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ON THE LARGE-SAMPLE 
ESTIMATION OF REGRESSION 
MODELS WITH SPATIAL- OR 
NETWORK-EFFECTS TERMS: A 
TWO-STAGE LEAST SQUARES 
APPROACH 

Kenneth C. Land* 
Glenn Deanet 

In this paper we apply the two-stage leastsquares (2SLS) estima- 
tion technique to produce regression estimators for linear mod- 
els that incorporate spatial- or network-effects terms. Such mod- 
els are often necessary to adequately represent social processes 
in data that have been aggregated for politically or administra- 
tively defined areas such as census tracts, cities, counties, or 
states. They are also necessary to represent data from individu- 
als or organizations connected in explicit social networks. We 
review maximum likelihood (ML) estimators of the spatial- 
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effects model (Ord 1975; Doreian 1981) and sample-size limita- 
tions thereto. We discuss Roncek and Montgomery's (1984) sug- 
gested use of generalized population potentials to measure spa- 
tial effects, and we demonstrate the inconsistency of ordinary 
least squares (OLS) estimators of spatial-effects models with 
potential variables. We use the 2SLS technique to derive consis- 
tent estimators in spatial-effects models with generalized poten- 
tial variables. We derive the asymptotic (large-sample) variance 
of the 2SLS estimator and compare it with the ML estimator. We 
also compare the 2SLS estimator and its properties with similar 
estimators for spatial econometric models developed indepen- 
dently by Anselin (1988). We apply the 2SLS estimators to a 
large sample of county-level data on church adherence rates and 
find that our 2SLS estimator is much more computationally 
efficient than the ML estimator and yields numerical estimates of 
comparable statistical efficiency. 

Sociologists and other social scientists study a diverse array of social, 
political, demographic, and economic phenomena that take place in 
geographical space. When the social processes that generate these 
phenomena are analyzed with data that have been aggregated for 
politically or administratively defined areas such as census tracts, cit- 
ies, counties, or states, the geographical constraints and impacts of 
these arbitrary units on the social processes are implicitly retained. Yet 
standard applications of linear statistical models rarely take geographi- 
cal dependency into account.1 This point has been made most force- 
fully in the sociological methodology literature by Doreian (1980, 
1981), who applied modifications of Ord's (1975) maximum likeli- 
hood (ML) estimation procedures for spatial-interaction models. 

A shortcoming of Ord's estimators is that they become un- 
wieldy or impossible to apply in larger samples, a point made by 
Roncek and Montgomery (1984). This-and the absence of com- 
puter software specifically written for Ord's procedures-may ac- 
count for the few empirical applications in the sociological literature. 

1Similar problems arise in the linear model analysis of data on individuals 
or organizations connected in explicit social networks when the network in- 
terdependencies are ignored. Because the empirical applications that motivated 
this paper involve spatially distributed rather than network data, however, the 
present discourse is limited to the spatial context. We briefly discuss applications 
of the methods developed herein to the related network-effects model in the 
"Conclusion. " 
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To circumvent the sample-size limitations of ML estimators, Roncek 
and Montgomery (1984) introduced the generalized population- 
potential variable and recommended using this variable as a regres- 
sor in the conventional linear model. As we show below, a problem 
with this procedure is that the resulting regressor is correlated with 
the error term of the linear model, which means that the usual least 
squares regression estimator of its effect parameter is statistically 
inconsistent (i.e., biased in large samples). 

In this paper we apply the two-stage least squares (2SLS) 
technique to produce a regression estimator for Ord's spatial-effects 
model that is statistically consistent and can accommodate large sam- 
ples. In the following sections, we review the specification of the 
spatial-effects model, its ML estimators, and its sample-size limita- 
tions. We then discuss Roncek and Montgomery's (1984) suggested 
use of generalized population potentials in spatial-effects models and 
the inconsistency of ordinary least squares (OLS) estimation of lin- 
ear models with potential variables. We use the 2SLS estimation 
technique to produce consistent estimators in spatial-effects models 
with potential variables. We derive the asymptotic (large-sample) 
variance of the 2SLS estimator and compare it with the ML estima- 
tor. We also compare similar 2SLS estimators developed by Anselin 
(1988) for spatial econometric models. Finally, we apply the 2SLS 
estimators to a large sample of county-level data on church adher- 
ence rates. 

1. THE SPATIAL-EFFECTS MODEL: SPECIFICATION AND 
MAXIMUM LIKELIHOOD ESTIMATION 

Ord (1975) developed two types of regression models for spa- 
tial interaction to accommodate situations in which spatially aggre- 
gated social data violate the standard linear model's assumption of 
random errors that are independently distributed among the sampled 
units. These violations are due either to errors that are correlated 
across some systematic ordering of the spatial units because of the 
influence of unmeasured variables or to spatial processes for the 
dependent variable that are not fully captured by the regressors in- 
cluded in the model. In the latter case, the values of the dependent 
variable in one spatial unit are systematically related to values of this 
variable in adjacent units. Doreian (1980, 1981) called a regression 
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model of the former situation the spatial-disturbances model and a 
regression model of the latter the spatial-effects model. 

The spatial-effects model is the focus of this paper. It is speci- 
fied by 

y = pWy +Xf3+, (1) 

with 

E[E] = 0 and E[eE'] =o-,21 

where y is a column vector of n sample observations on a depen- 
dent or response variable, X is an n-by-k matrix of observations on 
k fixed exogenous or explanatory variables (including a unit vec- 
tor), j3 is a k-row column vector of regression (intercept and slope) 
parameters, e is an n-row column vector of unobserved random 
errors or disturbances with expected values of zero and variance (2, 

W is an n-by-n matrix of weights with elements wi describing the 
"nearness" of sample units i and j and a zero principal diagonal 
(indicating that the distance of unit i to itself is zero), and I is an 
identity matrix of order n. 

In the specification of the spatial-effects model, the random 
errors must be normally distributed with mean and variance as given 
above (Ord 1975; Doreian 1981). This assumption (or some suitable 
alternative parametric assumption) is necessary for the derivation of 
ML estimators. But only the weaker error specifications stated above 
are necessary for the 2SLS estimation techniques applied here. This 
adds substantial flexibility to the error processes permitted by model 
(1). All that is required is that the errors have zero expectation, have 
constant variance, and be independent (random). Even the latter 
two assumptions can be relaxed under suitable generalizations of 
2SLS techniques (which are not pursued in this paper). 

The parameter p is a spatial-effects coefficient that measures 
the relation of the value of y in any given geographical unit of analy- 
sis to the values of y in other areas. If p is significantly different from 
zero, a spatial-interaction or diffusion process is operating. Doreian 
(1981) described several empirical applications in which the estima- 
tion of regression models that do not contain the spatial-effects term 
results in coefficient estimates for the exogenous variables in the X 
matrix of model (1) that are inflated (biased upward) relative to their 
values when the spatial effects are taken into account. Thus, the 
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accuracy of inferences may depend upon the incorporation of the 
spatial-effects term. 

The statistical inference problem for the spatial-effects model 
is to develop statistically efficient estimators of p, 1i, and o-2, and the 
standard errors of these parameters. Ord (1975) developed ML esti- 
mators for this purpose, which Doreian (1981) exposited for sociolo- 
gists, modified, and applied empirically. The ML estimators can be 
written as follows: 

p = (X'X)- X' (I - pW)y (2) 
= (X'X)-1X'Z, 

where z = Ay = (I - pW)y, 

v2= (1/n)z'Mz, (3) 

where M = I - X(X'X)-'X', and 5 is the value of p that minimizes the 
quantity 

n 

-(21n) l In(1 - pAt) + ln [y'My - 2py'MWy + p2(Wy)'MWy], (4) 
i=1 

where the (1 - pAt) are the eigenvalues of the matrix A = I - pW. 
When they are written in terms of the transformed dependent 

variable z, we can see that the ML estimators f8 and 62 in equations 
(2) and (3) look similar to the ML expressions for these parameters 
in the standard linear model. However, a numerical value of p is 
required to compute each of these estimators, and 5, in turn, must 
generally be computed by a direct-search numerical-minimization 
procedure applied to equation (4). For datasets of almost any realis- 
tic complexity, this requires a computer. In small to medium-size 
samples (up to 200, say), while computationally demanding, this 
should be feasible and relatively quick with current statistical pack- 
ages (SAS, SPSSX) and mainframe computers. 

Roncek and Montgomery (1984) noted, however, that the ML 
estimators of the spatial-effects regression model can be increasingly 
difficult to compute in larger samples. The difficulties relate partly to 
the storage and processing capacity of computers and to the limita- 
tions of statistical software. The source of these difficulties is the 
spatial weight matrix W of model (1), which is an n-by-n matrix. This 
matrix is used in matrix addition and multiplication operations in the 
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ML estimators (2), (3), and (4) above. To obtain the variance- 
covariance matrix of these estimators (see Doreian 1981, pp. 383- 
84), which is necessary for hypothesis testing and the construction of 
confidence intervals, we must compute the inverse of the n-by-n 
matrix A = I - pW. 

Roncek and Montgomery (1984) observed that specifying a W 
matrix (and hence the corresponding A matrix) to analyze census- 
tract data from the city of Chicago would require approximately a 
900-by-900 matrix, and that analyzing Chicago city blocks would 
require a 15,000-by-15,000 matrix. Using the double-precision arith- 
metic necessary for multiplying and inverting matrices would require 
128 megabytes of main memory just to store the latter matrix. Large 
mainframe computers typically have about 100 megabytes of main 
memory. Thus, the addition, multiplication, and inversion of matri- 
ces of these sizes would require the use of supercomputers.2 

2. GENERALIZED POPULATION POTENTIALS 

To circumvent the sample-size limitations of ML procedures 
for the spatial-effects model, Roncek and Montgomery (1984) pro- 
posed an adaptation of the population-potential variable developed 
in population studies of migration and related spatial phenomena by 
Duncan, Cuzzort, and Duncan (1963). The population-potential vari- 
able measures the cumulative proximity of the populations of all the 
areas surrounding a particular place. The population potential for 
location i, PPi, is defined by 

PP- E (PjIDij), i = 1, . . . ,n, (5) 
1+4i 

2Standard computer software packages that perform regression analyses 
also limit the sizes of matrices on which matrix operations can be performed. For 
instance, generally available versions of SAS, one of the most powerful statisti- 
cal packages used by social scientists, limit the number of elements that can be 
simultaneously processed in the main memory to 32,000, which equates to a 
maximum square matrix of 178 rows and columns. However, the recently re- 
leased version 6 of SAS allows matrices with any number of rows and columns, 
provided there is enough main computer memory to store them. For an example 
of the space-conservation strategies necessary to apply the ML estimator-on a 
mainframe computer with eight megabytes of main memory-to social network 
data on a sample of approximately 1,000 high school students, see Duke (1991, 
App. A). 
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where P1 is the population of the jth location or place in the environ- 
ment of location i, Di is the distance of location j from location i, and 
the summation is taken over all locations ] other than i. To opera- 
tionalize the denominator, Duncan et al. (1963) use the Euclidean or 
straight-line distance between geographical locations. Other mea- 
sures such as travel distance are more difficult to measure. Com- 
pared with transformed distance measures such as the logarithm of 
Euclidean distance or the squared distance (as in gravity models), 
the simple Euclidean distance measure works well in practice (Ron- 
cek and Montgomery 1984). 

In brief, to calculate the population potential for a set of n 
locations, each place is treated successively as the point of reference, 
and the sum of quotients of the population of every other place 
divided by its distance from the reference point is computed. In 
classical population models of migration among a set of locations 
(Duncan et al. 1963), it is sufficient to use the size of populations in 
other locations in the numerator, as in equation (5). When the sub- 
stantive phenomenon being investigated is something other than the 
migratory exchange of individuals among the locations, variants of 
the potential concept, which we call generalized population poten- 
tials, can be defined by replacing the population sizes in the numera- 
tor of (5) with the values of the dependent variable being studied 
(Roncek and Montgomery 1984). For instance, Roncek and Robin- 
son (1984) analyzed the effects of crime in the surroundings of census 
tracts in C(leveland by using a generalized population-potential vari- 
able they called the crime potential. 

In the spatial-effects regression model (1), the generalized 
population-potential variable can be obtained by multiplying the 
weight matrix W (with elements suitably defined as inverses of Eu- 
clidean distances between the geographical units in an analysis) by 
the dependent variable (column vector) y: 

y* = Wy. (6) 

For example, in the aforementioned census-tract crime study of 
Roncek and Robinson (1984), the dependent column vector y con- 
sists of the numbers of crimes reported to the police in the various 
census tracts, and the column vector y* contains measures of the 
crime potential of each census tract relative to the numbers of crimes 
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in the other census tracts of the city, each weighted by its distance 
from the focal tract. 

Algebraically, Roncek and Montgomery's (1984) proposal to 
use generalized population potentials is the same as treating the 
product of the weight matrix W and the dependent variable vector y 
on the right side of model (1) as a new variable, y*, so that model (1) 
can be rewritten 

y = py* + X3 + C. (7) 

This new variable can be entered as just another regressor variable in 
an OLS estimation of model (7), without creating problems in the 
estimates of the spatial-effects parameter p (Roncek and Montgom- 
ery 1984). In general adjacency weight matrices, W (i.e., in matrices 
with elements not necessarily restricted to inverses of physical dis- 
tances), Doreian and Hummon (1976) similarly suggested that y* = 

Wy can simply be included as another exogenous variable in an OLS 
estimation of model (7).3 

3. THE INCONSISTENCY OF ORDINARY LEAST 
SQUARES ESTIMATION 

We agree with Roncek and Montgomery (1984) that the treat- 
ment of y* as an ordinary regressor in the estimation of model (7) has 
the computational benefit in large samples of replacing the large n-by- 
n matrix W with an n-element column vector, but consistent estimates 
of p are not as easy to obtain as OLS estimates. As Ord (1975) pointed 
out, this requires that inferences be restricted to so-called conditional 
inferences in which the spatial effects are presumed to be determined 
prior to the dependent variable. But in spatial-effects models, the 
spatial diffusion or interaction processes are determined simulta- 
neously with the dependent variable. This produces a nonzero correla- 
tion between the potential variable y* and the error term E, which 
violates the assumptions under which OLS produces unbiased (and 
therefore consistent) estimates of the regression coefficients. 

This can be demonstrated as follows. Taking expectations of 
model (1), we see that for the ith case 

3Doreian (1981, p. 373) recognized that the suggested OLS procedure of 
Doreian and Hummon (1976) was incorrect and compared numerical estimates 
of OLS with ML estimates. 
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E(yi) = p1jwijE(y1) + Xij, (8) 

where Xi denotes the row vector of observations on the k explanatory 
variables corresponding to the unit i. The appearance of the expected- 
value ope-rator on both sides of this equation emphasizes the joint 
nature of the y and y* variables. By contrast, as Ord (1975) noted, in a 
conditional spatial-effects specification, 

E{yi I yj, j E J(i)} = pljwijyj + XiP, (9) 

where J(i) denotes the set of locations whose values on the depen- 
dent variable interact with the value of location i. The expectation on 
the left side of equation (9) is a conditional expectation, where the 
conditioning is on the observed values of the dependent variable y 
that fall within the set J(i). Furthermore, the two equations are 
equivalent only if 

E{Ei I yj, j E J(i)} = E{Eiy7} = 0, (10) 

that is, only if Ei and y7 = IkWjkYk are uncorrelated. 
In some time-series models, the time-dependent, one-sided 

nature of the relationship may make equation (10) a natural restric- 
tion. But in spatial-effects models in which the dependent variable in 
a given location may be influenced by the dependent variable in all of 
the locations in a given set, equation (10) will generally not be satis- 
fied (Ord 1975). The consequence, of course, is a violation of the 
assumption in the general linear regression model that the error term 
e is distributed independently of the regressors. In turn, this implies 
that the OLS estimators will be biased in samples of any size and 
therefore asymptotically biased or inconsistent (Johnston 1984). 

The foregoing can be intuitively expressed as follows. For any 
given location i in a set under consideration, assume that all wi -0, 
although some of these coefficients may be quite small. Assume also 
that p > 0, so that spatial effects are operative among the locations. 
Then the value of the dependent variable for location i, yi, will be 
influencecl (i.e., will be a function of) the values of the dependent 
variable at all other locations through the generalized potential vari- 
able for location i, y1* = Vjwijyj. But in turn, yi and therefore its 
random component Ei will enter into the determination of the values 
of yi for each other location j through the contributions of yi to the 
generalized potentials, y,. This implies that the value of the general- 
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ized potential for location i, y*, will be partly affected by its own 
random error, Ej, and therefore that the two are correlated. Again, 
this violates the conditions necessary for unbiased and consistent 
OLS regression estimators.4 

4. A TWO-STAGE LEAST SQUARES ESTIMATOR 

In brief, direct OLS estimation of the spatial-effects model (7) 
will result in biased and inconsistent parameter estimates because of 
an unknown level of correlation of the generalized potential variable 
and the error term of the model. Theil (1953a, 1953b, 1961) and 
Basmann (1957) developed 2SLS estimation to produce consistent 
estimators in a similar context: simultaneous equation econometric 
models in which some regressors affecting the dependent or endoge- 
nous variable in a given equation (namely, those corresponding to 
other endogenous variables in the model) are correlated with the 
error term. In 2SLS estimation, the regressors in question are re- 
placed by other regressors, which are purged of the stochastic ele- 
ments that correlate with the error term of the equation, and then an 
OLS regression of the dependent variable of the equation on the 
purged and exogenous variables of the equation is performed. 

The problem in this paper is to construct a variable, say y*, to 
replace the generalized potential variable y* in model (7). This is 
similar to the problem for which the 2SLS technique was developed. 
It will be useful (for reasons explained below) to redefine and parti- 
tion the matrix X of all fully exogenous variables as [X1 X2], where X1 
consists of a set of exogenous variables that enter into (7), and X2 
consists of those that do not enter. 

In the 2SLS procedure (Johnston 1984, pp. 472-73), the col- 
umn vector y * is computed in the first-stage: The generalized 

4Doreian, Teuter, and Wang (1984) provided a Monte Carlo simulation 
study of the consequences of direct application of OLS-which they called the 
QAD (quick and dirty) method-to model (7). In general, they found that as 
the size of the p parameter increases from .1 to .9, the bias of the OLS estimates 
of the p and fi parameters increases, although not dramatically in all cases. More 
important for statistical inferences, as the size of p increases, the actual standard 
deviations of the OLS coefficient estimates (estimated by a simulation approxi- 
mation to their true variation) are often much larger than those of the ML 
estimates. 



LARGE-SAMPLE ESTIMATION OF REGRESSION MODELS 231 

population-potential column vector y* is regressed on the complete 
set of fully exogenous variables (i.e., on the variables in the full matrix 
X), and the actual observations on the y* variable are replaced by the 
corresponding regression (predicted) values: 

y* = Xd = X[(X'X) lX'y*] X[(X'X)-'X'Wy]. (11) 

In the second stage, y is regressed on 9* and the submatrix X1, yield- 
ing the following solution to the normal equations: 

[ b [x X;* XX] X'y] 
(12) 

where [r b]' now denotes the 2SLS estimator of [p ,8]'. 
Several comments will help to clarify this application of the 

2SLS method to model (7). First, to estimate [r b]', there is no need 
to compute the expected regression values in A * and enter them 
explicitly in the matrix equation (12). An alternative form of the 
estimator (12), which involves only the matrices of actual observa- 
tions, is available (Johnston 1984, p. 473). It is the latter form that is 
utilized in the 2SLS programs available in many computer packages. 
While not reproduced here, this form may be obtained by substitut- 
ing equation (11) into equation (12). 

Second, we indicated above that y* should be regressed on all 
fully exogenous variables (contained in the matrix X) in the first 
stage. This produces a set of predicted values, the A9* of equation 
(11), for y* = Wy in the spatial-effects model (7). The logic here is to 
treat y* the same way that endogenous variables are treated in simul- 
taneous equation systems and compute predicted values of y* via 
equation (11). Because the resulting A* of equation (11) is a linear 
combination of all of the exogenous variables contained in the X 
matrix, the matrix to be inverted in equation (12) will be singular and 
not invertible unless equation (11) contains some exogenous vari- 
ables that do not enter into the second-stage regression of equation 
(12).5 Hence, we get the partition of the matrix X introduced above. 
Note that this partition requires that the analyst be able to sort 
exogenous variables into those (in X1) that have direct effects on the 

5We are grateful to an anonymous referee for pointing out this identifi- 
ability constraint and to Peter V. Marsden for providing a numerical demonstra- 
tion of the requirement. 



232 KENNETH C. LAND AND GLENN DEANE 

dependent variable y in model (7) and those (in X2, which often are 
called instrumental variables or instruments) suitable for the identifi- 
cation and estimation of the predicted variable y*. (Additional sug- 
gestions for choosing instrumental variables are given in later sec- 
tions of the paper.) 

Third, as in a simultaneous equation system, the 2SLS estima- 
tor (12) is consistent. That is, this estimator [r b]' converges in proba- 
bility (or has probability limit equal) to the population-parameter 
vector [p 1]'. 

Consistency of the 2SLS estimator (12) requires that both the 
predicted variable y * and the exogenous variables X are uncorrelated 
with the error term e of model (7) in the probability limit. By their 
very definition as exogenous variables, the X variables are uncorre- 
lated in the limit with the model's error term. For the predicted 
variable y*, we have 

plim[(l/n)9* 'E] = plim[(1/n)y* 'X(X'X)- 1X 'E] 
= [plim(1/n)y* 'X][plim(1/n)(X'X)j-][plim(1/n)X'e] 
= 0, (13) 

where 0 denotes a column vector of dimension n, and we have uti- 
lized standard properties of the probability limit operation (see, e.g., 
Johnston 1984, pp. 269-74). To see that this expression indeed equals 
a zero vector, first note that the last term in the second line pertains 
to the probability limit of the covariance of the exogenous variables 
and the error term of model (7), which we have just noted must be 
zero, otherwise the X variables would not be classified as exogenous. 
Second, note that for the equality to hold, the other two probability 
limits in (13) must converge to finite matrices and the middle term 
must be nonsingular. 

These are fairly weak conditions on the cross-product matrices 
of these components that must be satisfied for any meaningful regres- 
sion analysis. Essentially, they require that the cross products stan- 
dardized for sample size (or, equivalently, the second moments) of 
the X variables with themselves and with the generalized population- 
potential variable y* stabilize at finite levels as the sample size in- 
creases without bound. Under these conditions, and assuming that 
the exogenous variables are truly exogenous, the 2SLS estimator 
(12) is consistent. 
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5. THE ASYMPTOTIC VARIANCE OF THE TWO-STAGE 
LEAST SQUARES ESTIMATOR 

Under similar conditions, it has been established that 2SLS 
estimators are generally asymptotically normally distributed with 
mean vector equal to the parameter vector and a specific form for the 
asymptotic variance-covariance matrix (see, e.g., Theil 1971, pp. 
497-99). In the present case, the estimator of this matrix has the 
following form: 

asy var [ Sb] =s S y (14) 

where 

2 (y - *r-X1b)'(y - *r -X1b) 
n 

is a consistent estimator of o- , the error variance of model (7).6 Like 
the 2SLS estimator (12), the variance-matrix estimator (14) has a 
more computationally convenient expression that involves only the 
matrices of actual observations (see, e.g., Johnston 1984, p. 479), 
which can be obtained by substituting the expression for 9* from 
equation (11) into equation (14). We will compare the asymptotic 
variance matrix (14) of the 2SLS estimator (12) with that of Ord's 
(1975) ML estimator. 

For this purpose, it is useful to transform expression (14) into 
another form. Note first that the observed population-potential vec- 
tor y* can be written as the sum of its predicted value from the first- 
stage regression, 9 *, and the OLS error vector, v: 

y* = 9* + v. (15) 

Furthermore, premultiplying each side of this expression by its own 
transpose yields 

y*'y* = (* + v)'(9* + v) 
y y = ST*'S* ? 9*~'v + v9T*' ? v'v (16) 

= 9y*'9* 
? v'v, 

6No correction for loss of degrees of freedom is applied to the 2SLS 
estimator of the error variance because its known properties refer to large sam- 
ples for which such corrections have no appreciable effect. 
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by the usual properties of OLS residuals. 
Equation (16) can be substituted for the upper-left-hand 

submatrix in the 2SLS variance matrix (14). Then the expectation 
operator can be applied to asymptotic distributions of the random 
components, the generalized population-potential vectors, y*, and 
their predicted values, y *, and functions thereof. This yields, for 
instance, E(X1y*) = E(X'y*) = X1E(y*), where the first equality 
follows from properties of OLS residuals and the second from factor- 
ing the fixed exogenous variables (constants) out of the expectation. 
This results in the following equivalences for the asymptotic variance 
matrix: 

r l(* XfE('*] asy var~~ 0= yyL 
b XfE(* '*-') XfEx)] 1 (7 

= 2 [ -E*y (v'v) XfE(y*) 1il 
"e L XfE(y*) xx 

E(y*'y*)o-i XiE(y*)<l eL XfE(y*) xfll =1 X~E(y ) 

where od denotes the asymptotic variance of the error term of the 
first-stage regression of y* on X. 

To compare expression (17) with the asymptotic variance ma- 
trix of the ML estimators (2) and (4) for model (1), we cannot use the 
final expression derived by Doreian (1981, p. 384), because it is 
written in terms of the parameters of model (1) rather than model 
(7). Stepping back in his derivations a few paces and using Ord's 
(1975) asymptotic expectation notation, however, we get the follow- 
ing equivalent expression: 

asy var L o- e[ XI(* I1] (18) ~~ - ao~XjE(yE)y])(18) 

where a = a2lnIA|/ap2 = Li24A2i)/(1-5Ai)2, A| = I-PW|, A1, . . .,A 
are the eigenvalues of the weight matrix W, and 

2 (y - p5Wy - XfX)'(y - 5Wy - X) 
n 
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is an alternative expression of the ML estimator (3) of the error 
variance of model (1). 

Comparing the submatrix components of the asymptotic vari- 
ance-covariance matrices (17) and (18), we see that three of them- 
namely, those in the lower-diagonal and off-diagonal positions-are 
identical. The first of these three, the X'X1 component, is the usual 
matrix of cross products of the fixed exogenous variables, which 
enters into the calculation of the variances and covariances of the 
estimators of the regression coefficient vector, f3, as in the conven- 
tional linear model. The off-diagonal elements in (17) and (18), 
X'E(y*), similarly enter into the calculation of the covariances of 
the estimators of the regression and spatial-effects coefficients (i.e., 
the elements of ,3 and p). These submatrices have computational 
expressions that differ, because the parameterizations of model (1) 
and model (7) differ. When they are written in terms of the respec- 
tive asymptotic expected values of the two models, as in expressions 
(17) and (18), however, we can see that they are indeed identical. 

It is more difficult to compare the last component submatrices 
of the two asymptotic variance matrices (the upper-diagonal term), 
which represent the asymptotic variances of the respective estimators 
of the spatial-effects coefficient p. Again, because of the different 
parametric representations of models (1) and (7), these elements 
differ, even when they are written in terms of expected values of 
asymptotic distributions, as in (17) and (18). Nonetheless, they do 
have a common component-namely, the asymptotic expected value 
E(y*'y*). But the 2SLS expression (17) subtracts from this the asymp- 
totic variance of the error term of the first-stage regression of the 
2SLS estimator, whereas the ML expression (18) subtracts a function 
of the asymptotic variance of the error term of the original model 
(1). The former is the error variance from the first-stage regression 
of the weighted y* = Wy on the full set of exogenous variables in X, 
while the latter error variance is scaled by the second partial deriva- 
tive with respect to the spatial-effects parameter p of the log of the 
determinant of the matrix A = I - pW, which is one component of 
the loglikelihood function of the ML estimator of model (1). Infor- 
mally, the scaling of the ML error variance by this second partial 
derivative is necessary to transform it to the scale of the error vari- 
ance of the first-stage regression of the weighted y* = Wy on X in the 
2SLS estimator. 
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Investigations comparing 2SLS and ML estimators of the pa- 
rameters of single equations in classical simultaneous equation mod- 
els have shown the equivalence of the variances of their asymptotic 
distributions (see, e.g., Theil 1971, pp. 500-507). The conditions 
necessary for the proof of this equivalence pertain to model accuracy 
(no misspecification) and stability of distributions of relevant vari- 
ables. Because the spatial-effects model analyzed here is a special 
case of the classical model, asymptotic equivalence of the upper- 
diagonal components of expressions (17) and (18) follows under simi- 
lar conditions. 

6. COMPARISON WITH ANSELIN'S TWO-STAGE LEAST 
SQUARES ESTIMATORS 

Anselin (1988) developed two 2SLS estimators in spatial 
econometrics models, one of which is identical to that developed 
herein.7 Therefore, we call the estimator developed above and by 
Anselin the Land-DeanelAnselin 2SLS estimator. Anselin also de- 
scribed an alternative 2SLS estimator that is not identical to the 
estimator developed here. We call this Anselin's alternative 2SLS 
estimator. In this section we describe conceptual differences between 
the two estimators. In the next section, we investigate some numeri- 
cal differences in a particular empirical application and discuss the 
relative computational efficiencies of the two estimators. 

Anselin (1988, pp. 82-87) described a general instrumental 
variables (IV) approach to estimation that permits the specification 
of instruments for all variables in the regression model (7), i.e., for 
both the X and y* variables. In practice, of course, the focus is on the 
y* variable, which Anselin called a spatially lagged dependent vari- 
able. Anselin (1988, p. 84) showed that his general IV estimator can 
subsume an alternative 2SLS estimator in which y* in the second- 
stage OLS regression is replaced by a transformation of the predicted 
values of the dependent variable y from a first-stage regression on a 

7Anselin (1988), however, did not motivate the derivation of the 2SLS 
method in terms of the population-potential notions of spatial sociology, he did 
not give a detailed comparison of the variance-covariance matrix of the 2SLS 
estimator with that of the ML estimator, and he did not present numerical and 
computational efficiency comparisons of 2SLS and ML. 
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fixed set of exogenous variables, where the weight matrix W is used 
to perform the transformation. 

Formally, Anselin's alternative 2SLS estimator proceeds by 
OLS estimation of the reduced form of model (7), in which the 
effects of the y* variable are factored out and the dependent variable 
y is taken as dependent only on the fully exogenous variables X. The 
predicted values of y from this first-stage regression are given by 9 = 

X(X'X)-1X'y. Anselin's alternative estimator then transforms these 
predicted values by the weight matrix W to yield the following: 

*= = W[X(X'X)-X'y], (19) 

where we use the notation y* to distinguish these predicted values for 
y* from those introduced in equation (11). Anselin's alternative 
2SLS estimator then is completed by inserting these predicted values 
into a second-stage OLS regression, as in equation (12). 

Comparing the right sides of equations (11) and (19), we can 
see, first, that the predicted variables of the two 2SLS procedures 
differ in the way in which the weight matrix W enters. In equation 
(11), we enter W into the first-stage regression by scaling the depen- 
dent variable (regressand) of the regression. In equation (19), we 
enter W after the first-stage regression by scaling the predicted val- 
ues computed after the regression of y on X. In this alternative 
procedure, the predicted value of y* is not a linear combination of X, 
because it is premultiplied by W, which varies across observations, so 
there is no perfect collinearity between X and the instrument. 

Accordingly, if we use this alternative 2SLS estimator, we can 
avoid the exclusion restrictions (which can be hard to justify) re- 
quired by the estimator of equation (11). On the other hand, equa- 
tion (19) requires that we premultiply the predicted values of y by W, 
which can yield a very large matrix in large samples. Indeed, stan- 
dard computer packages (e.g., SAS) typically require that one save 
the predicted values of y from the first stage, premultiply these by W 
in an auxiliary routine (e.g., in SAS/IML), and then move back into 
a regression program. Alternatively, one can trick SAS into perform- 
ing matrix. multiplication.8 This, of course, means that the 2SLS 

8The numerical application of Anselin's method described in the next 
section was programmed in both ways. The code used to perform the analyses in 
SAS without resort to an auxiliary routine is available from the authors on 
request. 
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estimator of equation (19) in the spatial-effects model, like the ML 
estimator, is not easily applicable in large samples, which is a primary 
motivation for the 2SLS estimator developed herein. 

7. EMPIRICAL APPLICATION AND COMPARISON 
OF ESTIMATORS 

The 2SLS estimator of equations (11), (12), and (14) was de- 
veloped by Land, Deane, and Blau (1991) in a study of the effects of 
religious pluralism and social conditions on church membership in 
the U.S. in the early decades of this century. The debate on the effect 
of religious pluralism has recently been enlivened by Finke and Stark 
(1988, 1989) and Breault (1989a,b). Their findings, however, are 
contradictory: Finke and Stark reported that religious pluralism has 
a positive effect on the rate of church membership (church adher- 
ence), but Breault found a negative effect. 

Land et al. (1991) recently entered this debate with an analysis 
of church adherence rates in U.S. counties or county groups for three 
decennial census periods in the early twentieth century: 1910, 1920, 
and 1930. County-level analyses, especially those that use data from 
the period before World War II, are plagued by problems of bound- 
ary comparability, because counties may split, merge, or emerge in 
places where there had been no internal political boundaries. To 
overcome this difficulty, Land et al. grouped counties involved in any 
kind of boundary shift with other counties implicated in the bound- 
ary change by using a county longitudinal template compiled by 
Horan and Hargis (1989). Consequently, the unit of analysis is a 
county or county group, depending on whether or not boundaries 
changed. 

The Horan and Hargis (1989) template includes approxi- 
mately 1,600 counties and county groups, from which Land et al. 
(1991) drew a 50 percent random sample stratified by percentage 
urban in 1910: 0 percent, 1 percent to 22 percent, 23 percent to 40 
percent, and over 40 percent. Initial statistical analyses and models 
were estimated on this 50 percent sample. To assess whether infer- 
ences from these analyses were unduly influenced by statistical 
overfitting on this initial sample, Land et al. used the remaining 50 
percent sample of county groups for replication analyses. 

Explanatory variables in the Land et al. (1991) study were 
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aggregated to county groups from the Inter-University Consortium 
for Political and Social Research (ICPSR, no date) collection of 
demographic, economic, and social data based on county-level 
counts from the U.S. decennial censuses of 1910, 1920, and 1930. 
Church membership data were obtained from ICPSR files reporting 
the 1906, 1916, and 1926 censuses of religious bodies. Although the 
religious censues were carried out four years before each of the 
population censuses, this is not considered problematic because of 
the high stability of church membership counts for geographical units 
over time (Bainbridge and Hatch 1982, p. 244; Christiano 1987, p. 
40). For convenience, we describe the analyses in terms of the census 
dates. 

Variables in the Land et al. (1991) study were defined as fol- 
lows. The dependent or endogenous variable to be explained is the 
percentage of the county group's population that are church mem- 
bers, as recorded in the religious censuses. The explanatory or exoge- 
nous variables include the county group's religious diversity, the per- 
centage of the county group's population that is Catholic, ethnic 
diversity, population change (computed as the percentage change in 
total population size from the previous decade), the percentage of 
the population that is living in an urban area, the percentage of the 
adult population that is illiterate, and the average county crop value 
in 1910, which was used as an indicator of economic well-being. The 
religious and ethnic diversity variables were measured by applying 
the Gibbs-Martin index (Christiano 1987; Lieberson 1969; Gibbs and 
Martin 1962) to sets of religious denominations and ethnic groups, 
respectively. 

In addition, Land et al. (1991) included a variable for church- 
adherence potential, which is like the generalized population-poten- 
tial variables described above: It is a product of a geographical 
distance weight matrix W and a vector of county adherence rates. 
This generalized potential variable was introduced to capture the 
impact on the rate of church adherence in a given county of higher 
or lower rates of adherence in neighboring and more-distant coun- 
ties. Land et al.'s (1991) collective influence/social diffusion interpre- 
tation of the church-adherence potential is based on the models of 
Granovetter (1978) and Granovetter and Soong (1983). The pres- 
ence of the potential variable combined with relatively large sam- 
ples (on the order of 700, depending on the decade and the number 
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of counties with missing data) and the inability of the mainframe 
computer available for regression analyses to handle weight matri- 
ces larger than 300 rows by 300 columns limited the applicability of 
the ML estimators described above. Accordingly, Land et al. (1991) 
applied the 2SLS estimators (11), (12), and (14) of model (7). 

To illustrate the numerical application of the 2SLS estimators 
derived above and compare them with Anselin's alternative 2SLS 
estimators (based on equation (19) in the first stage) and with the 
ML estimators, we draw upon the Land et al. (1991) analysis for a 
random subsample of 300 county groups for 1910. (Corresponding 
calculations for 1920 and 1930 are available from the authors on 
request.) The number of cases in this subsample is limited only by 
the aforementioned limits of the mainframe computer. 

Table 1 reports the first-stage regression (based on equation 
(11)) of the church-adherence potential/spatial-effects variable on a 
set of fully exogenous variables. In addition to the explanatory vari- 
ables listed above, this set of exogenous variables includes (as instru- 
mental variables) eight regional dummy variables (the Northeast re- 
gion is the baseline region against which the effects of the other 
regions are estimated) and the county group's total population size 
(logged). The coefficient of determination, 0.68, shows that the first 
stage is quite successful in determining the values of the potential 
variable for county groups. In particular, several of the regional 
control variables are significantly related to the dependent variable, 
although the total population variable does not reach statistical sig- 
nificance. Our experience with applications of the 2SLS method to 

TABLE 1 
First-Stage Least Squares Estimates for Model of Church 

Adherence Rates; Random Sample of County Groups, 1910 
(Metric Coefficients, Standardized Coefficients in Brackets, 

t Ratios in Parentheses 

Intercept 13.92 
(3.22)** 

Religious diversity 2.50 
[.07] 

(1.37) 
Percentage Catholic -.03 

[- .05] 
(-1.03) 
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Log total population .29 
[.05] 

(1.08) 
Ethnic diversity -4.16 

[-.08] 
(-2.17) 

Percentage urban -.02 
[-.07] 

(-1.39) 
Log percentage illiterate .03 

[.01] 
(.08) 

Log economic conditionsa .95 
[.09] 

(1.95) 
Middle Atlanticb 1.00 

[.04] 
(.82) 

South Atlanticb 1.78 
[.10] 

(1.39) 
East South-Centralb 1.98 

[.08] 
(1.39) 

West South-Centralb -5.32 
[- .23] 

(-4.01)** 
East North-Centralb 6.02 

[.37] 
(5.55) 

West North-Centralb .56 
[.04] 
(.49) 

West Mountainb -10.81 
[-.40] 

(-7.55)** 
Pacificb -14.16 

[- .41] 
(-9.21)** 

N 287 
R 2 .68 

aAverage crop value 
bThe reference category for regional dummy variables is 

Northeast. 
*p < .05 
**p < .01 
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these data, however, and the fact that potential variables will often 
capture regional or population size effects on generalized potential 
variables suggest that these are useful instrumental variables for en- 
try in the first-stage regressions. 

Table 2 reports the second-stage regressions of the county- 
group church-adherence rates on the predicted values of the church- 
adherence potential/spatial-effects variable and the set of explana- 
tory regressors identified above. For Land-Deane/Anselin's and 
Anselin's alternative 2SLS estimators (recall that the former are 
based on equation (11) in the first-stage regressions and that the 
latter use equation (19) in the first stage), the estimated 2SLS metric 
regression coefficients, standardized coefficients, and t ratios are 
given in the second and third columns of the table, respectively. 
Sample sizes after loss of cases due to incomplete data and measures 
of fit are given at the bottom of the table.9 For comparison, the 
corresponding ML estimates are reported in the fourth column. To 
assess the extent to which the spatial-effects corrections of each of 
these reduces bias in the estimated coefficients and increases explana- 
tory power, we also display the OLS estimates of a nonspatial model 
(i.e., a regression model that ignores the spatial-effects term) in the 
first column of the table. 

Several comments concerning these results are in order. First, 
the OLS estimates for the nonspatial model are clearly inferior to the 
2SLS and ML estimates. In particular, the magnitude of the coeffi- 
cient of religious diversity and its t ratio (the key variable in the 
debate on the effects of religious diversity described above) are 
greatly underestimated by the nonspatial OLS estimators. Coeffi- 
cients and t ratios of several of the other variables also are substan- 
tially affected by omission of the spatial term. Specifically, the coeffi- 
cients tend to be inflated in the nonspatial OLS model, while the t 
ratios tend to be deflated (see Doreian 1981). 

Second, the magnitudes of the metric regression coefficient 
estimates from both 2SLS methods are generally quite close to those 
of the ML estimates. The only exception is the spatial-effects coeffi- 

9The measures of fit reported in Table 2 are the squares of the correla- 
tion between y and the fitted values y in each model. While this appears similar 
to the standard coefficient of determination of regression models, it cannot 
strictly be interpreted as the proportion of variance explained due to the interde- 
pendence of the observations (Doreian 1981, p. 368). 
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TABLE 2 
Alternative Estimates for Model of Church Adherence Rates; Random Sample 

of County Groups, 1910. Metric coefficients, standardized coefficients [in 
brackets], and t-ratios (in parentheses). 

2SLS 

Land-Deane Anselin 
OLS Anselin Alternative ML 

Intercept 60.75 41.82 41.16 42.13 
(6.09)** (4.92)** (4.74)** (5.04) 

Spatial effects .94 1.03 .92 

[.49] [.47] [.48] 
(11.10)** (10.43)** (11.08)** 

Religious diversity -9.31 -22.17 -22.52 -21.96 

[-.14] [- .32] [- .33] [- .32] 
(-2.31)* (6.23) ** (6.16) ** (6.27) 

Percentage C'atholic .36 .38 .36 .38 
[.33] [.34] [.33] [.34] 

(5.59)** (7.09)** (6.60)** (7.17)** 
Population change -2.10 -1.39 -1.47 -1.40 

[-.20] [-.13] [-.14] [-.13] 

(-4.20)** (-3.30)* (-3.42)** (-3.37)* 
Ethnic diversity -25.24 -14.85 -15.72 -15.02 

[- .27] [- .16] [- .17] [- .16] 
(-4.74)** (-3.66)** (-3.81)** (-3.76)** 

Percentage urban .08 .07 .08 .07 
[.15] [.15] [.16] [.14] 

(2.86)* (3.28)* (3.54)** (3.18)* 
Log percentage 2.14 1.66 1.79 1.67 

illiterate 
[. 19] [.15] [.16] [.15] 

(3.11)* (2.88)* (3.06)* (2.94)* 
Log economic -1.23 -1.18 -1.16 -1.18 

conditions" 
[- .06] [-.05] [-.05] [- .05] 

(-1.02) (-1.17) (-1.14) (-1.19) 

N 287 287 287 287 
R 2 .39 .58 .56 .58 

aAverage crop value 
*p <.01 

**p <.001 
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cient, for which Anselin's alternative 2SLS point estimate is consider- 
ably larger than the ML and Land-Deane/Anselin 2SLS estimates. 
Both the Land-Deane/Anselin 2SLS and the ML estimators suggest 
strong spatial-diffusion effects, with highly statistically significant 
metric regression coefficients of 0.94 and 0.92, respectively. By com- 
parison, Anselin's alternative 2SLS estimate of this coefficient is 
greater than one, a value that certainly indicates strong spatial effects 
but that also differs substantially from the ML estimate. 

Third, the Land-Deane/Anselin 2SLS metric regression coeffi- 
cient estimates for the other regressor variables are uniformly closer 
to the ML estimates than the Anselin alternative 2SLS estimates. 
The former often agree with the ML estimate to two or three digits. 

Fourth, the Land-Deane/Anselin 2SLS method yields t ratios 
that are closer to those of the ML estimates than are the Anselin 
alternative estimates for seven of the eight regressors. The measure 
of fit (see footnote 9) of the Land-Deane/Anselin estimates is also 
identical to that of the ML estimates, while that of the Anselin 
alternative estimates differs slightly. 

In addition to the greater accuracy and statistical efficiency of 
the 2SLS and ML estimators compared with nonspatial OLS, the 
Land-Deane/Anselin 2SLS estimator is much more computationally 
efficient than both the Anselin alternative 2SLS estimator and the 
ML estimator. Specifically, as noted above, the Land-Deane/Anselin 
2SLS estimator can handle a wider range of sample sizes in standard 
computer packages than the other two estimators. This, of course, 
affects the amount of computer processing time required to compute 
the estimates. In particular, for calculations executed in SAS batch 
mode on an IBM 3090 mainframe computer with a vector processor, 
the ML estimates in Table 2 required 43.08 seconds of CPU time, 
about 55 times more than the Land-Deane/Anselin 2SLS estimates, 
which required 0.78 second. The Anselin alternative 2SLS estimates 
required 16.36 seconds, about 21 times more than the Land-Deane/ 
Anselin estimates. 

8. CONCLUSION 

Sociologists and other social scientists will undoubtedly con- 
tinue to analyze data that are aggregated into arbitrary spatial con- 
figurations. In such analyses, incorporating spatial-effects terms into 
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regression models is always an issue. The empirical results reported 
here and in Doreian (1981) indicate that when spatial effects are 
substantial and statistically significant, inferences can be greatly af- 
fected by the exclusion of spatial regression terms. Accordingly, ana- 
lysts are well advised to take spatial-effects terms explicitly into ac- 
count, especially when they can be substantively interpreted in terms 
of collective influences, social diffusion, or other processes. 

Similar recommendations apply to analyses of data collected 
from individuals or organizations connected in well-defined (social, 
exchange, authority, communication, transportation, etc.) net- 
works-when data on the network interrelationships (specified in 
the W matrix) are available. In such cases, the spatial-effects term 
of the spatial regression model is a network-effects term, and fail- 
ure to estimate such effects in a regression model can have similarly 
deleterious effects on coefficient estimates and inferences (see, e.g., 
Duke's [1991] study of network effects in a high school student 
body). 

Major limiting factors are the relatively computationally bur- 
densome extant ML procedures and their sample-size limitations. In 
this paper, we have derived a corresponding 2SLS estimator for the 
spatial-effects regression model that is applicable to large samples. 
We have demonstrated that this estimator, which is equivalent to a 
2SLS estimator previously derived in spatial econometrics by 
Anselin (1988), has desireable statistical and computational proper- 
ties. Unlike the ML estimator, the 2SLS estimator does not require 
the assumption of normal random errors and yet is consistent and 
computationally efficient. 

We also compared this 2SLS estimator with Anselin's alterna- 
tive 2SLS estimator for the spatial regression model. In an empirical 
application to a moderately large sample, we found that Anselin's 
alternative 2SLS estimator is somewhat less computationally effi- 
cient. The Land-Dean/Anselin estimator also produced coefficient 
estimates closer to the ML estimates than Anselin's alternative 2SLS 
estimator, but evidence from other empirical applications is neces- 
sary before any generalizations can be stated. Based on the empirical 
analyses we have done and an empirical applicationlO to data on 
electoral support for the Democratic presidential candidate in the 64 

'0This application was graciously provided by Peter V. Marsden. 
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Louisiana parishes analyzed in Doreian's (1981) article, we believe 
that the Land-Deane/Anselin method will perform relatively well in 
large samples when good exogenous identifying variables are avail- 
able as predictors for the first-stage regressions." 

As noted earlier, the Land-Deane/Anselin 2SLS method re- 
quires such identifying variables, but Anselin's does not. Thus, we 
believe that when such identifying variables are available and sample 
sizes are large (say, 200 or more cases), the method has much to 
recommend it. When sample sizes are large but exogenous identifiers 
are unavailable, the analyst must cope with the computational com- 
plications of ML or Anselin's alternative 2SLS. In the case of small 
samples with or without identifying exogenous variables, ML may be 
the preferred method, provided that the errors are reasonably well 
approximated by the normal distribution assumption. 

Given that appropriate estimators are now available for these 
various contingencies, future regression analyses of spatially distrib- 
uted or network-related social data may be more likely to estimate 
the effects of spatial- or network-effects terms. All existing methods 
have been developed for the estimation of a single linear (in parame- 
ters) equation. Extensions to more-complicated error processes, non- 
linear equations, and systems of simultaneous linear or nonlinear 
equations have yet to be fully explored. 
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