial autocovariance beyond the
distance cut-off. The latter is bounded but allowed to grow with the sample
size, potentially yielding more global patterns of spatial correlation in larger
samples.14

3.4 Error Component Models

In panel data models, it is customary to assume the existence of an unobserved
error component, shared by all cross-sectional units in a given time period. This
gives rise to a particular form of spatial autocorrelation, where all error terms
are equicorrelated (see Section 7.2). In a pure cross-section, such an approach
is not feasible, but alternative concepts of error components are applicable.

In Kelejian and Robinson (1995), an error decomposition was proposed that
combines a location-specific or local component with a regional or spillover
component. Formally, the error term in this spatial error component process is:

ε = Wψ + ξ, (32)

with ψ as an n×1 vector of errors that incorporate the spillover across neighbors,
defined through a spatial weights matrix W , and ξ as a matching vector of
location-specific disturbances. Each error component is i.i.d. with:

E[ψ] = E[ξ] = 0, (33)
E[ψψ′] = σ2

ψI, E[ξξ′] = σ2
ξI, (34)

E[ψiξj ] = 0,∀ i, j. (35)

The error variance-covariance matrix then becomes:

E[εε′] = σ2
ψWW ′ + σ2

ξI, (36)

with σ2
ψ as the spatial variance component, and σ2

ξ the remainder variance
term. Since the matrix product WW ′ is positive definite, the error components
variance-covariance matrix is positive definite with σ2

ψ ≥ 0 and σ2
ξ > 0.

This particular specification is a model for local spatial correlation, as can be
seen by comparing (36) to the terms in the SMA variance (25). The two models
share the term in I and WW ′, but the spatial error components model does not
have a term in W or W ′. Using a first order contiguity W as an example, this

14In Conley (1999), where the setting is a rectangular grid, the critical distance in each
direction is o(n1/3) in the dimension of that direction (see assumption C1 in Conley 1999, p.
12). In Kelejian and Prucha (2003, Assumption 4a), the constraint is through the maximum
number of neighbors within the critical distance, ln = o(n1/3). This implies that for a data
set with n = 100, the distance criterion would result in no more than 4 spatially covarying
neighbors allowed per observation, whereas with n = 1000, the number of spatially correlated
neighbors increases to 10.
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implies that the spatial error covariance only contains first order neighbors that
are also contained in the non-zero terms in WW ′. More importantly, there is
no spatial correlation beyond the second order neighbors.

The general framework outlined in Andrews (2003) provides a way to con-
ceive of a mechanism for a broad range of common shocks. This includes the
familiar error components from the panel data literature, where the error term
is decomposed into a term associated with the location/individual (i), a term
associated with the time period (t) and an idiosyncratic error term. Recent
extensions to this model have been offered in the literature on heterogeneous
panels. The time component can be generalized and expressed in the form of
an unobserved common effect or factor ft to which all cross-sectional units are
exposed. However, unlike the standard error component model, each cross-
sectional unit has a distinct factor loading on this factor. The simplest form is
the so-called one factor structure, where the error term at location i and time t
is specified as:

εit = δift + uit, (37)

with δi as the cross-sectional-specific loading on factor ft, and uit as an i.i.d zero
mean error term. Consequently, cross-sectional (spatial) covariance between the
errors at i and j follows from the the inclusion of the common factor ft in both
error terms:

E[εitεjt] = δiδjσ
2
f . (38)

The common factor model has been extended to include multiple factors. In
these specifications, a wide range of covariance structures can be expressed by
including sufficient factors and through cross-sectional differences among the
factor loadings (for further details, see Driscoll and Kraay 1998, Coakley et al.
2002, Pesaran 2002, Hsiao and Pesaran 2004).

4 Specification of Spatial Lag Dependence

Spatial lag models include terms Wy and/or WX on the right hand side of the
equation. This leads to spatial multiplier effects, similar in nature to the social
multiplier of Glaeser et al. (1996, 2002). In this section, these specifications
are further explored, with particular attention to identification issues in higher
order spatial models.

4.1 Mixed Regressive Spatial Autoregressive Model

The basic spatial lag specification is the mixed regressive, spatial autoregressive
model, introduced in Section 2, equation (2):

y = ρWy +Xβ + ε, (39)
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with the i.i.d. error vector ε. After some matrix algebra, the reduced form is
obtained as:

y = (I − ρW )−1Xβ + (I − ρW )−1ε. (40)

This is a nonlinear model in ρ and β, with an error term that follows a SAR
process. Consequently, the error variance will be as in (17).

The reduced form also illustrates how the spatially lagged dependent variable
in (39), Wy, is endogenous, violating the assumptions of the standard regression
model:

Wy = W (I − ρW )−1Xβ +W (I − ρW )−1ε, (41)

such that E[(Wy)′ε] 6= 0 (see also Anselin 1988b, pp. 58–59).
It is worthwhile to further consider the similarity between the spatial lag

model and the linear regression with a SAR error. Inserting the error equation
(15) into the usual linear regression specification y = Xβ + ε yields:

y = Xβ + (I − λW )−1u, (42)

or, alternatively,

y = λWy +Xβ − λWXβ + u. (43)

This latter specification is referred to as a spatial Durbin model or spatial com-
mon factor model, in analogy to the time series case (Anselin 1980, 1988b,
Burridge 1981).

Comparison of (39) and (43) demonstrates how the spatial error model is a
special case of a spatial lag model, but with additional nonlinear constraints on
the parameters (the common factor constraints). Alternatively, comparison of
(40) and (42) shows how the spatial lag model is a special case of a spatial error
model, that is nonlinear in the parameters. Also note how the two specifications
are not nested. Setting either ρ or λ to zero in the respective models yields an
ordinary linear regression equation, not one of the spatial models. The non-
nested nature of the two specifications, together with their similarity, creates
considerable problems in identification, estimation and diagnostic testing (e.g.,
Anselin 1988b, Kelejian and Prucha 1997).

4.1.1 Spatial Multipliers

An important aspect of the spatial lag model is the spatial multiplier, which
can be illustrated by means of the reduced form (40). Consider the conditional
expectation E[y|X]. Since E[(I − ρW )−1ε|X] = 0, it follows that

E[y|X] = (I − ρW )−1Xβ. (44)

Using the expansion of the inverse term as in (19) yields:

E[y|X] = Xβ + ρWXβ + ρ2W 2Xβ + . . . , (45)
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which demonstrates how the value of y at i depends not only on xi, but on the x
at other locations as well, with locations further removed (higher powers of W )
discounted by powers of the autoregressive parameter. This illustrates the global
nature of the spatial multiplier effect in the spatial lag model. Specifically, if a
unit change were introduced in a given explanatory variable Xk, the effect on
y would amount to [1/(1 − ρ)]βk (Kim et al. 2003, p. 35). More generally, for
any vector of non-uniform changes in a given explanatory variable, ∆Xk, the
resulting spatial pattern of changes in the dependent variable is:

∆y = (I − ρW )−1∆Xkβk. (46)

The global nature of the spatial multiplier in the spatial lag model contrasts
with the local multiplier in a model with spatially lagged explanatory variables.
Specifically, in a spatial cross-regressive model (Florax and Folmer 1992),

y = Xβ +WXγ + ε, (47)

with WX as the spatially lagged explanatory variables (excluding the constant
term) and γ a matching vector of parameters. The impact on y of any change
in a given explanatory variable, ∆Xk is limited to the immediate effect ∆Xkβk
and the matching spatial lag effect (including only those neighbors as specified
in W ), W∆Xkγk (for a review of a wide range of models incorporating spatial
multipliers, see Anselin 2003b).

4.2 Higher Order Models

In analogy to higher order autoregressive models in the time series domain, mul-
tiple spatial lagged dependent variables may be included in a spatial lag model.
For example, Brandsma and Ketellapper (1979) suggested a biparametric spatial
autoregressive model:

y = ρ1W1y + ρ2W2y +Xβ + ε, (48)

where W1 and W2 are different spatial weights. Higher order SAR models were
considered in Blommestein (1983, 1985):

y = ρ1W1y + ρ2W2y + · · ·+ ρpWpy +Xβ + ε, (49)

with Wi, i = 1, . . . , p as the associated spatial weights. The weights are typically
(but not necessarily) associated with increasing orders of contiguity.

In contrast to time series models, care must be taken to avoid redundancies
and circularities in the higher order spatial weights. As shown in Blommestein
(1985), simple powers of the first order contiguity weights W1, e.g., Wp =
(W1)p result in weights matrices that include lower order neighbors as well.
These redundancies affect the properties of estimators and should be avoided
(Blommestein 1985, Blommestein and Koper 1998). In order to ensure that the
parameters in a higher order model are properly identified and to avoid biased
estimates, it is typically assumed that the spatial weights do not overlap. More
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formally, with wi∗ as the i-th row of the weights matrix, and for any two orders
of contiguity h, l:

(whi∗)(w
l
i∗)

′ = 0. (50)

In time series analysis, the problem of redundancy and circularity of higher
order lags does not occur, due to the lack of two-way feedback in such models.
In spatial analysis, consider the simple biparametric specification in (48), with
W1 = W11 +W0 and W2 = W22 +W0, where W0 is a weights matrix containing
the common elements of W1 and W2. Taking into account this overlap yields:

y = ρ1W11y + ρ2W22y + (ρ1 + ρ2)W0y +Xβ + ε, (51)

which illustrated the potential problems of identification and interpretation
when the induced parameter constraints are not satisfied (for an extensive tech-
nical discussion, see Anselin and Smirnov 1996).

A more encompassing specification, that includes both higher order spatially
lagged dependent variables as well as spatial moving average error terms, was
suggested by Huang (1984). The so-called SARMA(p, q) model takes the same
form as equation (49) for the spatial autoregressive part, with the error term
following:

ε = λ1W1u+ λ2W2u+ · · ·+ λqWqu+ u, (52)

a spatial moving average process of order q. The full order p, q has seen no
application in practice. However, a SARMA(1,1) model is commonly considered
as an alternative in specification testing (see, e.g., Anselin 2001a).

A different higher order specification that has received significant attention
consists of a spatial lag model with a spatially autoregressive error term (Anselin
1988b, p. 61):

y = ρW1y +Xβ + ε (53)
ε = λW2ε+ u, (54)

with E[uu′] = σ2Ω to allow for heteroskedasticity. While similar to a first order
autoregressive model with serially correlated errors in time series, the spatial
model is much more complex and requires great care to ensure identification of
parameters.

After substituting (15) for the error term in the spatial lag specification and
some further algebra, the following result is obtained:

y = ρW1y + λW2y − ρλW2W1y +Xβ − λW2Xβ + u, (55)

which simplifies when W2W1 = 0 (non-overlapping weights):

y = ρW1y + λW2y +Xβ − λW2Xβ + u. (56)

However, in practice, the same weights are often used for both the lag and the
error part, W1 = W2, which yields:

y = (ρ+ λ)Wy − ρλW 2y +Xβ − λWXβ + u. (57)
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When all β = 0, this model will not be identified (for a technical discussion,
see Kelejian and Prucha 1998, Kelejian et al. 2004, Das et al. 2003, Lee 2003).
But even with some β 6= 0, there will be difficulty disentangling the role of ρ
and λ. For example, consider the covariance that is induced by this model for
the dependent variable y. From the reduced form, ignoring heteroskedasticity
(Ω = I), and setting W1 = W2, some algebra yields the variance-covariance
matrix for y as:

Var[y] = σ2(I − ρW )−1(I − λW )−1(I − λW ′)−1(I − ρW ′)−1. (58)

Using the familiar expansion (e.g., equation 19) for the first two matrix inverses
in this expression gives the following leading terms:

I + (λ+ ρ)W + (ρ2 + λρ+ λ2)W 2 + . . . , (59)

and a similar expression in the transpose W ′. It is clear that λ and ρ are com-
pletely interchangeable, suggesting that the same spatial covariance structure
for y can be obtained by a range of combinations of lag and error dependence.

In practice, higher order models are typically used as alternatives in diag-
nostic tests. Rejection of the null may not necessarily imply that the higher
order model is the proper alternative. Since the specification of the weights ma-
trix is an additional source of uncertainty, it is possible (likely) that a different
specification of the weights eliminates the need for the higher order model (see
Florax and Rey 1995, for a discussion of the effects of misspecified weights).

5 Estimation

The estimation problems associated with spatial regression models are distinct
for the spatial lag and spatial error case. Spatial error models are special in-
stances of specifications with a non-spherical error. On the other hand, the
inclusion of a spatially lagged dependent variable results in a form of endogene-
ity. Each of these complications can be tackled with the customary econometric
methods. However, the two-directional (feed-back) nature of spatial dependence
and the reliance on a distance metric or spatial weights require specialized tech-
niques to handle the associated probabilistic and computational aspects.

In this section, the two main approaches towards estimation of spatial mod-
els are considered in turn. They are based on the maximum likelihood principle
and the generalized methods of moments. Other methods, such as the coding
approach (Besag 1974, Haining 1990), and Markov Chain Monte Carlo estima-
tion in a Bayesian framework (LeSage 1997, 1999) have been suggested as well,
but they are not in common use and will not be further considered here (for an
application of MCMC to the spatial probit model, see Section 8.2). The review
of estimation methods is prefaced by a brief discussion of the complexities of
asymptotic reasoning in the spatial domain.
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5.1 Asymptotics in Space

The properties of estimators (and test statistics) in spatial econometrics are
based on asymptotic considerations that use laws of large numbers (LLN) and
central limit theorems (CLT) to establish consistency and asymptotic normality.
These are not simple generalizations to two dimensions of results for the time
domain, but there are differences in three important respects.

First, many spatial processes (e.g., SAR and SMA) also induce heteroskedas-
ticity, requiring a joint treatment of dependence and heterogeneity. Specifically,
this non-stationarity precludes reliance on central limit theorems for stationary
mixing spatial random fields (e.g., Bolthausen 1982), which have been used to
obtain the properties of estimators in models where the dependence is based
on a distance metric (Conley 1999). The treatment of heterogeneous spatially
dependent processes that include spatial weights is further complicated by the
necessity to consider CLT and LLN for triangular arrays. This is caused by
the fact that the weights depend on the sample size, and precludes “standard”
results (e.g., for maximum likelihood estimation) from being directly applicable.
The importance of triangular arrays in the asymptotics of spatial econometrics
is highlighted in the work of Kelejian and Prucha (1998, 1999).

A second important distinguishing characteristics is the way in which spatial
sampling is conceptualized and the type of population it pertains to. Spatial
data can be viewed as either constituting a continuous surface, or as a collection
of discrete objects. The former view is prevalent in the physical sciences and
geostatistical approaches (e.g., Cressie 1993, Stein 1999). The latter is common
in spatial econometrics. When considering a population of spatial objects, the
mechanism through which observations or locations are selected is not arbitrary,
and can be deterministic (fixed grid cells or points) or stochastic. In the stochas-
tic case, an important concept is that of a directing process, which is the set of
random indices (i.e., locations) used to draw samples from the population. As
a consequence, the random spatial process itself becomes subordinated to the
directing process, a complication which is typically not encountered in the time
domain (see Conley 1999, Andrews 2003, for a technical discussion).

A third distinction pertains to the way in which the sample increases to
reach the asymptotic limit, n → ∞. A pure increasing domain structure is
obtained when the minimum distance between neighboring locations remains
bounded away from zero as the sample size grows (Cressie 1993). One can
conceive of this situation as a sampling structure where new data points are
added at the edge such that the observation “region” becomes unbounded. In
contrast, infill asymptotics are obtained when the sample region is bounded, but
the number of data points increases. This yields a denser and denser sampling
surface, with the minimum distance between sample locations approaching zero
as n→∞. Asymptotic results that hold in the increasing domain case are often
not transferable to the infill case, as shown in Lahiri (1996). Mixed situations
can be considered as well, where an increasing domain “grid” is combined with
infill in subregions (see, e.g., Fazekas and Kukush 2000, Lahiri and Mukherjee
2004).
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All asymptotic properties are based on regularity conditions that restrict the
range and strength of spatial dependence and heterogeneity. In models using
spatial weights, these conditions translate into constraints on the structure of the
weights (see Section 3.1.1). In practice, these are readily satisfied by contiguity-
based weights, but not necessarily by more complex specifications. Similar
regularity conditions on direct representation models are formulated in Mardia
and Marshall (1984).

5.2 Maximum Likelihood Estimation

5.2.1 Spatial Lag Model

The point of departure for maximum likelihood (ML) estimation in spatial re-
gression models is an assumption of normality for the error term. In general,
allowing for heteroskedasticity and/or error correlation, the n × 1 error vector
has a multivariate normal distribution, ε ∼ N(0,Σθ), with the subscript θ de-
noting that Σ may be a function of a p × 1 vector θ of parameters. In the
commonly considered i.i.d. case, this simplifies to ε ∼ N(0, σ2I), with θ = σ2.

To move from the likelihood for the error vector to a likelihood for the ob-
served dependent variable, a Jacobian of the transformation needs to be inserted.
In the spatial lag model (39), this corresponds to:

|∂ε/∂y| = |∂(y − ρWy −Xβ)/∂y| = |I − ρW |, (60)

the determinant of a n× n matrix. Note that this same Jacobian reduces to a
scalar 1 in the standard regression model, since |∂(y −Xβ)/∂y| = |I| = 1. The
presence of the Jacobian term constitutes a major computational complication
(see Section 5.2.3).

Using the standard result for a multivariate normal distribution, and taking
into account the Jacobian term, the log-likelihood for the spatial lag model
follows as:

L = −(n/2)(ln 2π)− (1/2) ln |Σθ|+ ln |I − ρW |
−(1/2)(y − ρWy −Xβ)′Σ−1

θ (y − ρWy −Xβ). (61)

Maximizing the log-likelihood is not equivalent to minimizing weighted least
squares (the last term in L), as in the standard linear regression model. The
main difference is in the presence of the log-Jacobian term ln |I − ρW |. This
illustrates informally how weighted least squares will not yield a consistent es-
timator in the spatial lag model, due to the endogeneity in the Wy term (see
Section 4.1).15 The log-Jacobian also implies constraints on the parameter space
for ρ, which must be such that |I − ρW | > 0.

15An exception is the case where all observations in a “region” are considered to be neigh-
bors, yielding weights of 1/(ng−1) for each (with ng as the number of members in the group).
In this case, OLS can be shown to yield consistent estimates (Lee 2002, Kelejian and Prucha
2002).



Spatial Econometrics 24

ML estimates for β, ρ and θ are obtained as solutions to the usual first order
conditions (for technical details, see Ord 1975, Cliff and Ord 1981, Anselin 1980,
1988b, Anselin and Bera 1998, among others):

∂L/∂β = e′Σ−1
θ X = 0, (62)

∂L/∂ρ = −tr[W (I − ρW )−1] + e′Σ−1
θ Wy = 0, (63)

∂L/∂θi = −(1/2)tr[Σ−1
θ (∂Σθ/∂θi)]

+(1/2)e′Σ−1
θ (∂Σθ/∂θi)Σ−1

θ e = 0, for i = 1, . . . , p, (64)

with e = y− ρWy−Xβ and tr as the matrix trace operator. Solutions to these
conditions need to be obtained through numerical optimization.

Inference is based on an asymptotic variance matrix, the inverse of the in-
formation matrix. In the general case considered here, the information matrix
for [ρ, β, θ] is: tr[Wρ]2 + tr[ΣθW ′

ρΣ
−1
θ Wρ] + (Ŵy)′Σ−1

θ (Ŵy) (X ′Σ−1
θ Ŵy)′ ψ′

X ′Σ−1
θ Ŵy X ′Σ−1

θ X 0
ψ 0 (1/2)Ψ


(65)

with Wρ = W (I − ρW )−1, Ŵy = W (I − ρW )−1Xβ, and ψ as a p× 1 vector of
matrix traces of the form:

ψi = tr[Σ−1
θ (∂Σθ/∂θi)Wρ], (66)

one for each parameter in θ. Similarly, Ψ is a p × p matrix containing matrix
traces of the form:

Ψi,j = tr[Σ−1
θ (∂Σθ/∂θi)Σ−1

θ (∂Σθ/∂θj)]. (67)

Note how the presence of the vectors ψ implies that the information matrix is not
block-diagonal between the model parameters [ρ, β] and the error parameters θ.
This is an important distinguishing characteristic of the spatial lag model, and
leads to some interesting results on the structure of specification tests (Anselin
and Bera 1998).

Consider the special case of groupwise heteroskedasticity, which has consid-
erable appeal in practice.16 The error variance-covariance matrix Σ is diagonal,
with g = 1, . . . p subdiagonals, each corresponding to a group (sorting the ob-
servations by group, without loss of generality):

Σ =


σ2

1I1 0 . . . 0
0 σ2

2I2 . . . 0
...

...
. . . 0

0 0 . . . σ2
pIp

 (68)

16For example, this model is relevant when different subregions in the data are allowed to
have a different error variance, or when pooling observations in space-time, see Section 7.1.2.
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with Ig, g = 1, . . . , p as an identity matrix, with ng elements matching the
number of observations in each group and

∑
g ng = n.

Plugging these expressions into the first order conditions (62)–(64) yields
analyical solutions for βML and σg,ML, conditional upon the value of ρ, as:

βML = (X ′Σ−1X)−1X ′Σ−1(y − ρWy) (69)
σ2
g,ML = (y − ρWy −Xβ)′Hg(y − ρWy −Xβ)/ng, g = 1, . . . , p (70)

where Hg is an identity matrix with all diagonal elements except those cor-
responding to group g set to zero, making (70) the average sum of squared
residuals for the respective group. The estimate of βML is a weighted sum of a
FGLS estimation of X on y and X on Wy, with −ρ as the weight. However,
unlike the i.i.d. situation (Anselin 1980, Chapter 4), this does not lead to a sim-
ple concentrated likelihood, since the FGLS depends on the σ2

g , which in turn
depend on the unknown ρ. Estimates can be obtained in an iterative fashion
by substituting values for β and Σ from a previous iteration into (63), solving
this condition for ρ, which in turn yields new values for β and Σ from (69)-(70).
Note that Σ−1 is a diagonal matrix with elements 1/σ2

g corresponding to each
group. Asymptotic inference can be based on the information matrix (65), with
the simpler Σ−1 substituted for the general form, and with ∂Σ/∂σ2

g = Hg.

5.2.2 Spatial Error Models

Maximum likelihood estimation of the parameters in models with spatially de-
pendent error terms follows as a special case of the results in Magnus (1978).
For a general non-spherical error term Σθ, with θ as the parameters, the ML
estimator for β is the familiar generalized least squares expression:

β̂ML = (X ′Σ−1
θ X)−1X ′Σ−1

θ y. (71)

This follows as the solution of the first order conditions, applied to the log-
likelihood:

L = −(n/2) ln(2π)− (1/2) ln |Σθ| − (y −Xβ)′Σ−1
θ (y −Xβ). (72)

The estimators for the θi are obtained from the following first order conditions
(Magnus 1978, p. 283):

tr
[(
∂Σ−1

θ /∂θi
)
Σθ

]
= e′

(
∂Σ−1

θ /∂θi
)
e, (73)

with e = y−Xβ̂ML as the residuals. With a consistent estimate for the param-
eters θi, consistent estimates for β are obtained through FGLS (71).

Asymptotic inference is based on the inverse of the information matrix,
which is block-diagonal between the β and the parameters of the error variance-
covariance (Breusch 1980). The asymptotic variance for β̂ML takes on the fa-
miliar GLS form:

AsyV ar[β̂ML] = (X ′Σ−1
θ X)−1, (74)
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while the block corresponding to the error variance-covariance parameters is of
the form 2Ψ−1, with the elements of Ψ as in (67).

The range of spatial error processes considered in Section 3 will result in
specialized forms for Σθ, some of which may simplify the expressions in (71)–
(73). For example, consider the SAR error process outlined in Section 3.1.2,
without heteroskedasticity. The corresponding parameter vector is θ = [σ2, λ],
and the error variance-covariance matrix is as in (18).

As a result, the FGLS estimator in this model simplifies to:

β̂ML = [X ′(I − λ̂W )′(I − λ̂W )X]−1X ′(I − λ̂W )′(I − λ̂W )y, (75)

or, a regression of spatially filtered XL = X − λ̂WX on spatially filtered yL =
y− λ̂Wy, sometimes referred to as spatially weighted least squares. The partial
derivative for use in condition (73) is:

∂Σ−1/∂λ = −W −W ′ + λW ′W. (76)

Unlike the time series counterpart, a consistent estimate for λ cannot be ob-
tained from a simple auxiliary regression, but the first order condition (73) must
be solved by numerical means. As for the spatial lag model, asymptotic infer-
ence is based on the inverse of the information matrix (for technical details, see
Anselin 1988b, Chapter 6).

Other spatial error processes do not yield a simple expression for β̂ML as
in the spatially weighted regression (75). For example, in the SMA process
(Section 3.1.4), the error variance-covariance matrix is as in (25), and:

Σ−1 = (1/σ2)[I + γ(W +W ′) + γ2WW ′]−1, (77)

requiring the inverse of a n×n matrix to carry out FGLS. Similarly, the partial
derivatives required for condition (73) involve inverses of this order. Models
for direct representation or error components suffer from the same problem. In
addition, the functional forms and distance metric used in the direct represen-
tation approach may cause problems with multiple optima in the log-likelihood
function (see, among others, Mardia and Marshall 1984, Warnes and Ripley
1987, Mardia and Watkins 1989).

5.2.3 Computational Issues

Maximum likelihood estimation in spatial regression models involves the appli-
cation of nonlinear optimization techniques to the log-likelihood function. A
main computational obstacle follows from the presence of the log-Jacobian term
ln |I − ρW | in the log-likelihood. In addition, the first order conditions and
information matrix involve the traces of matrix products such as W (I−ρW )−1.
For even medium-sized data sets, the computation of these terms by “brute
force” is impractical.
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An early solution was suggested by Ord (1975), who exploited the decompo-
sition of the Jacobian in terms of the eigenvalues of the spatial weights matrix:

|I − ρW | =
n∏
i=1

(1− ρωi), (78)

where the ωi, i = 1, . . . , n are the eigenvalues of W . The log-Jacobian then
follows as:

ln |I − ρW | =
n∑
i=1

ln(1− ρωi). (79)

This facilitates computation greatly, since the eigenvalues only need to be cal-
culated once, and iterating over values of ρ in (79) is straightforward. The
trace terms used in the information matrix can be expressed in terms of the
eigenvalues as well (Anselin 1980).

The eigenvalue decomposition also suggests a simple set of constraints for
the parameter space. For (79) to be valid, the condition (1−ρωi) > 0 must hold
∀ i. This results in a parameter space of (1/ωmin, 1/ωmax), where ωmin and
ωmax are, respectively, the smallest (most negative) and largest eigenvalues of
W (Anselin 1980). For row-standardized spatial weights, ωmax = 1, but ωmin
depends on the structure of the weights matrix and is typically < −1. While
it is often suggested in the literature to constrain the parameter space to the
interval (−1,+1), this may be overly restrictive.17

The computation of eigenvalues becomes impractical and computationally
unstable for medium and large-sized data sets (n > 1000). This precludes the
application of the Ord approach. Several alternatives have been suggested that
either approximate our bound the Jacobian or log-Jacobian term (e.g., Martin
1993, Griffith and Sone 1995, Barry and Pace 1999, Pace and LeSage 2002, 2004),
or exploit the sparse nature of spatial weights.18 The latter include factorization
methods for sparse matrices, such as Cholesky decomposition (Pace and Barry
1997a,b), and a characteristic polynomial approach (Smirnov and Anselin 2001).
The characteristic polynomial approach in particular allows very large spatial
regression models (n > 1 million) to be estimated in a realistic time.

A second important computational problem pertains to the presence of terms
like tr[W (I−ρW )−1]2 in the information matrix, such as in (65). The calculation
of these inverse matrices is impractical in large data settings. As a result,
most large data ML methods developed so far have not based inference on the
asymptotic variance matrix, but instead use a sequence of Likelihood Ratio
tests. Recently, Smirnov (2005) developed a solution to this problem, based on
the use of a conjugate gradient approach.

While much progress has been made, several issues remain to be resolved to
allow the full range of spatial models (e.g., not just SAR models) to be estimated
by maximum likelihood methods in large samples.

17In contrast to the time series literature, there is relatively little attention to unit root and
cointegration issues in the spatial domain. An exception is the work of Fingleton (1999).

18For example, a first order contiguity weights matrix for the 3,140 U.S. counties contains
only 0.19% non-zero elements.
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5.3 Method of Moments/Instrumental Variables

5.3.1 Spatial Two Stage Least Squares

An alternative to maximum likelihood estimation is the use of the method of
moments (including instrumental variables, generalized method of moments,
and generalized moments). This approach does not require an assumption of
normality and it avoids some of the computational problems associated with
ML for very large data sets.

Consider the spatial lag model (2), rewritten as:

y = Zγ + ε, (80)

with Z = [Wy, X] and γ = [ρ, β]. This is a general specification of a linear
model that contains endogenous variables (Wy) as well as exogenous variables
(X).

A classic solution to the endogeneity problem is to use instrumental variables.
In a two-stage least squares approach, the predicted value of Z in a regression
on the instruments is obtained in a first stage, as:

Ẑ = Q(Q′Q)−1Q′Z, (81)

with Q as an n × q matrix of instruments (including the exogenous variables
X), with q ≥ k + 1. Note how this has no impact on the exogenous variables
X, but it yields:

Ŵy = Q(Q′Q)−1Q′Wy. (82)

The instrument Ẑ replaces Z in the second stage, resulting in the spatial two
stage least squares estimator:

γ̂2SLS = [Ẑ ′Ẑ]−1Ẑ ′y, (83)

or, in full:

γ̂2SLS = [Z ′Q(Q′Q)−1Q′Z]−1Z ′Q(Q′Q)−1Q′y. (84)

Inference on the γ2SLS is based on the asymptotic variance matrix:

AsyV ar[γ̂2SLS ] = σ̂2[Z ′Q(Q′Q)−1Q′Z]−1, (85)

with σ̂2 = (y − Zγ̂2SLS)′(y − Zγ̂2SLS)/n.
The application of instrumental variables to the spatial lag model was out-

lined in Anselin (1980, 1988b, pp. 82–86), where some ad hoc suggestions were
made for the selection of the instruments (see also Land and Deane 1992, for an
early discussion). Specifically, the choice of a spatial lag of the predicted values
of the y (using only the exogenous variables) or of spatially lagged exogenous
variables was considered.
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In Kelejian and Robinson (1993), the consistency of γ̂2SLS is derived formally
and the selection of instruments is couched in terms of the reduced form (44).
From this, it follows that:

E[Wy|X] = W (I − ρW )−1Xβ, (86)

or, using the expansion (19):

E[Wy|X] = WXβ + ρW 2Xβ + ρ2W 3Xβ + . . . . (87)

Based on this expansion, Kelejian and Robinson (1993) suggest the use of a
subset of columns from {X,WX,W 2X,W 3X, . . . } as the instruments (see also
Kelejian and Prucha 1998).

In the context of a model with both a spatial lag and spatial error depen-
dence, recent work has focused on the selection of “optimal” instruments (see
also Section 5.3.3). First consider this for the simpler specification of the pure
spatial lag model without error dependence. Lee (2003) suggested using the
optimal instrument matrix:

Q = [X,W (I − ρ̂W )−1Xβ̂], (88)

where the values for ρ̂ and β̂ are obtained in a first round estimation, using WX
as the instrument (possibly augmented with W 2X).19

To avoid the inverse matrix operation, Kelejian et al. (2004) introduce a
series approximation, with the instrument matrix (for the pure spatial lag case)
as:

Q = [X,
r∑
s=0

ρ̂sW s+1Xβ̂ ], (89)

and the values for ρ̂ and β̂ from a first round estimation, as in the Lee (2003)
approach. The highest power in the approximation is related to the sample size,
with r = o(n1/2).20

Recent extensions of the instrumental variables approach to systems of si-
multaneous equations are considered in Rey and Boarnet (2004) and Kelejian
and Prucha (2004). In Pinkse et al. (2002), an instrumental variable estimator
is applied to a semi-parametric spatial lag model. Instead of using a spatial
weights matrix, the spatial dependence is specified in a generic way, as in equa-
tion (1). The function g is approximated by a polynomial series expansion in
distance measures, the coefficient of which are estimated jointly with the other
parameters in the model.

19Since this optimal instrument involves the inverse of a n × n matrix, it will be compu-
tationally prohibitive in large samples. Lee (2003) suggests a workaround based on Cholesky
decomposition.

20In their simulation experiments, Kelejian et al. (2004) set r = nα, with α = .25, .35 and
.45.
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5.3.2 Spatial Correlation as a Nuisance Parameter

A basic property of FGLS is that it suffices to obtain a consistent estimate for
the parameters of the error variance-covariance in order to obtain consistent
estimates for the β in the second step, as in (71). This general approach refers
to the error variance-covariance parameters as nuisance parameters, in that
they are not of interest in and of themselves, but are only useful in terms of
improving the properties of the β̂.

Kelejian and Prucha (1999) suggest a generalized moments approach to ob-
tain a consistent estimate of the parameter λ in a spatial autoregressive error
process ε = λWε+u. The idiosyncratic error term u is assumed to be i.i.d with
variance σ2. Using the property that trW = 0, three moment conditions on the
u and their spatial lags Wu follow as:

E[(1/n)u′u] = σ2 (90)
E[(1/n)u′W ′Wu] = (1/n)σ2tr(W ′W ) (91)

E[(1/n)u′W ′u] = 0. (92)

Since u = ε−λWε and Wu = Wε−λWWε, these conditions can be expressed
in terms of the regression errors ε. They are made operational by using the
sample counterparts, i.e., the residuals e, their spatial lags We and double
spatial lags WWe. After some algebra, this yields a system of three equations
in the unknowns λ, λ2 and σ2: (2/n)e′ē (−1/n)ē′ē 1

(2/n)¯̄e′ē (−1/n)¯̄e′ ¯̄e (1/n)tr(W ′W )
(1/n)(e′ ¯̄e+ ē′ē) (−1/n)ē′ ¯̄e 0

 λ
λ2

σ2

 =

 (1/n)e′e
(1/n)ē′ē
(1/n)e′ē


(93)

with, for notational simplicity, ē = We and ¯̄e = WWe. This system can be
solved for λ and σ2 using nonlinear least squares. The resulting estimate λ̂ is
then plugged into the expression for the spatially weighted least squares (75)
(for technical details, see Kelejian and Prucha 1999). Note that the nuisance
parameter approach precludes inference about the coefficient λ, since there is
no asymptotic variance for λ̂.

5.3.3 Spatial Lag with Spatial SAR Errors

The general moments estimator can also be applied to the residuals from a two
stage least squares regression. A special case consists of the specification with
both a spatial lag and a spatial autoregressive error term (53), considered in
Kelejian and Prucha (1998). This model can also be expressed as:

y = Zγ + (I − λW2)−1u, (94)

with Z = [W1y, X] and γ = [ρ, β], as before. Removing the inverse term yields:

y − λW2y = (Z − λW2Z)γ + u, (95)
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or,

yL = ZLγ + u, (96)

with yL and ZL as spatially filtered variables, analogous to the transformed
variables in the spatially weighted least squares regression. Note how the first
term in ZL is (W1y)L = W1y − λW2W1y.

The generalized spatial two stage least squares (GS2SLS) estimator devel-
oped in Kelejian and Prucha (1998) consists of three steps. The first step is
a spatial two stage least squares estimation, as in (84). The second step con-
sists of substituting the residuals e = y − Zγ̂2SLS in the system of equations
(93), using the weights W2 from the error process. The solution of the system
by nonlinear least squares yields a consistent estimate λ̂ for the autoregressive
error parameter.

Next, the values for λ̂ are substituted into the spatial filter to obtain yL
and ZL. The final stage consists of a second two stage least squares estimation,
using the spatially filtered variables and the instruments:

ẐL = Q(Q′Q)−1Q′ZL, (97)

with the estimator as:

γ̂GS2SLS = [ẐL
′
ẐL]−1ẐL

′
y. (98)

The estimation procedure can also be iterated, substituting the residuals from
the GS2SLS estimation in the equation system (93) to yield a new value of λ̂,
etc. The asymptotic variance for the GS2SLS estimator follows in the usual
fashion.

Note how the instruments boil down to replacing the (W1y)L in ZL by the
predicted values:

̂(W1y)L = Q(Q′Q)−1Q′(W1y − λ̂W2W1y). (99)

Initially, Kelejian and Prucha (1998, p. 104) suggested that the instruments
be selected as a subset of from {X,W1X,W

2
1X, . . . ,W2X,W2W1X,W2W

2
1X, . . . },

such as [X,W1X,W2X,W2W1X]. More recently, optimal instruments have been
considered, as discussed in Section 5.3.1. Specifically, the optimal instruments
(88) of Lee (2003) in this general model are:

Q = (I − λ̂W2)[X, W1(I − ρ̂W1)−1Xβ̂]. (100)

For the Kelejian et al. (2004) series estimator (89), this is:

Q = (I − λ̂W2)[X,
r∑
s=0

ρ̂sW s+1
1 Xβ̂ ]. (101)

Monte Carlo experiments to assess the finite sample properties of the GS2SLS
estimator relative to ML are reported in Das et al. (2003). In general, very small
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differences are obtained. Interestingly, there does not seem to be a worthwhile
payoff from iterating on the GS2SLS (Das et al. 2003, p. 12). This finding
does not transfer to the methods using the optimal instruments, evaluated in
Monte Carlo experiments in Kelejian et al. (2004). There, a suggestion is made
that iterating will tend to improve efficiency. Overall, the performance of the
estimators with the three forms of instruments was found to be very similar.

5.3.4 Heteroskedastic and Autocorrelation Consistent Estimators

Up to this point, the estimators considered pertain to models in which the spa-
tial dependence is specified in parameterized form, typically as a SAR process.
An alternative is to avoid such specification, and estimate the error variance-
covariance matrix in non-parametric fashion. This follows along the lines of
the White (1980) heteroskedastic-consistent approach and its extension to both
heteroskedasticity and serial correlation by Newey and West (1987), and others.

For example, a ready extension of the S2SLS estimator in the spatial lag
model is to allow for heteroskedasticity of unspecified form, as a direct applica-
tion of the White approach. In a first step, a S2SLS estimation is carried out
using instrument matrix Q (as before), followed by:

β̂HS2SLS = [Z ′Q ̂(Q′ΣQ)−1Q′Z]−1Z ′Q ̂(Q′ΣQ)−1Q′y, (102)

with ̂(Q′ΣQ)−1 = (Q′SQ)−1, where S is a diagonal matrix containing the
squared S2SLS residuals. The asymptotic variance for β̂HS2SLS is obtained
in the usual fashion.

The incorporation of spatial dependence in this framework was first con-
sidered by Conley (1999) in the context of GMM estimation, and recently
elaborated upon in Kelejian and Prucha (2003) (see also Section 3.3).21 Us-
ing a consistent estimate for (Q′ΣQ)−1 along the lines of (30) or (31) yields a
heteroskedastic and spatial autocorrelation consistent (HAC) estimator for the
spatial lag model as (102). Alternatively, this idea can be exploited to obtain
robust inference in the standard linear regression model, using OLS to estimate
the β, but a HAC estimator for the asymptotic variance:

AsyV ar[β̂OLS ] = (X ′X)−1V̂ (X ′X)−1, (103)

with V̂ based on (30) or (31) (omitting the term n−1).
The HAC approach is asymptotic and in finite samples a major practical

problem is to ensure that the estimated variance-covariance matrix is positive
semidefinite. A number of suggestions have been formulated, but considerable
research remains to be done to obtain insight into finite sample properties (see
Kelejian and Prucha 2003, for some technical details).

21A slightly different approach towards estimating the error covariance matrix non-
parametrically is offered in Pinkse et al. (2002, pp. 1126–1128).
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6 Specification Testing

In applied work, diagnostic tests against the presence of spatial correlation are
arguably more relevant than estimation itself. Ignoring spatial correlation when
it is present may lead to biased and inconsistent estimates of the model pa-
rameters (spatial lag model), or inefficient estimates and biased t-test statistics
(spatial error model). Also, given the complexities associated with estimating
models that include spatial dependence, it is important to be able to assess
whether this is in fact necessary. It is therefore reasonable that some check for
autocorrelation should be as common in cross-sectional regression work as are
tests for serial correlation in the time domain. In these tests, the null hypothesis
is the absence of spatial autocorrelation, or the standard regression model. Al-
ternatives include the many spatial models reviewed in Sections 3 and 4, as well
as combinations of these spatial models with other sources of misspecification,
such as heteroskedasticity and non-linearity.

The literature on specification tests against spatial correlation in cross-
sectional regression is by now quite extensive (for recent reviews, see Anselin
and Bera 1998, Anselin 2001a, Florax and de Graaff 2004). In the following
sections, the main features of the most commonly used tests are outlined, orga-
nized along tests against spatial autocorrelation, tests based on the Maximum
Likelihood principle, and tests against multiple sources of misspecification.22 To
close, a brief discussion is given of the specification search process.

6.1 Tests Against Spatial Autocorrelation

Tests against spatial autocorrelation are so-called “diffuse” tests (Florax and de
Graaff 2004) in that the alternative is an unspecified form of spatial correlation.
These test statistics are excellent tools as misspecification diagnostics. However,
they offer little in terms of guiding a specification search, since they have power
against multiple forms of spatial autocorrelation. Hence, it is not always clear
which of these is the proper alternative.

6.1.1 Moran’s I Test

Perhaps the best known test statistic against spatial autocorrelation is the appli-
cation of Moran’s I statistic (Moran 1948) to regression residuals (Moran 1950),
popularized in the work of Cliff and Ord (Cliff and Ord 1972, 1973, 1981).

Formally, Moran’s I for regression residuals is:

I =
e′We/S0

e′e/n
, (104)

where e is a n×1 vector of OLS residuals y−Xβ̂, W is a spatial weights matrix,
22The focus is on parametric tests. For a general non-parametric approach to testing spatial

error dependence, see Brett and Pinkse (1997).
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and S0 =
∑
i

∑
i wij , a normalizing factor.23 Inference in a test against spatial

autocorrelation is based on a normal approximation, using a standardized value,
or z-value. This is obtained by subtracting the mean under the null and dividing
by the square root of the variance. The first two moments were derived in Cliff
and Ord (1972) as:

E[I] = tr(MW )/(n− k), (105)

and

Var[I] =
tr(MWMW ′) + tr(MWMW ) + [tr(MW )]2

(n− k)(n− k + 2)
− (E[I])2, (106)

where tr is a matrix trace operator and M = I −X(X ′X)−1X ′. The normality
of the z-value is an approximation, which works well in large samples.

Exact inference for Moran’s I can be carried out under the assumption of
normality for the error terms, by noting that under the null, the statistic con-
sists of a ratio of quadratic forms of independent normal random variables (see
Tiefelsdorf and Boots 1995). To obtain exact critical values for the statistic, it is
necessary to compute the n−k non-zero eigenvalues of MW , which is not prac-
tical in medium to large samples (see also Tiefelsdorf 2002, for an alternative
approximation).

Moran’s I has been shown to have certain optimality properties, similar
to the Durbin-Watson test against serial correlation in the time domain. For
example, King (1981) demonstrated that the test is locally best invariant. Also,
Moran’s I turns out to be asymptotically equivalent to a Likelihood Ratio (LR)
test and to a Rao Score (RS) or Lagrange Multiplier (LM) test (Cliff and Ord
1972, Burridge 1980) and therefore shares the asymptotic properties of these
statistics.

Moran’s I is often interpreted as a test statistic against serial error correla-
tion, but this is incorrect. The test has power against any alternative of spatial
correlation, including spatial lag dependence, as demonstrated in a large num-
ber of Monte Carlo simulation experiments (see, e.g., Anselin and Rey 1991,
Anselin and Florax 1995b, Florax and de Graaff 2004). In addition, not unlike
the Durbin-Watson statistic, the test has power against heteroskedasticity as
well (Anselin and Griffith 1988).

Moran’s I test statistic is very general and can be applied in many contexts
other than the classic regression model. For example, in Anselin and Kelejian
(1997) the test is applied to the residuals of a model with endogenous variables,
estimated by two stage least squares (2SLS). A distinction needs to be made
between the case where the endogenous variables include a spatial lag and the
standard non-spatial case. The general case can be written as:

y = Zγ + e, (107)

23Note that for row-standardized weights, S0 =
P

i 1 = n, such that the normalizing factors
cancel out and I = e′We/e′e.



Spatial Econometrics 35

with Z = [Wy, Y,X] and γ = [ρ, δ, β], where Wy is the spatially lagged de-
pendent variable, Y is a matrix of non-spatial endogenous variables, and X a
matrix of exogenous variables.

The general result for the asymptotic distribution of Moran’s I in this model
is:

n1/2I
d−→ N(0, φ2), (108)

with I as in (104), but using the 2SLS residuals from (107), and

φ2 =
S2

2S2
1

+
4

S2
1 σ̂

2
A. (109)

The terms in the expression for the asymptotic variance include the error vari-
ance estimated from 2SLS residuals, σ̂2, functions of the elements of the weights
matrix:

S1 = (1/n)S0 (110)
S2 = (1/n)tr[(W +W ′)(W +W ′)] (111)

and

A = (e′WZ/n)(n[(Z ′Q)(Q′Q)−1Q′Z]−1)(Z ′W ′e/n), (112)

with e as the 2SLS residuals, S0 and in (104), Z as in (107), and Q as the matrix
of instruments used in the 2SLS estimation (for details, see Anselin and Kelejian
1997, pp. 162–164). When no spatially lagged dependent variable is included in
the model, the second term in (109) becomes zero and the test statistic simplifies
to the Lagrange Multiplier statistic for spatial error autocorrelation (see Section
6.2.1).

A general framework for the asymptotic properties of Moran’s I in a wide
range of specifications is presented in Kelejian and Prucha (2001). This includes
a spatial autocorrelation test in probit models, which is considered more closely
in Section 8.3.

6.1.2 Kelejian-Robinson Test

A second test against an unspecified form of spatial correlation was suggested
by Kelejian and Robinson (1992). The rationale for the test is intuitive: if the
covariance between “neighboring” pairs of error terms shows a systematic vari-
ation, then the null hypothesis of no spatial autocorrelation should be rejected.
Formally, the spatial covariance is specified as:

Cov[εiεj ] = σij = vijγ 6= 0, (113)

where vij is a 1× q vector of covariates related to the pair of locations i, j. For
example, a given element h of vij can be specified as vijh = xihxjh, the product
of the explanatory variable xh for the pair of locations i, j. Under the null
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hypothesis, there should be no covariance, hence H0 : γ = 0. The test is made
operational by selecting hn pairs of cross-products of residuals, Ĉij = ei.ej and
regressing them on matching cross-products of the explanatory variables, vij .
In matrix notation:

Ĉ = V γ + u, (114)

with u as an idiosyncratic error. The test statistic is a measure of goodness-of-fit
in this auxiliary regression:

KR =
γ̂′V ′V γ̂

σ̂4
, (115)

which, under the null hypothesis, is distributed asymptotically as χ2(q), with
q as the number of explanatory variables in the auxiliary regression (i.e., the
number of columns of V ). The denominator term σ̂4 is any consistent estimator
for σ4, such as σ̂4 = (Ĉ − V γ̂)′(Ĉ − V γ̂)/hn. Anselin and Bera (1998, p. 269)
show how the test has an asymptotically equivalent expression in the form of
the familiar NR2 in an auxiliary regression:

KR = hn.
Ĉ ′V (V ′V )−1V ′Ĉ

Ĉ ′Ĉ
, (116)

where hn is the sample size of the auxiliary regression and the R2 is the uncen-
tered coefficient of determination in a regression of Ĉ on V .

The properties of the test statistic are obtained without assuming normality,
and they do not require the regression model to be linear. Kelejian and Robinson
(1992) suggest that the test is not based on the use of spatial weights, but only
the existence of a “spatial ordering,” which determines the pairs i, j to be
included in the auxiliary regression. In practice, this often boils down to the
use of contiguity. This may be problematic, since it is well established that the
spatial covariance (on which the test is based) only corresponds to the spatial
weights for local patterns of spatial correlation. For example, this is the case
for the spatial error components model covered in Section 3.4 (see Kelejian and
Robinson 1995, p. 89), but not for a SAR alternative (for further discussion,
see Anselin and Moreno 2003, pp. 599–600).

The KR test is a large sample test, and its asymptotic properties are not
well reflected in small sample situations. This is evidenced in a number of Monte
Carlo simulation studies (e.g., Anselin and Florax 1995b, Anselin and Moreno
2003, Florax and de Graaff 2004).

6.2 Tests Based on Maximum Likelihood

In contrast to diffuse spatial autocorrelation tests, “focused” tests are con-
structed with a specific alternative in mind. In general, they boil down to a test
of restrictions on the parameters of a model that includes spatial dependence,
such as a spatial error model or a spatial lag model. The most commonly used
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approach is based on the three classic test statistics obtained under Maximum
Likelihood estimation: the Wald, Likelihood Ratio and Lagrange Multiplier (or,
Rao Score) tests.24

Both Wald test and Likelihood Ratio test are standard, and require esti-
mation of the unrestricted or spatial model (for technical details, see Anselin
1988b, Ch. 6). The Lagrange Multiplier tests on the other hand are based on
estimation under the null, or restricted model, i.e., the classic linear regression
and its OLS residuals. In contrast to results in mainstream econometrics, the
LM test statistics for spatial dependence cannot be obtained in an NR2 form
based on a simple auxiliary regression (for a recent comprehensive overview, see
Anselin 2001a).

6.2.1 Spatial Error Autocorrelation

The point of departure for a LM test for spatial error autocorrelation is the
log-likelihood (72) for a specific data generating process for the regression error
terms, such as SAR or SMA. In the usual fashion, a LM test statistic is then
obtained as:

LM = [d(θ)]′[I(θ)]−1[d(θ)], (117)

where d(θ) is the familiar score, ∂L(θ)/∂θ, and I(θ) is the information matrix,
−E[∂2L(θ)/∂θ∂θ′]. Both score and information matrix are derived for the un-
restricted (spatial) model, but evaluated under the null, i.e., with the restricted
parameters. For the SAR and SMA alternatives, this is λ = 0 in (14), or γ = 0
in (24). Both restrictions lead to the same test statistic (Burridge 1980, Anselin
1988a):

LMλ =
[e′We/(e′e/n)]2

tr[W ′W +WW ]
, (118)

where e is a n × 1 vector of OLS residuals. Apart for the scaling factor in
the denominator, this statistic is essentially the square of Moran’s I. It is
asymptotically distributed as χ2(1).

Since the LM test exploits the slope of the log-likelihood under the null,
it is possible that different alternatives result in the same slope. This is the
case for the SAR and SMA alternatives, which are termed “locally equivalent
alternatives” or LEA (Godfrey 1981). As a consequence, it is not possible to
distinguish between these two alternatives using a LM test.

Traditionally, the asymptotic properties for the LM test are obtained for a
complete specification of the log-likelihood, including an assumption of normal-
ity. This turns out to be overly restrictive, and the same asymptotic properties
can also be derived without assuming normality, using appropriate CLT (for
technical details, see Anselin and Kelejian 1997, Kelejian and Prucha 2001).

24In the remainder, the LM/RS test statistics will be referred to as LM for notational
simplicity, although they can equally be considered RS statistics.
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The LM principle can also be applied to other one-directional spatial error
alternatives, such as the error components model (32) or direct representation
(28). The resulting test statistic for the error components model is (Anselin
2001a, Anselin and Moreno 2003):

LMSEC =
[
e′WW ′e

(e′e/n)
− T1

]2

/2
[
T2 −

T 2
1

n

]
(119)

where T1 = tr(WW ′) and T2 = tr(WW ′WW ′). The statistic is asymptotically
distributed as χ2(1).25

A test statistics for the direct representation model derived from ML prin-
ciples is more complex, since under the null, the parameter value is on the
boundary of the parameter space. Moreover, the nuisance parameters are only
identified under the alternative hypothesis. These non-standard conditions in-
validate the use of LR or Wald statistics. The LM statistic can still be employed,
but it requires an approximation due to Davies (1977, 1987), applied to the di-
rect representation model in Anselin (2001a, pp. 130–132).

An alternative strategy, still based on ML principles, applies the idea of
double length artificial regressions (DLR, Davidson and MacKinnon 1984, 1988)
to the spatial models, as outlined in Baltagi and Li (2001a). The DLR approach
consists of expressing the regression model as a function of standard normal
error terms. In the spatial models, this follows as a simple standardization.
Furthermore, Baltagi and Li (2001a) exploit the eigenvalue decomposition of
the log-Jacobian term (79) to obtain the contribution of each observation to the
log-likelihood as:

li(yi, φ) = −(1/2) ln(2π)− (1/2)f2
i (yi, φ) + ki(yi, φ), (120)

with φ = [β, λ, σ]′ as a vector of parameters, fi as the standard normal error
term:

fi(yi, φ) = (1/σ)[(yi − x′iβ)− λ
∑
j

wij(yj − x′jβ)], (121)

and ki as the complete log-Jacobian (including the error variance):

ki(yi, φ) = ln(1− λωi)− lnσ, (122)

where ωi are the eigenvalues of the spatial weights matrix. The DLR consists
of an artificial regression with 2n “observations”:[

f(y, φ)
ιn

]
=

[
−F (y, φ)
K(y, φ)

]
b+ u, (123)

in which the u are unspecified residuals, ιn is a n × 1 vector of ones, and F
and K are n× (k+2) matrices of partial derivatives Fij(yi, φ) ≡ ∂fi(yi, φ)/∂φj ,

25An alternative test statistic against the SEC model can be based on an auxiliary regression
and a significance test on the estimated variance component (see Kelejian and Robinson 1993,
p. 304).
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and Kij(yi, φ) ≡ ∂ki(yi, φ)/∂φj . Using the expressions (121) and (122) for the
spatial SAR error model, this yields:[

e/σ̂
ιn

]
=

[
(1/σ̂)X (1/σ̂)We e/σ̂2

0 −ω −ιn/σ̂

]
b+ u, (124)

with e as the OLS residuals, σ̂ as the OLS estimate for the disturbance standard
error, and ω as a n × 1 vector of the eigenvalues ωi. The test statistic is
computed as 2n less the residual sum of squares in the artificial regression.
It is asymptotically distributed as χ2(1). While the artificial regression is easy
to carry out, in practice it suffers from the necessity to compute the eigenvalues
of the spatial weights matrix, which is problematic in large samples (see Section
5.2.3).

6.2.2 Spatial Lag

Using the same principle as in (117), applied to the log-likelihood of the spatial
lag model (61), and with the constraint ρ = 0, yields a LM test statistic for
spatial lag dependence, as shown in Anselin (1988a):

LMρ = [e′Wy/(e′e/n)]2/D, (125)

with e as the OLS residuals, and the denominator term:

D = [(WXβ̂)′[I −X(X ′X)−1X ′](WXβ̂)/σ̂2] + tr(W ′W +WW ), (126)

where the estimates for β̂ and σ̂2 are from OLS. The test statistics is asymp-
totically distributed as χ2(1).

Similarly, the application of the DLR principle to the log-likelihood and
log-Jacobian terms of the spatial lag model, yields the artificial regression as
(Baltagi and Li 2001a):[

e/σ̂
ιn

]
=

[
(1/σ̂)X (1/σ̂)Wy e/σ̂2

0 −ω −ιn/σ̂

]
b+ u, (127)

where, again, all estimates are based on OLS. The test statistic (2n less the the
residual sum of squares) is also asymptotically distributed as χ2(1).

6.2.3 Higher Order Models

So far, the tests considered are for one-directional alternatives. When the alter-
native is of a higher order, such as the models reviewed in Section 4.2, different
test strategies may be pursued. One is a so-called marginal test, which only
focuses on one source of misspecification at a time, ignoring the other, such as
the tests covered so far. A second perspective is that of a joint test, where the
null hypothesis is to set all spatial parameters equal to zero. For example, for
the spatial lag model with a SAR error term (53), H0 : ρ = λ = 0.26

26Note that since the SAR error and SMA error are LEA, either alternative may be consid-
ered.
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In contrast to standard results, the joint test statistic is not simply the sum of
the marginal test statistics, i.e., LMλρ 6= LMλ+LMρ, but it takes on a far more
complex form (Anselin 1988a). To simplify notation, set dρ = (e′Wy)/(e′e/n)
and dλ = (e′We)/(e′e/n) and use D as in (126), but with W1 is the spatial
weights matrix pertaining to the lag model. As before, all estimates are from
OLS. Further, using W2 for the spatial weights in the error process, take Tij =
tr[WiWj +W ′

iWj ]. The LM test statistic for the joint null hypothesis is given
by:

LMρλ =

[
d2
λD + d2

ρT22 − 2dλdρT12

]
DT22 − T 2

12

. (128)

This test statistic is asymptotically distributed as χ2(2). This will result in a
loss of power relative to the proper one-directional test when only one source
of misspecification is present. In the commonly used simplification where W1 =
W2, the test statistic becomes:

LMρλ =
d2
λ

T
+

(dλ − dρ)2

D − T
. (129)

Extensions of these principles to joint tests in SARMA(p, q) models are straight-
forward, and can be found in Anselin (2001a).

Yet a third testing strategy for higher order alternatives is to take a condi-
tional approach, where a test on the null hypothesis ρ = 0 is carried out in a
model with λ 6= 0, and vice versa. This can no longer be based on OLS esti-
mates, but requires estimation of the proper spatial model by means of ML. For
example, a test statistic for H0 : λ = 0 in the spatial lag model is obtained as:

LMλ|ρ =
d2
ρ

T22 − (T 2
21AV̂ ar(ρ̂))

, (130)

where all the estimates are obtained using ML in the spatial lag model, T21A =
tr[(W2W1 + W ′

2W1)(I − ρ̂W )−1], and the other notation is as before. The
test statistic is asymptotically distributed as χ2(1). It forms the ML-based
counterpart to the Moran’s I for S2SLS residuals outlined in equations (108)–
(109). A test statistic for H0 : ρ = 0 in the spatial error model, LMρ|λ can be
developed along the same lines, but turns out to be quite complex (for technical
details, see Anselin 1988a, Anselin et al. 1996, Anselin and Bera 1998).

6.2.4 Robust Tests

In a higher order model, the parameter that is not of interest can be considered
to be a nuisance parameter. Unfortunately, the one-directional test statistics
LMλ and LMρ become non-central χ2 in the presence of local misspecification in
the form of the other type of spatial dependence. In other words, in the presence
of spatial lag dependence, the LMλ test against error correlation becomes biased,
and, in the presence of spatial error dependence, the LMρ test against lag
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dependence becomes biased. Using a result of Bera and Yoon (1993), a robust
version of these test statistics can be developed, as shown in Anselin et al. (1996)
(see also Anselin and Bera 1998, pp. 273–278).

Limiting attention to the case where W1 = W2 = W , the expression for the
robustified test against spatial error dependence is:

LM∗
λ =

(
dλ − TD−1dρ

)2

[T (1− TD)]
, (131)

using the same notation as before, and with all estimates obtained from OLS
in the classic regression. The essence of the robustification is to correct the
LMλ statistic for the covariance between dλ and dρ. The new test statistic is
asymptotically distributed as χ2(1).

Similarly, a robustified test against a spatial lag alternative takes the form:

LM∗
ρ =

(dρ − dλ)
2

(D − T )
, (132)

and is also asymptotically distributed as χ2(1).
An interesting result is the decomposition of the two-directional test statistic

(129). As pointed out, this is not the sum of the two one-directional tests, but
instead:

LMρλ = LMρ + LM∗
λ = LMλ + LM∗

ρ , (133)

or, the sum of the one-directional statistic for one source of misspecification and
the robustified version of the test statistic for the second source (for technical
details, see Anselin et al. 1996).

6.3 Tests Against Multiple Sources of Misspecification

In Sections 6.1 and 6.2, the misspecifications considered consisted of forms of
spatial dependence only. In practice, cross-sectional data are also likely to be
affected by other sources of misspecification, such as heteroskedasticity and non-
linearity. Testing for heteroskedasticity in the presence of spatial dependence
is straightforward. As shown in Anselin (1988b), a Breusch-Pagan (BP) type
LM test statistic (Breusch and Pagan 1979, 1980) readily extends to the ML-
residuals in a spatial lag model, or to the spatially filtered residuals in the ML
estimation of a spatial error model.27

A joint test for heteroskedasticity and spatial error dependence consists of
the sum of a BP statistic and the LMλ (118) (Anselin 1988b). An alternative
is the extended Kelejian-Robinson statistic outlined in Kelejian and Robinson
(1998), which does not require an assumption of normality and applies equally
to linear and nonlinear regressions. For notational simplicity, consider the scalar

27In Kelejian and Robinson (1998, p. 395) the estimated spatial autoregressive coefficient
is included in a test statistic along the lines of the expression (114) in Section 6.1.2 (see also
Kelejian and Robinson 2004).
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case only, in which the heteroskedasticity is modeled as σ2
i = g(zi), where z is

one of the explanatory variables in the regression specification (this generalizes
to z being a subset of the explanatory variables). The resulting test statistic is
obtained as a joint test of significance on the slope coefficients in an auxiliary
regression (Kelejian and Robinson 1998, p. 393):

eiej = a0δij + a1(δijzi) + a2(ziwji + zjwij) + u, (134)

with the terms eiej including all the squared residuals and all cross-products for
j > i and (wji + wij) 6= 0, δii = 1, and δij = 0 for i 6= j. The joint significance
test on â1 = â2 = 0 uses a heteroskedastic-consistent (White) covariance esti-
mator. The extension of the simple scalar case to a situation with multiple z
variables requires nonlinear least squares (for details, see Kelejian and Robinson
1998, pp. 394–395).

A conditional test for spatial error autocorrelation in a heteroskedastic re-
gression model can be derived from the LM-test principles. With Ω̂ as the
estimated (diagonal) heteroskedastic variance matrix, e.g., with elements σ̂i =
g(α̂, zi) (where the α̂ are consistent estimates, say obtained in a Maximum Like-
lihood estimation), the heteroskedastic LM statistic becomes (Anselin 1988b, p.
107):

LMHλ =
(e′Ω̂−1We)2

tr(WW +W ′Ω̂−1W Ω̂)
, (135)

with e as the residuals in the heteroskedastic regression. The LMHλ test statistic
is asymptotically distributed as χ2(1).28

The joint presence of spatial correlation and functional misspecification has
received some attention as well. In Baltagi and Li (2001b), the LM principle
is applied to derive a test for a general Box-Cox alternative with spatial error
dependence, as well as conditional tests for functional form given spatial error
dependence and vice versa. The test statistics do not reduce to simple analytical
forms, but require computing the expression (117) with the proper elements for
the score and information matrix substituted in each special case. de Graaff
et al. (2001) consider the extension of a general misspecification test from chaos
theory in time series to the spatial domain in order to assess dependence, het-
erogeneity and nonlinearity.

6.4 Specification Search

In practice, the sheer number of available test statistics can seem overwhelming
and a strategy needs to be developed to move from the null model to a superior
alternative (when appropriate). Given that tests may be based on marginal,
joint or conditional approaches, the results of a specification search may be sub-
ject to the order in which tests are carried out, and whether or not adjustments

28A similar, heteroskedasticity robust version of Moran’s I is derived in Kelejian and Robin-
son (2004, pp. 89-90).
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are made for pre-testing (see, e.g., Florax and Folmer 1992, Anselin and Florax
1995b, Florax and de Graaff 2004).

Based on a large number of simulation results, an ad hoc decision rule was
suggested in Anselin and Rey (1991) for the simple case of choosing between a
spatial lag or spatial (SAR) error alternative. There is considerable evidence
that the proper alternative is most likely the one with the largest significant
LM test statistic value. This was later refined in light of the robust forms of
the statistics in Anselin et al. (1996) to a sequence where in the first step the
significance of the LMλ and LMρ test statistics was assessed. The robust forms
LM∗

λ and LM∗
ρ are only considered when both LMλ and LMρ are significant.

At that point, the largest, most significant value of the robust statistics suggests
the most likely alternative.

In a recent paper by Florax et al. (2003) this classic forward stepwise spec-
ification search is compared to a “general-to-simple” model selection rule. In
the backward stepwise approach, the point of departure is a spatial common
factor (or spatial Durbin) model, (43). Failure to reject the factor constraints
suggests a spatial error model. Alternatively, rejection of the factor constraints
suggests a spatial lag model. If the autoregressive coefficient in the lag model is
not significant, the final model selection is the standard regression specification.
In simulation experiments, the forward and backward specification searches are
compared and some evidence is provided of better performance by the forward
strategy (for further discussion, see also Florax et al. 2005, Hendry 2005).

7 Spatial Effects in Panel Data

Up to this point, the focus in this chapter has been on models for a single
cross-section. Early efforts to incorporate spatial effects in a panel data setting,
with observations over time as well as across space were described in Anselin
(1988b, Chapter 10). More recently, this has received growing attention, also
in the mainstream econometric literature. For example, the second edition of
Baltagi’s well known panel data text now includes a brief discussion of spatial
panels (Baltagi 2001, pp. 195–197).

The topic of spatial panels is too broad ranging to be covered satisfactorily
within a single chapter section, and by necessity the treatment here will be
limited to a few salient issues (for a recent and extensive review, see Anselin
et al. 2005). First, the generic aspects of incorporating spatial effects in pooled
cross-section and time series models will be considered. This is followed by a
brief review of specification, estimation and diagnostic testing in two special
models that have received considerable attention in empirical practice, the er-
ror components model with spatial effects and the spatial seemingly unrelated
regression (SUR) model.29

29More extensive reviews of the recent literature can also be found in Elhorst (2001), and
Elhorst (2003).
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7.1 Spatial Effects in Pooled Cross-Section and Time Se-
ries Models

7.1.1 Model Specification

The basic specification for a model containing observations in the time domain
as well as across space can be given as:

yit = x′itβ + εit, (136)

where i is an index for the cross-sectional dimension, with i = 1, . . . , n, and t is
an index for the time dimension, with t = 1, . . . , T . Using customary notation,
yit is an observation on the dependent variable at i and t, xit a k × 1 vector of
observations on the (exogenous) explanatory variables, β a matching k×1 vector
of regression coefficients, and εit an error term. The setting considered here is
where the cross-sectional dimension dominates, with n� T . Also, even though
the basic design is referred to as “space” and “time,” the second dimension
could equally pertain to different cross-sections, such as in a study of industrial
sectors or household types. In stacked matrix form, the simple pooled regression
then becomes:

y = Xβ + ε, (137)

with y as a nT × 1 vector, X as a nT × k matrix and ε as a nT × 1 vector.
Note that in order to incorporate spatial effects, the stacking is for a complete
cross-section at a time, and not for each individual cross-section over time.

The models (136)–(137) refer to homogeneous panels, in that the intercept
and slope coefficients are assumed to be constant over the cross-sectional units.
In contrast, in a heterogeneous panel, these coefficients are specific to each
cross-sectional unit:

yit = αi + x′itβi + εit. (138)

Common approaches to deal with the heterogeneity are fixed effects and random
effects models, which are not further considered in detail here (specific examples
are covered in Sections 7.3 and 7.2). For a technical discussion of spatial effects
in fixed and random effects models, see, e.g., Elhorst (2003) and Anselin et al.
(2005).

Spatial effects can easily be introduced into the homogeneous panel by
straightforward extension of the models considered in Sections 3 and 4. This is
readily accomplished by generalizing the notion of a cross-sectional n-dimensional
spatial weights matrix, Wn, to the panel dimension nT . Typically, it is assumed
that the weights remain constant over time. Consequently, the nT ×nT dimen-
sion simplifies to:

WnT = IT ⊗Wn, (139)

where the subscripts refer to the matrix dimension and ⊗ is the Kronecker
product.



Spatial Econometrics 45

A spatial lag model can then be expressed as:

y = ρ(IT ⊗WN )y +Xβ + ε, (140)

where ρ is the spatial autoregressive parameter (constant over the time dimen-
sion), and the other notation is as before. Similarly, a model with spatial SAR
error dependence results in an nT × nT non-spherical error variance-covariance
matrix of the form:

ΣNT = σ2
u

[
IT ⊗ (B′

NBN )−1
]
, (141)

where Bn = In − λWn, σ2
u is a common variance term, and the spatial autore-

gressive coefficient λ is assumed to be constant over the time dimension. More
complex model specifications can be introduced in the same fashion (see Anselin
et al. 2005).

7.1.2 Estimation

Estimation of the spatial lag and spatial error specifications for homogeneous
panels can be carried out by direct extension of the methods covered in Sections
5.2 and 5.3.

For example, consider maximum likelihood estimation and the log-likelihood
for the spatial lag model, (61), as the point of departure. Its counterpart in the
panel setting requires the generalization of the log-Jacobian term to ln |IT ⊗
(In − ρWN )| = T ln |In − ρWn|, which yields:

L = T ln |In − ρWn| −
1
2

ln |ΣnT | −
1
2
ε′Σ−1

nT ε, (142)

with ε = y− ρ(IT ⊗WN )y−Xβ, and ΣnT as a general nT ×nT error variance-
covariance matrix. A special case of particular interest in practice is the group-
wise heteroskedasticity, considered in Section 5.2.1. This allows each time period
to have a separate error variance. The extension of ML estimation for panel spa-
tial error models follows in the same fashion, for example, using (141) as the
expression for the error variance-covariance matrix (see Anselin et al. 2005).

The principles of instrumental variables estimation and method of moments
outlined in Section 5.3 can be extended to the pooled case as well, taking ad-
vantage of the spatial weights IT ⊗Wn. For example, the instruments in an IV
estimation of the spatial lag model would be (IT ⊗Wn)X (with X as a stacked
nT × (k − 1) matrix, excluding the constant term). Similarly, the Kelejian-
Prucha GM estimator (Kelejian and Prucha 1999), considered in Section 5.3.2
can be generalized, by replacing the single equation spatial weights by their
pooled counterparts. Specifically, consider a stacked vector of SAR errors:

ε = λ(IT ⊗Wn)ε+ u, (143)

where both ε and u are nT × 1 vectors, and u v IID[0, σ2
uInT ].



Spatial Econometrics 46

Extending the moment conditions for the idiosyncratic errors u from (90) to
this case yields:

E[
1
nT

u′u] = σ2
u (144)

E[
1
nT

u′(IT ⊗W ′
n)(IT ⊗Wn)u] =

1
N
σ2
utr(W

′
nWn) (145)

E[
1
nT

u′(IT ⊗Wn)u] = 0, (146)

where tr is the matrix trace operator and use is made of tr(IT ⊗ W ′
nWn) =

TtrW ′
nWn, and tr(IT ⊗Wn) = 0.

The estimator is made operational by substituting u = ε − λ(It ⊗ Wn)ε,
and replacing ε by the regression residuals. The result is a system of three
equations in λ, λ2 and σ2

u, which can be solved in the same fashion as for the
single cross-section case.

Extension to the estimation of spatial effects in heterogeneous panel models
are outlined in Elhorst (2003) and Anselin et al. (2005).

7.1.3 Specification Testing

Specification tests in pooled models also generalize directly from the single cross-
section case. For example, the LM statistics against a spatial error and spatial
lag alternative are readily obtained as:

LMλ =
[e′(IT ⊗Wn)e/(e′e/nT )]2

Ttr(WnWn +W ′
nWn)

, (147)

and

LMρ =
[e′(IT ⊗WN )y/(e′e/nT )]2

[(Wŷ)′M(Wŷ)/σ̂2] + Ttr(WnWn +W ′
nWn)

, (148)

with e as a nT ×1 vector of OLS residuals, Wŷ = (IT ⊗Wn)Xβ̂ as the spatially
lagged predicted values in the regression, and M = InT −X(X ′X)−1X ′. Both
statistics are asymptotically distributed as χ2(1), since the spatial parameter is
constrained to remain constant over time.

Extensions incorporating groupwise heteroskedasticity can be obtained using
the principles outlined in Section 6.3, and robustified versions can be derived
using extensions of the results from Section 6.2.4.

In heterogeneous panels, a test statistic that does not require the specifica-
tion of a spatial weights matrix was recently suggested by Pesaran (2004). It
consists of an average of cross-sectional residual correlations, based on the resid-
uals of individual-specific regressions, eit = yit − α̂i − x′itβ̂i. The test statistic
is obtained as:

CD =

√
2T

n(n− 1)

n−1∑
i=1

n∑
j=i+1

γ̂ij

 , (149)
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with the pairwise correlation coefficients as:

γ̂ij =
T∑
t=1

eitejt
(e′iei)1/2(e

′
jej)1/2

, (150)

where ei and ej are T × 1 residual vectors for each cross-sectional unit. The
statistic is asymptotically distributed as standard normal. Extensions to “local”
forms of cross-sectional dependence are given as well (see Pesaran 2004, for
details).

7.2 Spatial Effects in Error Component Models

In the textbook case of the two-way error component regression model, het-
erogeneity is introduced to the panel setup through random effects. The error
term εit contains a cross-sectional unobserved random effect (αi), a random
time effect (φt), as well as an idiosyncratic component uit (e.g., Baltagi 2001,
p. 31):

εit = αi + φt + uit. (151)

The cross-sectional component has variance σ2
α, the time component has vari-

ance σ2
φ, and the idiosyncratic error term is assumed to be i.i.d with variance σ2

u.
Furthermore, the three random components are assumed to be zero mean and
to be uncorrelated with each other. The random components αi are assumed to
be uncorrelated across cross-sectional units, and the components φt are assumed
to be uncorrelated across time periods. This model is standard, except that in a
spatial econometric context, the data are stacked as cross-sections for different
time periods. For each time period t = 1, . . . , T , the n× 1 cross-sectional error
vector εt is:

εt = α+ φtιn + ut, (152)

where α is a n × 1 vector of cross-sectional error components, φt is the scalar
time component for time t, ιn is a n×1 vector of ones, and ut is a n×1 vector of
idiosyncratic errors. The common time component (and not the cross-sectional
component) yields a particular type of cross-sectional correlation of the form
σ2
φιnι

′
n. This equicorrelation across space is different from the usual spatial

autocorrelation, since no distance decay is present. Stacking the error vectors
by cross-section for each time period yields the complete nT × 1 error vector as
(see also Anselin 1988b, p. 153):

ε = (ιT ⊗ In)α+ (IT ⊗ ιn)φ+ u, (153)

where the subscripts indicate the dimensions, φ is a T × 1 vector of time error
components, u is a nT × 1 vector of idiosyncratic errors, and the other notation
is as before. The overal error variance-covariance matrix then follows as:

ΣnT = σ2
α(ιT ι′T ⊗ In) + σ2

φ(IT ⊗ ιnι
′
n) + σ2

uInT . (154)
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This differs slightly from the standard textbook notation, due to the stacking
of observations by cross-section.

A spatially lagged dependent variable can be added to the regression part
of this model in the usual fashion. However, given possible identification prob-
lems between the spatial correlation induced by the lag term and the spatial
correlation that results from the time random component, this is typically only
considered for the one way error component model:

ε = (ιT ⊗ In)α+ u. (155)

This model does not contain the time component φt and its error variance-
covariance is a subset of (154), without the second term.

A one-way error component model spatial lag model is a special case of the
spatial lag specification for pooled data considered in Section 7.1.1. Using the
appropriate expression for the error variance-covariance (and exploiting some
standard results on matrix Kronecker products), the log likelihood for this model
follows as (omitting constants):

L = T ln |In − ρWn| − 1
2 ln |σ2

α(ιT ι′T ⊗ In) + σ2
uInT |

− 1
2ε

′ [σ2
α(ιT ι′T ⊗ In) + σ2

uInT
]−1

ε. (156)

Inference can be based on the maximum likelihood estimates.
Another way to introduce spatial dependence into the one-way error compo-

nent specification is through the error term. Two different approaches have been
suggested in the literature, each leading to a particular estimation strategy.

The first approach consists of the specification of a SAR process for the error
component ut in each cross-section, for t = 1, . . . , T (Anselin 1988b, p. 153,):

ut = λWnut + ξt, (157)

with λ as the spatial autoregressive parameter (constant over time), Wn as the
spatial weights matrix, and ξt as an i.i.d idiosyncratic error term with variance
σ2
ξ .

Using the notation Bn = In − λWn, and ut = B−1
n ξt, the complete nT × 1

error vector ε for the stacked observations is:

ε = (ιT ⊗ In)α+ (IT ⊗B−1
n )ξ. (158)

The matching variance-covariance matrix for ε is then:

ΣnT = E[εε′] = σ2
α(ιT ι′T ⊗ In) + σ2

ξ [IT ⊗ (B′
nBn)

−1]. (159)

Note that the first component induces correlation in the time dimension, but
not in the cross-sectional dimension, whereas the opposite holds for the second
component (correlation only in the cross-sectional dimension).

Maximum likelihood estimation is again a special case of the linear model
with a nonspherical variance-covariance matrix, treated in Section 5.2.2. To op-
erationalize this method, use is made of some matrix Kronecker product prop-
erties to simplify the complex structure in (159). Specifically, with η = σ2

α/σ
2
ξ ,
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the error variance-covariance can be rewritten as ΣnT = σ2
ξΨnT , where:

ΨnT = ιT ι
′
T ⊗ ηIn + [IT ⊗ (B′

nBn)
−1]. (160)

This allows the determinant and inverse to be obtained as (see Anselin 1988b,
p. 154, for details):

|ΨnT | = |(B′
nBn)

−1 + (Tη)In||Bn|−2(T−1) (161)

and,

Ψ−1
nT =

ιT ι
′
T

T
⊗ [(B′

nBn)
−1 + (Tη)In]−1 + (IT −

ιT ι
′
T

T
)⊗ (B′

nBn). (162)

The log-likelihood thus becomes:

L = −nT
2

lnσ2
ξ − (T − 1) ln |Bn|

−1
2

ln |(B′
nBn)

−1 + (Tη)In|

− 1
2σ2

ξ

ε′[
ιT ι

′
T

T
⊗ [(B′

nBn)
−1 + (Tη)In]−1]ε

− 1
2σ2

ξ

ε′[(IT −
ιT ι

′
T

T
)⊗ (B′

nBn)]ε, (163)

with ε = y − Xβ. Note how, in contrast to the standard SAR error model,
the log-likelihood involves the inverse (B′

nBn)
−1, which constitutes a serious

computational challenge.
The likelihood framework for the one-way error component model with spa-

tial error autocorrelation can be exploited to derive LM tests for a range of
misspecifications (Anselin 1988b, Baltagi et al. 2003a,b). Taking as a point of
departure the standard pooled specification (137), both the error component
and the spatial parameter can be considered as part of the null hypothesis, and
a number of interesting combinations result. The corresponding tests can be
classified as marginal, joint or conditional, depending on which combinations of
parameters restrictions are considered (Baltagi et al. 2003b).

Specifically, marginal tests would be on either H0 : λ = 0 (the spatial pa-
rameter) or on H0 : σ2

α = 0 (the error component), based on the residuals of
the pooled model. A joint test is on H0 : λ = σ2

α = 0, and conditional tests are
for H0 : λ = 0 (assuming σ2

α ≥ 0), or H0 : σ2
α = 0 (assuming λ may or may not

be zero). Each case yields a LM statistic using the standard principles applied
to the proper likelihood function (for details, see Baltagi et al. 2003b). This
rationale can be further extended to include a time-wise dependent process, as
in Baltagi et al. (2003a). LM test statistics robust to local misspecification of
one of the other forms can be developed along these lines as well. The deriva-
tion and evaluation of effective diagnostics for spatial effects in error component
models is still an area of active research.
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A second approach to introduce spatial error autocorrelation into an error
components model was recently suggested by Kapoor et al. (2003). Instead of
specifying a spatial process for the idiosyncratic error u in (155), the error vector
(in the pooled model) is first subject to a SAR process:

ε = λ(IT ⊗Wn)ε+ u, (164)

or:

ε = (IT ⊗B−1
n )u, (165)

and, as before, Bn = I − λWn. The error components are introduced into the
error u, as:

u = (ιT ⊗ In)α+ ν. (166)

This results in an overall error variance-covariance matrix:

ΣnT = E[εε′] = (IT ⊗B−1
n )[σ2

α(ιT ι′T ⊗ In) + σ2
νInT ](IT ⊗B−1′

n ). (167)

Again, this model combines both time-wise as well as cross-sectional correlation.
The middle term in (167) is the standard expression from the error components
literature, which allows a simple solution to obtain the inverse of the matrix.
This leads to a system of six moment conditions in three unknowns (the spatial
parameter λ and the variance components) that can be solved to obtain consis-
tent estimators for the parameters. This readily yields FGLS estimates for the
model coefficients β (for technical details, see Kapoor et al. 2003).

Further work is needed to compare the relative merits of the two spatial
error component formulations in empirical practice.

7.3 Spatial Seemingly Unrelated Regression Models (SUR)

A special case of temporal heterogeneity (different parameter values over time,
but constant values across space) that has received considerable attention in
empirical work (e.g., in regional economics, Rey and Montouri 1999) consists
of a system of cross-sectional equations connected through cross-equation er-
ror correlation. This is a special case of fixed effects in that the number of
cross-sections T is typically fixed. In the mainstream literature, such seemingly
unrelated regressions are considered primarily for the case where T � n. In the
spatial context, however, the more interesting design is where n � T and the
equations are stacked one cross-section at a time:

yt = Xtβt + εt, for t = 1, . . . , T, (168)

where βt is a time period specific k × 1 vector of regression coefficients. In
practice, interest centers on the null hypothesis of homogeneity, H0 : βt =
β for t = 1, . . . , T . In each cross-section, the variance-covariance matrix is
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E[εtε′t] = σ2
t In, for t = 1, . . . , T . The temporal covariance matrix between the

cross-section at t and the cross-section at s takes the general form:

E[εtε′s] = σtsIn, for s 6= t, (169)

where σts is the temporal covariance between s and t (by convention, the vari-
ance terms are expressed as σ2

t ). In stacked form (T cross-sections), the model
becomes:

y = Xβ + ε, (170)

with

E[εε′] = ΣT ⊗ In (171)

and ΣT is the T × T temporal covariance matrix with elements σts.
A spatial lag SUR model is obtained by introducing a spatially lagged depen-

dent variable with a time specific autoregressive coefficient ρt for each period,
with the cross-equation error covariance as in (171). Each individual cross-
section for time period t follows the model:

yt = ρtWnyt +Xtβt + εt, for t = 1, . . . , T. (172)

The full system can be expressed concisely in stacked form as:

y = (RT ⊗Wn)y +Xβ + ε, (173)

where RT is a T ×T diagonal matrix containing the time-specific autoregressive
coefficients ρt on the diagonal, and β is a kT × 1 vector of stacked time-specific
coefficient vectors. The matrix X is a nT × kT block diagonal matrix:

X =


X1 0 . . . 0
0 X2 . . . 0
. . . . . . . . . . . .
0 0 . . . XT

 . (174)

In a spatial lag SUR model, special interest goes to testing the null hypothesis
H0 : ρt = ρ ∀ t = 1, . . . , T , i.e., whether the spatial process governing the
cross-sectional dependence in each time period is stable over time.

Maximum likelihood estimation of the spatial lag SUR model can be consid-
ered a special case of the general log-likelihood (61), but with a log-Jacobian of
ln |InT − (RT ⊗Wn)| and an error variance-covariance matrix of ΣT ⊗ In. The
block diagonal structure of the Jacobian can be exploited to simplify this expres-
sion to

∑
t ln |In − ρtWn| (with the sum over t = 1, . . . , T ). The log-likelihood

then follows as (omitting the constant part):

L =
∑
t

ln |In − ρtWn| −
n

2
ln |ΣT | −

1
2
ε′

(
Σ−1
T ⊗ In

)
ε, (175)
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with ε = [InT − (RT ⊗Wn)]y −Xβ (for further details, see Anselin 1988b, pp.
145–146). Instrumental variables estimation of this model is a special case of
three stage least squares (see Anselin et al. 2005).

Spatial error autocorrelation is introduced into the SUR specification in each
time period, with the n× 1 error vector εt as:

εt = λtWnεt + ut, for t = 1, . . . , T, (176)

or,

εt = (In − θtWn)
−1
ut. (177)

The cross-equation covariance is specified through the remainder error term ut,
with E[uu′] = ΣT ⊗ IN , where ΣT contains elements σ2

t on the diagonal, and
has σts as off-diagonal entries. As a result, the overall error covariance becomes:

E[εε′] = B−1
nT (ΣT ⊗ In)B−1′

nT . (178)

with BnT = [InT − (λT ⊗WN )] and λT as a T × 1 vector of time specific spatial
autoregressive coefficients λt.

Maximum likelihood estimation follows as a special case of a linear model
with non-spherical error variance-covariance, along the lines presented in Section
5.2.2. Similarly, specification tests for the presence of spatial error autocorrela-
tion in the SUR model can be based on the LM principle (Anselin 1988c).

8 Spatial Effects in Models with Limited Depen-
dent Variables

In applied econometrics, interest often focuses on models where the dependent
variable is not continuous, as considered so far in this chapter, but instead takes
on a limited number of values, or is truncated or censored in some fashion.
The extension of spatial effects to such models is not straightforward and still
a very active area of research. In spatial econometrics, the main interest in this
context has been in the spatial probit model, where the multivariate normal
distribution provides a flexible framework to incorporate spatial correlation.
This will be the focus of the current section, where specification, estimation and
diagnostic testing in this model will be briefly reviewed in turn. Recent, more
in-depth treatment of spatial probit can be found in Pinkse and Slade (1998),
Novo (2001), Fleming (2004), and Beron and Vijverberg (2004). Illustrative
applications are Holloway et al. (2002), Beron et al. (2003) and Murdoch et al.
(2003).

Before proceeding with the spatial probit, it is worthwhile to briefly point out
some alternative approaches, mostly formulated in the statistical literature. The
almost exclusive emphasis on the normal distribution as the stochastic frame-
work to handle spatial correlation for discrete dependent variables is because
most other distributions do not provide an analytical link between the marginal
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distribution (at each location) and the joint distribution, without impractical
constraints on the correlation structure (Johnson and Kotz 1969, Chapter 11).
Early on, some conditional models were suggested by Besag (1974), such as
auto-logistic and auto-Poisson, but these constrain the spatial range of the de-
pendence as well as the parameter space. For example, the auto-Poisson model
only allows negative spatial autocorrelation, precluding its use for modeling
diffusion or contagion processes. Approaches to allow a relaxation of this re-
quirement have only recently been developed (for a technical discussion and
extensions, see Kaiser and Cressie 1997, 2000).

Alternatives to the auto models that incorporate spatial correlation in spec-
ifications for limited dependent variables have been suggested that are based on
generalized linear models (GLM) and generalized linear mixed models (GLMM).
These utilize specialized estimators, such as quasi-likelihood and estimating
equations (see, e.g., Gotway and Stroup 1997, Gotway and Wolfinger 2003,
Zhang 2002). In addition, there is a growing literature on hierarchical ran-
dom coefficient models from a Bayesian perspective, where spatial correlation
is often introduced through a conditional autoregressive (CAR) prior on one of
the model parameters (such as the mean in a Poisson count model). A detailed
discussion of these methods is beyond the scope of the current chapter. Recent
reviews can be found in Lawson (2001), Banerjee et al. (2004), and Waller and
Gotway (2004), among others.

8.1 Spatial Probit

The textbook model for a linear latent variable regression specifies an unob-
served (latent) dependent variable y∗i as a linear function of an “index function”
and a random error term:

y∗i = x′iβ + εi, (179)

with xiβ as the index function, where xi is a k× 1 vector of observations on the
explanatory variables, and β is a matching vector of coefficients. The observed
counterpart of y∗i , the discrete dependent variable yi, equals one for y∗i > 0
and zero otherwise. Interest therefore centers on P[y∗i > 0] = P[x′iβ + εi > 0].
By specifying a distribution for the random error term, estimates for β can be
obtained. In the probit model, the standard normal distribution is used, which
due to its symmetry, yields the familiar result:

P[yi = 1] = P[y∗i > 0] = P[εi < x′iβ] = Φ[x′iβ], (180)

where Φ is the cumulative density function for a standard normal random vari-
ate.

Spatial dependence is introduced into this model either through the latent
variable itself, with Cov[y∗i y

∗
j ] 6= 0 for “neighboring” i, j, or through the error

term, with Cov[εiεj ] 6= 0 for “neighboring” i, j. Following standard practice,
the neighbors are defined by means of a spatial weights matrix.



Spatial Econometrics 54

A spatial lag model in the latent variable becomes:

y∗i = ρ
∑
j

wijy
∗
j + x′iβ + εi, (181)

or, in matrix notation, using the counterpart of the reduced form (40):

y∗ = (I − ρW )−1Xβ + (I − ρW )−1ε. (182)

In this simultaneous model, the latent variables are jointly determined, both
by the values for x at their own location and by the values for x at all other
locations, subject to a distance decay effect. This is quite distinct from a con-
ditional specification, where the observed actions of the neighbors enter on the
right hand side, not the unobserved (and unobservable) latent values.

The conditional counterpart of (181) is:

y∗i = ρ
∑
j

wijE[y∗j |X] + x′iβ + εi, (183)

where E[y∗j |X] can be estimated by yLi =
∑
j wijyj , the average of the observed

decisions yj at the neighboring locations. The new variable yLi can be included
on the right hand side of the model as an exogenous variable. Consequently, the
neighboring observations cannot be jointly determined with the observations a
i. While the standard probit model remains valid, coding methods must be
employed to ensure that the sample does not contain these neighbors.

In contrast, the simultaneous model (182) causes two major complications.
First, the error term is no longer independent, nor homoskedastic, since u =
(I − ρW )−1ε has variance-covariance matrix [(I − ρW )′(I − ρW )]−1. The in-
duced heteroskedasticity (when the number of neighbors is not constant across
observations) will cause standard probit estimators to be inconsistent. A stan-
dardization must be carried out that takes into account the location-specific
variance. The correlation structure means that to obtain the marginal cumula-
tive density for each individual error term ui, the remaining n − 1 dimensions
need to be integrated out. Second, the inequality constraint on the random
error does not pertain to xiβ, but to a series expansion, containing both ρ and
β, as well as the spatially lagged x. With

G(X,W, β, ρ) = x′iβ + ρ[WXβ]i + ρ2[W 2Xβ]i + . . . (184)

as the familiar series expansion, the censoring condition becomes:

P[yi = 1] = P
[
ui <

Gi(X,W, β, ρ)
σi

]
, (185)

where the cumulative density is for the marginal distribution of ui obtained by
integrating out the n−1 other dimensions in a multivariate normal density, and
σi is the square root of the heteroskedastic variance at i.



Spatial Econometrics 55

The probit model with error terms that follow a SAR process is represented
by the latent variable specification (179) with the error terms as:

ε = λWε+ u (186)

This also requires the marginal density for a multivariate error term in the
censoring condition. However, unlike (185), this does not involve a function G,
but instead:

P[yi = 1] = P
[
ui <

x′iβ

σi

]
, (187)

where the probability for ui is for the marginal density from a multivariate
normal distribution with variance-covariance matrix [(I − λW )′(I − λW )]−1.

8.2 Estimation of Spatial Probit

The textbook solution to estimation in the probit model consists of a straight-
forward application of the maximum likelihood principle. Each observation on
the discrete dependent variable yi can be considered an independent draw for
a binomial random variable with probability Φ(x′iβ). The log-likelihood readily
follows as:

lnL =
∑
i

[ yi lnΦ(x′iβ) + (1− yi) ln(1− Φ(x′iβ))], (188)

with yi = 0, 1. Since 1−Φ(x′iβ) = Φ(−x′iβ), and using qi = 2yi− 1, this can be
expressed succintly as:

lnL =
∑
i

lnΦ(qix′iβ). (189)

In the spatial case, the simple summation as in (189) is no longer appropriate
and the full multivariate density must be evaluated to obtain the log-likelihood.
Consider u as the n × 1 vector of multivariate normal random variables with
variance-covariance matrix Σ. In order to generalize the censoring conditions for
both values of yi, set Q as a diagonal matrix with diagonal elements qi defined
above. The multivariate censoring conditions (or, the bounds on the integrals
in the evaluation of the multivariate cumulative density) are:30

u < QXβ, (190)

for the spatial error probit model, and:

u < Q(I − ρW )−1Xβ (191)

for the spatial lag probit model. These must be evaluated in a multivariate
normal distribution with Σ respectively as [(I − λW )′(I − λW )]−1 or [(I −
ρW )′(I − ρW )]−1. The corresponding log-likelihood can be expressed as:

lnL = lnΦn[QXβ; 0,Σλ] (192)
30The notation used is similar to the suggestion made in Beron and Vijverberg (2004).
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for the spatial error probit model, and:

lnL = lnΦn[Q(I − ρW )−1Xβ; 0,Σρ], (193)

for the spatial lag probit model, where Φn stands for an n-dimensional multivari-
ate normal cumulative distribution function with upper bounds as the first term,
mean 0 and variance-covariance matrix Σ. The evaluation of this log-likelihood
involves the computation of n-dimensional integrals, which is infeasible in prac-
tice.

A crucial step in any numerical optimization of the log-likelihood is the
evaluation of the probabilities involved. Beron and Vijverberg (2004) outline a
simulation estimator for the spatial probit model based on the relative impor-
tance sampler (RIS) for an n-dimensional multivariate normal density (see also
Vijverberg 1997, Beron et al. 2003).31

The problem consists of evaluating the multivariate normal probability P[u <
V ], with V as either QXβ or Q(I − ρW )−1Xβ, and u ∼ MVN(0,Σ). Since Σ
is positive definite, there exists a Choleski decomposition A′A = Σ−1, where
A is an upper triangular matrix. This is particularly useful for SAR models,
since Σ−1 does not involve an inverse operation. For example, in the spatial
error probit, this requires a Choleski decomposition of (I − λW )′(I − λW ) =
I + λ(W +W ′) + λ2WW ′.

The transformation η = Au yields a vector of independent standard normal
random variables whose joint density can be computed as a simple product of
the marginal densities. With B = A−1 (an upper triangular matrix with positive
diagonal elements), the random vector u can be replaced by u = A−1η = Bη.
Since the matrix B is upper triangular and its diagonal elements are positive,
the bounds on the random vector η can be written, starting from the bottom
(i.e., for i = n), as:

ηn < b−1
nnVn ≡ νn (194)

ηn−1 < b−1
n−1n−1[Vn−1 − bn−1nηn] ≡ νn−1, (195)

and, in general:

ηj < b−1
jj

 Vj −
n∑

i=j+1

bjiηi

 ≡ νj. (196)

The values for Vj are based on the current value of the model parameters,
including the spatial autoregressive parameter. For a given choice of a proper
density function for the importance sampler, the simulator operates in a recur-
sive fashion, by first drawing a random variable η̄n that satisfies the condition
η̄n < νn. The value η̄n is next substituted in the expression for the bound νn−1

to obtain ν̄n−1. A a second random variable, η̄n−1 is drawn, satisfying this new
bound. This is continued until a n × 1 vector of bounds ν̄ is obtained. This

31The RIS estimator is a generalized version of the well known GHK simulation estimator.
For a review, see Stern (1997).
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vector is then used to evaluate the joint density, as a product of the individual
cumulative densities (technically, these are ratios of densities in the importance
sampler). In the case of a normal sampler, this simplifies to

∏n
j=1 Φ(ν̄j). This

process is repeated R times to obtain an estimate for the log-likelihood as the
average of the sampled joint probabilities (for technical details, see Beron and
Vijverberg 2004, pp. 176–177):

p̂ = (1/R)
R∑
r=1

 n∏
j=1

Φ(ν̄j,r)

 . (197)

This is then used in a nonlinear optimization algorithm to obtain a new set of
parameter values, and the process is repeated until convergence. Two important
computational challenges in this procedure are the Choleski decomposition of
the inverse variance matrix, and the need for the inverse (I − ρW )−1, required
for the bounds in the spatial lag model. The RIS estimator for the spatial probit
model was applied in empirical work by Beron et al. (2003) and Murdoch et al.
(2003).

An alternative simulation estimator for the spatial probit model was formu-
lated by LeSage (1999, 2000). This uses Markov Chain Monte Carlo (MCMC)
simulation methods, such as the Gibbs sampler and the Metropolis-Hastings
sampler, and is couched in a Bayesian context (see also Holloway et al. 2002).
The basic principle of a Gibbs sampler is to generate draws for the joint posterior
distribution of the parameters by sampling from the full conditional distribu-
tions. For example, in a model with two parameters, [θ1, θ2], a sample from
the joint density can be obtained by alternating repeated draws from f(θ1|θ2)
and f(θ2|θ1), using the sampled variate at each iteration to condition.32 In this
process it is important to establish a proper posterior conditional density from
which it easy to sample.

In the spatial probit model, two key aspects need to be considered. First,
the analysis proceeds similar to the Bayesian framework for the standard spa-
tial regression models, conditional upon the latent dependent variable y∗. The
latter is obtained from its posterior conditional density, which can be shown to
be a truncated normal distribution (given values for the other parameters in the
model). Sampling from this distribution generates “observations” on the latent
variable, which can then be conditioned on in the remainder of the analysis.33

A second aspect pertains to the conditional density for the spatial parameters.
While the conditional densities for the β parameters (in a homoskedastic probit
model, σ2 = 1 to avoid identification problems) are the usual multivariate nor-
mal, the conditional density for the spatial parameters is of unknown form (see

32A technical discussion of the Gibbs sampler and other MCMC techniques is beyond the
current scope. A classic reference is Geman and Geman (1984). For introductory overviews,
see, e.g., Casella and George (1992), Gilks et al. (1996), and Gelman et al. (2004, Chapter
11). A basic reference for application to the probit model is Albert and Chib (1993).

33This is similar in spirit to the EM algorithm (expectation-maximization) which was ap-
plied in the spatial probit context by McMillen (1992). See LeSage (2000) and Fleming (2004)
for a critical assessment.
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also LeSage 1997). For example, in the spatial lag model (ignoring σ2), this is:

f(ρ|β, y∗) ∝ |I − ρW | exp[(y∗ − ρWy∗ −Xβ)′(y∗ − ρWy∗ −Xβ)]. (198)

Sampling from this conditional density requires a specialized approach, such
as a Metropolitan-Hastings algorithm. This also involves the evaluation of the
Jacobian term (for technical details, see LeSage 1997, 1999, 2000).

Alternatives to these simulation estimators can be based on GMM, as in
Pinkse and Slade (1998). However, these approaches only tackle the additional
heteroskedasticity in the spatial models, but ignore the off-diagonal elements in
the variance-covariance matrix. Specifically, the heteroskedasticity is a function
of the spatial autoregressive parameters, which can be exploited to adjust the
correction by σi in (185) and (187).34

To date, relatively little is known about the relative performance of these
estimators in finite samples (some preliminary findings are given in Novo 2001).

8.3 Specification Tests in Spatial Probit

Testing for the presence of spatial effects in the probit model is hampered by
the fact that neither the true residual nor the dependent variable in the latent
variable model are observed. Instead of e∗i = y∗i − x′iβ̂, either a naive residual
must be used, ei = yi − Φ(x′iβ̂), or the notion of a generalized residual (Cox
and Snell 1968). The latter follows from the first order conditions in the probit
log-likelihood (188):

∂L/∂β =
∑
i

φi

[
yi
Φi

− 1− yi
1− Φi

]
xi = 0, (199)

where Φi and φi are, respectively, the cumulative standard normal distribution
and the standard normal density, evaluated at x′iβ. This takes on the general
form of the familiar orthogonality condition

∑
i ε̂ixi = 0, used as the basis for

GMM estimation. After some algebra, the generalized residual can be expressed
as:

ε̂i = φ̂i

[
yi − Φ̂i

Φ̂i(1− Φ̂i)

]
, (200)

with a consistent estimate β̂ used to evaluate Φ̂i and φ̂i.
The main results obtained so far are developed in papers by Pinkse and

Slade (1998), Pinkse (1999, 2004), and Kelejian and Prucha (2001). A test
statistic against spatial error correlation in the probit model takes on the form
of a generalized Moran’s I statistic or a LM statistic, asymptotically distributed
as, respectively, standard normal or χ2(1):

I∗ = e′We/Γ d−→ N(0, 1), (201)
34A GMM approach as a weighted non-linear estimator of the linear probability model is

outlined in Fleming (2004).
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or:

LMλ = [e′We]2/Γ d−→ χ2(1), (202)

where e is a vector of “residuals” and Γ is a standardization factor, containing
weights matrix traces and variance terms.35

In Pinkse and Slade (1998), the residuals are standardized generalized resid-
uals, to correct for the inherent heteroskedasticity in the model. Since the
variance of the generalized residual ε̂i is φ2

i /[Φi(1− Φi)], dividing (200) by the
square root of this variance yields the standardized residual as:

ε̂si =
yi − Φ̂i√
Φ̂i(1− Φ̂i)

. (203)

The Pinkse-Slade LM test statistic is then:

LMPS =
(ε̂si ′Wε̂si )

2

tr(WW +W ′W )
. (204)

The asymptotic distribution is not formally derived, but instead a bootstrap
procedure is suggested to carry out inference (see Pinkse and Slade 1998, p.
131). In contrast, both Pinkse (1999) and Kelejian and Prucha (2001) obtain
formal asymptotic results, under slightly different sets of assumptions.36 Pinkse
(1999) takes a LM perspective and demonstrates that:

LMλ =
(ε̂i′Wε̂i)

2

σ̂4tr(WW +W ′W )
d−→ χ2(1), (205)

where ε̂i are the generalized residuals from (200), and

σ̂2 =
1
n

∑
i

φ̂2
i

Φ̂i(1− Φ̂i)
. (206)

Kelejian and Prucha (2001)derive the asymptotic properties of the generalized
Moran’s I statistic in a wide range of specifications. For the probit model, the
corresponding test statistic is (Kelejian and Prucha 2001, pp. 234–236):

I∗ =
ei′Wei√

tr(WΣWΣ +W ′ΣWΣ)
d−→ N(0, 1), (207)

35Tests against a spatial lag alternative have received much less attention. In Pinkse (1999),
a statistic of the form y∗′We/Γ is suggested, along the lines of the LMρ statistic in the linear

regression. The latent dependent variable is estimated as ŷ∗i = x′iβ̂ + ε̂i, with ε̂i as in (200).
The standardizing factor Γ is a complex expression in matrix traces and variance terms (see
Pinkse 1999, p.11). To date, this test statistics has seen little application.

36For example, Pinkse (1999) assumes the explanatory variables to be independently dis-
trubuted, whereas Kelejian and Prucha (2001) focus on moment conditions and constraints
on the spatial weights.
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with ei = yi − Φ̂i, and Σ as a diagonal matrix containing σ̂2
i = Φ̂i(1− Φ̂i).

The I∗ and LMλ test statistics differ in the regularity conditions under
which they are developed. There are operational distinctions as well, in the
way in which the residuals are estimated (generalized vs. naive) and in the
expression for the variance used in the standardization factor. Little is known
about the relative performance of these test statistics in finite samples (for
limited evidence, see Novo 2001).

9 Future Directions

The objective of this chapter was to review the current state of the art in spatial
econometrics, while emphasizing recent results. There is now a solid body of
results in the literature to deal with spatial effects in the linear regression model.
However, considerable work remains to be done in the context of panel data and
limited dependent variable models. To close the chapter, it may be useful to
outline a number of directions where progress is most desired.

There is still no encompassing theoretical framework to handle asymptotics
in the spatial domain that translates into readily verifiable conditions. Whereas
several useful results have been obtained to date, they tend to be case-specific
and depend on particular views of the spatial sampling process. As a result,
properties that hold for one conceptual framework do not readily translate into
another.

There also seems to be considerable room for further integration of the in-
sights obtained in the statistical literature on hierarchical Bayesian spatial mod-
els into spatial econometric formulations with random coefficients. Along the
same lines, the simulation estimators that are crucial in obtaining results in
these models require efficient computational algorithms. In order to become
useful in the empirical (large data) context commonly encountered in applied
economics, important computational issues remain to be tackled, especially to
handle space-time dynamics.

Finally, the dissemination of theoretical results to the empirical practice of
econometricians crucially depends on the availability of software. While con-
siderable progress has been made (see the review in Anselin et al. 2004b, pp.
10–11), this has been primarily concerned with the linear regression setup, and
much remains to be done to develop useful software tools to tackle panel data
and limited dependent variable settings.

It is hoped that the current chapter will stimulate further work in both the
theory and practice of spatial econometrics.
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Ferrándiz, J., López, A., Llopis, A., Morales, M., and Tejerizo, M. (1995).
Spatial interaction between neighbouring counties: Cancer mortality data in
Valencia (Spain). Biometrics, 51:665–678.
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