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ABSTRACT: Political scientists frequently encounter and analyze spatially interdependent count 
data. Applications include counts of coups in African countries, of state participation in militarized 
interstate disputes, and of bills sponsored by members of Congress, to name just a few. The extant 
empirical models for spatially interdependent counts and their corresponding estimators are, 
unfortunately, dauntingly complex, computationally costly, or both. They also generally tend 1) to 
treat spatial dependence as nuisance, 2) to stress spatial-error or spatial-heterogeneity models over 
spatial-lag models, and 3) to treat all observed spatial association as arising by one undifferentiated 
source. Prominent examples include the Winsorized count model of Kaiser and Cressie (1997) and 
Griffith’s spatially-filtered Poisson model (2002, 2003). Given the available options, the default 
approaches in most applied political-science research are to either to ignore spatial interdependence 
in count variables or to use spatially-lagged observed-counts as exogenous regressors, either of which 
leads to inconsistent estimates of causal relationships. We develop alternative nonlinear least-
squares and method-of-moments estimators for the spatial-lag Poisson model that are consistent. 
We evaluate by Monte Carlo simulation the small sample performance of these relatively simple 
estimators against the naïve alternatives of current practice. Our results indicate substantial 
consistency improvements against minimal complexity and computational costs. We illustrate the 
model and estimators with an analysis of terrorist incidents around the world. 
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I. INTRODUCTION: 

Many phenomena that social scientists study are inherently, or by measurement, counts 

of events. Canonical political-science examples include counts of coups in African countries, 

of riots or acts of political violence within countries, of militarized interstate disputes 

(MIDs) or of states participating in MIDs, of terrorist attacks or of deaths or casualties by 

terrorist attacks, of bills sponsored by members of Congress, or of particular measures 

enacted in certain policy areas (the number of labor-rights provisions, for example). In all 

these political contexts, and indeed in most others and widely across the social sciences, 

substantively and theoretically, the numbers of events in some units depend on those of 

other units. Coups, riots, and violence at home are often spurred by example, fomentation, 

or otherwise from abroad; whether, which, and how many others join conflicts heavily 

condition states’ entry to and involvement in MIDs; terrorists’ choices of targets and 

natures and magnitudes of attacks in one area seem very likely to depend on what attacks 

they and others choose for other areas and what countermeasures are chosen in those and 

other areas; legislators’ decisions to sponsor bills surely depend on their expectations or 

observations others’ sponsorship activities; and governments’ policy choices clearly depend 

on others’ policies, whether by competition, learning, or by other mechanisms. 

Indeed, as Tobler’s Law (Tobler 1970) aptly sums: “Everything is related to everything 

else, but near things are more related than distant things.” Furthermore, as Beck et al.’s 

(2006) pithy title reminds in corollary: “Space is More than Geography.” That is, the 

substantive contents of the proximity in Tobler’s Law, and so the pathways along which 

interdependence between units may operate, extend well beyond physical distance, contact, 

and contiguity (as some of the examples above attest). Long literatures in regional science, 

geography, and sociology elaborate from those disciplinary perspectives the multifarious 

mechanisms by which contagion may arise. Elkins & Simmons (2005) and Simmons et al. 

(2006), for instance, offer a list for international relations: coercion, competition, learning, 

and emulation.1 In fact, as, e.g., Brueckner (2003) showed, strategic interdependence arises 

                                                 
1 For fuller, closer match to prior traditions, add cooperation and externality to competition, combine learning 
and emulation as one, and add relocation diffusion (Haegerstrand 1967, 1970)— meaning the direct movement 
of some components of units i into other units j, such as by human migration or disease contagion. Note that 
aspects of these mechanisms may induce spatial association by common-exposure or selection effects, as 
opposed or in addition to by interdependence (see below). For example, learning from other units implies 
contagion, whereas learning from one’s own experiences could implicate common-exposure sources of spatial 
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any time some unit(s)’s actions affect the marginal utility of other(s)’s actions. Given such 

externalities, i’s utility depends on both its policy and that of j.2 In environmental policy, 

for instance, domestic welfare (or net political-economic benefits to policymakers) in each 

country will depend on the actions of others due to both environmental spillovers (e.g., of 

pollution) and economic ones (e.g., in regulatory costs). Optimizing behavior will yield best-

response functions of i’s optimal policies as a function of j’s and vice versa. In this frame, 

positive externalities create free-rider incentives, which induce policies to move in opposite 

directions (i.e., as strategic substitutes), confer late-mover advantages, and make war-of-

attrition (strategic delay or inaction) dynamics likely. Conversely, negative externalities 

create strategic complementarity, with policies moving in the same direction, yielding early-

mover advantages and competitive races.3 It’s hard to imagine substantive contexts within 

social science, which is essentially defined by human strategic and nonstrategic interaction, 

where the actions, choices, or outcomes in some units did not depend on those in others. 

The substantive/theoretical ubiquity and centrality of interdependence across political-

science contexts notwithstanding, studies that accord it explicit attention are uncommon in 

general and almost nonexistent in event-count contexts.4 Social-scientific interest in and 

applications of spatial modeling have burgeoned lately, however, due partly to advances in 

theory that imply interdependence and in methodology to address it; partly to global 

substantive developments that have raised perception of and attention to interconnectivity, 

at all levels, from micro/personal to macro/international; partly to advances in technology 

for obtaining and working with spatial data. Our aim in this paper is to aid the expansion 

of this obviously very welcome development—the dependence of outcomes in some units on 

those in others, interdependence, being so substantively and theoretically central across the 

political and other social sciences—to the study of political-science event-counts. 

                                                                                                                                                             
association insofar as units’ experiences and lessons correlate spatially. 

2 In such microeconomic models, Manski (2000) shows externalities could arise from interactions, expectations, 
and/or preferences. Moreover, non-strategic interdependence could arise even without externalities. Examples 
and reviews of the booming microeconomic-theory literature with explicit models of interdependence include 
Akerlof (1997); Glaeser & Scheinkman (2003), Glaeser et al. (2003); Brock & Durlauf (2001). 

3 We eschew the terms race to the bottom (or top) and convergence because these competitive races need not 
foster convergence to top, bottom, or mean, and could spur divergence (see below and, for related further 
discussion of the observable regarding convergence, Plümper & Schneider 2007). 

4 The rare exceptions include some of the literature on “the contagious coup hypothesis”, which dates at least 
to Li & Thompson (1975), and [XXXX more review & citations here XXXX]. 
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Figure 1: Map of Counts of Post-9/11 Terrorist Incidents 

 

Empirically, the clustering or correlation of event counts on some dimension(s) of 

proximity, spatial association, is also obvious in a vast array of substantive contexts. For 

instance, the spatial clustering clearly manifests (in this case, along a geographic dimension) 

in Figure 1, which maps the dependent variable in our application, the count of post-9/11 

terrorist events by country. However, outcomes may exhibit spatial association at least two 

distinct reasons. First, units may be responding similarly to similar exposure to similar 

exogenous internal/domestic or external/foreign stimuli (common exposure); second, units’ 

responses may depend on others’ responses (contagion). We may find terrorists’ targeting 

and tactical choices, for example, to cluster geographically or along other dimensions of 

proximity, among states with strong ties to a particularly hated state, for instance, because 

states that are proximate on that dimension also experience similar exogenous domestic or 

foreign political-economic stimuli or because terrorist and/or counterterrorist policies 

toward/in one unit affect their policies toward/in other units nearby along this dimension.5 

                                                 
5 A third possibility arises when the putative outcome variable, in this case acts or effects of terrorism, affects 
the variable along which clustering occurs (selection). Terrorist activities could shape alliances, for example, 
and we would very likely observe clustering of targeting and effects among allies. In Hays et al. (2009), we 
begin exploration of possibilities of modeling such network-behavior coevolution, i.e., contagion and selection 
simultaneously, and along with common exposure, in a linear spatial-autoregression context, with application 
to nation’s active-labor-market policies. We do not raise that considerable further complication yet here in 
this event-count context. Likewise, Hays (2009) begins consideration of simultaneous within-unit and across-
unit endogeneity (respectively, when yi⇔xi and yi⇔yj) in the linear and binary spatial-autoregression context, 
but we do not explicitly extend that framework here to the event-count context yet. 
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We discussed elsewhere (Franzese & Hays 2003, 2004ab, 2005ab, 2006abc, 2007abcd, 

2008abc, 2009) the severe empirical-methodological challenges in estimating common 

exposure and interdependence distinctly and well (a.k.a, Galton’s Problem).6 In this 

previous work, we explored specification, estimation, interpretation, and presentation of 

spatial- and spatiotemporal-lag linear-regression models, which reflect spatial 

interdependence directly and which therefore can distinguish common exposure from 

contagion as alternative substantive sources of observed spatial association. For such 

models, we gauged analytically and by simulation the biases of omitting interdependence or 

of including spatial lags to reflect it but ignoring the lags’ simultaneity, finding the former a 

typically far graver concern, but that the latter also becomes appreciable as 

interdependence strengthens. We explained maximum-likelihood and moment estimators 

that redress the simultaneity, and our simulations showed them near-dominant as 

estimators. We explored various model-specification tests and the sensitivity of the 

estimators’ performance to misspecification of the non-spatial component, of the pattern of 

spatial-connectivity, or of the strict assumptions of the consistent estimators. Finally, we 

showed how to calculate spatial and spatiotemporal dynamics and initial and equilibrium 

effects, along with their certainty estimates. We emphasized there and here that, regardless 

of how one’s interests weigh among exogenous internal/domestic, external/foreign, or 

                                                 
6 Galton’s famous Problem is related to Manski’s (also famous) Reflection Problem (1993, 1995, 2000), which 
in part is a formalization of Galton’s profound comment revealing its full implications. 

Galton originally raised the issue thus: “[F]ull information should be given as to the degree in which the 
customs of the tribes and races which are compared together are independent. It might be that some of the 
tribes had derived them from a common source, so that they were duplicate copies of the same original. ...It 
would give a useful idea of the distribution of the several customs and of their relative prevalence in the 
world, if a map were so marked by shadings and colour as to present a picture of their geographical ranges” 
(Darmofal 2009 [Galton 1889]). At http://en.wikipedia.org/wiki/Galton’s_problem: “In [1888], Galton was 
present when Sir Edward Tylor presented a paper at the Royal Anthropological Institute. Tylor had compiled 
information on institutions of marriage and descent for 350 cultures and examined the correlations between 
these institutions and measures of societal complexity. Tylor interpreted his results as indications of a general 
evolutionary sequence, in which institutions change focus from maternal to paternal lines as societies grow 
more complex. Galton disagreed, noting that similarity between cultures could be due to borrowing, could be 
due to common descent, or could be due to evolutionary development; he maintained that without controlling 
for borrowing and common descent one cannot make valid inferences regarding evolutionary development. 
Galton’s critique has become the eponymous Galton’s Problem (Stocking 1968:175), as named by Raoul 
Naroll (1961, 1965 and Naroll & D’Andrade 1963) who proposed [some of] the first statistical solutions.” 

Manski’s Reflection Problem, most specifically, refers to a series of proofs demonstrating, for instance, 
that identical exposure to identical-response-inducing shocks among a group cannot be distinguished (in a 
cross-section) from identical response to each other’s outcomes. 
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context-conditional effects on one hand, or contagion/interdependence on the other, valid 

inferences regarding either possibility generally requires empirical models that specify and 

estimate both of them well because the two typically look much alike empirically and so the 

relative omission or inadequacy in the empirical model and estimates of the one will bias 

inferences in favor of the aspects of the other(s) most similar to it.7 

This paper begins address in similar manner of Spatial-Count (or S-Count) models, as 

part of our broader such expansion to models with interdependence among qualitative or 

limited dependent variables (S-QualDep). As before, we stress substantively-theoretically 

guided (i.e., structural) specifications that can support counterfactual analyses of spatial or 

spatiotemporal responses in dependent-variable terms and that can distinguish the possible 

sources of spatial association. That is, we insist of our approach that it must address this 

difficult but crucial task of distinguishing and weighing the strengths of the alternative 

processes by which spatial association may arise. The approach must also afford estimation 

of the kinds of spatial and spatiotemporal effect-estimates of most substantive interest to 

political/social science, namely the responses across the units and over time to counter-

factual shocks to explanatory variables in some units.8 The kind of structural models we 

prefer and propose, first, take these two aims as essential; then, secondarily, simplicity is 

also desirable, as we wish to facilitate and foster widespread proper use of spatial-analytic 

methods among applied empirical researchers. 

II. EXISTING ESTIMATORS: 

In brief and in general, difficulties arise for S-QualDep models as the endogenous spatial 

and/or temporal lags of latent-outcomes, yj
* and/or y*

t-1, on their right-hand sides (RHS) 

are converted to observed quantities by computation of an integral (e.g., the cumulative 

                                                 
7 All of this extends naturally to include the third possibility, selection (see note 5 and Hays et al. 2009). 

8 We would also note in passing here, although this is an argument for fuller development in another venue, 
that the presence of interdependence generally violates the crucial SUTVA assumption of matching methods 
or other “potential-outcomes” frameworks for causal inference, invalidating, or at least seriously complicating, 
such less structural/parametric approaches to empirical inference. As Rubin himself noted: “The two most 
common ways in which SUTVA can be violated appear to occur when (a) there are versions of each treatment 
varying in effectiveness or (b) there exists interference between units” (1990: 282). Conditions (a) and (b) are, 
in fact, the central issues of spatial econometrics and statistics, where their manifestations are called spatial 
heterogeneity and spatial dependence, respectively, and we have already argued extensively here and elsewhere 
that their presence is not merely “most common,” but absolutely ubiquitous, across all of social science. 
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normal in probit). Since observations are spatially and/or temporally interdependent, log-

likelihoods (or log-posteriors) of realized data (times priors) are single, non-separable logs of 

n-dimensional integrals rather than sums of logs of n unidimensional integrals as usual 

when assuming conditional independence of observations. The n-dimensional cumulative-

normal of S-Probit, for instance, is exponentially more intense to compute than the non-

spatial unidimensional ones, which prohibits direct optimization even in relatively small 

samples (see, e.g., Franzese & Hays 2009). Likewise, estimating spatial dynamics and 

effects, and their certainties, in terms of QualDep outcomes, rather than in parameter or 

latent-variable terms as is current practice, requires calculation of more n-dimensional 

integrals (see, e.g., Franzese & Hays 2009, Hays 2009). The large, current, and rapidly 

growing S-QualDep literature, with the notable exception of S-Probit,9 orients mostly 

Bayesian, CAR (conditional autoregressive) rather than SAR (simultaneous autoregressive), 

and squarely within the spatial-statistical tradition. Our contribution is more toward the 

spatial-econometric analysis of S-QualDep models.10 That is, we seek 1) estimators for the 

structural parameters of theoretically derived S-QualDep regression models, which will 2) 

allow estimates of the effects in terms of the outcomes of interest of counterfactual changes 

in explanatory variables, based on the estimated parameters of these models, and 3) that 

will also yield estimates of the uncertainty of these parameter and effect estimates. We seek 

estimates optimizing the usual desirable properties (unbiased, consistent, efficient, accurate 

standard-errors) in sample dimensions and research contexts typical of political/social 

science, of course, but we also prefer estimators be simple to implement, given that one of 

our core goals to spur and empower applied empirical researchers. 

Besag (1974) was perhaps the first to offer an S-Count model with his introduction of 

the spatial-Poisson (S-Poisson) as one of his auto-models.11 Besag’s auto-models conquer the 

estimation challenges of S-QualDep by making assumptions that allow variables’ joint 

                                                 
9 Considerable development and applications of SAR models by Bayesian (MCMC by Metropolis-Hastings-
within-Gibbs-sampling: LeSage 2000, LeSage & Pace 2009), frequentist (simulated-likelihood by recursive 
importance-sampling (RIS): Beron et al. 2003, Beron & Vijverberg 2004), and various GMM estimators 
(McMillan 1992) populate the S-Probit literature. 

10 We view the Bayesian-versus-frequentist aspect as more a practical than a philosophical issue, although 
sustaining both Bayesian and frequentist tools seems wisely prudent to us. Our aims depart more importantly 
from the literature in the other regards. 

11 Griffith & Haining (2006) give excellent summary of the history and recent developments in S-Poisson. 
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distributions to be expressed as products of their conditional distributions. That is, the key 

assumption is conditional independence; auto-models are conditional autoregressive (CAR), 

in other words, and, like all such, the required assumptions can be restrictive. They usually 

require symmetric spatial-interdependence structures (Anselin 2006), for starters. This may 

not be so constraining in many geographical contexts, since distance is symmetric, but it is 

manifestly implausible in many social-science applications: Belgium and the US affect each 

other equally, for instance? CAR models also usually require exclusively non-negative inter-

dependence, although auto-Poisson requires non-positive (Besag 1974). Considering, e.g., 

Brueckner’s (2003) demonstration that negative and positive externalities imply the former 

and the latter respectively, and that both positive and negative externalities occur 

commonly, either can obviously be highly confining. 

Recent advances to redress the strictly non-positive interdependence limitation include 

Kaiser and Cressie’s (1997) suggestion of Winsorizing counts (restricting them to finite sets 

of integers), which affords limited positive interdependence within an auto-Poisson CAR 

framework. The Winsorized model, however, retains the computationally intensity and the 

problematic symmetry restriction of the auto-Poisson CAR (Griffith 2003). Griffith (2002, 

2003) proposes a spatial-filtering approach to simultaneous autoregressive (SAR) Poisson in 

which each unit’s mean is a function of the respective element of the eigenvector of the 

inverse spatial-covariance matrix. This seems promising, although eigenvector calculation 

heightens estimation demands, and this is especially so for the counterfactual effect-

estimates with certainty-estimates that we seek. Moreover, by design, spatial filtering tends 

to deter or debar attempts to distinguish the alternative sources of spatial association. 

“Spatial filtering seeks to transform a variable containing spatial dependence into one free 

of it by partitioning the original georeferenced attribute variable into two synthetic 

variates: a spatial filter variate capturing latent spatial dependency that otherwise would 

remain in the response residuals and a nonspatial variate that is free of spatial dependence” 

(Griffith 2006: 166). The approach also assumes spatial association to arise from spatial 

heterogeneity or spatial-error processes. Thus, problematically from the perspective of our 

aims, spatial-filtering and CAR approaches generally tend 1) to treat spatial dependence as 

nuisance, 2) to stress spatial-error or spatial-heterogeneity models as opposed to spatial-lag 

models, and 3) to treat all observed spatial association as arising by one undifferentiated 

source, characteristically dependence in spatial econometrics, common shocks or, more 



Page 8 of 27 

generally, spatial heterogeneity, in spatial statistics, and selection in network analysis. The 

available estimators were simply not designed to address our aims, neither to distinguish 

alternative mechanisms by which spatial association arises nor to answer the counterfactual 

questions of our interest. Given that and their computational intensity, we propose instead 

a simpler pair of estimation strategies, Nonlinear Least-Squares (NLLS) and Method-of-

Moments (MoM), for S-Count models—S-Poisson to start, with extensions to alternative 

count models to follow in later work—that are so-designed. Comparison of these simpler 

modeling and estimation strategies to the Winsorizing and spatial-filter strategies are also 

slated for future work; for now, Section IV offers comparison to the even simpler strategies 

of common current practice, ignoring and omitting interdependence or including spatial lags 

of observed counts in standard count models and so treating them as exogenous. 

III. PROPOSED ESTIMATORS: Nonlinear Least-Squares (NLLS) and Generalized Method-of-

Moments (GMM) 

The starting point for empirical count models is the Poisson regression model, wherein 

realizations of the dependent variable, yi=0,1,2,…, are observed counts of events taken to 

follow a Poisson distribution with probabilities: 

 ( ) ( )Pr( ) !   , with {0,1,2,..., }i iy

i i i i i
Y y e y y−= = ∈ ∞λ λ  (1), 

where λi is the instantaneous rate at which the event occurs. A typical regression model 

parameterizes λ, which is also the conditional mean of y, as log-linear function of X: 

ln(λ)=Xβ, with X an n×k matrix of explanators and β a k×1 vector of coefficients, like so: 

 
( ) ( )

( ) ( )
Pr( | ) ( | ) ! ,

with | exp

i iy

i i i i i i i

i i i i

Y y f y e y

E y

−= ≡ =
′= =

x x

x x

λ λ
λ β

 (2). 

The log-linearization guarantees λi>0  ∀ xi and β. The standard approach is to estimate the 

model in (2) via maximum likelihood, with the log-likelihood implied by (1)-(2) being: 

 ( ) ( ){ }ln ln !
i i i i

i
L y y′= − + −∑y xλ β  (3). 

We are interested in more general models, and especially ones which allow the rates of 

event-occurrence to be dependent across observations. Since the Poisson distribution cannot 

easily accommodate this, our strategy is to abandon the explicitly Poisson form of (1) and 

the first line of (2), but retain the conditional-mean specification in the second line of (2). 

That conditional-mean equation implicitly defines a regression model like this: 
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 exp( )
i i i i i

y u u′= + = +xλ β  (4), 

where the usual sort of exogenous-regressors condition, E(ui|xi)=0, assures unbiasedness. 

Disturbances in count data are inherently heteroschedastic because variances at high counts 

will exceed that at low. For one, counts are bounded below at, and so variation is truncated 

near, zero. I.e., typically, the mean and variance of count distributions are related. In the 

Poisson model, they are equal; the Binomial has mean np and variance np(1-p); etc.   

We begin exploration of interdependent counts applying a model with additive errors:12 

 
( ) ( )
( ) ( )

1

1

, where | exp

ln ln ln

E I

I

−

−

⎡ ⎤
= + ≡ = − ⇔⎢ ⎥⎣ ⎦

= − ⇔ = +

y u y X W X

W X W X

λ λ β

λ β λ λ β

ρ

ρ ρ
 (5). 

y is an n×1 vector of observed counts; λ is the n×1 vector of their conditional means; u is an 

n×1 vector of additively separated stochastic-error terms, assumed independently, although 

heteroskedastically, distributed; W is an n×n spatial-weights or connectivity matrix with 

element {i,j} reflecting the relative connectivity of unit j to i, and ρ the strength of inter-

dependence by that pattern given in W. The alternative expressions of the model in the 

second line of (5) help clarify its structure as a spatial log-linear regression, which naturally 

motivates the non-linear least-squares (NLLS) estimator to be introduced next. It also helps 

clarify why, as discussed in the next section, the better proxy for spatially lagged λ in a 

naïve (linear) least-squares estimator is the spatial lag of logged observed counts, rather 

than the currently common practice of spatially lagged observed counts. 

We consider two estimators. First, define a parameter vector θ≡[β ρ]. The non-linear 

least-squares (NLLS) estimator for θ simply minimizes the sum of squared errors u'u: 

 ( ) ( )1 1

Min  I Ie e
− −

− −
′⎡ ⎤ ⎡ ⎤′⎡ ⎤ ⎡ ⎤′ = − − = − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

W X W Xu u y y y yβ β

θ
λ λ ρ ρ  (6). 

The least squares estimator is, as always: 

 

1

1

( | ) ( | ) ( | )ˆ
NLLS

E E E
−

−

⎡ ⎤′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥∂ ∂ ∂⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎢ ⎥= ⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥∂ ∂ ∂⎣ ⎦
⎡ ⎤′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥∂ ∂ ∂⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎢ ⎥= ⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥∂ ∂ ∂⎣ ⎦

y X y X y X
y

y

� � �

� � �

θ
θ θ θ

λ λ λ
θ θ θ

 (7). 

                                                 
12 The S-Count literature contains much discussion and debate regarding the appropriateness of additive or 
multiplicative error-forms. We prefer to start in the simpler additive form but extension to the multiplicative 
form, which will introduce some S-QualDep complications the additive form avoids, will be very important. 
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In the linear-regression case, E(y|X)=Xβ, so the gradient with respect to β is just X, 

making the last line of (7) the very familiar (X'X)-1X'y. In the nonlinear case, this last line 

involves θ on both sides and cannot be reduced for closed-form solution for ˆ
NLLS

θ . Numeric 

optimization of (6) or calculation of (7) is quite possible though. 

The variance-covariance matrix of ˆ
NLLS

θ also follows the standard least-squares form: 

  ( )
1 1

ˆ , where ( )ˆ ˆ ˆ ˆ ˆ ˆNLLS
Var Var

− −⎡ ⎤ ⎡ ⎤′ ′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎢ ⎥ ⎢ ⎥= =⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
u

λ λ λ λ λ λθ Ω Ω
θ θ θ θ θ θ

 (8). 

In the homoskedastic and independent Ω=σ2I case, we could pull the scalar σ2 out of the 

middle and this would reduce to an even more familiar σ2(X'X)-1–like form. As already 

noted, count data will be heteroskedastic, so Ω diagonal with diagonal elements 2
i

σ is more 

appropriate. Paralleling what is true for linear least-squares, NLLS would be BUE for this 

model with homoskedasticty; with the surely heteroskedastic structure, it is unbiased but 

inefficient, with estimated variance-covariances consistent but neither efficient nor generally 

unbiased. A generalized (weighted) NLLS estimator would be BUE if we knew Ω: 

 

1

1 1ˆ , where ( )
GNLLS

Var

−

− −

⎡ ⎤′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥∂ ∂ ∂⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎢ ⎥= ≡⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥∂ ∂ ∂⎣ ⎦
y u

λ λ λθ Ω Ω Ω
θ θ θ� � �  (9). 

 ( )
1

1ˆ
ˆ ˆGNLLS

V

−

−

⎡ ⎤′⎛ ⎞ ⎛ ⎞⎢ ⎥∂ ∂⎟ ⎟⎜ ⎜⎟ ⎟⎢ ⎥= ⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥∂ ∂⎣ ⎦

λ λθ Ω
θ θ

 (10). 

As usual, if we do not know, but can consistently estimate (NLLS would do), the feasible 

generalized (weighted) NLLS estimator would be asymptotically BUE:13 

 n
1

1 1ˆ ˆ ˆ ˆ ˆ, where var( )
FGNLLS

−

− −

⎡ ⎤′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥∂ ∂ ∂⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎢ ⎥= ≡⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥∂ ∂ ∂⎣ ⎦
y u

λ λ λθ Ω Ω Ω
θ θ θ� � �  (11). 

 n ( )
1

1ˆ ˆvar ˆ ˆFGNLLS

−

−

⎡ ⎤′⎛ ⎞ ⎛ ⎞⎢ ⎥∂ ∂⎟ ⎟⎜ ⎜⎟ ⎟⎢ ⎥= ⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥∂ ∂⎣ ⎦

λ λθ Ω
θ θ

 (12). 

The gradients of λ=E(y|X) with respect to the parameters, θ, used in the NLLS estimator 

defined in (7) and (12), are given by horizontal concatenation of these gradients: 

 { }1 1vec vec ( ) ( )
k k k

k

ρ ρ− −
⎧ ⎫⎪ ⎪∂ ∂⎪ ⎪ ⎡ ⎤ ⎡ ⎤= = − = −⎨ ⎬ ⎣ ⎦⎢ ⎥⎣ ⎦⎪ ⎪∂ ∂⎪ ⎪⎩ ⎭

I W x I W X: :λ λ λ λ
β β

 (13), 

                                                 
13 In this version, unfortunately, we erroneously mix NLLS coefficient estimator, (7), and FGNLLS variance-
covariance estimator, (12), in the Monte Carlos. Thus, our coefficient estimates are consistent but inefficient 
and our standard errors inaccurate (apparently from the results, not too badly so and not asymptotically). 
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 1 1( ) ( )ρ ρ
ρ

− −∂ ⎡ ⎤= − −⎢ ⎥⎣ ⎦∂
I W W I W X:λ λ β  (14), 

where the : between λ and the bracketed vectors in (13) and (14) indicates element-by-

element (i.e., Hadamard) multiplication, with the Hadamard product operating on each of 

the k columns in the (n×1):(n×k) expression ending (13). The matrix-functions veck{ak} 

and diag{b} are, respectively, the n×k horizontal concatenation of the k n×1 vectors ak and 

the k×k diagonal matrix formed with the k×1 vector b on the diagonal and zeros elsewhere. 

Horizontal concatenation of the n×k matrix in (13) and the n×1 vector in (14) then yields 

the aforementioned n×(k+1) matrix of gradients: 

 { } { }1 1 1( )       ( ) ( )ˆ ρ ρ ρ− − −∂ ⎡ ⎤= − − −⎢ ⎥⎣ ⎦∂
I W X I W W I W X: :λ λ λ β

θ
 (15). 

A closely related, nearly as simple generalized methods-of-moments GMM estimator is: 

 ( , , ) , where [ ]
i i i i i i

E y ⎡ ⎤⎡ ⎤ = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦g z 0 z x WXθ  (16), 

with gi an r×1 vector (of moment conditions). The vector zi contains exogenous variables, 

including spatial instruments. When r=k, where k is the number of parameters to estimate, 

then the population moment/orthogonality conditions are 

 
1

( , , )
n

i i i
i

y
=

=∑g z 0θ  (17). 

More specifically, we exploit the orthogonality of the variables in z are with u to derive the 

sample conditions: 

 ( )1

1

exp ( )
n

i ii
i

y ρ −

=

⎡ ⎤− − =⎢ ⎥⎣ ⎦∑ I W X z 0β  (18). 

In this “just-identified” case when r=k, a unique solution to (18) exists, yielding the GMM 

estimator ˆ
GMM

θ , which is asymptotically normally distributed and root-n consistent for θ: 

 ( )ˆ ,d
GMM

n ⎡ ⎤− ⎯⎯→ ⎢ ⎥⎣ ⎦N 0 Vθ θ  (19). 

A robust sandwich estimator for the variance-covariance matrix V in (19) is then: 

  n ( ) ( ) 1
1ˆ ˆˆ ˆvar  

GMM

−
− ′= A B Aθ  (20), 

 
1 ˆ

( , , )1ˆwhere  ˆ
GMM

n
i i i

i

y

n =

∂
=

′∂∑
g z

A
θ

θ
θ

 (21), 

 { }
1

1ˆ ˆ ˆand  ( , , ) ( , , )
n

i i i GMM i i i GMM
i

y y
n =

′⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∑B g z g zθ θ  (22). 

Note that the standard error for ˆ
i
θ  is calculated as ˆ

ii
nV . 
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This moment estimator in the r=k case corresponds to the just-identified case of indirect 

least-squares in the linear-regression context. When r>k, the parameters are overidentified. 

A unique solution is obtained by minimizing the quadratic form: 

 ˆ Argmin ( , , ) ( , , )
GMM i i i i i i

y y′⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦g z Q g z�
� �

θθ θ θ  (23), 

where Q is an r×r symmetric positive-definite matrix of weights that tune the minimization. 

Note for intuition-building analogy that, if Q is the identity, the minimized quadratic sum 

is unweighted, so the estimator corresponds to two-stage least-squares (2SLS) in the linear-

regression context. With Q equal the (estimated) inverse of the variance-covariance matrix 

for y|X, the estimator corresponds to the linear-regression GMM, which is just a weighted 

2SLS. Indeed, the analogy FGLS is to OLS as GMM is to 2SLS helps build much useful 

intuition. The variance-covariance estimate for this overidentified case is 

 ( ) ( ) ( )( )
1 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆvar

GMM

− −
= AQA AQBQA AQAθ  (24) 

Optimal GMM uses the weights matrix Q that maximizes the estimator’s efficiency. This is 

done in two steps. Typically, in the first step, Q is set to I, and θ is estimated using (23), 

i.e., by the equivalent of 2SLS, and B is estimated using (22). The optimal GMM estimates 

for θ then minimizes: 

 1ˆ ˆArgmin ( , , ) ( , , )opt
GMM i i i i i i

y y−′⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦g z B g zθθ θ θ�
� �  (25). 

Restating all this by analogy may aid the intuition. The first stage is estimated consistently 

by unweighted instrumentation to provide a consistent estimate of the variance-covariance 

of y|X. Weighting by the inverse of that consistently estimated variance-covariance matrix 

then yields asymptotically efficient estimates of the parameters. The variance-covariance 

estimates for these estimated parameters, finally, are given by: 

 n ( ) ( ) 1
1ˆ ˆˆ ˆˆ varopt opt

GMM GMM

−
−′= = A B AΣ θ  (26). 

IV. COMPARING ESTIMATORS: Monte Carlo Analyses of Naïve and Consistent Estimators  

We explore the small-sample properties of the two consistent estimators described above 

(NLLS and GMM) as well as the two naïve estimators of current common practice. We call 

these two estimators of current common practice, i.e., the one omitting spatial dependence 

altogether and the one that includes spatial lags but assumes them exogenous, the non-

spatial (NS) and the spatially-lagged observed-counts (SLOC) estimators, respectively. The 
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former is just a standard maximum-likelihood estimation of a Poisson count-regression 

model; the latter also applies standard maximum-likelihood estimation of a Poisson count-

regression model, but including spatially weighted averages of observed counts among the 

regressors, i.e., in the conditional mean specification. We evaluate two versions of the SLOC 

estimator. One uses Wy for this spatial lag, the other uses W(ln(y+1)). The former is what 

extant literature typically applies, but the latter as easily implements something closer to 

the log-linear specification of the model’s conditional mean, E(y|X), and so should perform 

better as imperfect but expedient alternative to consistent alternatives, our NLLS or GMM 

or the spatial-filtering or Winsorized alternatives suggested elsewhere. 

Our data-generating process (DGP) is the S-Poisson model described above. For W, we 

use a row-standardized binary-contiguity matrix for the 48 contiguous U.S. states. We set β 

to 0.6, and consider both moderate (Table X) and high spatial interdependence (Table X), 

ρ=0.3 and ρ=0.5 respectively, for a smaller and a larger sample-size, n={96,240}. To create 

the 96×96 and 240×240 W’s we Kronecker product the original 48×48 W with 2×2 and 5×5 

identity matrices, I2 and I5. This could reflect, for example, multiple observations (2 or 5) of 

event counts in a panel (though an oddly temporally independent one) of the 48 states. 

The NS estimator will of course suffer omitted-variable bias. In typical omitted-variable 

fashion, the estimated direct effect of xi on the conditional mean of yi will include indirect 

effects from spatial feedback. With reinforcing (e.g., all-positive) interdependence this will 

imply an inflationary bias in ˆ
NS

β , as we have shown before in other model-contexts (e.g., 

Franzese & Hays 2007c, 2008b). The estimators employing SLOC are biased too; however, 

in this DGP, unlike in the spatial-lag models we have considered previously (e.g., Franzese 

& Hays 2004a, 2006b, 2007cd, 2008ab), the spatially lagged observed counts do not covary 

with the residuals. They are exogenous, so these estimates do not, as they did before, suffer 

simultaneity biases, which are typically (i.e., in the reinforcing feedback case) inflationary. 

Rather, these estimators suffer measurement-error-induced attenuation-bias. Simply: as seen 

most clearly from the conditional-mean specification in second line of (2), interdependence 

in this model is in the conditional mean, not in the actual counts, and Wy is poor proxy for 

W[E(y|X)], i.e., for W[ln(λ)].We propose that spatial lag W[ln(y+1)] provides better proxy. 

We will call the SLOC estimator using Wy, SLOC1, and that using W[ln(y+1)], SLOC2. 
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Table 1: Estimator Comparison for S-Poisson Model, Moderate Interdependence 

Monte Carlo Results (500 Trials) for y=λ+u, where λ=exp[(I-ρW)-1βx], 

with β=.6, ρ=.3, and n={96,240} 

Parameter Result NS SLOC1 SLOC2 NLLS GMM 

  n=96 / 240 n=96 / 240 n=96 / 240 n=96 / 240 n=96 / 240 

mean .794 / .794 .664 / .666 .615 / .613 .597 / .600 .596 / .599 

s.d. .016 / .010 .044 / .026 .052 / .032 .056 / .034 .054 / .032 

rmse .194 / .194 .078 / .071 .054 / .035 .056 / .034 .054 / .032 

mean s.e. .016 / .010 .038 / .024 .047 / .030 .052 / .033 .052 / .033 

β=.6 

overconfidence .990 / .935 1.157 / 1.081 1.101 / 1.109 1.077 / 1.025 1.035 / .965 

mean n/a .054 / .054 .260 / .263 .302 / .299 .304 / .300 

s.d. n/a .016 / .010 .066 / .042 .075 / .046 .072 / .044 

rmse n/a .246 / .246 .077 / .056 .075 / .046 .072 / .044 

mean s.e. n/a .014 / .009 .063 / .039 .069 / .044 .068 / .043 

 

ρ=.3 

overconfidence n/a 1.136 / 1.080 1.051 / 1.065 1.087 / 1.054 1.059 / 1.009 

Table 1 reports the results of 500 trials using the five estimators (NS, SLOC1, SLOC2, 

NLLS, GMM) for the moderate interdependence (ρ=.3) case. The NS estimator exhibits an 

upward bias as expected, approximately 30% of the true value. It gives all of the effect 

i i
x∂ ∂λ , both direct and indirect, to β. The SLOC1 estimator also overestimates β, though 

by less than the non-spatial estimator. It divides the total effect between β and ρ, but 

because of the measurement error (and misspecification), it gives too much to β and too 

little to ρ. Alternatively, we could say the measurement error (cum misspecification) causes 

underestimation of ρ, which induces overestimation of β. The magnitudes of these biases are 

huge and appreciable, respectively: about -.25 or -80% for 
1ŜLOC

ρ  and +.065 or +11% for 

1

ˆ
SLOC

β . The implied post-feedback total effects, which may be proxied by ( )ˆ ˆ1−β ρ ,14 are 

poorly estimated too: about .70 versus a correctly approximate .85. The standard-error 

estimates are also, unsurprisingly, overconfident. Specifically, standard deviations of the 

sampling distributions for 
1

ˆ
SLOC

β  and 
1ŜLOC

ρ  are respectively 15.7% and 13.6% larger than 

the average of the estimated standard errors in the small sample and 8.1% and 8.0% larger 

respectively in the larger sample. The SLOC2 estimator that uses observed log counts does 

                                                 
14 Properly, these will depend on W also, but the proxy serves well enough for qualitative comparison. 
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much better. In the case of ρ, the parameter which SLOC1 estimates especially poorly, the 

bias drops to about -.04 or -13.3% and the root-mean-squared-errors drop from .246 for 

SLOC1 to .077 for SLOC2 in the smaller sample and from .246 to .056 in the larger. The 

post-feedback total effects are much better estimated also: at about .83 in either sample. 

The standard errors from the SLOC2 estimator are more accurate too: overconfidence 

ranging from 5% to 11% across parameters and sample sizes. Meanwhile, the consistent 

estimators perform a bit better still. Even in the smaller sample, both parameter estimates 

are essentially unbiased: a worst case of about -1.3% for GMM. GMM, conversely, performs 

ever-so-slightly better in RMSE terms. The approximate total-effect estimates are spot on 

the approximately .85 truth in all cases. Standard-error estimates are reasonably accurate 

for both as well, although overconfidence does range from -3.5% to a noticeable +8.7%. 

Table 2: Estimator Comparison for S-Poisson Model, Strong Interdependence 

Monte Carlo Results (500 Trials) for y=λ+u, where λ=exp[(I-ρW)-1βx], 

with β=.6, ρ=.5, and n={96,240} 

NS SLOC1 SLOC2 NLLS GMM 
Parameter Result 

n=96 / 240 n=96 / 240 n=96 / 240 n=96 / 240 n=96 / 240 

mean 1.052 / 1.053 .762 / .764 .610 / .611 .598 / .598 .598 / .599 

s.d. .011 / .007 .036 / .023 .041 / .027 .042 / .027 .043 / .028 

rmse .453 / .453 .166 / .166 .042 / .029 .042 / .027 .043 / .029 

mean s.e. .011 / .007 .029 / .018 .036 / .022 .041 / .026 .041 / .027 

β=.6 

overconfidence .970 / .963 1.262 / 1.301 1.154 / 1.205 1.035 / 1.06 1.028 / 1.03 

mean n/a .059 / .059 .478 / .477 .501 / .501 .501 / .501 

s.d. n/a .006 / .004 .037 / .024 .038 / .025 .039 / .025 

rmse n/a .441 / .441 .043 / .033 .038 / .025 .039 / .025 

mean s.e. n/a .005 / .003 .035 / .022 .037 / .023 .036 / .024 

 

ρ=.5 

overconfidence n/a 1.2455 / 1.288 1.051 / 1.095 1.03 / 1.057 1.059 / 1.056 

Table 2 reports the Monte Carlo results for the strong-interdependence (ρ=.5) case. The 

same patterns as found under moderate interdependence are mostly repeated, although the 

performances of the NS and SLOC estimators both deteriorate, as seen by notable increases 

in their root-mean-squared-errors. The SLOC2 estimator continues to overestimate β and 

underestimate ρ, but the inaccuracies remain small (about +1.75% and -4.5%, respectively) 

and even smaller for the implied approximate total effects (1.1684 versus 1.2, or -.0316 or 
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-2.6%). In fact, the SLOC2 estimator’s performance improves as interdependence-strength 

increases. This is because the measurement error for ln(y+1) versus ln (λ) declines with the 

strength of interdependence, given our particular DGP: with positive ρ and y, we expect 

fewer observed zeros on average in the generated data as the λi will be larger. The NLLS 

and GMM estimators continue to perform best, with NLLS now slightly outperforming 

GMM under the stronger interdependence, although the differences remain small. 

The improvements of NLLS and GMM over SLOC2, though, are not dramatic in either 

the moderate- or the strong-interdependence case and, in fact, the advantages of the former 

seem may decline with the strength of interdependence. However, we strongly suspect that 

the consideration of multiplicative-error formulations of S-Count models (see note 12) to 

come in future work will show that formulation magnifies these advantages of the simple 

consistent estimators NLLS and GMM over the even simpler naïve expedient SLOC2 

because in the multiplicative formulation, unlike in the additive one, the SLOC estimators 

would also suffer simultaneity biases. That remains conjecture for now, however. 

V. EMPIRICAL APPLICATION: Counts of Terrorist Events around the World 

For an empirical application, we use data from Plümper & Neumayer (2008), which in 

turn derive from the Mickolus et al. (2003) ITERATE dataset, to assemble counts of post-

9/11 terrorist events in 162 countries of the world.15 We created a strict territorial-

contiguity weights-matrix for these countries using the Correlates of War dataset (COW: 

Stinnet et al. 2002). There are 26 isolates among these 162 countries, and we have data on 

all the covariates for 139 of them. To begin, we calculate Moran’s I, both local and global 

versions, to consider the evidence of generic clustering (spatial clustering along contiguity 

lines). In the 162-country sample, we find I=0.096. In this size sample, with this W, global 

Moran’s I has an expected value and standard deviation under the null of independence of -

0.006 and 0.035, respectively. Using the asymptotic-normal approximation, the resulting “t-

statistic” of 2.924 would have two-tailed significance of 0.003. I.e., we very easily reject the 

null of no spatial association along contiguity lines. The local Moran’s I’s reveal that these 

results are mainly driven by relations among event-counts within the Middle East and in 

other familiar hot-spots. Countries with significantly positive local association, Ii, (at the 

                                                 
15 Important recent studies on the theoretical and empirical determinants of terrorist events include Blomberg 
et al. 2004; Braithwaite & Li 2007; Bird, Blomberg, & Hess 2008; Neumayer & Plümper 2008. 
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.05 level by a normal-approximation analogous to that for global I), indicating pockets of 

positively correlated event-counts in the local neighborhood (hot-or cold-spots near other 

hot- or cold-spots), are Afghanistan, Jordan, Kuwait, Pakistan, Saudi Arabia, and Turkey. 

Only Syria has significantly negative local association, Ii, although others on the negative 

side, indicating cold- near hot-spots or hot- near cold-spots, include countries in Western 

Europe and North Africa, Canada and the U.S., and Russia and the Baltics, for instance. 

Iraq, Afghanistan, and Pakistan suffered the largest numbers of events, with 203, 42, and 

39 respectively. Slightly more than half the sample, 85 countries, experienced no incidents. 

Substantively, our core interest is whether terrorist activity exhibits a geographically-

based interdependence around the world. Do exogenous increases in the expected number of 

terrorist events in one country affect the expected number of such events in its neighbors, 

for instance? Evidence of spatial clustering alone does not answer this question. Important 

political, social, and economic determinants of terrorism—e.g., regime-type and economic 

development—cluster spatially, so neighbors are exposed to correlated stimuli that could 

explain the geographical patterns that we just noted. To understand better the role 

geography plays in terrorist activity, and in particular to evaluate whether terrorist events 

truly exhibit spatial interdependence and not merely association, we must specify a spatial-

lag count-model of terrorist events that addresses Galton’s Problem, i.e., that controls well 

for these alternative common-exposure explanations of event counts. Nearly all previous 

studies recognize some role for geography, but few use models that appropriately specify 

these alternatives with spatial lags and controls for possibly clustered exogenous internal 

and external conditions, and even fewer use estimators appropriate for such specifications. 

Our empirical models include six explanatory variables derived from theory. In one 

strong contending theory, Blomberg et al. (2004) argue that terrorism stems from feelings 

of deprivation or relative deprivation and a desire to alter the status quo combined with the 

absence of democratic mechanisms to promote change. By this logic, terrorists will target 

elites within poor non-democratic countries or wealthy nations abroad. Accordingly, we 

include several economic variables—real GDP per capita, trade openness, and growth in 

real GDP per capita—to capture these propositions,16 with all three variables taken from 

the Penn World Table (PWT: Heston et al. 2006), and the country’s democracy score from 

                                                 
16 In future refinements, we should interact the (relative-)deprivation measures with the democracy score to 
reflect better the conditional proposition of Blomberg et al.’s (2004) argument. 
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Polity IV (Marshall et al. 2008). To these four, we add a dummy variable, labeled Conflict, 

indicating whether the country has been involved in either an interstate or civil conflict this 

decade. Conflict data for post-9/11 era are not yet available in COW and so are taken from 

Lee (2009). We also control country size by including the country’s population (PWT). 

Finally, we move in our empirical application to a negative-binomial model-specification 

for the likelihood-based estimators, NS, SLOC1, and SLOC2, because preliminary estimates 

of Poisson specifications overwhelmingly indicated overdispersion (positive dependence of 

events within the counts). The negative-binomial distribution relaxes the equality of mean 

and variance cum zero-dependence of events within counts implied by the Poisson. The S-

GMM and S-NLLS estimators, on the other hand, make no specific assumptions about the 

probability-functional form for the count process. Their assumptions include only a specific 

conditional-mean function and the non-covariance of that function with the stochastic term. 

Unlike Poisson models, then, S-GMM and S-NLLS do not impose equality of the mean and 

variance of the underlying process. Accordingly, we label the models estimated by S-GMM 

and S-NLLS in Table 3 generically Spatial Count rather than Negative Binomial models. 

The last four columns of Table 3 reports four sets of model-estimates, one each for the 

non-spatial model and NS estimator, the naïve-spatial SLOC1 (spatially lagged observed-

count) model and estimator, the naïve-spatial SLOC2 (spatially lagged log observed-count-

plus-one) model and estimator, and the spatial-lag model and S-GMM estimator.17 

                                                 
17 We have not yet programmed the S-NLLS estimator, although it will not be difficult and we have no reason 
to expect its estimates to differ appreciably from those of the S-GMM estimator. 
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Table 3: Spatial Count Models of Terrorist Incidents (Post-9/11) 

 
Non-Spatial 

Model 
Naïve-Spatial 

Model 1 
Naïve-Spatial 

Model 2 
Spatial 
Model 

Population 
2.110 

(3.046) 

2.550 

(2.922) 

3.042 

(3.029) 

-.230 

(.938) 

Real GDP per capita 
.052** 

(.023) 

.044** 

(.022) 

.026 

(.022) 

.021** 

(.010) 

Trade Openness 
-.281 

(.361) 

-.277 

(.329) 

-.435 

(.330) 

-.396 

(.276) 

Growth in Real GDP 

per capita 

-.001 

(.023) 

.005 

(.021) 

.013 

(.022) 

-.029 

(.057) 

Democracy Score 
-.067 

(.054) 

-.023 

(.054) 

-.019 

(.052) 

-.016 

(.061) 

Conflict 
1.967*** 

(.514) 

2.072*** 

(.492) 

1.551*** 

(.491) 

1.220** 

(.567) 

Spatial Lag  
.054** 

(.022) 

.786** 

(.234) 

.893** 

(.440) 

Observations 139 139 139 139 

Model Negative Binomial Negative Binomial Negative Binomial Spatial Count 

Estimator NS SLOC1 SLOC2 S-GMM 

Log-Likelihood -282.186 -277.510 -276.434 n/a 

Notes: Standard errors in parentheses. The spatial lags are generated with a row-normalized binary-contiguity 
weighting matrix, using shared territorial borders as the criterion. ***, **, * significant at 1%, 5%, 10%. 

Across the models and estimators, we find the key internal explanatory factors to be a 

country’s real GDP per capita and its participation in an interstate or civil conflict. The 

spatial model-estimates all also indicate significant positive interdependence, now better 

distinguished from mere association insofar as the rest of those models sufficiently control 

exogenous internal and external conditions that may correlate spatially. Comparing the 

model-estimates, we notice first that, as we would expect given the results of our Monte 

Carlo simulations, the non-spatial model-estimates accord generally greater direct role to 

the internal explanatory factors, as seen in the generally higher absolute-value coefficients, 

than do the properly spatial model-estimates. Next, we note that, again as our simulations 

would lead us to expect, the naïve-spatial SLOC1 (spatially lagged observed-count) model 

and estimator suggests dramatically weaker interdependence in terrorist event-counts than 

either the better-proxied naïve-spatial SLOC2 (spatially lagged log observed-count-plus-one) 
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model and estimator or the better-specified and S-GMM consistently estimated spatial-lag 

model. The much smaller and very likely underestimated of interdependence relative to the 

latter two model-estimates induces, in turn, generally larger and very likely overestimation 

of the roles of the non-spatial regressors’ roles. Indeed, the role of conflict seems perhaps 

marginally greater by the SLOC1 model-estimates than it would seem from the non-spatial 

model-estimates. With the better-proxied naïve-spatial SLOC2 model-estimates, however, 

we see greater log-likelihood, much greater positive interdependence, and generally smaller 

direct role for domestic conditions, especially for economic development and conflict, which 

have emerged as the two key factors. Indeed, economic development is not statistically 

significant at conventional levels by these model-estimates. Finally, and once more as our 

simulations would lead us to expect, the better-specified and consistent S-GMM model-

estimates suggest stronger still interdependence in terrorist event-counts, and lesser still 

direct roles for domestic factors, especially conflict again. 

Intriguingly, and in these regards not well foreshadowed by our simulations, S-GMM 

seems to offer notable efficiency gains over, or at least to allocate its coefficient-estimation 

efficiency across regressors quite differently (and, at least in this case, more fortuitously) 

than, the well-proxied SLOC2 model-estimates. In particular, the coefficients on population, 

real GDP per capita, and trade openness are smaller but also much more precisely 

estimated. Population, for which the other model-estimates had reported sizable but highly 

imprecise coefficient estimates, is now seen with much greater precision to have much 

smaller coefficient. The estimated direct role of real GDP per capita, though smaller still 

than that from the SLOC2 model-estimates, is much more precisely estimated and once 

again comfortably significant. Likewise, the direct role of trade openness is a bit smaller by 

these estimates than those of SLOC2, though larger than those of NS or SLOC1, but it 

approaches significance in the S-GMM model-estimates only. On the other hand, standard 

errors for growth, democracy, conflict, and the spatial lag are a bit larger by the S-GMM 

than by the other model-estimates, although the last two retain quite comfortable 

significance, with larger spatial-lag and smaller conflict coefficient as already noted. 

As we have emphasized previously, interpretation of effects in spatially dynamic models, 

as in any model beyond the strictly linear-additive, cannot stop with noticing coefficient 

point-estimates. Effects, always and everywhere, are derivatives or differences such as 

( ) /E y x∂ ∂  or ( ) /E y xΔ Δ . In spatial contexts, in fact, we will generally have interest in 
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vectors of derivatives, or gradients, (a) ( )|
ix
E∇ y X  or (b) ( )|

i
E∇ y Xε , or even matrices of 

derivatives, (c) ( )|E∇x y X  or (d) ( )|E∇ y Xε .18 In order, these expressions indicate (a) the 

estimated responses across the set of n units (including i) to a marginal change in regressor 

x in unit i, (b) the estimated responses across the set of n units to a marginal change in the 

expected outcome (in this case, event-count) in unit i, (c) the set of estimated responses 

across all n units to some set of marginal changes in regressor x in some set of units j, row-

by-row, and (d) the set of estimated responses across all n units to some set of marginal 

changes in the expected outcome in some set of units j, row-by-row.19,20 For instance, we 

may be interested in how some subset or the entire set of countries would respond to some 

hypothetical shock to the wealth of some country, some subset of countries, or all countries. 

Table 4 illustrates with an example of the estimated effects on expected terrorist event-

counts in selected countries of a hypothetical conflict in Iran. 

Table 4: Estimated Responses in Expected Terrorist Event Counts across Selected 
Countries from a Hypothetical Conflict in Iran 

 25th Percentile 50th Percentile 75th Percentile 

Iran, Islamic Rep. 4.89 6.55 8.7 

Iraq 1.77 5.75 18.02 

Pakistan 1.29 2.47 4.06 

Kuwait 0.21 0.91 5.03 

Syrian Arab Republic 0.25 0.89 4.15 

Israel 0.05 0.44 4.36 

Bangladesh 0.05 0.42 3.19 

Afghanistan 0.14 0.39 1.29 

Nepal 0.07 0.35 1.58 

Azerbaijan 0.19 0.33 0.58 

To calculate these spatially distributed responses to hypothetical shocks of substantive 

interest, note first that S-GMM estimates are consistent and asymptotically normal. Thus, 

                                                 
18 We may sometimes wish instead or additionally some scalar summary of these estimated vectors or matrices 
of responses. LeSage & Pace (2009) offer some good suggestions for such scalar summary effect-measures. 

19 We have noted elsewhere how it is convenient, in thinking about the responses across units i to hypothetical 
shocks to the outcome in units j, to conceive of ε as having a stochastic part and fixed component that can be 
shocked thusly. With additively separated ε, as in our specification in this draft, effects (b) and (d) are zero. 

20 In the spatiotemporal context, moreover, we would have interest in these sorts of effects in the short run, in 
the long run, and dynamically between, as explained in our previous work. 
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we can use the estimated parameters and their estimated variance-covariance matrix to 

draw from the asymptotic sampling distribution, a multivariate-normal with these means 

and variance-covariance, to bootstrap confidence intervals for the effects of covariates on 

terrorist event counts. The effect we want to calculate is the expected (or estimated) 

response across all n countries of a hypothetical shift (from zero to one) in one country’s, 

i’s, Iran’s, value for one variable, xi,k, Iran’s conflict indicator: 
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 (27), 

where mi is the ith column of the spatial multiplier, M≡(I-ρW)-1, and : again is Hadamard 

or element-by-element multiplication (see, e.g., Anselin 2003, and Franzese & Hays 2006a, 

2008b, for more on spatial multipliers). The expression in (27) is an n×1 vector of estimated 

responses across all units to this hypothetical shock. Notice that, since the first term in this 

product involves x-values for all observations, i.e., all of X, in the term (I-ρW)-1Xβ, the 

effect of a change in some xi,k, i.e., in some x in some unit, depends on the values of all the x 

in all the units. In nonlinear models, it is common that the effect of one variable depends 

on the values of all the variables, since all the values affect where in the nonlinear function 

E(y|x), i.e., at what value of E(y|x), lies when we evaluate a counterfactual change (of some 

specific size) in x. In spatial contexts, we have E(y|X), i.e., the expected outcomes in each 

unit depend on those in all the units, i.e., at what value in this nonlinear function we are 

considering some dx depends on all X. This dimensional extension in the expression of 

counterfactuals arises in all spatial nonlinear models.21 

Table 4 illustrates one informative way to present the estimates of such substantive 

counterfactuals. It reports the median and interquartile range of the estimated responses in 

terrorist event-counts around the world from a counterfactual conflict in Iran. Specifically, 

step-by-step: first, set Iran’s conflict score in the dataset to one, keeping all other variables 

for Iran and all variables for all other units at their sampled values, and calculate E(y|X) 

for a draw of { },≡� ��θ βρ  from ˆ ˆ( , )opt opt
GMM GMM

N� ∼θ θ Σ . Again keeping ceteris paribus, set Iran’s 

conflict to zero and calculate E(y|X) for the same draw of �θ . The differences are the n×1 

vector of estimated responses across all countries to this hypothetical dX for this draw of �θ . 

                                                 
21 Franzese & Hays (2009), e.g., explain and discuss the analogous issue in S-Probit, for instance.  
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Repeating, say, 1000 times yields a parametric bootstrap of the sampling distribution for 

this substantive counterfactual effects-estimate.22 Table 4 presents those the median and 

interquartile range of those estimates23 for the countries with the ten largest median 

estimated responses the hypothetical conflict for Iran, using the first 1,000 draws with �ρ  

within the range of nonsingularity/invertibility of I W�− ρ , which is -1/|ωmin|< �ρ <1/ωmax, 

where ωmin and ωmax are the minimum and maximum eigenvalues of W. Logically, the 

largest median effect is for Iran itself, +6.55 expected terrorist-events; sensibly, the next 

largest is for Iraq, at +5.75, interestingly nearly as large. The estimated median response to 

a counterfactual conflict for Iran is also sizable for another first-order neighbor, Pakistan at 

+2.5, but the estimated responses fade rapidly from there. The median estimated response 

across all countries, for instance, is a paltry +.000224, or essentially zero. 

VI. CONCLUSION: 

Would be nice if we had one, but given how drafty and incomplete the paper is yet, a 

conclusion would seem premature. In lieu of conclusions, we set for ourselves a list of next 

tasks between this and a completed paper: 

1. Enhance presentation and discussion of the extant alternatives among sophisticated 

estimators: Kaiser & Cressie’s (1997) Winsorized estimator and Griffith’s (2002, 2003, 2006) 

spatial-filter estimator. 

2. Add presentation and discussion of the alternative multiplicative-error formulations of 

spatial-count models. 

3. Add presentation and discussion of S-NegBin models to that of S-Poisson. 

4. Expand the Monte Carlo exploration to include these additional models, formulations, 

and estimators in the comparisons. Griffith (2006) has done some of this, so obviously we 

should build from there or at least keep an eye to comparability with those experiments. 

5. Enhance the presentation of estimated spatial-responses to hypotheticals: e.g., maps, 

LeSage & Pace’s (2009) proposed scalar summaries. 

 

                                                 
22 Alternatively, similarly bootstrapping (27) directly would yield the average estimated derivative at some X. 

23 A parametric bootstrap in a dynamic model may occasionally draw �θ  yielding explosive, i.e., nonstationary, 
responses. If even one draw does so, then variance-based measures like confidence intervals will be explosive. 
For this reason, practitioners often report percentile ranges instead. 
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