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Abstract

Spatial interdependence—the dependence of outcomes in some units on those in others—is
substantively and theoretically ubiquitous and central across the social sciences. Spatial as-
sociation is also omnipresent empirically. However, spatial association may arise from three
importantly distinct processes: common exposure of actors to exogenous external and internal
stimuli, interdependence of outcomes/behaviors across actors (contagion), and/or the putative
outcomes may affect the variable along which the clustering occurs (selection). Accurate in-
ference about any of these processes generally requires an empirical strategy that addresses
all three well. From a spatial-econometric perspective, this suggests spatiotemporal empirical
models with exogenous covariates (common exposure) and spatial lags (contagion), with the
spatial weights being endogenous (selection). From a longitudinal network-analytic perspective,
we can identify the same three processes as potential sources of network effects and network
formation. From that perspective, actors’ self-selection into networks (by, e.g., behavioral ho-
mophily) and contagious behavior likewise demands theoretical and empirical models in which
networks and behavior coevolve over time. This paper begins building such modeling by, on the
theoretical side, extending a Markov type-interaction model to allow endogenous tie-formation,
and, on the empirical side, merging a simple spatial-lag logit model of contagious behavior with
a simple p-star logit model of network formation, building this synthetic discrete-time empirical
model from the theoretical base of the modified Markov type-interaction model. One interest-
ing consequence of network-behavior coevolution—identically: endogenous patterns of spatial
interdependence—emphasized here is how it can produce history-dependent political dynam-
ics, possibly including equilibrium phat and path dependence (Page|2006)). The paper explores
these implications, and then concludes with a(n extremely preliminary) demonstration of the
approach to alliance formation and conflict behavior among the great powers in the first half of
the twentieth century.
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1 Introduction

From a network-analytic perspective: Networks are ubiquitous. Whether speaking of friendship
or familiarity relations among individuals, trade or conflict relations among states, predator-prey
relations in ecosystems, or any other sets of relations (a.k.a.: ties, connections, edges, etc.) among
sets of units (a.k.a.: agents, actors, nodes, etc.), networks are essentially everywhere. And networks
usually matter. Network effects, arising from various structural aspects of the network, or from
actors’ positions in the network, or from other actors through the network of connections, often
importantly impinge upon the behaviors, opinions, outcomes, or other characteristics of units.
Networks are also commonly endogenous. The units within some particular network typically choose
or influence their connections, which are the edges that structure the network. A large challenge
empirically for social scientists interested in the theory and substance of network effects and network
formation is that network effects on nodes and the formation of edges between nodes tend to be
mutually endogenous and, at the same time, both may be caused by outside factors, i.e., by a
third mechanism that we have elsewhere called common ezposure (Franzese and Hays||2006, |2007b),
2008blja [Hays et al.[2010)). In one archetypal application of social-network analysis, for example, we
may observe clusters of smokers and of nonsmokers because smoking is contagious—one acquires the
habit from friends or avoids acquisition because one’s friends abstain—or because smokers choose
to hang with smokers and nonsmokers with nonsmokers: homophily by behavior-type—or we may
observe clustering of smokers and nonsmokers because both the behavior of (non)smoking and the
connections between mutually (non)smoking behavior-types are caused by actors’ common exposure
to outside conditions, such as shared sociodemographics that affect both the propensity to smoke
and friendship formation.

We have made these arguments before from a spatial-econometric perspective (Franzese and Hays
2006, 2007byal 2008bla, 2009; Hays et al|[2010): As Tobler’s Law |Tobler| (1970) aptly sums: “Ev-
erything is related to everything else, but near things are more related than distant things.” Fur-
thermore, as Beck et al.| (2006))’s pithy title reminds in corollary: “Space is More than Geography”.
The substantive content of the proximity in Tobler’s Law, and so the pathways along which in-
terdependence between units may operate, extends well beyond physical distance, contact, and
contiguity. Long literatures in regional science, geography, and sociology carefully elaborate from
those disciplinary perspectives the multifarious mechanisms by which contagion may arise. Sim-
mons and colleagues (Simmons and Elkins|2004; Elkins and Simmons|2005; Simmons et al.|[2006)
offer a list for international relations: coercion, competition, learning, and emulation (to which
one should add relocation diffusion (Hagerstrand 1967, (1970). In fact, as, e.g., |Brueckner| (2003)
showed, strategic interdependence, i.e., contagion, arises any time some unit(s)’s actions affect the
marginal utility of other(s)’s actions. Given such externalities, i’s utility depends on both its policy
and that of j. Theoretically, substantively, then, spatial interdependence is ubiquitous. Empirically,
the clustering or correlation of outcomes on some dimension(s) of proximity, spatial association, is
also obvious across a vast array of substantive contexts. However, and this is the crux of the great
empirical challenge/opportunity represented by the substantive and theoretical ubiquity of interde-
pendence, outcomes may evidence spatial association for at least these three distinct reasons. First,
units may be responding similarly to similar exposure to similar exogenous internal/domestic or
external /foreign stimuli (common exposure), or, second, unit(s)’s responses may depend on others’
responses (contagion, one sort of network effect). We may find states’ adoptions of some economic
treaty, for example, to cluster geographically or along other dimensions of proximity, e.g., bilateral
trade-volume, because proximate states experience similar exogenous domestic or foreign political-



economic stimuli or because each state’s decision to sign depends on whether proximate others
sign. A third possibility arises when the putative outcome affects the variable along which clus-
tering occurs (selection or network formation). Treaty signatories might also cluster according to
some variable on which we observe their proximity (volume of trade between them) because being
co-signatories affects that variable (spurs bilateral trade).

Whether from the network-analytic or the spatial-econometric perspective, accurately distinguish-
ing and gauging empirically the role and strength of these alternative processes—common expo-
sure, contagion, and selection; a.k.a., node effects, network effects, and network formation—is
difficult, because the processes manifest empirically similarly, but also crucial because the the-
ories and policy-intervention advice supported by any observed spatial-cum-network phenomenon
hinges critically on whether (or the relative degrees to which) the observed phenomena arise from
contagion/network-effects, selection/network-formation, or common exposure. The substance of
the situations and how policies might best intervene in them vary critically depending on whether
state signatories cluster in pockets of dense trade relations because those states tend to experi-
ence similar exogenous conditions that favor signing, or because the signing by some states spurs
their trading partners to sign, or because the treaty fosters trade between co-signatories. Likewise,
whether (non)smokers/(non)smoking clusters in social networks because having smoking or non-
smoking friends spur one to adopt the behavior also, because (non)smokers tends to acquire friends
who also (do not) smoke, or because some clustered exogenous internal or external conditions,
some sociodemographics for instance, affect both one’s (non)smoking behavior and with whom one
becomes friends.

As we have also argued (and to some extents demonstrated, analytically, by simulation, and/or in
applications) elsewhere, drawing effective distinctions and obtaining accurate estimates empirically
of any of these separate processes requires great care and attention to specification (including mea-
surement) of all three of components. That is, regardless of whether one’s interests center on net-
work effects, the contagiousness of smoking for instance, or on network formation, what determines
trade or conflict patterns for instance, one must model well both the network-effects/contagion and
the network-formation/selection, and also whatever relevant external factors important to either

process][T]

Our project here aims to develop a framework for theoretical modeling and empirical specification,
estimation, and interpretation of social phenomena with (common exposure and) simultaneous
contagion and selection, that is, of mutually endogenous network effects and network selection,
i.e., of the coevolution of actor behavior and their network connections. Identically from a spatial-
econometric perspective, this means models with exogenous covariates reflecting common exposure,
spatial-lag contagion, and a pattern of spatial connectivity, i.e., a set of spatial weights, which are
(at least in some part) endogenous to behavior. Our theoretical model of such processes builds from

'Nor, generally, will causal-inference strategies based on the potential-outcomes framework and assumptions of
SUTVA salvage accurate estimation of any of these causal processes without adequate address of all three. SUTVA,
in a nutshell, requires that (i) the probability of one unit receiving/taking treatment, (ii) the (constant) magnitude of
the treatment, and (iii) the effect of treatment are independent of each other and of any other unit(s) receiving/taking
treatment, the sizes of those units’ treatments, or the effects of those treatments in those others. These precluded
situations are the essence spatial-cum-network effects. “The two most common ways in which SUTVA can be
violated appear to occur when (a) there are versions of each treatment varying in effectiveness or (b) there exists
interference between units” (Rubin||1990:, p. 282). The first of these is called spatial heterogeneity, the second
is spatial interdependence: i.e., these are merely the network or spatial effects argued in those literatures to be
ubiquitous and central to (at least) all social phenomena.



Markov type-interaction models in the extant literature, which explain evolving and steady-state
profiles of actor types based on probabilities of type-switching that depend on the previous-period
distribution of actor types in a manner that depends on an exogenously given (possibly exogenously
varying) set of connections between actors. These models parallel theoretically extant empirical
spatial-lag models of spatial econometrics, notably in the exogeneity of the connectivity matrix,
i.e., of the network of connections between actorsE| In other words, these models expressly disallow
network-formation/selection. Accordingly, we extend these extant Markov type-interaction models
to incorporate endogenous determination of the connections between units, connections being made
or broken endogenously (to an extent that we can vary with parameters of the model) by the
previous behavior-types of those units. Likewise, empirically, we merge extent spatial-lag models
of interdependent behavior—specifically, a very simple version of the spatial-lag logit modeﬁ»which
have typically maintained exogenous connections between units, with extent models of network
formation, p-star models—specifically the simplest p-star model of independent tiesﬁ—which have
typically maintained exogenous unit characteristics, including behaviors, as explanators of network
ties. Theoretically and empirically, the emergent models are ones of network-behavior coevolution.

The combination of network effects, specifically of behavioral contagion, and of network formation
with self-selection of actors into networks, specifically of actors’ self-selection of the ties between
actors according to some (dis)similarity or other function of the actors’ behaviors or types (e.g.,
homophily), implies that networks and behavior coevolve over time. Both network effects and net-
work formation, i.e., both contagion and selection, are ubiquitous and frequently important across
the social sciences (as are the usual plethora of exogenous conditions relevant to both). There-
fore, in longitudinal-network or spatiotemporal analyses, scholars must take seriously the modeling
of all three processes—common exposure, contagion, and selection—if they are to understand the
nature of and properly model and estimate the structure of the coevolutionary dynamics in their
data, i.e., if they are to explain accurately the network formation and dynamics and the behavioral
decision-making evidenced in their data. In this paper, we emphasize that one of the more inter-
esting consequences of such network-behavior coevolution is that it can produce history-dependent
political dynamics, possibly including what (Page/[2006) defines as phat, path, and/or equilibrium
dependence. We first establish theoretically that systems with coevolution can easily generate
multiple equilibria (i.e., multiple steady states of the system), using the aforementioned modified
Markov type-interaction model extended to allow endogenous tie-formation. The potential of mul-
tiple equilibria raises a very difficult empirical question—how sensitive are equilibrium distributions
(over types) to the past states? Nor are the stakes in this question merely academically nontrivial.
What can be achieved by potential policy interventions today and how we should design policy
interventions for the future depend critically on whether and how history matters in phat- or path-
dependent ways for the equilibrium attained in the society. To evaluate the empirical magnitude
and substantive and statistical significance of coevolutionary dynamics, therefore, we combine as
just noted the spatial-lag logit and p-star logit models to develop discrete-time Markov models that

2In practice, most theoretical Markov type-interaction models have employed very simple, uniform and universal,
and therefore anonymous, connections between actors; i.e., all actors are equally or equiprobably connected to all
others and therefore are anonymously exchangeable in this sense. The extension of our model to endogenous selection
of ties on the basis of past behavior-types must foresake this anonymity; reformulating the model to keep track of
these individuals and dyads itself proved a nontrivial extension.

3For now, to start, we employ only a time lag of the spatial-lag dependent variable, and assume this adequate model
of the spatiotemporal dynamics of contagion, to evade the multidimensional integration complications of simultaneous
spatial-lags in latent-variable models.

4Given the assumed conditional independence of the network ties across ties and actors in that simplest model—
again, for now, to start—this amounts very simply to a set of %N (N — 1) simple logits.



can estimate the empirical magnitude and significance of any coevolutionary dynamics in the data.
One strength of this empirical approach lies in its direct connection with the theoretical Markov
type-interaction model, which allows us to assess the full substantive content of history dependence
in observed data and which can provide a foundation for developing statistical tests for history
dependence generated by coevolution.

[Somewhere, perhaps here but maybe later or maybe split up some here and some
later, goes some further lit review and such. On SIENA (Steglich et al.|2006; Snijders
et al.[[2007; [Snijders 2005); on spatial-econometric approaches to some of these issues
(Franzese and Hays 2009; Hays et al. 2010) (AND CITES FOR SPATIOTEMPORAL
AND SPATIAL LATENT-VARIABLE); and on empirical models of path dependence
(Jackson and Kollman 2007; Jackson 2008; Page|[2006, [2007; Walker| 2007))]

The rest of the paper proceeds as follows. In the next section, we present a theoretical Markov
type-interaction model for N actors, modified to allow allow endogenous tie-formation. In the
third section, we propose our statistical model, specified to reflect the theoretical model proposed
in the preceding section. The fourth section provides an illustrative application that examines
the coevolution of the military alliances and conflict behavior of major powers in the first half
of the twentieth century, comparing our proposed model and estimation strategy with Snijders
and colleagues’ coevolutionary actor-oriented longitudinal-network model, SIENA (Snijders 2005}
Steglich et al.|2006} [Snijders et al. 2007)E]

2 The Markov-Chain Model

In this section, we introduce a relatively simple theoretical model of behavior-shaping (network
contagion effects) and network-formation (selection) that results in a set of Markov chains. In
this model, a group of actors are of certain types and their types change over time as actors are
influenced by other actors. Such contagion of actors’ types occurs only if the actors are connected.
We employ the explicit notion of networks (or spatial weights) to characterize such connectedness.
Simultaneously, the connectivity of actors also changes over time, not only due to exogenous factors,
but also as a function of types taken by actors in the previous period. We particularly focus on
behavior-type homophily (or heterophily), i.e., where network ties are more (or less) likely to form
among actors whose types are more (or less) similar in the previous period. The key features of and
the additional sources of complexity due to this extension of extant type-interaction models are the
following: (1) it introduces the details of which actor interacts with which to represent the effects—
specifically, the contagion effectsﬁ»of networks on actors’ behavior and (2) it describes how those
interaction patterns, i.e., the networks (or spatial-weights matrices), change endogenously over time
based on actors’ types in the previous time period, which reflects homophily by behavior-type.

°In future work, we intend to compare more fully our empirical model and estimation strategy to Snijders and
colleagues’ SIENA, including Monte Carlo simulation of properties of parameter, dynamics and steady-state effect
estimates. For now, the fourth section contains only a comparison of coefficient estimates for a single substantive
application.

5As previously mentioned, network effects more generally include three sorts of effects: (i) effects of the network
structure (density or hub-and-spoke structure for instance) on nodes, (ii) effects of nodes’ positions within the network
(their centrality or betweenness for example) on nodes’ behaviors, and effects through the network of connections of
other nodes’ characteristics or behaviors on nodes’ behaviors (of alter on ego in network terminology). We focus, for
now at least, at first, on the last of these, commonly labeled contagion in much of the relevant literatures.



We then demonstrate that the model can produce multiple equilibria. By equilibrium, we mean
consistency between actors’ behavioral types and their behavior-switching rules (i.e., steady state or
fixed point). In coevolution models, multiple equilibrium (distributions of) types are consistent with
a single behavior-switching rule. The particular type/behavioral-rule combination that emerges at
a given point in time is a function of actors’ prior types. In this way, the evolution of behavioral
types is history dependent and may be specifically phat, path, or equilibrium dependentE]

2.1 The Model

Consider the following discrete-time longitudinal process with N actors. Let i € {1,--- , N} denote
these N actors and ¢ € {1,2,---} denote time periods. We distinguish between the behavior of an
actor and her behavioral type (or simply type), understanding the latter as the actors’ probability of
taking action 1. In our initial model here, we assume that behavior is observed and dichotomous,
whereas behavior-type is continuous and unobserved by analysts but observed by actors, with
contagion and selection occuring by typeﬁ In each period, actors choose between behavior 1 and 0,
e.g., smoking or not, voting or not, taking an aggressive interstate behavior or not, democratizing
or not, and so forth. We denote behavior of actor ¢ in period ¢ by s; € {1,0}. Behavioral type is
the probability that an actor chooses behavior 1. We denote the behavioral type of actor i in period
t by o € [0,1]. The state of the system that actors can observe at the end of period ¢ is therefore
an N-dimensional vector of types, oy = (014, ,0n¢) and a matrix of latent and observed ties
between actors to be described subsequentlyﬂ

We focus first on the Markov chains that explain behavioral type, taking into account the conta-
gion effects of networks among the N actors. We separate three component terms that together
determine a switching probability—the probability that an actor’s behavior at ¢ + 1 becomes s; 141
or 1 —s;;41 from s;; or 1 — s;;. First, we have a component of the probability that the actor
chooses behavior 1 that does not depend on the state of the world, which includes both the ac-
tor’s own and others’ types, that she observes at the end of ¢ (o). Let ¢; denote this part of the
probability; i.e., the probability that an actor takes action 1 exogenously to the state at the end
of period t. Similarly, let ¢y denote the probability that an actor takes action 0 exogenously of the
state of the world she observes at the end of period ¢t. In terms of the three processes that may
produce spatial /network association, ¢o and c¢; are the theoretical placeholders for the exogenous
external and internal conditions to which actors may have common exposure. Lastly, each actor’s
behavioral decisions (i.e., ego’s choices, in network-analytic terminology) can also be influenced by
others’ (alters’) types; this is the contagion in our terminology. Actors in a given dyad (i and j,
where 7 # j) influence each other’s behavioral type only if they are connected. This connectivity

"Ultimately, we aim to characterize the forms of history dependence—outcome and equilibrium state, phat, path
dependency (Page|[2006)-that emerge from alternative parameter and starting values and the mappings from the
latter to the former.

8We envision eventually a range of possible models, with continuous or discrete behavior, observed or unobserved
by analysts and/or by actors, with contagion or selection by behavior or type. The theoretical, substantive, and
empirical appeal of these alternative models would presumably vary with the application context. We begin with the
model described here because we believe it an appealing one for the application to be offered in section four, because
this theoretical model maps well into the empirical model to be offered in section three, and because we must begin
somewhere.

9There is also a corresponding vector of behaviors, s; = (si¢,--- ,sn¢t), which is less germane to the theoretical
model here than to the empirical models to come since this theoretical model has type observed and the basis of
contagion and selection.



among actors, the ties between them, could be friendship, military alliance, trade partnership and
so on. Let d;5; € [0,1] denote the probability that a tie exists between the two actors in dyad ij
in period t; we can also interpret this probability, isomorphically in this model, as the strength of
the tiem Ties are undirected; undirected ties are equivalent to symmetric spatial-weights matrices.
(Extension to the directed-network /asymmetric-weights-matrices case is obviously an important
next step for the theoretical model.) In this N-actor system, we express contagion, the extent to
which others’ types influence i’s type, as Z;yzl’(#i)(éijaj)/(N — 1), where we have weighted alters’
(4’s) influence on ego (i) by (N —1)~! to bound the value of this positive term by IE This ensures
that the total effect of others’ types > j#(gijaj) lies in [0, 1]; then, the way we combine these three
components of an actor’s type assures that the whole expression for ¢;, which is the probability the
actor chooses behavior, s;, equal to 1, is likewise bounded 0 < g; < 1.

Equation describes the transition of actor ¢’s type from period t to ¢t + 1. This system results in
a set of N Markov chains. The second matrix on the right-hand side is the transition-probability
matrix. For example, cell (1, 1) of the transition-probability matrix represents the probability that
actor ¢ chooses behavior 1 given that ¢ chose 1 in the past period, Pr(s;++1 = 1|sjz = 1). The first
term is the probability that ¢ choose behavior 1 exogenously of the state, ¢; and the second term
is the weighted average expressing how others’ types affect i’s choice of behavior. Notice how, by
this construction, the weight (1 —¢; — ¢g) captures the extent to which others’ types matter for i’s
behavioral choice in t+1. This gives us parameters within the transition model by which to vary the
overall strength of contagion. For instance, in an extreme case where i chooses 1 with probability
c1 = 0.5 and 0 with probability cg = 0.5 exogenously of others’ types, then 1 — ¢y — ¢g = 0, meaning
that i’s decision will not be affected by any others to whom she is connected: i.e., the general
strength of contagion is 0.

O4,t+1
1—04t41
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B 1 -0 1— 2% 200

We focus next on the Markov chains that explain tie-formation probabilities (Equation (2))). The
unit of each entry is now a dyad (7,j). The probability that the two actors ¢ and j in a dyad
form a tie (e.g., “are friends”) in period ¢ + 1 is denoted by d;j4+1 € [0,1]. In conventional
type-interaction models, these tie-formation probabilities are assumed exogenous. By contrast,

10These alternatives are mathematically identical in this particular model because contagion and selection occur by
the continuous, observed type and strength, not the dichotomous, unobserved behavior and tie. In models with other
combinations of these conditions, the alternative interpretations may differ slightly due to the distinction between
a behavior or tie of strength 1 with probability p and strength 0 with probability 1 — p versus a behavior or tie of
strong p.

"The row standardization common in spatial econometrics, or the spectral normalization that [Kelejian and Prucha
(2009) recommend instead, would also serve to bound 0 < 7, (di;05) < 1.



the potential for endogenous ties—for instance via behavior-type homophily: types seeking like
types—is a crucial aspect of our model. In our model, similarity or dissimilarity of actors’ types
at ¢ partially determines the tie-formation probabilities in the next time period. For example, the
transition probability for a dyad to be connected in period ¢t + 1 given that they were already
connected at ¢ is c2 + (1 — ¢2)(1 — (0; — 05)?). Analogously to ¢y and c1, the term co reflects
exogenous factors’ contributions to these two actors’ forming a tie, regardless of the state. The
component 1 — (o; — 0j)? of the remaining term captures the extent to which similarity of i’s and
j’s types at the end of period ¢ affect their probability of being connected in period t + 1. This
quantity increases as the two types, o; and o, become more similar; so, to the degree that co < 1,
our model exhibits homophiletic tie-formation by behavior-type: two individuals are more likely
to form a friendship tie if both smoke, two countries more likely to ally if their conflict behaviors
are similar, two members of Congress more likely cosponsor a bill the more similar their political
ideologies, etc.

0ijt+1
1— 04041
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The systems of differential equations and complete our theoretical model of network-behavior
coevolution, i.e., of jointly endogenous contagion and selection. The long-run steady-state (LRSS)
equilibrium of this system consists of a vector of each actor’s type and each dyad’s tie-forming
probability, (o, d). This LRSS equilibrium can be obtained by solving and for o by setting
Oit+1 = 0ip and 045441 = 0454, V1,5 € {1,--- , N}. In any given social-science context, our interests
may lie primarily in the LRSS equilibria and/or the intertemporal dynamic of actors’ types, o,
and/or in the LRSS and/or dynamics of tie-formation probabilities, . Of course, our interests may
also involve all of the above equally. In any case, the states and the equilibria are fully and best
characterized by vectors of types and tie-probabilities both, due to the endogeneity generated by
homophily. For compactness only, our exposition will highlight the equilibria of behavior types and
(network) tieSH

2.2 Example: Three-Actor System

To illustrate the existence of multiple equilibria, consider the following example with three actors,
(1,2,3), and so three possible undirected edges, (12,13,23). With probability 0.5—perhaps better
conceived as: to an extent of 50%—actor i chooses behavior 0 exogenously of the state at the end
of t, (co = 0.5). To an extent of 0.2, actor i takes behavior 1 exogenously of the state, (¢; = 0.2).

12Exploration and discussion of our illustrative example is currently incomplete. In future drafts, we plan to develop
the example further and characterize insofar as possible the mapping from parameter and starting values to paths
and equilibria.



To the remaining extent, 1 — ¢y — ¢y = 0.3, actor i’s type in ¢t + 1 will be influenced by the types of
others to whom i is connected. In any dyad, the two actors, ¢ and j, form an undirected tie with/to
probability /extent 0.5 exogenously of the state, (co = 0.5). To the remaining 0.5 extent, actors’
homphiletic preferences determine their ties. This leaves the following system of equations, a set of
six equations of motion, one for each of the three actors’ types and one for each of the three dyads’
tie-formation processes:

Olit1 =01 (0 2 4 0.3Q2e2ethnds ) ) (1 gy, (1 (0.5 + 0.3{51“(1*"20*513’*1*”3,0}))
Oat41 = 09 t(() 24 0. 3(512 o1, f+523 t03, f)) +(1- oo (1 _ (0 54+ 0. 3{512 t(1—0o1 t)+523 t(1—os, f)}))

O3,t41 = 03¢ 2+03(613 t01, t+623 t02,t) + 1_0315 (1_ (05+03{613 (11— 03,5)4-523,5(1 gzt)}))

(3)
812,441 = 612,¢ (0.5 + 0.5(1 — (o1t — 024)?) ) + (1 — b12,¢) (1 — (0.5 + 0.5(1 — (o1¢ — JQ’t)Z))>
—(0.540.5(1 — (01,1 — US,t)Q)))

—(0.5+0.5(1 — (020 — 03,7&)2)))

+ (1 —013,4)

823,641 = 0234 (0.5 + 0.5(1 — (02,0 — 03.4)?)

0.

( )
013,441 = 513t(05+05 (1= (o1t —031)%)

( )9) ) + (1 — 623,4)

\_/\_/\_/
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Solving this system for the steady-state o;’s and d;’s, we get at least the following four sets of
equilibria:

1.{0’1 =02 =03 = 153:3665122} with {0 < (512 = (513 = 623 < 1},

__ 206-698.3 _ 1974159813 55282, 1 1735-7+/45121

2{o1 =03 = 550138015 02 — 550— 138015 } with {012 = 023 = 3, 0 < d13 < =557 ‘1, 7
_ 7 . 3 137 1 _ 206-55903

301 = o5 + 3302, oy < 02 =03 < 25}, with {012 = 13 = 5, da3 = - 1580 )

206696, _ 197-51815 | < s 1
4{01 =02 = 55538350 93 = mro—tass s ) With {0 <012 <1, 013 = 023 = 5}

Notice that the LRSS include both pooling and separating equilibria. The first equilibrium category
exhibits complete pooling of behavior and of type, whereas the others all exhibit the same partial-
pooling pattern of separation. In equilibria 2, for instance, actors 1 and 3 choose common behavior-
type and actor 2 will connect with them on a 50 — 50 basis. Equilibria 3 and 4 are analogous, with
two actors pooling behavior-type and the other connecting to each of them with probability 0.5.

2.3 Comparison with the No-Coevolution Model: Three-Actor Case

Comparing the LRSS equilibrium results from our type-interaction model to those from conventional
models, which do not allow for the coevolutionary dynamic generated by simultaneous homophily
and contagion, may also be useful. Table [1| summarizes the results of LRSS equilibrium analyses
for the four combinations of ¢y, ¢1, and ¢y values that produce scenarios with the four combinations
of with and without behavior-type contagion and behavior-homophiletic selection in our model.



Table 1: Comparison of Type-Interaction Models

No Contagion
(co+c1=1)

Contagion
(co+c1 #1)

Exogenous No contagion in actors’ behavior- | Behavior type is contagious, but tie
Tie-Formation | types, and tie formation is also exoge- | formation is exogenous to behavior
(c2=1) nous to behavior type. type.
Unique equilibrium: o; =1 — ¢, Unique equilibrium: ¢; varies,
given any 0 < §;57 < 1, Vij. given 6;j, Vij.
Endogenous No contagion in actors’ behavior- | [Our model] Behavior type is conta-

Tie-Formation

(2 #
mophily)

1)

(ho-

types, but tie formation is endoge-
nous to behavior types, with actors
more likely to form ties with similar
behavior-types (homophily).

Unique equilibrium: ¢; =1 — ¢,
with any 0 < ;5 <1, Vij.

gious, AND tie formation is endoge-
nous to behavior type, with actors
more likely to form ties with similar
behavior-types (homophily).

Multiple equilibria: examples
given in Equation

The upshot is simple: multiple equilibria arise ifthe model exhibits both behavior-type contagion
and behavior-homophiletic selection. This will suggest the form of a possible test for evidence of
equilibrium history-dependence (Page|2006) in the empirical model proposed below.

2.4 Illustration of the Equilibrium Dependence in Types

Figure (1] illustrates the equilibrium path-dependence (Page 2006 possible in our model, given
behavior-type contagion and behavior-homophiletic selection. The figure illustrates the dynamics
and LRSS equilibrium behavior-type for actor 2 in a three-actor system like the one in our example.
We consider two scenarios, labeled Path 1 and Path 2, that differ only by the sequence of exogenous
values for ¢g, ¢1, and ¢y fed actor 2 our three actors. The early part of the sequence differs—namely:
the first two vectors (co, ¢1, and cg2) reverse order for actor two—but the history of exogenous factors
from period 3 onward is constant in and the same across both scenarios.

As one can see, the equilibria differ, and this difference does not fade in time, no matter how far into
the future we may have taken the figure. Notice that the starting behavior-type and the set of values
of (co, c1, and ¢3) are the same. Showing that differences in either of these produced differences
in LRSS equilibria would have shown equilibrium initial-conditions sensitivity or equilibrium phat,
i.e. set, dependence. Only the sequence of (cp, ¢1, and ¢g) differs, so this is true path-dependence,
according to Page| (20006).
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Figure 1: Hlustration by Simulations: Equilibrium Dependence in Actor i’s Behavioral Type

049

0.85

038

PATH 1: ¢(0): 1/5, 1/10, /5, 1/5...

c(1): 2/3, 1/10, 1/6, 1/6...
c(2): 8/9,1/9,1/9,1/9...

PATH 2: ¢(0): 1/10, 1/5, 1/5, 1/5...

e(1): 110, 2/3, 1/6, 1/6...

c(2): 1/9,8/9,1/9,1/9...

——PATH 1
—a—PATH 2

PATH 1 Equilibrium Txpe
\/ \ \ fort = 3: .486
PATH 2 Equilibrium Tvpe
fort=3: .483
1 2 3 4 g 5} T g 9 10 "

PATH 1 PATH 2
Time period— 1 2 3 4 1 2 3 4
1 1 1 1 1 1 1 1
co(1) 5 0 5 3 0 5 5 3
1 1 1 1 1 1 1 1
co(2) 5 10 5 5 % 5 5 5
1 1 1 1 1 1 1 1
co(3) 5 0 5 3 0 5 5 3
2 1 1 1 1 2 1 1
c1(1) 5 10 5 6 0 3 6 6
1 1 1 1 1 1 1 1
c1(2) 6 10 & & 0 6 6 §
2 1 1 1 1 2 1 1
c1(3) 35 10 6 &8 0 3 6 8§
. s 1 1 1 .. T8 1 1
2 9 09 9 9 9 9 9 9

Initial values for the endogenous parameters:
al; = az = 0.9, asz = 0.1, t12 = t130.1, t23 =0.9.
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3 Empirical Strategies

In this section, we develop two discrete-time Markov models for empirical analysis. Both combine
the spatial-lag model from spatial econometrics and the p-star model from network analysis. We also
compare these with the actor-oriented continuous-time coevolution models developed by Snijders
and colleagues (Steglich et al.|[2006; Snijders et al. 2007} Snijders|2005)).

3.1 Discrete-Time Markov Models

Our first discrete-time Markov model is one with behavior (not behavior-type) contagion and
observed ties (not latent-strengths of ties). We define the behavior-shaping probability in a simple
spatial-lag logit model, one with only time-lagged (and not simultaneous) spatial-lag, and define the
tie-formation probability in the simplest p-star model, one with independent dyads (which likewise
reduces the tie-formation model to a set of conditionally independent logits);[r_g]

()

Pr(sjs = 1|si—1,di—1) = logit(Bo + Bisit—1 + Podit—15¢—1)
Pr(dj = 1]si—1,d¢—1) = logit(~o + vidiji—1 + 2 - 1(Sit—1 = Sjt—1))s

where d; ;—; is a row vector of size N that contains the set of (N — 1) dichotomous tie-formation
indicators between i and all the other actors at the end of period ¢t — 1 (and 0 in element i for dyad
i1), and I(s;¢—1 = sj¢—1) indicates whether the behaviors in the given dyad were the same in the
previous period. The term captures homophily. In this model, contagion (network effects) and the
homophiletic selection (network formation) both operate through behaviors rather than through
behavior type.

Our second empirical model is instead a latent-type and strength-of-tie model, which connects
much more closely to the theoretical model presented above. The behavior-switching and tie-
formation /dissolution rules in this model take the form:

{Pr(si,t = 1|o1—1,0¢—1) = logit(Bo + P1Sit—1 + P20i1—10¢—1) (6)

Pr(diji = 1lo1-1,6i-1) = logit(yo + Mdiji—1 + v2(0it—1 — 0j4-1)?),

where §;;—1 is a row vector of size N that contains probabilities that i forms ties with, or the
proportionate strengths of the ties between i and, each of the others, j, at the end of period t — 1
(appropriately zeroed for i’s self-reflexive dyad).

In this model, connections are by (observed) continuous strength of tie, 4, not dichotomous tie or
indicator of tie, d, and contagion and selection operate through (observed) behavior type, o, not
dichotomous behavior or indicator of behavior, s. One appealing way to conceive this substantively
is that actors’ types are influenced by other actors’ underlying types and not by ephemeral short-run
behavioral manifestations. Substantively, this reflects a proposition that, for example, if my friend
who rarely votes happens to vote in one election by chance, that behavior is unlikely to influence
the rate at which I turn out to vote. Likewise, homophily/heterophily is driven by type rather than

BImportant extensions for next steps in this project of course include enriching these two models closer to the
start of their arts: simultaneous spatial-dependence in dichotomous outcomes and p-star models beyond simple
independence.

12



current-behavioral manifestations, which could be attributable to chance. For instance, a lifelong
liberal senator is much more likely to cosponsor legislation with another committed liberal senator
than with a conservative senator who just happened to vote liberal on the previously considered
piece of legislation.

Because these types and strength of ties are often unobserved, as in our example application to
come, for instance, we need a way to identify and estimate them. We assume that types are
always in equilibrium given behavior-switching probabilities, and that tie strength is always in
equilibrium given the Markov chain governing tie formation and dissolution from period to period.
More formally, we assume

/ !/

11 11
Oit O1,t Z 11—z
- 00 00 (7)
1—o0iy 1—o0o14 1— 2 2z
and , ,
11 11
B 00 00 (8)

With these assumptions, starting values for oy and d:, and parameter values for 8 and ~, we
can calculate the probability of observing 1’s and 0’s at time ¢ = 1. We can also update each
actor’s type and the strength of ties across dyads using the implied transition probability matrices.
Of course, these difference equations have multiple solutions. We select the solution that emerges
from the Markov chain beginning at the previous period’s types and tie strengths. With estimated
values for o and § at time ¢t = 1, we can calculate the probability of observing 1’s and 0’s at time
t = 2. By repeating this process, we can calculate the joint likelihood for a given sample.

3.2 Comparison with SIENA: Continuous-Time Markov Models

In the network-analytic tradition, Snijders and colleagues (Snijders| 1997, 2001; Steglich et al.
2006; |Snijders et al.|2007; Snijders| 2005) have advanced perhaps furthest in empirical modeling
of dynamic, endogenous contagion and selectionE They model the coevolution of networks and
behavior thus. N actors are connected by an observed, binary, endogenous, and time-variant
matrix of ties, x, with elements x;;;. A vector of N observed, binary behaviors, z, at time ¢
has elements z; ;. Additional exogenous explanators may exist at unit or dyadic level, v;; or w; ;.
Opportunities arise for actors to change their network connections, switching at most 1 tie on or off,
at continuous-time fixed-rate, A", according to an exponential model. At present, A7 is assumed
constant for all 4, j,¢, though in principle one could parameterize it. Likewise, opportunities to
increment, decrement, or leave the behavior arise at rate )\i?eh When an opportunity to change

14 Leenders (Leenders||1995, [1997) presages. Hoff and colleagues (Hoff et al|2002; [Hoff and Ward|[2004; [Hoff and
Westveld||2007) offer an alternative, Bayesian latent-space approach. Our discussion follows Snijders (Snijders||1997)
and Snijders et al. (Steglich et al.|2006} |Snijders et al.[[2007) most specifically.

15Since observation occurs at discrete intervals, the freedom to vary these continuous-time rates render effectively
inconsequential the assumptions of one actor making one unit-valued change in his/her network ties or behavior at
a time. As greater frequency and/or magnitude of changes are observed, estimates of these occurrence rates at this
unobserved instantaneous level simply rise to compensate. This does not, however, relax the strong assumption of
conditional independence of these actors’ choices (which we make as well).
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network ties arrives for some ¢, i may choose to alter the status of any one of its N-1 ties to on
or to off or to leave all ties unchanged. ¢ makes these choices by comparing the values of some
objective function of this form:

fi”et(x,x’,z) +5”Et (x,x',2) Z {ﬁ"et ”Et (i,x,x',2) }—}—e”et(x x',z) (9)

where x’ is an alternative network under consideration, which can differ from the existing network,
x, only by changing at most one element of (only) row i. f'?!(-) is called the network evaluation
function. 52“(-) is some statistic, i.e., some function of the data, x,x’,z, that reflects the actor’s
objectives (ideally, substantively-theoretically derived) regarding the network, x, and behaviors, z.
The B to be estimated are the relative weights of these objectives. Assuming the gnet
value distributed, independently across actors and over time, yields the multinomial-logit model
of categorical choice. Similarly, when an opportunity to change behavior arrives, actor ¢ compares
the value of an analogous objective function under each of three possible actions: increment or
decrement by one or leave unchanged. Formally, i compares z to z’ given x and z;4,. Again,
the behavior evaluation function, fP*"(-), is the summed product of weights and statistics, ,@l;fh
and sbeh( ) respectively, and again assuming i.i.d. extreme-value stochastic components (& beh) the
multinomial logit emerges once more.

extreme-

4 Illustration: Military Alliances and Conflict Behavior

We illustrate these methods with an empirical analysis of the alliance-formation and conflict be-
havior of great powers during the first half of the twentieth century (Levy|[1981). We suspect that
alliance ties and conflict behavior coevolve. States self-select into alliances and these decisions are
plausibly driven by preferences homophiletic or heterophiletic in behavior (type). More aggressive
(pacific) states may seek likewise aggressive or pacific allies. At the same time, conflict behavior is
contagious through alliances. Indeed, that states would be drawn into the conflicts of their allies
is usually a key part, if not the core working principle, of alliancesE] We focus on the first half of
twentieth century because it was a period with considerable variation in conflict behavior (hardly
unique to that period) and of multipolarity during which military alliances were in flux (rarer in
other periods).

We present preliminary estimates of our models in Table Model 1 (columns la and 1b) is
our model with contagion of dichotomous behaviors with connection and selection by observed
dichotomous ties. Model 2 is—as yet, unfortunately only half of—our model with contagion of
latent type and connection and selection by observed strength-of-tie. (These particular results
were estimated using the assumed-exogenous observed dichotomous ties.)E] Model 3 (columns 3a
and 3b) is the SIENA continuous-time Markov model of coevolution. To estimate this model we
used ‘snapshots’ of the great powers’ alliance networks and conflict behavior taken at five-year
increments (i.e., 1900, 1905,...1950). For the network statistic, we used covariate(behavior)-related
similarity, and for the behavior statistic, we used the average-similarity effect. The former is

net _ . (<im? % _ A—|zi—z| .
defined as s = > x;j(simf; — sim ), where the similarity scores are simj; = =——x—>, A being

the maximum sample difference, and sim” is the mean of all similarity scores.The latter behavior-

For a similar argument, see (Kimball|[2006).
17"Obviously, closing this model is a highest priority for the next draft.
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statistic is defined as sP*" = 2 xij§1??;7s1m ) See Snijders (CITES) for many alternatives and
J 1,

much further discussion.

Overall, we find evidence (1) of heterophily—pacific powers are more likely to ally with aggressive
powers—and (2) that conflict behavior is (positively) contagious through alliances.

Table 2: Estimation Results: Military-Alliance Ties and Binary Conflict Behavior

(Markov Model>>) Discrete-Time (MATLAB) | Cont.-Time (SIENA)
Ours Snijders et al.
A (B | @ (3A) (3B)
Alliance MIDs MIDs Alliance MIDs
Networks Behavior | Behavior | Networks Behavior
Temp lag 4.93"* 1.45%** 1.32%** - -
(0.27) (0.27) (0.02)
Previous MIDs -0.51* — - -3.52%** -
similarity (0.27) (0.60)
Previous — 0.85*** 0.10*** — 1.06**
alliance tie (0.31) (0.03) (0.53)
Loglikelihood -237.4 -179.5 -168.4

From model 2, we have latent type estimates for each of the actors from 1901-1950. Estimates for
the U.S. are provided in Figure Unfortunately, as previously acknowledged, this is not a true
coevolution model since we assumed exogenous ties (alliances). However, if it were, we would expect
complex history dependence in the evolution of this variable. To understand why, remember that
in 1910, for example, we have a set of estimated behavior-switching probabilities. These transition
probabilities partly determine the latent type for America in 1910. We say partly because there are
multiple latent types that are consistent with these switching probabilities. We assume the correct
type is the one that emerges from a Markov chain beginning at America’s latent type in 1909.
Therefore, America’s type in 1910 is a steady-state solution, one of many to the difference equation
implied by the estimated transition probabilities for 1910, that is determined by America’s type
in 1909, which is itself one of many steady-state solutions, partly determined by America’s type in
1908, to the difference equation implied by the estimated behavior-switching probabilities for 1909,
etc. etc.

5 Conclusion

Theoretically, this paper attempts to build a Markov type-interaction model in which the behaviors
of actors and the networks that connect them coevolve over time. One interesting implication of the
model is that it produces history-dependent behavior, possibly including path dependent behavior.
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Figure 2: Estimated Behavioral Type for the U.S. (1901-1950)

o g ﬂ

—

-

It seems likely that there are many areas of inquiry in the social sciences where network-behavior
coevolution is important. To evaluate this possibility empirically, we combined a simple spatial-lag
logit model of contagious behavior with a simple p-star logit model of network formation. We used
this statistical framework to analyze the patterns of alliance formation and conflict behavior among
the great powers during the first half of the twentieth century.

There is a lot of work left to do. In the short run, we need to refine the theory, exploring important
alternatives such as models in which actors observe dichotomous outcomes and adjust their con-
tinuous latent traits. There are multiple other options regarding what diffuses and what forms the
basis for selection as well. We need to tighten the connection between the theoretical and empirical
models. In the medium run, we hope to theorize more fully the relationship between multiple equi-
libria and history dependence, and characterize the mapping from parameter and starting values
to the presence and forms of history dependence. In the longer term, we hope to develop statis-
tical tests for various types for history dependence, including path dependence, and explore the
small-sample properties of the estimators, including comparisons to Snijders’ SIENA framework
from longitudinal networks analysis.

16



Appendix: Summary of Notations

o Actors: i € {1,--- ,N}.
e Discrete time periods: ¢t € {1,2,---}.

e Behavior: s;; € {0,1}. A dichotomous behavior (behavioral action) that actor i takes in period t.
Both actors in the model and analysts (or econometricians) outside the model can observe.

e Behavioral type: o € [0,1]. This represents the probability that actor ¢ chooses behavior 1 in period
t. We assume that, in this model, actors can observe (know) others’ behavioral types.

e Network tie: d;j+ € {0,1}. An undirected indicator of whether the two actors ¢ and j in a certain
dyad are connected. The indicator d;;+ = 1 if they are connected, d;;; = 0 if not.

e Connectivity matrix (discrete): D; denotes an N x N symmetric matrix, in which entry of cell (4, j)
is dijﬂg.

e Tie-formation probability: d;;, € [0,1], Vi, j and i # j. This denotes the probability that a tie forms
between the two actors ¢ and j in a given dyad in period ¢. This probability can also be interpreted
as the strength of the tie between ¢ and j.

e Connectivity matrix (continuous): A; denotes an N x N symmetric matrix, in which entry of cell
(Z,]) is 5ij,t~

o State of the system: (6¢,0;) = (011, ,0N1; 01245+ ,0n—1,n,t)- We define the state of the system
at the end of period t as a vector of every actor’s behavioral type and every dyad’s tie-formation
probability.

e Exogenous components of transition probabilities: ¢y, ¢1, co. The probability ¢y captures the odds of
actors’ choosing behavior 0 regardless of the state of the system. Similarly, ¢; represents the probability
that actors choose 1 regardless of the state. The parameter cs is the probability that a given dyad
forms a tie regardless of the state.
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