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ESTIMATING LINEAR MODELS 
WITH SPATIALLY 

DISTRIBUTED DATA 

Patrick Doreian 
UNIVERSITY OF PITTSBURGH 

Sociologists study a wide variety of social, political, and 
economic phenomena. Many of these phenomena-for example, 
urbanization, political mobilization, economic development, diffusion 
of innovations-take place in and are distributed across geographical 
space. It is reasonable, therefore, to argue that sociologists are inter- 

ested, indeed have long been interested, in social phenomena distrib- 
uted in geographical space. Yet, in the main, our theoretical frame- 
works and data-analytic capabilities do not include the geography of 

I am grateful to Norman P. Hummon, who designed and implemented 
REPOMAT, a matrix algebra package I have used for estimation throughout this 

chapter, and to Philip Sidel, of the Social Science Computer Research Institute at the 

University of Pittsburgh, for programming the computation of the spatial autocor- 
relation statistics. Comments of the anonymous reviewers led to considerable 

improvements in the chapter and are appreciated. 
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social phenomena.' As a result, the geographical characteristics of 
social phenomena are overlooked, especially when data analyses are 

performed. Thus there is a large lacuna in our theoretical frameworks 
and methodological apparatus. This chapter represents an initial 

attempt at filling that lacuna. I should make clear that my objective in 
this chapter is not to claim that geographical space must be included; 
rather, it is to claim that when it is appropriate to include geographical 
space, a variety of conceptual and methodological issues need to be 
addressed. The following pages outline some of these issues and discuss 
estimation strategies that are appropriate for linear equations where 
the data are spatially distributed. 

Some examples of the data structure considered in this study 
are appropriate.2 Frisbie and Poston (1975), working in the human 

ecology tradition, analyzed the relationships between sustenance orga- 
nization and population change. Using data for all nonmetropolitan 
counties of the 48 contiguous states of the United States, they present 
regression equations linking population changes to components of 
sustenance organization and also to other social characteristics that 
have been hypothesized to account for population change. Inverarity 
(1976) used a linear model in which the final dependent variables were 

lynchings and electoral support, the exogenous variables were racial 

composition, urbanization, and religious homogeneity, and there was 
an unmeasured endogenous variable of mechanical solidarity. The 
data were from the (then) 59 parishes of Louisiana. Ragin (1977), 
using British county data, regressed Conservative and Labour votes on 
a variety of measures of class composition and two regional dummies. 
Chirot and Ragin (1975) analyzed the Romanian peasant rebellion of 
1907 by using data for counties and multiple-regression methods. 

These examples were taken from the American Sociological 
Review. Moving elsewhere, we can find the classic papers of 
Matthews and Prothro (1963a, 1963b). In the first of these papers, 
they studied the relationship between social and economic factors and 

'A stronger argument can be made: Not only is geographical space frequently 
excluded; so too is consideration of the physical environment (Dunlap and Catton, 
1979). The two omissions are not unrelated. While entry into the debate over the 
"environmental sociology" paradigm would take us too far from our objectives, it can 
be remarked that the issues discussed here are germane to the empirical study of 

society-environment interactions. 
2These examples are not included in a critical vein since the issue of the 

relevance of geographical space has not been decided. 
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black voter registration; in the second they extended their analysis to 
consider political factors. The central workhorse was again multiple 
regression, and the data were for 997 Southern counties. Salamon and 
Van Evera (1973) examined three competing explanations of political 
participation using data for Mississippi's 29 black-majority counties 
and regression methods. Kernall (1973), in an extended critique of 
Salamon and Van Evera's thesis, used the same methodology with data 
for all of Mississippi's counties. Schoenberger and Segal (1971) 
examined the (linear) relation between voting support for Wallace in 
1968 and a variety of socioeconomic characteristics for 77 Southern 

congressional districts. Wasserman and Segal (1973) performed essen- 

tially the same analysis, only they used data for counties and split the 
South into the Deep South and the marginal South. Capecchi and 
Galli (1969) presented a linear causal model of voting determinants in 

Italy using data for 88 territorial units comprising all but four of the 
Italian provinces. Cox (1969), also employing a linear causal model, 
analyzed voting participation and the Conservative vote with data for 
the parliamentary constituencies of London. 

In a quite different vein, Aigner and Heins (1967) used 

regression equations to account for variations in income equality in the 
50 states and Washington D.C.; the exogenous variables were a 

variety of social, demographic, economic, and political variables. 
Mitchell (1969) adapted econometric procedures to analyze the Huk 
rebellion in the Philippines, linking insurgent control to a variety of 
cultural and economic factors; the data were for 57 municipalities in 
four provinces. Doreian and Hummon (1976) reanalyzed these data 
with the same objectives as Mitchell. 

The list of examples, while long, is far from being exhaustive. 
These are simply examples of a particular type of data structure; in all 
cases, the data are defined for areal units and these units together 
comprise a region.3 This data structure has prompted the use of 

multiple-regression analysis to estimate a linear relation. This 

coupling of a particular data structure and the use of linear structural 

equations is the focus of this chapter. 

3There are partial exceptions to this statement. Salamon and Van Evera (1973) 
did not use all the counties of Mississippi; however, Kernall (1973) did. Matthews and 
Prothro (1963a, 1963b) did exclude some Southern counties, and Frisbie and Poston 
(1975) excluded the metropolitan counties. Nevertheless, the general point still stands. 
Further, the issues and procedures discussed here apply even if there are holes, so to 
speak, in a region. 
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The essence of the data structure arises through aggregation. 
(However, this chapter is not about the "aggregation problem.") 
Whenever data are aggregated to represent areal units, which are 

usually defined administratively or politically, it is likely that the 

geography of a social phenomenon has been retained, albeit in an 

implicit way. Except for the examples represented by Mitchell (1969) 
and Doreian and Hummon (1976), all the examples cited here ignore 
geographical space. This is not necessarily meant as a negative 
appraisal. Whether geographical space should or should not be explic- 
itly included is an issue that hinges on theoretical and methodological 
considerations. It is these considerations, especially the latter, to which 
our attention is now directed. 

REPRESENTING GEOGRAPHICAL SPACE 

The representation of geographical space is not obvious as it 
involves choices based on substantive concerns and technical 
constraints. Sociologists can benefit from the efforts of geographers, 
regional economists, and mathematical ecologists (see Cliff and Ord, 
1973; Pielou, 1969) who grapple with representing geographical 
space. There are two broad strategies: using measurements of distances 
between geographical locations and partitioning a region into areas.4 
The focus of this chapter is on the latter. In this strategy a region is 

partitioned into areas and data are recorded for each area. Geograph- 
ical space is then represented by a (N x N) matrix where there are N 
areas in the region. Doreian and Hummon (1976, pp. 117-125) 
provide a general discussion of this representation of geographical 
space, and part of their conceptualization is used here. 

The overriding reason for deciding on a specific representation 
is substantive. Generally, an explanation of some phenomenon is 

sought where the value of a variable of interest in a given area is 

(systematically) related to the values of that variable in some other 
areas. That is, observations are presumed to be interdependent rather 
than independent and this interdependency is presumed to be 

geographically based. The interdependency, or connectedness in 

geographical space, determines the representation of geographical 

4It is possible, of course, to use distances between geographical areas. For 

example, the distances between area centroids or salient points (such as administrative 

capitals) can be used. 
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space. Consider the example of the Huk insurgency (Mitchell, 1969; 
Doreian and Hummon, 1976). Rebel control (or governmental 
control) of an area has immediate consequences for adjacent areas. If 
one side of the conflict can move weaponry and troops into an area, 
that area becomes a base for attempting to control adjacent areas. 

Adjacency is then the key geographical characteristic. More generally, 
accessibility of one area from another may be the key geographical 
characteristic with adjacency simply being a special case of accessibili- 

ty. The properties of a transportation network could be used to 
determine accessibility with respect to each pair of areas that make up 
a region. Collective violence, as represented by the Romanian peasant 
rebellion of 1907 (Chirot and Ragin, 1975) or lynchings in the South 

(Inverarity, 1976), is likely to spread spatially, especially in an era 
before mass communication. Black enfranchisement in the United 
States is another process that can be seen to operate in terms of 

adjacency.5 More generally, diffusion can be viewed as a spatial 
process operative over spatial connections between areas. 

The first step of spatial representation is deciding which spatial 
property is to be represented. Even with that choice made, there are 
further options. Consider adjacency as a spatial property to be 

represented. Suppose a region R can be partitioned into N mutually 
exclusive areas. Louisiana is partitioned into 64 parishes, the contigu- 
ous United States into 48 states, and so on. Let S = [sj] be an (N x N) 
matrix, where si is 1 if area i is adjacent to area j and 0 otherwise. 

Throughout, the si are taken to be zero. The adjacency characteristics 
of R are completely specified in terms of S. The entries of S are either 0 
or 1. Such a binary matrix can be converted into a set of weights in the 

following fashion. Let si be the row sum for the ith row of S. Then a 
matrix, W = [wij], can be constructed where wi = sj/si. The entries of 
W lie between 0 and 1 (inclusive, although w-, = 1 is only possible for a 
pair of mutually adjacent but elsewise disconnected areas) and are 

proportions based on the number of other areas adjacent to a specific 
area. Adjacency could be operationalized slightly differently (Mitchell, 
1969). Let bi, be the length of common border between area i and 
area j. Then define wij = bi/b,i, where b,, is the total perimeter of 
area z. 

SA much more general notion of adjacency could be used such that areas are 
adjacent if they are sufficiently similar with respect to relevant social, political, or 
economic characteristics. (See Cliff and Ord, 1970.) 

363 



PATRICK DOREIAN 

It is clear that in any empirical situation the choice of a matrix 
W to represent geographical space is not obvious. There is, literally, an 

infinity of possible representations.6 This infinite number has led 
some critics, for example, Arora and Brown (1977), to argue that the 

specification of W should be abandoned altogether. Such a judgment is 

premature. Some representations will be more compelling and soundly 
based than others. The choice of a representation can be made where 
the substantive concerns of the investigator will be paramount. A wide 

range of choice means that care should be exercised in the choice made, 
not that the investigator should refrain from making choices altogeth- 
er. 

For the following exposition, I assume that geographical space 
can be represented by a matrix of weights W. The elements of W are 

nonnegative and bounded by 0 and 1. 

LINEAR EQUATIONS WITH SPATIALLY 
DISTRIBUTED DATA 

Let Y be a vector of observations on an endogenous variable; let 
X be a matrix of observations on a set of exogenous variables 

(including a column of l's for the intercept term); let / be a vector of 

parameters; and let e be the disturbance term. Then, in abstract terms, 
the model estimated in most of the preceding examples is 

Y=X X + E (1) 

where 

E[e] = 0 E[ee'] = a2I (2) 

and e is multivariate normal. Such is the conventional population 
regression function. As such, the spatial structure is ignored. The areal 
units are treated as units of analysis in the conventional sense, and 

nothing further is done concerning space. However, the spatial struc- 
ture of the region can be incorporated in a variety of ways. Alternatives 
have been outlined by Ord (1975), and maximum-likelihood estima- 
tion (MLE) procedures have been proposed for each of these. The 

6Further, a whole variety of distance decay functions could be specified for the 
elements of W (which would introduce the distance approach into this areal partition- 
ing approach). 
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technical nature and terse presentation of Ord's procedures render 
them inaccessible to most social scientists, which leads to the need to 
make them more widely available. Thus this chapter is largely an 

exegesis of Ord's procedures, presenting derivations of the properties 
of those procedures and their sociological applications. The chapter is 
not solely an exegesis, however, for Ord's procedures can be improved 
and there are cases where much simpler procedures may suffice. 

To express the idea of a spatial effect via adjacency,7 a very 
simple notion is that Y, for a particular area, is related to, or a function 

of, the values of Y in adjacent areas. More precisely, Y is related to a 

weighted combination of values of Y in adjacent areas. If the weights 
are given in the matrix W, then Y is a function of WY. 

The simplest linear model specifies 

Y = pWY + e (3) 

where e is as specified in (2). This is a pure endogenous model: Only 
the values of Y in adjacent areas determine the value of Y in a given 
area. Alternatively, we can describe this as a spatially autocovarying 
model. While such a simple formulation is likely to be of limited 

sociological utility, extended discussion of this model is warranted, as it 
underlies the models that do include exogenous variables in their 

specification. From (3), 

e = (I - pW)Y = AY (4) 

where A = (I - pW). The joint likelihood of the ic is given by Mead 

(1967): 

L(e) = (1/a 227r)N/2 exp (-?'E/2r2) (5) 

As Mead observes, however, it is the Yi that are observed and not the Ei. 
Thus it is the joint likelihood of the Yi that needs to be maximized and 
not the function given in Equation (5). From (4) and (5) we have as 
the joint likelihood function, given Y = y: 

L(y) = IA I (l/a227r)N/2 exp [-(Ay)'(Ay)/27r2] (6) 

where I A I is the Jacobian of the transformation from the e to the y. It is 

7Adjacency is but one spatial characteristic that can be represented as a matrix 
W. To avoid cumbersome phrases like "interdependency due to a relevant spatial 
characteristic," adjacency is used simply as an exemplar. 
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easier to work with the log-likelihood function,8 which is obtained 
from Equation (6) as 

l(y) = -(N/2) In (2ra2) - [1/(2o)2)]y'A'Ay + In A 

= const - (N/2) In a2 - (1/2a2)y'A'Ay + ln I A 

The parameters of the model requiring estimation are p and a2, so l(y) 
has to be maximized with respect to these.9 To simplify notation 

slightly, w = a2 and (7) is rewritten as 

l(y) = const - (N/2) In w - (1/2w) y'A'Ay + In I A (8) 

We first consider w and then p. Minimizing l(y) with respect to w is 

straightforward (Mead, 1967). Differentiating l(y) with respect to w 

gives 

al(y)/aw = - (N/2w) + (1/2w2) (y'A'Ay) (9) 

Setting this derivative to zero and solving gives 

a = 2c = y'A'Ay/N (10) 

as the estimator of a2. As yet, c is not known, since it depends upon p 
because A = I - pW. From (10) and (8), however, p is the value of p 
that maximizes 

I(y) = l(y, p; ) = const - (N/2) In a? + ln IA (11) 

Computationally this is burdensome, since determining p rests on the 
evaluation of A = I - pW . Ord, using a simple result in a clever 

way, reduced the burden of computation and obtained an easier way of 

estimating p. Let W have X,, ... , XN as its eigenvalues. Then, by 
definition of the characteristic equation, 

N 

XI- W= I (X- i) 
i=l 

Further, the determinant of a matrix is equal to the product of its 

eigenvalues. If f(W) is an algebraic polynomial in W (Lancaster, 

8If 0 is a parameter being estimated, then, under general conditions, 8/a0, 
(In L) = (aL/aO)/L. Thus L and In L will have maxima together, and L is always 

greater than zero (Kendall and Stuart, 1967, pp. 35-36). 
9Given Y = y , I(y) is a function of the parameters to be estimated. I could have 

written l(p, a2) instead of l(y) to emphasize this. 
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1971, p. 289), then the eigenvalues of f(W) are f (X). Thus the 

eigenvalues of I - pW are {1 - pX} and 
N 

I A II (1 - pi) (12) 
i-1 

The X, can be determined once and for all and, from (11), p is the value 
of p that minimizes 

N 

-(2/N) E n (1 - pX) + In [y'y - 2py'Wy + p2(Wy)'Wy] (13) 
i=1 

where a? has been substituted from (10). The value of p that minimizes 

(13) can be found by a direct-search procedure, and such a procedure 
is used throughout this chapter.10 With p found in this fashion, c can 
be obtained from (10). With these estimates established, it is necessary 
to be able to estimate the variance-covariance matrix of the estimates. 
In general, the asymptotic variance-covariance matrix is given by V, 
where 

V-1 = -E [a2l/90,9,s] (14) 

and where 0r and 0, are parameters being estimated (Kendall and 
Stuart, 1967, p. 55). In the simple model being considered here, there 
are only two parameters: 0r is w and 0, is p. The derivation of this 
information matrix is given in Appendix A. The asymptotic variance- 
covariance matrix is 

[N/2 w tr (B) 
V(Co, p) = 2 

(15) 
[o tr (B) o2[tr (B'B) - a] 

As an example of the pure endogenous model, consider the data 
assembled by Mitchell (1969) on the Huk rebellion in the Philippines. 
The vector y is the percentage of barrios in a municipality under Huk 
control. Using a direct-search procedure, p = 0.83. Use of this 

'00rd suggests that for more complex models a formal iterative procedure may 
be preferable. The direct-search procedure is rather cumbersome. It amounts to 

evaluating the value of the function given in (13) for each value of p in a given range 
and selecting the value of p for which the function takes a minimum value. Large 
increments in p can be used to get the minimum value roughly; then smaller 
increments in p can be used in that restricted region. 

367 



PATRICK DOREIAN 

estimate,1 together with Equation (10), gives a2 = 211.4. Thus the 

parameters of the (simple) model have been estimated. Using Equation 
(15), and computing the matrices there, gives 

1710 -0.8361 
V(&, P) =1 

- 0.836 0.005 

Straightforwardly, the standard error of p is 0.07 and the standard 
error of a is 41.36. Thus p is clearly significantly different from zero 
and a spatial process could be said to operate if the specification of 

Equation (3) is accepted. The measure of fit, FIT, is 0.69.12 
In most social science contexts, however, the pure endogenous 

model is of limited utility. Exogenous variables must be included in 
relational specifications, and this leads to 

y = pWy + Xt + E (16) 

where e is specified as before. Equation (16) is referred to as the mixed 

endogenous-exogenous model or, in Ord's terms, the regressive-autore- 
gressive model. The joint likelihood function for the Ei is given, as 

before, by Equation (5). For this specification, however, e = Ay - X/ 
and the joint likelihood function for the Yi is given by 

L(y) = IA(1/2ro2)N/2 exp -(1/2ar2)[Ay - X3]' [Ay - X3]} (17) 

Equation (17) points out the error in the establishment of the 
estimation procedure of Doreian and Hummon (1976, p. 138), as they 
omitted IA , the Jacobian of the transformation from e to y. The 

"Actually, the estimation and inference statistics were computed by using the 
results of the following section. Rather than estimate the model of (3) directly, the 
estimation was done for Y = a + pWY + E, where a is an intercept term. For 

simplicity, the pure endogenous model is discussed here without the intercept term. If 
c is significantly different from zero, then p will be biased; if & > 0, then p will be 
biased upwards; and if & < 0, then b will be biased downward. In the estimation, 
& = 2.67 with a standard error of 2.22; in this case, therefore, omission of a would not 
have been problematic. Indeed, estimation with a omitted leads to only small 
modifications of the estimates. 

'2The measure of fit (FIT) is the square of the correlation between y and the 
fitted value, y. For OLS this is equivalent to the coefficient of determination (see 
Johnston, 1963, p. 58). However, R2 does not have meaning here due to the 

interdependence of the observations. For this reason, the notation of R2 has been 
avoided and the measure of fit used here cannot be interpreted as the proportion of 
variance explained. One hopes that a more adequate measure of the goodness of fit of 
these spatial models will be developed. 
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log-likelihood function is given by 

l(y) = const - (N/2) In w - (1/2w) 

(y'A'Ay - 2'X' Ay + ,B'X'X/) + In A (18) 

which has to be minimized with respect to o, p, and /. As before, we 
start by minimizing l(y) with respect to o: 

l/o = - (N/2o0) 

+ (1/202) (y'A'Ay - 2/'X'Ay + /'X'X,) (19) 

Setting (19) to zero gives 

& = =2 = (1/N)(y'A'Ay - 2/'X'Ay + S'X'X/) (20) 

Of course, co is numerically unknown since p and 3 have not been 
determined. Define z = (I - pW)y = Ay. Then e = z - Xf and e'e = 
z'z - 2,8'X'z + #'X'Xlg, which begins to look like the situation of 

ordinary least squares (OLS) of z on X. With this change, we can 
write 

I(y) = const - (N/2) In o 

- (1/2o) (z'z - 2fl'X'z + /'X'X,) + InlA (21) 

Differentiating (21) with respect to , gives 

ol/oO = - (1/20)[-2X'z + 2(X'X)#] (22) 

Setting this to zero gives 

= (X'X)X'z (23) 

as the estimator of /, which, if p were known, would be given by OLS 
of z on X. Substituting (23) into (20) gives 

c = (1/N)[z'z - 2z'X(X'X)-'X'z + z'X(X'X)-'X'z] 

= (1/N)z'[I - X(X'X)-'X']z (24) 

= (1/N)z'Mz 

where M = I - X(X'X)-'X' is a symmetric, idempotent matrix. While 
(24) and (23) give estimation equations for o and /B, p is, as yet, 
unknown. As before, it has to be found by a direct-search procedure. 
Equation (13) is replaced by another expression to be minimized that 
takes into account the exogenous variables. As before, p maximizes 
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I(y) = I(y: p, a, ,3) = const - (N/2) In co + In I A 

Using the simplified expression for In I A l, p minimizes 
N 

-(2/N) In (1 - pi) + In a 
i=1 

But 

& = (1/N)z'Mz 

= (1/N)y'A'MAy 

= (1/N)y'(I - pW)'M(I - pW)y 

= (1/N)[y'My - 2py'MWy + p2(Wy)'MWy] 

Thus p minimizes 
N 

-(2/N) ln (1 - pXi) 
/2i~~~~--i~~~1 ~(25) 

+ In [y'My - 2py'MWy + p2(Wy)'MWy] 

and this is again done by a direct-search procedure. From Appendix 
A, 

V(a,p, ) 

N/2 o tr (B) 0' --I 

= 2 aW tr (B) W2 tr (B'B) + owf'X'B'BX_ - awo2 wX'B'X# (26) 

0 wX'BXt oWX'X 

is the asymptotic variance-covariance matrix for the estimators of the 

parameters of the mixed endogenous-exogenous model specified in 

(16). Before providing examples of these estimation procedures, I take 
a brief digression into the topic of spatial autocorrelation. 

In the specification of the classic linear regression model, we 
have E[eE'] = a2I, which indicates that the disturbance term is 
homoskedastic and not autocorrelated. If some off-diagonal elements of 
the variance-covariance matrix are nonzero, we have autocorrelation. 
The realm in which this has been most extensively discussed is 
time-series analysis. In that context a disturbance term is autocorre- 
lated if E[EEt_t] # 0 for t > tl. A variety of tests have been used to 
detect the presence of (temporal) autocorrelation; of these, the 
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Durban-Watson statistic is the most widely used. Once the autocorre- 
lation is detected, its form can be diagnosed and estimation strategies 
can be devised that take into account the autocorrelation that has been 

empirically diagnosed. (See, for example, Hibbs, 1974.) Of course, any 
variable of direct interest (endogenous or exogenous) in a model may 
be autocorrelated. Temporal interdependencies amount to temporal 
autocorrelation and, by the same token, spatial interdependencies 
amount to spatial autocorrelation. However, spatial autocorrelation is 
far more than a simple spatial analog of temporal autocorrelation. 
Cliff and Ord, in a series of publications culminating in their book 

(1973), have dealt extensively with this problem by reviewing earlier 

efforts, providing an exhaustive account of measures of spatial autocor- 
relation, and applying these measures to a variety of empirical 
situations. 

Given a spatially distributed variable y, an initial question is 
whether or not y is spatially autocorrelated. This technical issue is 
dealt with by defining an appropriate test statistic. Moran (1950) 
proposed such a statistic that was modified by Dacey (1965). The test 
statistic proposed by Dacey was generalized by Cliff and Ord (1973, p. 
12) as 

I = (N/T)(y'Wy/y'y) (27) 

for a spatially distributed variable where N is the number of areas, T 
is the sum of the weights of W, and W is an appropriate matrix of 

spatial weights.'3 Cliff and Ord (1973, pp. 13-15, 29-33) establish the 
distribution theory for I to test for spatial autocorrelation by treating 
(I - E[I])/(V[I])1/2 as a standardized normal deviate with E and V 
the expected value and variance operators respectively. They extend 
this approach (1973, pp. 87-97) to deal with residuals from a 

regression analysis. While the details are omitted here, some computa- 
tional formulas are included in Appendix B. On the basis of their work 
it is possible to test for spatial autocorrelation either in a variable of 
interest or in a residual resulting from a regression analysis. 

In the empirical examples that follow, the analysis of spatial 
autocorrelation is undertaken and reported. It is only of secondary 
interest to my objectives, however. In one respect, spatial autocorrela- 
tion can be viewed as an annoying technical problem. By the nature of 

13Cliff and Ord discuss other measures that are not considered here. 
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the models discussed earlier, it is clear that the endogenous variable y 
is hypothesized as spatially autocorrelated due to a well-defined spatial 
process specified in (3) or in (16). As the estimation procedures 
detailed earlier and in Appendix A are complex and computationally 
burdensome, it is reasonable to test for spatial autocorrelation prior to 
such an analysis. If y is not spatially autocorrelated, it is not fruitful to 

proceed further. If spatial autocorrelation does exist in y, it is 
reasonable to perform the regression analysis implied by (1) and assess 
the residual for spatial autocorrelation in y to see if it is removed by the 

regression analysis. If it is removed, the estimation of (16) is not 

warranted; but if it has not been removed, it is appropriate to proceed 
to the estimation of (16).'4 

EMPIRICAL EXAMPLES 

To illustrate the mixed endogenous-exogenous model, we 
consider first the Huk example of Mitchell. The exogenous variables 
are: 

P Proportion of the population speaking the Pampangan dia- 
lect 

FMP Farmers as a percentage of the population 
OWN Owners as a percentage of farmers 

SGR Percentage of cultivated land given over to sugarcane 
MNT Presence of mountainous terrain (dummy) 
SWP Presence of swamps (dummy) 

For further details on these variables, and on the rationale for their 

inclusion, see Mitchell (1969) or Doreian and Hummon (1976). The 
actual specification of the linear model uses P multiplicatively with the 
other variables so that the exogenous variables are P*FMP, P*OWN, 
P*SGR, P*MNT, and P*SWP. 

Table 1 gives the results of three estimations for a linear model 

linking insurgent (Huk) control to the cultural, demographic, econom- 

ic, and physical exogenous variables. Panel 1 gives the result of OLS 

applied to the specification of the standard population regression 

'4If the analysis were approached from the viewpoint of spatial autocorrelation 
and OLS did not remove the spatial autocorrelation, then it would be necessary to ask 
how the spatial autocorrelation could be removed. Given the formulation of the models 
in the previous section, it is obvious how the (nonspatial) OLS model should be 
reformulated. 
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function (Equation 1) where geographical space is ignored. Panel 2 

gives the outcome of the MLE procedure given in the preceding pages. 
As far as the primary objective of this chapter is concerned, the major 
comparison is made between these two panels. Panel 3 gives the OLS 

procedure suggested (incorrectly) by Doreian and Hummon, where 

Wy is simply included as another exogenous variable.15 However, the 

practical question behind the comparison of panels 2 and 3 is whether 
the much simpler OLS procedure (with a spatial term) will suffice as a 

surrogate for the more complicated and computationally burdensome 
MLE procedure. In each case, the figures in parentheses are estimated 
standard errors. 

TABLE 1 
Alternative Estimations for Multiplicative Model of Huk Insurgent Control 

Nonspatial Model 

Y= 1.15 + 3.79P*FMP - 1.91P*OWN + 0.46P*SGR 
(2.94) (0.94) (0.44) (0.16) 

1: OLS + 38.38P*MNT + 17.17P*SWP 
(7.02) (7.94) 

LR2= 0.73 (0.94) 
Spatial Model 

Y = -0.88 + 0.47WY+ 2.27P*FMP - 1.07P*OWN + 0.178P*SGR 
(2.48) (0.11) (0.81) (0.38) (0.14) 

2: MLE + 30.46P*MNT + 12.43P*SWP 
(5.89) (6.52) 

(FIT = 0.80)a a2 = 126.4 (23.9) 

= -1.38 + 0.59WY+ 1.89P*FMP - 0.86P*OWN + 0.11P*SGR 
(2.62) (0.14) (0.93) (0.45) (0.16) 

3: OLS + 28.49P*MNT + 11.26P*SWP 
(6.51) (7.01) 

(R2 = 0.80 

aThe measure FIT is not strictly comparable to R2 (see footnote 12). 

For the MLE procedure, p = 0.47 with a standard error of 
0.11. This indicates that a spatial process is operative and that the 
mixed endogenous-exogenous specification is appropriate. There are 
dramatic numerical and, more important, inferential differences 
between the spatial model and the nonspatial model.16 Apart from the 

"5The estimates differ from those of Doreian and Hummon (1976) and 
Mitchell (1969) since a different matrix Wis used in this case. Here W is normalized 
to have row sums of unity rather than using a binary matrix. 

16The term spatial model refers to the specification of the mixed endogenous- 
exogenous model. 
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intercept (which is not significantly different from zero in either 

approach), all the numerical estimates of the regression coefficients for 
the nonspatial model are inflated. Moreover, the estimates, for all 
coefficients, of the standard errors are also inflated. These are serious 
deficiencies in the nonspatial model and the application of OLS when 

geographical space is ignored. The nonspatial model would lead to the 
inclusion of all the exogenous variables (defined interactively with P) 
whereas the spatial model, together with the use of the appropriate 
MLE procedure, would lead to the inclusion only of P*FMP, 
P*OWN, P*SGR, and P*MNT. There are clear, substantive differ- 
ences in the outcomes of the two specifications and their corresponding 
estimation procedures. 

When we turn to the two estimation alternatives for the spatial 
model, there appear to be few differences. The numerical values of the 
estimated coefficients are close. The only systematic difference is that 
the estimates of the standard errors of the coefficient estimates are 
smaller under the MLE procedure than under the OLS approach. In 
this case, there is one inferential difference under the two approaches: 
P*OWN would not be included if the OLS estimates were used 
whereas it would be included with the maximum-likelihood estimates. 

Further examples are merited, and all are taken from the 
context of Louisiana politics.17 The dependent variable is support for 
the Democratic presidential candidate at various elections, and the 

exogenous variables are limited to: 

B Percentage black (in a parish) 
C Percentage Catholic (in a parish) 
U Percentage urban (in a parish) 

BPE Measure of black political equality 

The data are for all 64 Louisiana parishes (counties), and BPE 

operationalizes the extent to which blacks are enfranchised in a parish 
in relation to their numbers there. Again our attention is confined to 
estimation problems rather than the setup of models or their detailed 

interpretation. 
In the tables that follow, there are again two comparisons being 

made: between a spatial model and a nonspatial model and between 

"7The author, in collaboration with Charles Grenier, is analyzing the dynamics 
of Louisiana politics from 1932 to 1976. The examples used here are for illustrative 

purposes only, since our concern is with estimation procedures. 
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TABLE 2 
Alternative Linear Equations Predicting Support for Democratic Presidential Candidate 

(Kennedy) 1960: Louisiana 

Nonspatial Model 
Y= 21.03 + 0.01B + 0.30C - 0.11U + 0.39BPE 

1: OLS (4.40) (0.08) (0.04) (0.04) (0.06) 
R2= 0.88 

Spatial Model 
Y= 13.78 + 0.31WY- 0.004B + 0.22C - 0.10U + 0.29BPE 

2: MLE (4.67) (0.09) (0.07) (0.05) (0.04) (0.06) 
(FIT = 0.90)a a2 = 49.78 (8.83) 
Y= 12.34 + 0.37WY- 0.007B + 0.21C - 0.10U + 0.28BPE 

3: OLS (4.99) (0.12) (0.08) (0.05) (0.04) (0.07) 
R2= 0.90 

aThe measure FIT is not strictly comparable to R2 (see footnote 12). 

two alternative ways of estimating the spatial model. Table 2 presents 
the equations for the 1960 presidential election. As before, the coeffi- 
cient estimates for the nonspatial model are inflated relative to the 
maximum-likelihood estimates for the spatial model. The estimates for 
the standard errors of the coefficient estimates are close to each other. 

However, no inferential differences occur save the obvious inclusion of 
a spatial term for the spatial model. Percentage Catholic and BPE are 

positively related to percentage support for Kennedy whereas percent- 
age urban is negatively related to support for Kennedy. Percentage 
black is not relevant as a predictor of that support. (The coefficient 

sign difference for this variable is irrelevant as it is not significant.) 
Comparing the two estimation approaches for the spatial 

model, we see that the coefficient estimates for the exogenous variables 
are very close. As before, the maximum-likelihood estimates of the 
standard errors of the coefficient estimates are smaller than the 

corresponding OLS estimates (where there are differences). However, 
these make no difference so far as inferential decisions and substantive 

interpretations are concerned. In this instance, the OLS procedure is a 

perfectly good surrogate for the more involved MLE procedure. 
The next example is for the 1972 election; Table 3 gives the 

estimated linear equations. As before, the OLS estimates of the 
coefficients and the standard errors of the estimates for the nonspatial 
model are inflated (with one exception) relative to the maximum- 
likelihood estimates for the spatial model (although the differences are 

very small). The one exception is the intercept, which (in magnitude) 
is deflated in the nonspatial model. This exception leads to the one 
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inferential difference. For the nonspatial model, the intercept is not 

significant whereas it is in the spatial model. And, in the equation 
specified, the intercept term has a perfectly reasonable interpretation. 
Those (hypothetical) parishes with no blacks, no Catholics, no urban 

dwellers, and no black political equality were predisposed against the 
Democratic candidate in 1972. When the two estimation procedures 
are compared for the spatial model, the same pattern as for 1960 can 
be seen. The coefficient estimates are virtually identical; the maxi- 
mum-likelihood estimates of the standard errors of the estimates are 

smaller; and no inferential differences exist. Again, for the spatial 
model, the OLS estimators are satisfactory surrogates for the maxi- 
mum-likelihood estimators. 

TABLE 3 
Alternative Linear Equations Predicting Support for Democratic Presidential Candidate 

(McGovern) 1972: Louisiana 

Nonspatial Model 
Y=-7.36 + 0.41B + 0.09C + 0.001U + 0.29BPE 

1: OLS (4.32) (0.05) (0.03) (0.022) (0.07) 
R2= 0.75 

Spatial Model 
Y=-11.44 + 0.29WY+ 0.39B + 0.07C + 0.01U + 0.24BPE 

2: MLE (4.18) (0.10) (0.04) (0.02) (0.02) (0.06) 
(FIT = 0.78)a 

&2 
= 163.2 (2.9) 

Y= -12.51 + 0.37WY+ 0.39B + 0.07C + 0.01U + 0.22BPE 
3: OLS (4.50) (0.13) (0.04) (0.02) (0.02) (0.07) 

R2= 0.78 

'The measure FIT is not strictly comparable to R2 (see footnote 12). 

The final example concerns the 1968 presidential election; the 
estimated equations are shown in Table 4. The comparisons between 
the nonspatial model, with its OLS procedure, and the spatial model, 
with its MLE procedure, are similar to the previous case. However, 
both the coefficient estimates and the standard error estimates are 
much closer. The coefficient for the spatial term in the spatial model is 
rather small, and one would expect that as p tends to zero, and no 

spatial process operates, the two procedures will tend to give the same 
results. This is, of course, obvious, since the crucial difference between 
the two models is the specification of the spatial term. In the 1968 

election, there is again an inferential difference concerning the inter- 

cept term: It is included in the spatial model but excluded from the 
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nonspatial model (as before). Both models judge percentage urban not 
to be a significant predictor of Democratic presidential support in 
1968. 

TABLE 4 
Alternative Linear Equations Predicting Support for Democratic Presidential Candidate 

(Humphrey) 1968: Louisiana 

Nonspatial Model 
Y= -4.54 + 0.59B + 0.12C + 0.04U + 0.11BPE 

1: OLS (3.0) (0.05) (0.03) (0.03) (0.04) 
R2 = 0.76 

Spatial Model 
Y= -6.12 + 0.12WY+ 0.58B + 0.11C + 0.05U + 0.10BPE 

2: MLE (3.67) (0.12) (0.05) (0.03) (0.03) (0.04) 
(FIT = 0.76)' & = 22.9 (4.1) 
Y= -6.83 + 0.12WY+ 0.58B + 0.11C + 0.05U + 0.10BPE 

3: OLS (4.26) (0.15) (0.05) (0.03) (0.03) (0.04) 
R2 = 0.76 

aThe measure FIT is not strictly comparable to R2 (see footnote 12). 

In this final example, the OLS and MLE procedures return 
the same estimates of p. For the previous examples, p via OLS was 

higher than the corresponding maximum-likelihood estimate. The 

pattern is maintained: The OLS estimate of the standard error of p is 

greater than the corresponding maximum-likelihood estimate. The 
OLS bias of tending to overestimate the magnitude of p is offset by the 
OLS bias of tending to overestimate the magnitude of the standard 
error of the estimate of p. The nature of the two biases makes it 
difficult to state a general conclusion on the merits of OLS for the 

spatial model versus the MLE procedure. If the two procedures were 
to lead to different inferential processes concerning p, then obviously 
the OLS procedure would not be a good surrogate for the MLE 

procedure.18 

DISCUSSION 

Given that social scientists do consider social phenomena that 
are distributed in geographical space, this chapter has addressed three 

18In part, this issue can be assessed in terms of spatial autocorrelation. For each 
of the foregoing examples, the spatial autocorrelation statistic I was computed. In all 
cases, the dependent variable y was spatially autocorrelated. 
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issues. First, should geographical space be included in modeling efforts 
when linear equations are used? Second, if geographical space should 
be included, how can we include it parsimoniously? And, third, given 
the inclusion of geographical space in linear models, what estimation 
procedures should be used? 

The first issue arose in the context of the use of aggregated data 
for areal units. As such, geography is implicitly included in the data 
structure and whether or not geographical space should be included 
depends on whether or not some spatial process is operative. Such a 
decision is a theoretical one, and several examples were given in which 
a spatial process was at least plausible. 

With regard to the second issue, we have explored a straight- 
forward way of including geographical space by means of a matrix W 
of weights representing a spatial property. The exemplar spatial 
property was that of adjacency. Representing space in this fashion is, 
however, only one alternative. Coelen (1976) has argued that use of a 
single p means that the autocorrelation is either positive or negative 
across all observations and has suggested that this use is too restrictive. 
There may be different spatial effects in different local subregions. 
Specification of a differential p complicates the estimation procedure 
considerably, as the simplification provided by Equation (12) is not 
available; this research problem merits further attention. Another line 
of inquiry is to specify multiple spatial effects with multiple p's and 
W's. However, the use of multiple ps also means that the simplification 
found in (12) would no longer be available. 

As there are difficulties in specifying W, Arora and Brown 
(1977) have proposed abandoning such an approach and have 
suggested, instead, using econometric methods. They outline the 

procedures of joint generalized least squares, equicorrelated error 
terms, random error component models, and random coefficient 
regression models. As they make no attempt to apply these approaches 
empirically, their suggestions remain speculative. The reader is 
referred to their article for details, but some preliminary remarks are 
in order here. The method of joint generalized least squares (see Theil, 
1971) requires panels of observations. Further, distinct 3's are speci- 
fied for each area, which greatly enlarges the number of parameters to 
be estimated. For the situations discussed in this chapter, the method is 
not applicable. If there are a sufficiently large number of panels of 
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observations, and if the ,- are fixed through time, the method has some 

appeal. Both Swamy's (1970) and Hsiao's (1975) approaches to the 
random coefficients model also require panels of observations. The 

equicorrelated error term models (without the spatial term) for a 

single cross-section amount to OLS if an intercept is specified (Theil, 
1971, p. 243). If there are good grounds for anticipating a spatial 
process, however, the methods described here are preferable to OLS. 
Arora and Brown propose the random error components model for 
interaction (between areas) variables, but since the dependent vari- 
ables discussed here are not such interaction variables, the approach 
does not appear relevant in this context. On the other hand, for 
interaction variables this approach can be explored further. 

With regard to the third issue, given the specification of a 
(linear) spatial process, the mixed endogenous-exogenous model, the 

chapter has detailed a maximum-likelihood procedure for estimating 
such a model. We also discussed a test for spatial autocorrelation that 
can be used to guide the researcher in assessing the need to incorporate 
spatial characteristics into the formulation of a model. 

In the examples we have used, it is clear that important 
differences do exist between the spatial model and the nonspatial 
model. This was most dramatically the case in the Huk insurgency 
example. While there was an instance in the set of Louisiana examples 
where the two models led to substantively the same conclusion, the 

nonspatial model is unreliable as a means of coupling endogenous 
variables to exogenous variables when a spatial process operates. In 
the nonspatial model, both coefficient estimates and estimates of the 
standard errors of those estimates are inflated. The examples make 
clear that when a spatial social process is operative, a spatial model 
should be specified and the MLE procedures detailed in the preceding 
pages should be used. 

The MLE procedure is not straightforward, however, and it is 

computationally burdensome. If a simpler procedure will work, it 
seems preferable to use it. To this end, a second line of inquiry was to 
see if OLS applied to the spatial model would be an adequate 
substitute for the MLE procedure. The results of this inquiry were 
mixed for the Louisiana data. In most instances, it appears that OLS is 

satisfactory as a surrogate for MLE when a spatial process is clearly 
operating. The OLS coefficient estimates are always close to, if not 
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identical to, the maximum-likelihood estimates. However, the OLS 
estimates of the standard errors of the coefficient estimates are inflated. 
In general, this inflation is problematic for OLS unless p is likely to be 

relatively low. In such cases, the greater precision of the maximum- 
likelihood estimators makes them preferable. For the Huk data, OLS 
is not an adequate surrogate for the MLE approach detailed here. The 
W matrix for the Huk data is more densely connected in the sense that 

many areas are connected to a large number of other areas relative to 
the Louisiana examples. It seems that the structure of W and the true 
value of p are critical in deciding whether OLS can be used as a 

surrogate for maximum-likelihood estimators. This is something that 
can best be investigated via Monte Carlo simulations, and such studies 
are under way. The clear, and perhaps conservative, advice is that for 
the spatial processes considered here, the MLE approach should be 
used. For regions with "less connected" areas and high values of p, 
OLS should probably suffice. 

One further option outlined by Ord, but not discussed here, is 
to retain the usual population regression function y = X,/ + e but to 

incorporate the spatial effects into the disturbance term via e = pW + 
v, where Y is a white noise term. This is a way of dealing with spatial 
autocorrelation and represents another method of incorporating 
geographical space into the analysis of social phenomena. 

This chapter advocates that geographical space be at least 

explicitly considered for some social phenomena. For many social, 
political, and economic phenomena, geographical space may not be 
relevant. But for the cases where it is relevant, the procedures outlined 
here should lead to richer and more substantive analyses of those 

phenomena. 

APPENDIX A: 
DERIVATION OF VARIANCE-CO VARIANCE 

MATRICES FOR ESTIMATORS 

Purely Endogenous Model 

The log-likelihood function is given by 

1(y) = const - (N/2) In a2 - (1/2a2)y'A'Ay + ln IA (A-l) 
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From Equation (9) we have, writing I for l(y), 

al/ow = - N/2w + (1/2w2)y'A'Ay (A-2) 

Differentiating (A-l) with respect to p gives 

ol/ap = (d/ap) In I A - (1/2w) (d/op)y'A'Ay 

Using the form of | A I given in (12), 
N N 

(a9/p)(ln I A ) = (a/dp) E ln (1 - pX) = - /(1 - pX) 
i-i i-i 

and 

(d/ap)(y'A'Ay)= (d/ap)[y'y - 2py'Wy + p2(Wy)'(Wy)] 

= - 2y'Wy + 2p(Wy)'Wy 

Hence 
N 

l/dp = - X,/(1 - pX,) + (y'Wy/w) - (py'W'Wy/w) (A-3) 
i-1 

We turn now to the second derivatives of 1(y). From (A-2): 

d21/d2 = (N/2w2) - (2/2W3)y'A'Ay 

= (1/2w2)[N - (2/w)y'A'Ay] 

= (1/2w2)[N - 2N] (at the minimum) 

= - N/22 (A-4) 

From (A-3): 

21/ap2 = (a/Op) (- /(1 - p,)) 
i-I 

+ (1/w))(a/dp)(y'Wy - py'W'Wy) 
N 

=- Z X2/(l - pXi)2 - (1/w)y'W'Wy 
i=1 

= a -(1 /)y'W'Wy (A-5) 

where 
N 

t- - Z X /(1 - P.)2 
i-I 
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From (A-2): 

a21/o0ap = (1/2w2 )(d/dp)(y'A'Ay) 

= (1/2w2)[-2y'Wy + 2p(Wy)'(Wy)] 

=- (1/w2)[y'(I - pW')Wy] 

= - 'Wy/C2 (by 4) 

To obtain the information matrix, we need to take the expected values 
of these second derivatives. For (A-4): 

E[- N/2w2] = - N/2w2 (A-7) 

For (A-5): 

E[(l/ow)y'W'Wy] = (1/w)E[E'A-"'W'WA- 1] 

Define B = WA-'; then 

(1 /w)E[E'A-"W'WA'1] = (1/w)E[e'B'Be] 

=(1/w)E[tr 'B'BE] 

= (1/w)E[tr B'Be('] 

= (1/) [tr (B'B)Eee'] 

= (1/) [tr (B'B)a2I] 

= tr (B'B) as w = a2 

Therefore 

E[a21/dp2] = a - tr(B'B) (A-8) 

For (A-6): 

E[-(l/W2)'Wy] = -(l/w2)E[e'WA-1e] 

=-(1/W2)E[tr e'Be] 

=-(1/ o2)[tr (B)EeE'] (A-9) 

= -(1 /2)[tr (B)a2I] 

= -tr (B)/ow 

The expressions in (A-7) to (A-9), when substituted into (14), yield 
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V = N/2w2 tr B/o - 
V(, ) tr B/co tr(B'B) - a 

(A-10) 
N= 2 w tr (B) 

[z tr (B) (2 (tr B'B - a) 

The expression given in (A-10) is the asymptotic variance-covariance 
matrix for the parameters estimated for the pure endogenous model. 

Mixed Endogenous-Exogenous Model 

The expressions for a21/dw2, a2l/ap2, and d21/wd9p remain 

exactly as for the pure endogenous model. It is now necessary to obtain 
021/af2, a2l/0dfp, and a2l1/aqw. From (22), which gives 1l/0f, we 
have 

a2l//2 = - (1 /w)(X'X) (A- 11) 

From (22) we also have 

021a/aao = (1/W2)[(X'X)f - X'z] 
= (l/w2)[X'z - X'z] 

(A-12) 
as / = (X'X)-1X'z at the minimum 

=0 

From (22): 

a2l/afap = (1/W)(d/Op)(X'z) 

= (1/o)(d/<p)[X'(I - pW)y] (A-13) 

= - (1/o0)X'Wy 

We now consider the expected values of the second derivatives in order 
to obtain the information matrix. As before, 

E[l2/dw2] = - N/22 and E[021/Odwp] = tr(B)/w 

From (A-12), E[d21/qaw0t = 0' (as a row vector). The result for 
d2l/dp2 is not identical to the result for the purely endogenous model. 
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From (A-5): 

a2l/dp2 = a - (1/w)y'W'Wy 

= a - (1/w)[(e'A-' + 1'X'A-'")W'W(A-'XB + A-'1)] 

= a - (1/w)[E'A-"W'WA-'X ? + B'X'A-"'W'A-' 

+ e'A-'W'WA-'e + #'X'A-"'W'WA-'X#] 

= a -(1/w)[E'B'BN + 1'X'B'BX3 + 2E'B'BX8] 

as ('A-''W'WA-'X/ = (,'X'A-"'W'A-1e)', a scalar. Thus 

E[d21/dp2] = - a + tr(B'B) + (1/ow)B'X'B'BXf8 (A-14) 

From (A-13): 
E[21l/8f0p] = - (1/w)X'E[Wy] 

= (l/o)X'E[WA-'X ? + WA-'e] (A-15) 

= (1/w)X'BX# 

Finally, from (A- 1l), 

E[a21/d2] = - (1/o))(X'X) (A-16) 

Substituting all the expressions for the expected values and noting the 

negative signs gives 

V(o, p,f) 

- N/2 tr (B) 0' --1 

= W2 w tr B W2(tr B'B - a) + o'X'B'BXf ooX'BXf (A-17) 

0 cwX'BX cowX'X 

APPENDIX B: 
TESTING FOR SPATIAL A UTOCORRELA TION 

Suppose a residual, (, has been returned from a (nonspatial) 
regression analysis. To test for spatial autocorrelation, the following 
test statistic is defined: 

I = (N/T)(T'W(/7'() (B-l) 

where 

ij 
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Cliff and Ord (1973) derive expressions for E[I] and V[I] in order to 
construct a standardized normal deviate. Define D= [dj] = 

X(X'X)-tX'. Then 

E[I] = [1 + (N/T) wj w, d]/(N - K) (B-2) 
i-l j-1 
i:j 

where there are K exogenous variables (including the column of l's for 
the intercept). The expression for V[I] is considerably more complex. 
The following preliminary definitions are required: 

N 

N 

j. = W Wij 
i-1 

[I = [N(N - K) + 2) 

?1 j1 
ijl 

N 

2=1 

i =1 k=1 

:p6*ki- 

+2 = Z (Wi . W .i )2 

i=1jj=1 2di=1 

With these definitions, 

V[I = [N/(N- K)T2] (N2S, - NS2 + 3T2)/N2 

N N 

+(I/N) ] - (wi. + w.i)(Wj. + w.) dij 

i=l j=1 k=1 

+ZE(wi+wjN)2dK2 

+ (1/N) E E Z (W + %)(~i~ + ki)(4i4j - 4d,i) 
i-- j=l k=l 

-[1/(N-K)2] 
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Note that when there are no exogenous variables E[I] = - (1/N) 
and 

V[I] = N/(N - K)T2 [(N2Si - NS2 + 3T2)/N2] 

which can be used to assess the spatial autocorrelation of y. 
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