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Abstract

Interdependent duration processes are common in politics and other strategic settings. The time to
one type of political event frequently depends on the time to another related event, and the time to an
event for one actor often depends on the time to that same event for others. Put in a slightly different way,
politics and strategic behavior generate interdependence across durations and duration interdependence
across actors. We present a generalized parametric simultaneous equations model that incorporates these
two kinds of interdependent duration processes and derive the corresponding full information maximum
likelihood (FIML) estimator based on the Weibull distribution. We show with Monte Carlo experiments
that our estimator outperforms the alternatives available to those doing applied empirical research. Naive
estimators that either ignore the interdependence among duration processes or treat one as exogenous to
the others are badly biased when the true relationships are simultaneous ones. Two stage least squares,
while consistent, is highly inefficient relative to the FIML. We illustrate these findings in a study of the
determinants of government formation duration and survival in European parliamentary democracies and
an analysis of the timing of position taking in the US Congress. The interdependence in these durations
is substantively important and suggests strategic bargaining over governments in Europe and free-riding
behavior among members of Congress.

Political scientists are frequently interested in understanding when important political events occur. Stu-
dents of comparative politics, for example, have explained the survival and dissolution of cabinets in par-
liamentary democracies (King et al.,[1990; Warwick, 1992), the duration of political regimes (Chapman and
Roeder, 2007; Svolik; 2008), and the timing of union-friendly labor reforms (Murillo and Schrank, 2005). In-
ternational relations scholars have examined the survival of military alliances (Bennett, [1999), post-conflict
peace duration (Fortna), 2004; Werner and Yuen, 2005), and the speed at which policies diffuse around
the world (Simmons and Elkins, 2004). In American politics, research has explored the time until major
pieces of legislation are amended (Maltzman and Shipan, |2008), the duration of Supreme Court nomina-
tions (Shipan and Shannon, 2003), and the timing of issue position taking in Congress (Box-Steffensmeier,
Arnold and Zorn) 1997; Boehmke, 2006; Darmofal, 2009). And these examples only scratch the surface.

There is now recognition that many of the durations that we want to explain are interdependent in one
of two ways (or possibly both). The first kind of interdependence is when the time to one political event
depends on the time to another related event. The second is when the time to a particular political event
for one actor depends on the time to that same event for other actors. Examples of the first kind of interde-
pendence include the time it takes to negotiate an international treaty and the survival of that agreement,
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the time it takes to create a new constitution and the length of its survival, the amount of time it takes an
individual to form political attitudes and the stability of those beliefs, the amount of time it takes to confirm
a bureaucrat and the duration of his or her tenure in office, and the length of time a peacekeeping mission
is in place and the duration of the post-mission peace. As for the second kind, the time it takes states to en-
ter wars, alliances, and international organizations depends on the time it takes other states to make these
decisions. The entry and exit decisions of political candidates in electoral contests depend on the timing
of their opponents. If policies diffuse across countries, the time it takes one country to adopt a particu-
lar policy depends on the adoption timing of other states. In our applications we look at the relationship
between the time it takes a government to form and its subsequent survival duration and the interdepen-
dence among Congresspersons in the timing of their position taking on the North American Free Trade
Agreement (NAFTA). One of our key contributions is to place these two kinds of interdependent durations
within a single unified econometric framework.

Our paper is organized as follows. First, we review some of the existing empirical strategies for modeling
interdependent durations, highlighting the important differences between simultaneous equations (SEQ)
and seemingly unrelated regression (SUR) models (or substantive and nuisance models of interdependence
more generally) as well as the relative strengths and weaknesses of using copula-based and change-of-
variables-based likelihoods. Second, we present a general simultaneous equations model of interdepen-
dent durations and derive the corresponding FIML estimator. Our model encompasses both traditional
SEQ models and spatial duration models. Third, we compare the performance of several estimators against
our FIML using Monte Carlo experiments. Fourth, we estimate a simultaneous durations model of gov-
ernment formation and survival and a spatial duration model for the timing of NAFTA position taking by
US Congresspersons. We conclude with a discussion about the ubiquity and importance of interdependent
duration processes across political science subfields and mention some possible extensions to the models
we present.

1 Existing Strategies for Modeling Interdependent Durations

How should we model interdependent durations? There are two basic approaches to modeling (the two
kinds of) interdependence. One approach is to assume that the interdependence arises in the stochastic part
of the model only. The second posits full interdependence in both the stochastic and systematic compo-
nents. Oftentimes, strategies of the first variety are called nuisance approaches, while those of the second
are referred to as substantive models of interdependenceﬂ Together with the two kinds of interdepen-
dent duration processes—interdependence across durations and duration interdependence across actors—
this gives a four-fold model typology. Examples include SUR, spatial error, SEQ, and spatial lag models
respectively, and each of these can be found in the literature.

Quiroz Flores| (2008), for instance, uses copula functions to estimate a SUR model of the tenure of chief
executive officers and the median tenure of their ministers. The argument is that there are unobservable
common shocks that affect the tenure of both chief executives and their ministers. Flores finds significant
correlation in tenures and shows with Monte Carlos that an estimator that accounts for cross-equation
correlation in disturbances is more efficient than those that do not. |Darmofal| (2009) estimates a spatial
duration model for issue position taking on NAFTA in the U.S. Congress. This work, which we discuss
in more detail below, is representative of the spatial-error approach to interdependence. His model allows
for individual and shared frailties. Specifically, it is a model of spatially autocorrelated random effects.
Darmofal finds strong evidence for state-level shared frailties in the timing of issue position taking.

An early example of interdependence across durations is found in [Lillard| (1993). He presents a simul-
taneous equations model of marriage duration and fertility timing. In his setup, the hazard of marriage
dissolution has a direct effect on the fertility hazard, and prior outcomes of the fertility process affect the
dissolution hazard. The baseline hazards are a function of piecewise linear splines, which allows for a more
flexible form. [Honoré and de Paulal (2008) provide a recent example of duration interdependence across
actors. They derive an interdependent duration model from a strategic two-player game. In their model,
agents choose how long to participate in a particular activity before switching to an alternative activity. The

1Occasionally, these labels are inaccurate. For example, many scholars treat unobservables as substantively important (see
Boehmke 2006). The interdependence is in the disturbances, but it is central to the analysis nonetheless.



utility from switching for one agent depends on whether the other agent has switched. There are many
examples of this form of interdependence in microeconomics including the adoption of new technologies
and market entry decisions by firms. With Monte Carlo experiments, they show, among other things, that
treating endogenous durations as exogenous typically leads to an overestimation of strength of interdepen-
dence.

From our perspective, the main problem with nuisance approaches to duration dependence is that they fail
to capture the forms of strategic interdependence that we have in mind: that duration i (or the duration for
unit 7) is a function of duration j (or the duration for unit j). The problem with the substance approaches is
that they can lead to models that are more difficult to estimate. In other words, we see a potential trade-off
between the conceptual match of the empirical models with theory and the ease with which these models
can be estimated. Given this trade-off, we develop the simplest possible SEQ FIML estimator.

In answering the question about how to model duration interdependence, one must keep in mind the
connection between structure and substance, on the one hand, and structure and estimation, on the other.
We discuss these connections over the next several sections, beginning with structural assumptions about
outcome dependency. With respect to estimation, we show how the SUR structure leads naturally to copula-
based estimators while the SEQ structure makes the change-of-variables approach, because of its relative
simplicity, attractive to those doing applied research.

1.1 Assumptions about Dependency Structure: SUR vs. SEQ

The seemingly unrelated regressions (SUR) and simultaneous equations (SEQ) models make very different
assumptions about the structure of outcome dependency. Understanding these differences is crucial to
choosing the right model and estimator.

First, the association among the outcome variables, y’s, can be driven solely by their stochastic compo-
nents that are generated from a single joint probability distribution. The SUR model captures this type of
dependency among outcomes. In matrix notation, the SUR model takes the form

y:X/B+Ev (1)

where y is an VD x 1 vector containing IV observations on D endogenous variables. The matrix X contains
ND x K observations on K exogenous variables, where K = Zfl):l kq , kq being the number of exogenous
variables in the equation for the d** endogenous variable, and 3 is a K x 1 vector of coefficients on them.
The final term e in equation isan ND x 1 vector of disturbances with covariance matrix Vgyr = X1.
Rewriting (1) in terms of its constituent equations, we have

Y1 Xy 0 -~ 0 B4 €1
Vo 0 X; --- 0 Ba €2
YD 0o 0 --- Xp Bp ED

where € = [e1, ...,ep]’ is generated from a single joint distribution with the covariance matrix

011 g12 01D
021 022 02D

Vsur(e) = : L 3)
Op1 Op2 *** ODD

Due to the jointly-generated disturbances, outcomes y’s seem to be related to each other. It should be noted,
however, that the dependency structure implied by this model is different from what we have in mind



when we say y; depends on y; (i # j) —there is no component in this model that captures the relationship

Yi = f(yj)-

On the contrary, the SEQ approach models the explicit dependency among outcomes. It takes the form

y = Aly + X3 + ¢, 4)

which written in terms of its constituent equations is

Y1 0 appl - oipl Y1 Xy 0 --- 0 B €1
Yo a1 0 - oagpl Yo 0 X; --- 0 Bs €2

.= ) .|+ ) I N I )
YD apil apI --- 0 \g5) 0 O Xp Bp €D

The ATy pxnp) matrix that consists of a;; I v« ) (7 # j) represents the degree of direct dependency among
yi's. For example, a;;I v« n) denotes the effect of y; on y;.

Since the endogenous variable y is now on the right-hand side of the structural equations (5), one needs to
derive the reduced form in order to discuss properties of the stochastic component. Equation (5) written in

reduced form is
y=I—-AD)'XB+ (I AI) ‘e

_ (6)
=TX8 + u,
where I' = (I — AI)~! and the covariance matrix for u, the vector of reduced form disturbances, is
VSEQ(U) = F/VF. (7)

An important difference between the SUR and SEQ models is that the covariances in (7)) are a function of the
coefficients in A. In other words, the variances and covariances among the reduced form disturbances have
to be consistent with the structural relationships among the endogenous variables. This has implications
for estimating the two models.

In the next two sections, we construct maximum likelihood (ML) estimators based on the SUR and the SEQ
assumption respectively. We employ both the copula approach and the change-of-variables technique to
derive the necessary joint densities. These two methods look unrelated at first sight. However, the resulting
likelihood functions are comparable and they exemplify the different assumptions about the dependency
structure that we make by choosing either the SUR or the SEQ framework. We focus on this comparison
below in section 1.4.

1.2 Estimator (1): Copula-Based Likelihood for an Duration SUR Model

A copula is a function that gives a proper joint distribution function from univariate marginal distribution
functions. Several papers in political science use copulas or copula related distributions to derive likeli-
hoods for empirical analysis including [Boehmke, Morey and Shannon|(2006), [Boehmke]| (2006), Quiroz Flo-
res| (2008) and [Fukumoto| (2009) among others. The primary advantage of using copulas is that one has the
joint distribution function, which is necessary to construct many likelihoods—e.g., the likelihoods for quali-
tative or limited dependent variables models. The main disadvantage of using copula-based distributions
is that the covariance structures are constrained. These constraints imply limits on the range of association
among the variables, and they also make it difficult to use copulas to derive likelihoods for SEQ models.

First, consider a joint distribution function of random variables y; and y; generated from the following
Farlie-Gumbel-Morgenstern (FGM) copula



F(yi,y3) = F(y1)F(yz)[1 + o{l = F(y7) H{1 — F(y3)}], 8)

where «, the association parameter, captures the degree of dependence between the two y*’'sand —1 < o <
1. The corresponding joint density function is given as

Fiy3) = Fy) f(y2)[1 + a{2F(y7) — 1H{2F (y5) — 1} )

For example, given a univariate Weibull distribution function
Fly')=1-e UM, (10)

the copula (8) and (9) generates the joint cumulative and the joint density functions of the bivariate Weibull
distribution.

Flytys) = (1— e ™)1 = e ) (1 4 qe (DM -G
AL A2 YT a1 Y2 a1 o2l L) (42 )e]
Y3 11
f(ylv 2) 91 92 91 (92) 2 ( )

X [dov — 20{6(%))\ — 2046(%)A2 +(1+ a)e(%)kl'k(%)w],

where y7 > 0,45 >0, -1 <a <1,60; >0,0; >0, A\ >0and Ay > 0. Again, « is a dependence pa-
rameter, which induces the correlation between y; and y», and the A’s are shape parameters that determine
the curvature of the distribution. #’s are scale parameters. Note that this becomes the Gumbel (bivariate
exponential) distribution when 6; = 6, = 1and A\ = Ay = 1.

With the FGM bivariate Weibull distribution, the degree of admissible linear association between the vari-
ables, Pearson’s correlation, is limited to —0.322409 < p < 0.322409. For those who are interested, we derive
the possible range for p and summarize some of the mathematical properties of this bivariate Weibull dis-
tribution in Appendix 1. This constraint may or may not be a serious limitation depending on the true
strength of interdependence among the durations one is modeling. The more serious concern stems from
the difficulty in transforming the copula-based SUR estimator into a SEQ estimator. To see this, we need to
compare SUR and SEQ likelihoods{’| Below is the likelihood function for a SUR model where there are two
duration processes (D = 2) with N observations for each duration;

N
(X ﬂ )\17)‘2|y17y2 :Hf yzhyﬂ
i=1

N
H(Al A2 yu Y- 1(912),\2 1,~2[( “)*“r(y“’)”] (12)
91 92 02

=1
x [4a — 2ae(9*f>“ —2ae B 4 (11 ae ()M (%2 )N ]),

where the 0,’s, the scale parameters, are equal to eX@A¢ and the \;’s are the shape parameters.

1.3 Estimator (2): Change-of-Variable Likelihood for an SEQ Weibull Duration Model

Next, we present a general simultaneous equations model for interdependent duration processes and derive
its full information maximum likelihood estimator. We then return to the SUR likelihood for purposes of
comparison in section 1.4.

2ML estimation using this joint distribution offers a possible solution to the problems caused by unobservables (mainly inefficien-
cies) from which the existing literature may suffer. Unobservables are much more pernicious in the selection model context because
they are a potential source of endogeneity and bias (see Boehmke, Morey and Shannon, 2006). Copulas like the FGM are helpful here
because the selection bias correction does not require covariance decomposition.



1.3.1 Linear Parameterization of Weibull Durations (The AFT Model)

The dependent variables of interest, y*, are D distinct duration processes that have Weibull distributions
with two parameters.
yiy ~ Weibull(Ag, 64), (13)

where i = {1,--- , N} denotes the observational-unit index and d = {1, --- , D} denotes the duration index,
implying that there are NV x D observations in total. The notation )\ is the shape parameter and 6 is the scale
parameter. These distributional parameters take the common values across N observational units; hence
they have only one subscript that indicates duration process. A common way to parameterize a Weibull
model of D interdependent durations is to log-linearize the model and obtain a log-linear system of D
equations (Box-Steffensmeier and Jones, 2004). It is also known that the logged Weibull variable turns out a
standard Gumbel variable that is scaled by the shape parameter in the original Weibull distribution. E] For
example, in the univariate Weibull case, the log-linear form would look like;

1
y=Iny*=Ind+ 3

1
:Xﬁ—’_xgv

(14)

where € ~ ExtremeValuel (StandardGumbel) and we define y = Iny*. The second line of equation (14)
shows how we could include covariates, by making the Weibull scale parameter, 6, a function of the covari-
ates, § = ¢XP. For further detail regarding the link between a Weibull and an extreme value distribution,
see Appendix 2.

1.3.2 The System

The system of D distinct durations with /N observational units in matrix notation is

The dependent variable, y;q = Iny},, is a logged Weibull random variable. The vector y is a stack of D
vectors, each of which contains N observational units.

yi1 Y1d
Y(NDxND) = : , where y g(nx1) =

Yo YNd

The matrix A is the coefficient matrix for the dependence. An element matrix a?; contains coefficients
representing the effects of the second duration d on the first duration d’. The diagonal elements Sp’s in
the A matrix are the matrices that capture the “spatial” dependency. This is the dependency among N
observational units within each duration process. We call it “spatial” dependency for convenience, because

3The standard Gumbel distribution is a special case of the type-I extreme value (minimum) distribution. The distribution and
density functions of the type-I extreme value (minimum) distribution are

flu)=teThee®
Fu)=1- e_e?7

where a is the location parameter and b is the scale parameter. The distribution and density functions of the standard Gumbel
distribution are

Flu) = e

F(u)=1—e¢".

Note that the standard Gumbel distribution is a special case of the type-I extreme value distribution, where & = 0 and b = 1.
A logged Weibull variable has the type-I extreme value distribution in general and only the scaling of the resulting extreme value
variable varies depending on how one sets the scale parameter of the extreme value variable. For further details, see Appendix 2.



the linear system captures the among-unit dependency using weights matrices just like in spatial contexts.
Note that Sp? = 0 for all d when one assumes no among-unit dependency. Similarly a?, = 0 when one

assumes no dependency between duration d and d'.

SP1 a,lz a.lD
2
o
A(NDXND) = .
o
aﬁ’ aDDfl SPD
where
d
, 0 o
a?) 0 4 )
d d Qa1
X G(NxN) = s SP(NxN) = 1
0 afld 4
A(N,1)

“?LN)

d
Y (N-1,N)
ad
(N,N—1)

The vector x denotes a set of covariates and the supscript indicates to which equation the covariate vector
is specific. Each vector x contains K covariates with coefficients denoted by 8. The subscript of X, .d,
indicates that these z’s affect duration d, and the number of covariates, i.e., the number of elements in each
X 4 is denoted K. The error term wu;; in this structural form is i.i.d. with the extreme value minimum
distribution. The error term is multiplied by A3', which is the shape parameter of the original Weibull
distribution and the value of X is allowed to vary across duration processes.

X, 0 - 0 ) X
T1d © Tiq
0 X,
X(NDx(Ko+-+Kp)) = . , where X g(nxk,) = :
: . . 0 1 Kgq
T T
0 . 0 Xup Nd Nd
K K Kp \'.
Bliortrpxny = ( By - BY ‘ B 2 ‘ ‘ B )
1
L. 0 . 0
Lnpxnp) = ) , where L g(nxn) = ;
1
0 Lp 0 bW
Uil
UWNDx1) = :
UND

The following reduced form can be derived from the structural form (15);

yvpx1) = I—A)"'XB+ (I-A) 'Lu

=I'XB8+TILu
=TX3+ v,

where' = (I - A)~!and v =T'Lu.

(16)



1.3.3 Deriving the Likelihood via Change of Variables

The only task left before writing a likelihood function is to derive the joint density of 3’s. We do not know
the joint distribution of y’s, but fortunately it is not hard to obtain the joint distribution of u’s, because
they are assumed to be i.i.d and we know that the marginal of u has the type I extreme value distribution.
We use the change of variables theorem to derive the joint pdf of y’s from the joint pdf of u’s. By solving
equation for u, we have

unpx1 =g '(y) = (FL)"'y - L™'Xg. (17)
The Jacobian matrix of g~!(y) is
997 () .. 99 (¥)
Oy11 OYND
J= : :
99np ™) . 99np¥)
Y11 OYND
If the inverse vector function, (u11,- - ,unp) = ¢~ (y11,-- ,ynDp), exists for all y = (y11,--- ,ynp) such

that y € {y = g(u)}, the joint density of Y = g(U) is given by

h(yl yND) — f(gl_ll(yﬂ,-.- ayND),"' ag;le(yllv"' ,Z/ND))|det(J)|
a 7 0, otherwise

0, otherwise

_ {f(uu,~-~ cunp)|det()| a8)

_ {f(ull)f('um) < flunp)|det(J)|

0, otherwise.

The last line in equation follows from theii.d. assumption of u, and each f(u;q) is the standard Gumbel
pdf.

The likelihood function with no censoring isE]

L o h(y11,--- ,yND)

N
= (TTTI (o™ (ra)) ldet()|

—
o

i=1d=1 (19)
N D
= (TTTI f(wia) ) det(3)].
i=1d=1
The log-likelihood function is
N D
ML= [nf(g" (ya)] +In|det(J)]
i=1d=1 (20)
N D
=D [ f(wia)] + In|det(J)].

s
Il
_
Y
Il
-

1.4 Copula-Based Likelihoods vs. Change-of-Variable Likelihoods

It is useful to compare the copula-based likelihood with the change-of-variables likelihood for the simple
case of two duration processes in which there are no covariates, implying X3 = 0 or equivalently 65 = 1.

4Censoring complicates estimation because the interdependence among durations means the likelihood contains a multidimen-
sional integral.



To see the relationship of the two approaches, it is sufficient to consider the case where there is only one
observation point (no spatial interdependence), and therefore we will omit the subscript that indicates ob-
servation (unit), and include only the duration subscript. First, consider an SEQ model for logged-duration
dependent variables with no covariates, which takes the form

{lnyi‘ =oaglny; + %ul

Inys = a1 Iny* + Fus

: o 1)

- {ul = (Iny} — aslnys) A
u

= (Inys — a1 lnyi) A,

where Iny; denotes a dependent variable. y; measures a spell of time and it is assumed to have the FGM
Weibull distribution. The Jacobian for u can be computed as

Oui  Ou AL _ag)g
3 ot - =
J= ( ol o ) = < e A ) (22)
dy; 9y A Y3
A1 Ao
|det(J)| = ——|1 — a1aal. (23)
1Y2

From equation (19), the exact expression of the likelihood derived by the change-of-variables approach is

feot (Y1, y2) (Hf uq )|d€t J)|

ug A1A2|1 a0 |
— k12
Yivs (24)
A2 A7
271 3‘1—041052|
192

o %A1 xAay xA | *Ao
_)\1>\2y*>\1 1y*>\2 Lo=2(y1 " 4y ) oun " Y, 11— ool

ul
— Ul —e U2 —e
=€ (&

kA
*)\1 e—’yl 1

_ *)\2 —Y.
=1 e

Yo

The transformation from the second to the third lines of equation uses the fact that
el =y (25)

Recall the likelihood function with the joint pdf constructed from the FGM copula, (12);

_ A1
fcopula(ylay2)—)\1/\2y1)\1 1y*)‘2 1 2(3!1 'HI 2)

A1 A2 *Xg (26)
x [ — 20€¥1 " — 202 + (1 + a)e”l T
By comparing the two likelihoods, (24) and (26),
fcvt (ylv y2) = fcopula (yla y?)
\1—a1a2|—1 (27)

= o=

*A1

PP Py o .
de~ Y% Y2 7 —2e Y1 —2e7 Y2 T 41

In order for the covariance structure that is implied by the copula to be consistent with the structural SEQ
relationships among the endogenous variables, equation must hold. This equality makes the copula-
based estimator for the general SEQ model much more complicated than the change-of-variables-based
estimator. Of course, the advantage of working with the copula is that we would have the distribution
function. Fortunately, as long as we are working with uncensored duration data, we do not need the
distribution function to estimate our models. In the next section we evaluate the change-of-variables FIML
estimator against commonly used alternatives.



2 Monte Carlo Evaluations of the FIML and Alternative Estimators

Tables present the results of several Monte Carlo experiments in which we evaluate the performance
of four estimators: the FIML-SEQ, two-stage least-squares, ML-AEDM, and ML-AIDM estimatorsE] The
last two estimators are what political scientists currently use. ML-AEDM stands for maximum likelihood
assumed exogenous duration model. This is the standard ML applied to a single equation that has an en-
dogenous duration on the right-hand-side. By standard we mean that the estimator treats the endogenous
duration as exogenous. In the context of one of our applications (coalition bargaining duration and gov-
ernment survival), this is what most people are using when they put “crisis duration”-the number of days
to form a government-on the right-hand-side of a government survival model. ML-AIDM stands for ML
assumed independent durations model. This is when the analyst fails to recognize that his or her duration
of interest is linked in important ways to another or multiple other durations. The ML-AEDM suffers from
simultaneity bias while the ML-AIDM suffers from omitted variable bias.

[TABLES|11{2| ABOUT HERE]

The experimental data is generated using the reduced form SEQ modeﬂ We assume two durations, each
with an exclusive covariate and a unique shape parameter. More specifically, the structural version of the
model is

Y1 = aryz + Sz + AT

Yo = aoyr + Boz + A5 lun

We are interested in the cases of positive reinforcing interdependence (a; = a2 > 0), negative reinforcing
interdependence (a; = az < 0), and mixed interdependence (a; = —ag) for small (N = 100) and medium-
sized samples (N = 500). For the naive estimators, reinforcing interdependence should cause inflation bias
in the estimated coefficients on the endogenous right-hand-side variables, while mixed interdependence
should cause attenuation bias, and the differences in the shape parameters (\;' < ;') should introduce
asymmetries in these biases. The results of our Monte Carlos are mostly as we expected them to be. Starting
with Table [l where we report the results for a small sample (N=100) with positive reinforcing interdepen-
dence. The AIDM estimator overestimates 3; and (2 as expected. (We get estimates that correspond to
the reduced-form parameters instead of the structural parameters.) The estimator also provides inflated
estimates of A\; ' and A\, '. The AEDM estimator also inflates the coefficients on the endogenous variables,
y1 and y», in this case. These biases, in turn, induce additional biases in the opposite direction for the (;
and (3, estimates. Note that the upward bias in the estimate for as is larger than the bias for «; because
the shape parameter )\, ! is larger than \; !, and this generates stronger covariance between y; and u, than
exists between y; and u;. The key inequality is % =a\! > gfﬁ = as\]'. These patterns are repeated
in the experiment with negative reinforcing interdependence. In the case of mixed interdependence, there
is attenuation bias in the AIDM estimates for 81 and (3. We note that, in the case of the AEDM estima-
tor, the attenuating force is so strong for «, that the sign is wrong on average[] In all our experiments,
the two-stage least-squares estimator performs better than the naive estimators in terms of bias, but occa-
sionally, particularly in the small samples, performs worse in mean-squared-error terms. The two-stage
least-squares results are much better for our medium-sized sample.

The FIML estimates are virtually unbiased in all cases even in our smaller sample, and the standard error
estimates, calculated with the observed information matrix, are accurate. The standard error accuracy of
the other estimators is frequently poor. The AIDM estimator is always overconfident, and the degree of
overconfidence increases with the true variance of the sampling distribution. With the AEDM estimator,
the degree of overconfidence is higher for the more badly biased coefficients (i.e., az and (35), a particularly
disturbing combination that makes sound inference difficult.

5We also evaluated the three-stage least-squares estimator, but its performance was dominated by two-stage least-squares, so we
do not report these results. They are available from the authors upon request.

6We do not focus on spatial lag models. These are treated extensively in Franzese Jr. and Hays|(2007).

7Technically, the bias need not be attenuating in the sense that the estimate is, on average, closer to zero than the truth. Small effects
in one direction can be overwhelmed by bias inducing forces pushing in the other direction so that the estimate, on average, has the
opposite sign and is farther from zero than the truth.
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3 Applications

3.1 Interdependence Across Durations: Government Formation and Tenure Dura-
tions

Scholarly interest in the empirical determinants of government formation and dissolution in parliamentary
democracies is longstanding, and these topics remain among the most central in the comparative study of
developed democracies. Two of the most popular topics in this literature are explaining the durations of
both coalition bargaining over ministerial portfolios and government survival. There is good reason for this
focus. The failure of parliamentary parties to form governments quickly (e.g., the recent crisis in Belgium)
and chronic government instability (e.g., Italy for much of the postwar period) have significant social costs
and are viewed as symptoms of dysfunctional democracy.

The quantitative empirical literature in this area is largeﬂ Typically, the empirical studies explore a set of
contextual and cabinet specific factors that determine both kinds of durations. The effects are estimated
separately (e.g., for the coalition bargaining duration, Diermeier and van Roozendaal [1998; Martin and
Stevenson|2003; and for the cabinet survival, Warwick and Easton1992; |Alt and King|1994, and |Diermeier
and Stevenson|1999). This is not to say that the interdependence has been completely ignored King et al.
(1990) and Warwick! (1992), among others, put government formation duration, what they call crisis dura-
tion, and the number of formation attempts on the right-hand side of their government survival models.

In the more theoretically oriented literature, Strom, Budge and Laver| (1994) highlight the importance of
cabinet termination and dissolution rules for government formation. [Fearon| (1998) also formalizes the
effects of expected enforcement levels of bargained outcomes on the bargaining stage itself, in the context
of international agreements. His formulation suggests that a longer shadow of the future can give states
an incentive to bargain harder, delaying agreement in hope of getting a better deal. |Diermeier, Eraslan
and Merlo| (2003) also formalize explicitly the interdependence of government formation bargaining and
the bargained outcome -cabinet survival. The main purpose of [Diermeier, Eraslan and Merlo| (2003) is
to analyze the conditions under which certain types of coalitions are formed. As an empirical matter,
their interest lies in estimating the probability that a particular type of coalition is chosen. Durations of
bargaining and government survival still play important roles in their model, but those durations are not
the primary focus of their analysis. In their model, the inefficient delay of bargaining is generated mainly
by a stochastic factor, the state of the world that is either favorable or unfavorable for a cabinet’s survival,
while the inefficient delay in |Fearon| (1998) is mainly due to the dichotomous bargaining choices and (or)
uncertainty.

There are fewer theoretical studies of government termination. [Laver and Shepsle (1996) stress that the
ending of one cabinet begins the formation process for the next and that dissolution and formation are con-
ceptually nonseparable, though their own emphasis is more on the making than breaking of governments.
Lupia and Strom| (1995) show that majority governments may dissolve and call early elections when the ex-
pected payoff is high enough. Their model explains why a cabinet, which is an “equilibrium” of the earlier
bargaining process, might find it worthwhile to terminate its tenure and call an election. All of these studies
make important contributions, but fall short of the kind of systematic integration that we see as necessary.

We argue that the lengths of coalition bargaining and government survival are interdependent duration
processes. Unfortunately, to this point, the two have been studied largely in isolation. The single equation
studies suffer from multiple sources of bias. One potential problem is omitted variable bias in regres-
sions that leave out the important “right-hand-side” duration. Simultaneity is a concern for studies that
do connect government formation and dissolution in single equation models by putting variables like cri-
sis duration or the number of cabinet formation attempts on the right-hand-side of government survival
regressions. The simultaneity problem is obvious from the structures of these models. Bargaining and sur-
vival durations are clearly related, but the causal arrow points both ways. If we put one duration on the
right hand side of a model explaining the other-as is frequently done in studies of government survival-
our estimates will be biased by the reverse causal relationship. The clear empirical implication of these
formal models is that we should not estimate coalition bargaining and government survival durations sep-

8See reviews in|Laver| (1998} 2003) for more extensive treatments of both literatures.
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arately or naively put one duration on the right-hand-side of a single-equation regression that has the other
duration on the left-hand-side.

Our dataset consists of 475 cabinets from sixteen Western European countries -Austria, Belgium, Denmark,
Finland, France (Fourth Republic), Germany, Iceland, Ireland, Italy, Luxembourg, The Netherlands, Nor-
way and Sweden. The data run between 1945 and 1998.

Interestingly, there is a positive relationship between the time it takes for government formation and the
length of government survival in our sample (see Figure[I). Governments that formed in less than fifty
days survived, on average, 580 days whereas coalitions that took more than 100 days to reach agreement
lasted 818 days. This is a bit perplexing since we might expect long delays in government formation to be
indicative of the inability of parliamentary parties to work together effectively (King et al. [1990). There
is another way to look at this relationship, however. Parties that anticipate long-lasting governments may
bargain harder over coalition agreements since these “contracts” will determine the balance of executive
power, distribution of benefits from holding office, and overall course of policy for a significant period
of time into the future. Is this relationship spurious or causal? And what implications, if any, does this
interdependence have for empirical analyses of government formation and survival durations?

[Figure[[]ABOUT HERE]

The FIML and 2SLS estimators rely on instruments to identify the causal effects of cabinet formation dura-
tion on government survival and vice versa. We use the continuation and maximum duration variables as
instruments. In both cases, we think it highly plausible on theoretical grounds that the instruments satisfy
the necessary exclusion restrictions. We present two sets of results for each estimator. The first set is from a
covariate sparse specification, and the second is from a covariate rich specification. The sparse specification
includes, in addition to the endogenous variables, the instruments needed for the FIML and 2SLS estima-
tors. We focus primarily on the differences between the AEDM and FIML estimators and the simultaneous
relationship between cabinet formation duration and government survival.

[Table 3] ABOUT HERE]

With the FIML estimator we find robust evidence that the positive correlation between bargaining duration
and government survival seems to be driven by the latter causing the former. The covariate-sparse and
rich comparison highlights the unbiasedness and efficiency advantages of the FIML in small samples. The
AEDM estimator finds a positive and statistically significant relationship between cabinet duration forma-
tion and government survival in both equations. This is not surprising given the positive covariance, but
keep in mind that the causal argument that prolonged formation processes (what many scholars refer to
as the “crisis” duration) lead to longer-lived governments is viewed by most as dubious. We expect the
opposite relationship, and this is what we find with the FIML estimator. Turning to the covariate rich spec-
ification, the relationships between the government formation and survival durations is wiped away in the
AEDM estimates. By contrast, with the FIML estimates, we continue to find a statistically significant and
positive effect of government survival on formation duration. This is due in large part to the efficiency of
the estimator. The estimated standard error for the FIML coefficient on the government survival variable is
almost one-third the size of the AEDM standard error.

Overall, we interpret the FIML results as strong evidence that parties anticipate the length of the future
government’s tenure and this affects how they bargain. This is the idea of strategic interdependence that
comes out of the game theoretic literature on the topic developed by Diermeier, Merlo and others. We do not
find evidence of the reverse causal relationship. In other words, although there are studies that suggest that
the duration of formation processes affects government survival, we do not find robust evidence that this
is the case. These theories maintain that longer bargaining indicates the difficulty in reaching agreements
among the coalition members in general and hence portends a shorter lifespan for the formed government.
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3.2 Duration Interdependence Across Actors: Strategic Timing of Issue Position Tak-
ing

It is often said that timing is everything in politics. This is certainly true when it comes to the behavior
of elected politicians, and position taking on legislation is one of the clearest examples. Drawing on the
logic of formal signaling models, [Box-Steffensmeier, Arnold and Zorn| (1997) argue in their seminal paper
that issue position taking in Congress will be strategically timed. Members of Congress (MCs) who receive
clear signals about the policy preferences of their constituents will announce early, while those who receive
mixed signals will delay. They also contend that constituency preferences will interact with individual-level
factors in either cross-cutting or reinforcing ways, and that institutional factors such as leadership status
and committee membership will influence the timing of issue position taking. In their empirical analysis,
Box-Steffensmeier et al. examine issue position taking on NAFTA. They find that MCs from border districts
took early positions, as did Republican leaders, ceteris paribus. Conservative MCs from highly unionized
districts delayed their position taking.

Boehmkel (2006) extends this analysis by linking the timing of issue position taking by MCs and the con-
tent of their positions through unobservables. He argues that factors that cause delay in position taking on
NAFTA also make it more likely that members will support the legislation. Legislators that hold out, what-
ever the reason may be, ultimately decide to vote in favor, either because of presidential pressure or out of
concern for party interests. [Darmofal| (2009) develops the model further by allowing for spatial correlation
in the timing of issue position taking among representatives. He models spatially connected individual and
shared (state-level) frailties. In his preferred specification, the state-level shared frailties specification, MCs
from the same state have a common random effect, and these effects are geographically correlated. Frailties
cluster among states that share borders.

The strategic nature of issue position taking is clear from this literature. One form of interdependence that
is left out of these models is strategic interdependence across members of Congress. Darmofal’s models
come the closest to capturing this interdependence, but his model is better interpreted as capturing omitted
variables that cluster geographically rather than true interdependence among MCs since the correlation is
only in the disturbance term. There is good reason to expect strategic interdependence across members,
particularly members from districts in close proximity. These members represent overlapping constituen-
cies, and therefore may have incentives to take early positions to signal their commitment and resolve on a
particular issue. If true, this would spark competitive dynamics among representatives. It is also possible
that members of Congress free-ride off of the early position taking of their colleagues. Early position taking
and the political responses it provokes provide valuable information to other members who, at some point,
will be expected to take a stance. These relationships can be modeled using our interdependent durations
model.

The dependent variable is the number of days after August 11, 1992, the date when the first MC (Peter Vis-
closky) announced his NAFTA position, before the other MCs took a pro or con position on the legislation.
The constituency variables included in the analysis are the district-level Perot vote, union membership,
and average household income. The interest group factors include the contributions from corporate and la-
bor PACs. The institutional variables are NAFTA committee membership and party leadership indicators.
Ideology is the individual-level variable, which is interacted with constituency-level variables to model
cross-cutting pressures on MCs. Interestingly, there is a substantial amount of within state variation in the
data. In the case of logged durations, the within variance is larger than the between, or, more specifically,
the average within state variance is larger than the variance in state-level means. This fact is consistent with
negative interdependence or free-riding behavior.

Since we are analyzing a single duration, our interdependent durations model simplifies to a spatial-lag
model. We use Darmofal’s adjacency matrix based on queen contiguity to connect MCs and include
state-level fixed effects for all states with more than one representative. The same four estimators used
previously-the assumed independent, assumed exogenous, 25LS, and FIML estimators—can be applied to
this model. We report the results in Table[d The first column gives the Box-Steffensmeier et al. results from
their Cox proportional hazards model. The remaining four columns give the estimates for our Weibull
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accelerated failure time modelsﬂ In all of the models that allow for duration interdependence, we find
evidence of free-riding (i.e., the coefficient estimate for rho is always negative). When one MC for whatever
reason-including constituency, institutional, and individual-level factors-announces an early position on
NAFTA, his or her colleagues from bordering districts are more likely to delay their position taking. As ex-
pected, the 2SLS estimator has the largest standard errors, and the assumed exogenous estimator overstates
the strength of interdependence relative to the FIML.

[Table[d ABOUT HERE]

4 Conclusion

Politics generates interdependence across durations and duration interdependence across actors. There
are many examples of this interdependence in prominent areas of political science research. In order to
analyze interdependent durations empirically, one has to make assumptions about the structure of depen-
dence. We believe that, in many instances, the simultaneous equations framework provides a better match
to theory. Therefore, we developed a generalized parametric simultaneous equations model for interde-
pendent duration processes and derived the corresponding full information maximum likelihood (FIML)
estimator based on the Weibull distribution. Along the way, we attempted to demonstrate why a copula-
based estimator, while possibly desirable for other applications where the distribution function is needed,
is unnecessary for our purposes, particularly given the added complications. We demonstrated with Monte
Carlo experiments that our estimator outperforms the alternatives. Naive estimators that either ignore the
interdependence among duration processes or treat one as exogenous to the others are badly biased when
the true relationships are simultaneous ones. Two-stage-least-squares is highly inefficient relative to the
FIML. We illustrated these findings in a study of the determinants of government formation duration and
survival in European parliamentary democracies and an analysis of the timing of position taking in the US
Congress. The interdependence we uncovered in these durations is substantively important and suggests
strategic bargaining over governments in Europe and free-riding behavior among members of Congress. In
future work, we hope to address the issue of censored durations, possibly using copula functions, expand
the model to allow for time-varying covariates, relax our parametric assumptions, and estimate models
where both forms of interdependence (interdependence across durations and duration interdependence
across actors) are present simultaneously.

9Note that, to be consistent, the coefficient estimates from the proportional hazards and accelerated failure time (AFT) models
should have the opposite signs. The proportional hazards model gives the effects of covariates on the hazard rate, while the AFT
model gives the effects of covariates on the expected time until failure.
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Appendix 1:
Mathematical properties of the bivariate Weibull distribution

In the following, we briefly describe some mathematical properties of the bivariate Weibull distribution
presented above. Although it was already proven that any bivariate distribution that belongs to the Farlie-
Gumbel-Morgenstern family satisfies the axioms of probability (Gumbel, 1959, 1960), the following mathe-
matical properties that lead to the derivation of p are useful.

As shown in|Gumbel (1959) and |(Gumbel| (1960), a bivariate distribution function can be constructed from
two marginal probability functions, F'(y;) and F(y2), by the following copula with a constraint on param-
etera, -1 <a<l;

F(y1,y2) = F(y1)F(y2)[1 + o{1l — F(y1) {1 — F(y2) }], (28)

where —1 < o < 1.
The associated joint density function is given as follows;

f1,y2) = f(y1) f(y2)[1 + a{2F (y1) — 1H{2F (y2) — 1}]. (29)

Using the above findings, a bivariate Weibull distribution can be constructed from the following marginal
distributions and densities;

Fly)=1—-e 0"
flo) = G Nt B i1
where \; > 0 and 6; > 0.
The joint probability and density are given by
Flyrge) = (1—e )1 —e 7)1+ e (7607 (30)

(B (2 L2 B g _ B _ e 4 (1 4 a)e BB

A o
9 — - e
fy1,92) 0 0

T 0, 6,

)

(31)
wherey; >0, -1 <a<1,0; >0and \; > 0.

The joint cdf must satisfy the following boundary conditions
F(07y2> = F(ylyo) =0
F(o0,00) =1,

and the joint density has to be nonnegative, f(y1,y2) > 0. Any bivariate distribution that belongs to the
Farlie-Gumbel-Morgenstern family satisfies these conditions.

Another condition a bivariate distribution always has to satisfy is Fréchet’s inequality,
Flyiye) < Fa(y);i=1,2 (32)

for all y; and y,. Since the dependence of the joint distribution and density on y; and y» is symmetric, it is
sufficient to explore the performance of one variable y;. This applies to all the calculations in the rest of this
appendix. From it follows after a simplification that

A2

ae_(%)kl(l — e (®) ) < 1. (33)

In sum, the function satisfies all the required axioms of probability function, under the conditions of
—1<a< 1,91>Oand/\120
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The followings are the relevant computations to derive the correlation coefficient p. By definition, the
correlation coefficient of two random variables, Y; and Y5 can be obtained as

p = Ege) = Bly) E(y2) (34)

Oy10ys

For our marginal probabilities, F'(y;) and F(y2), the means and variances are

1 1 1

E(yi) =0; ) =0i1(5
() = 0T (14 1) = 03 T(5)
2 2 1 (35
Var(ys) =0, [C(1+ ) =T*(1+ )l i=1.2
Now the only term we need to compute to obtain p is E(y;y2). From (15), the marginal densities are
> Ai Yia 1 (Y
flyi) = / fy1,y2)dy; = g(%)k‘ e~ =12, (36)
0 [ i
which is, of course, the Weibull densities.
The conditional expectation of 3, can be obtained as
E(yily2) = / yif (yaly2)dys
! . X (37)
= —00 ()2 %e @) [—2a(25 — 1)+l (2% (14 @) — a)),
A1 A1
where i )
Y1, Y2
fily2) = ———- 38
il = Z6y) 9
The expectation of the cross-product can be computed as
E(y1y2) = / Y2 E(y1ly2) f(y2)dy2
0
(39)
01 65 1 2 _ 1 _1 _A1tA2
= ——I'(—)I'(+—)|1 1—-2 %1 —2 %2 42 x|,
LT[+ al o)

Substituting (39) into (34), we get

922 (2% _ 1) (2% - 1) al [] T [5]
e ) (40)
ND2y/-T2 14+ 5] + T [H8] /-2 [1+ &) +T [252]

Note that the scale parameter 6 does not affect the dependence of y; and y», p. As mentioned in the previous
sections, p is increasing in o and the maximum range is —.322409 < p < .322409 when A; = Ay = 3.29035.

Appendix 2:
The Logged Weibull and the Standard Gumbel Variables

In the derivation of the Weibull FIML estimator (Section 1.3), we claimed that a logged Weibull random
variable is a Standard-Gumbel —a special case of the type-1 extreme value (minimum)- variable that is scaled
by the inverse of the original Weibull shape parameter. This section demonstrates the log transformation of
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a Weibull variable. Recall the density and distribution functions of the Standard Gumbel distribution and

the Weibull distribution;

Standard Gumbel distribution {

— A(u\A—1 — ()N
Weibutl 4 ) = 9(5)" e 0
Fly)=1- e (8)7,

where 0 is a scale parameter and ) is a shape parameter.

Consider a Weibull random variable Y that is scaled by §. The log of the Weibull variable is a Standard
Gumbel variable, U, scaled by the inverse of the Weibull shape parameter, 1. If this statement is true, then

the following holds;

=1In(3)

e Dl

Tu
A
&y =0e
Since Y ~ Weibull(\, ),

FPly)=1—e @

e

= 1 — ei(eeT)/\

=1—e =G(u).

G (u) is the cdf of the Standard Gumbel distribution.

The moments for this extreme value distribution are given as follows;

Elu] =7,
where 7 is the Euler-Mascheroni constant, and
2
7T
v = —.
ar(u) G
Appendix 3:
Stata Code

+*Program to Estimate Weibull SEQ Duration Model

clear
pr drop _all
set more off

R R I S b I dh b I b 2 b Sb b I 2b b S b S 4

*Likelihood Evaluator

R R I S I S S S S S S i S i
program define seq_dur_11

args 1nf mul mu2 alphal alpha2 lambdal lambdaZz
tempvar J ayl ay2

scalar al = ‘alphal’

scalar a2 = ‘alpha2’

gen ‘ay2’ = ‘alphal’*«S$ML_y2

gen ‘ayl’ = ‘alpha2’*«S$ML_yl

matrix IA = [1, —-(al) \ —-(a2), 1]
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scalar 11 = ‘lambdal’

scalar 12 ‘lambda2’

matrix L = [11, O \ 0, 12]

matrix IAL = IAxL

qui gen double ‘J’ = 1ln(det (IAL))
scalar J = ‘J’

qui replace ‘lnf’= J + ‘lambdal’ *

x/ “lambda2’ x (SML_y2-‘ayl’-'‘mu2’)
end

R R i b I b b I b 2 b b b S b b S dh b S b b S
+*Open Data for Regression
R I I S S S S S S S S S
drop _all

use "ADD PATH HERE", clear

gen lnform = 1ln(formation)
gen lndur = ln(duration)
global Y1 1Inform

global Y2 1lndur

($ML_y1l-‘ay2’-‘mul’) - exp(‘lambdal’  (SML_yl-‘ay2’-‘mul’))

- exp(‘lambda2’ *x (SML_y2-"‘ayl’ -‘mu2’))

global X1 invest continuation neffp polar ideo_div2 returnability postelect caretaker
global X2 invest max_dur neffp polar ideo_div2 returnability postelect caretaker

khkhkhkkhkhkhkhkkhkkrxhkkhkkxkkkxk*xk

*Produce starting values

kAR A I AAk I A khAAdk A Ak A ARk kK, Kk

stset formation
streg $X1, dist (weibull) time

matrix stregbpl=e (b)
local coll = colsof (stregbpl)

matrix stregbl=stregbpl[l,1..‘coll’-1]

matrix coleqg stregbl = mul

local stregpl=exp(stregbpl[l, ‘coll’])

stset duration
streg $X2, dist (weibull) time

matrix stregbp2=e (b)
local col2 = colsof (stregbp2)

matrix stregb2=stregbp2(l,1..‘col2’-1]

matrix coleqg stregb2 = mu2

local stregp2=exp(stregbp2[l, ‘col2’])

R R b 2 I b I e b b b I I b b b b b b b b b b g
*Estimate SEQ model

KAk KAKAAKA AR KA AR A d A A hk A A A A A AKX * K

+ /%

ml model 1f seqg dur_11 (mul: $Y1=$X1) (mu2: $Y2=$X2) (alphal:) (alpha2:) (lambdal:) (lambda2:)

ml init stregbl

ml init stregb2

ml init alphal:_cons=0

ml init alpha2:_cons=0

ml init lambdal:_cons=‘stregpl’
ml init lambda2:_cons=‘stregp2’
ml max

*Program to Estimate Weibull Spatial Duration Model
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clear

pr drop _all
set more off
set matsize 800

dAhkhkhkkhkkhkhkhkhkkhkhkhkhkhkhkhhhxkkkkx
*Likelihood Evaluator
R R S R I I I I I b I e I b e

program define splag_1l1l_dur

args 1nf mu rho lambda

qui replace ‘lnf’= 1ln(ones - ‘rho’*EIGS1) + 1ln(‘lambda’) + ‘lambda’~* (SML_yl-‘rho’*SL1-‘mu’) - /x*
*/ exp(‘lambda’ * (SML_yl-‘rho’ *SL1-"mu’))
end

KAkK KA kA AA kA Ak Ak Ak Ak Ak h k%K

*Open Data For Weights

KAk kA kA Ak Ak Ak hk Ak hkkkkx %k

use "ADD PATH HERE", clear
qui sum varl

global nobs = r (N)

mkmat varl-var$nobs, matrix (W)

matrix I_n = I (Snobs)
matrix eigenvalues eigl imaginaryv = W
matrix eig2 = eigl’

matrix ones=J($nobs,1,1)

drop _all

khkhkhkkhkhkkhkhkhkkhhkhkkhhhkkhkhkkhkhkkhkkk
«*Open Data for Regression

khkkhkkhkkhkhkhkkhkhkhkhkkhkkhkhrkhkkhkkhkhrkhkkhkk,hhkkx*k
drop _all

use "ADD PATH HERE", clear

gen lntiming = 1ln(timing)
global Y lntiming
global X pscenter pecenter perotsqg mexbordr hhcenter corptpct labtpct ncomact rleader dleader interl

mkmat $Y, matrix(Y)
matrix SL = WxY
svmat SL, n(SL)
svmat eig2, n(EIGS)
svmat ones, n(ones)

khkkhkkhkkhkhkkhkkhkkhkhkhkkhkkhkhAkhrkkhkkhkhkhkkhkxk

*Produce starting values
khkhkkhkhkhrkhkkhkkhkhkhkhkkhkhArkkhkkhkhhhkhkxkx

stset timing

streg $X, dist (weibull) time
matrix stregbp=e (b)

local col = colsof (stregbp)

matrix stregb=stregbpll,1..‘col’-1]
matrix coleqg stregb = mu

local stregp=exp(stregbp[l, ‘col’])
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R I I S S S S e I

+*Estimate spatial lag model

KAKAKAIAKAA KK AR AR A AR A A XA A XK AKX K

ml
ml
ml
ml
ml

model 1f splag_1ll_dur (mu:

init stregb

init rho:_cons=0

init lambda:_cons=‘stregp’
max

$Y=8X)

(rho:)

20

(lambdaz:)
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5 Tables and Figures

Figure 1: Government Formation and Duration

Time for Formation ‘ Average Survival Standard Deviation Minimum Maximum
Less than 50 days 580 481 1 1818
Between 50 and 100 days 649 515 10 1941
More than 100 days 818 529 36 1616
Data source: Warwick (1994), Golder (2005), Keesing’s World News Archive
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Table 1: Monte Carlo Results for Small Sample (N = 100), 1000 Trials

Parameter Result Independent Exogenous 2SLS FIML
Mean - 0.55,0.93  0.50,0.49 0.50, 0.49
S.D. s 0.01,0.05  0.06,0.12 0.02, 0.05
G, Gy RMSE - 0.05,0.43  0.06,0.12 0.02, 0.05
(0.5,0.5) Mean S.E. - 0.01,0.03  0.06,0.11 0.01, 0.05
Overconfidence - 1.19, 1.60 1.04,1.03 1.04,1.03
Mean 1.33,1.34 0.97,0.72  1.00,1.01 1.00,1.01
S.D. 0.13,0.17 0.06,0.12  0.09,0.17 0.06, 0.12
B, Ba RMSE 0.36, 0.38 0.07,031  0.09,0.17 0.06, 0.12
(1,1) Mean S.E. 0.12,0.16 0.06,0.10  0.08,0.17 0.06, 0.12
Overconfidence 1.07,1.01 1.05,1.17 1.01, 1.00 1.03,1.00
Mean 2.08,2.85 0.98,1.74 ~ 1.00, 2.00
S.D. 0.07,0.10 0.03, 0.07 s 0.04,0.10
AL AT RMSE 1.08, 0.85 0.04,0.27 - 0.04,0.10
(1,2) Mean S.E. 0.07,0.10 0.03, 0.06 - 0.04,0.10
Overconfidence 1.04, 1.06 1.01,1.23 - 1.00, 1.01
Mean . -0.55,-1.06 -0.48,-0.43 -0.50, -0.49
S.D. - 0.03,0.09  0.23,0.89 0.04,0.13
G, Gy RMSE - 0.06,0.57  0.23,0.90 0.04,0.13
(-0.5-0.5) MeanS.E. - 0.03,0.08  0.23,0.50 0.03, 0.12
Overconfidence - 1.00,1.14 0.99, 1.80 1.05, 1.09
Mean 1.34,1.37 0.96,0.64  1.02,1.07 1.01,1.03
S.D. 0.46, 0.40 0.13,023  0.29,0.90 0.14,0.28
B1, Ba RMSE 0.57, 0.54 0.14,0.43  0.29,0.90 0.14,0.29
(1,1) Mean S.E. 0.32,0.37 013,022  0.31,0.61 0.13,0.27
Overconfidence  1.41,1.08 1.05,1.06  0.95,1.48 1.04,1.03
Mean 2.48,2.85 0.97,1.63 -* 0.99,1.98
S.D. 0.34, 0.24 0.08,0.13 - 0.08, 0.24
AL AT RMSE 1.51,0.88 0.08, 0.40 - 0.08,0.24
(1,2) Mean S.E. 0.17,0.22 0.08, 0.12 - 0.08,0.23
Overconfidence ~ 1.95,1.07 1.01,1.05 - 1.01,1.05
Mean - 041,025  0.53,-0.60 0.51,-0.51
S.D. - 0.05,0.17  0.38,0.53 0.06, 0.22
G, Go RMSE - 0.10,0.76  0.38,0.54 0.06, 0.22
(05-05)  MeanSE. - 0.05,0.11  0.39,0.49 0.06, 0.20
Overconfidence - 1.00,1.48  0.99,1.09 1.05, 1.07
Mean 0.80, 0.82 0.96,0.72  1.02,1.06 1.01,1.03
S.D. 0.18,0.24 013,027 029,041 0.14,0.28
B, Be RMSE 0.27,0.30 0.14,039  0.29,0.42 0.14, 0.28
(1,1) Mean S.E. 0.16,0.22 013,023  0.31,0.41 0.13,0.27
Overconfidence  1.10, 1.08 1.05,1.18  0.95,1.01 1.04,1.02
Mean 1.24,1.71 0.97,1.69 - 0.99,1.97
S.D. 0.10, 0.14 0.08,0.15 - 0.08, 0.24
AL A RMSE 0.26, 0.32 0.08, 0.35 - 0.08, 0.24
(1,2) Mean S.E. 0.09,0.13 0.08,0.13 - 0.08, 0.23
Overconfidence 1.03, 1.08 1.01,1.14 - 1.01, 1.03

* The estimates for A’s can be computed using the estimated o and the estimated variance of the error terms. We have not done the
computations yet.
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Table 2: Monte Carlo Results for Large Sample (N = 500), 1000 Trials

Parameter Result Independent Exogenous 2SLS FIML
Mean - 0.55,0.93 0.50, 0.49 0.50, 0.50
S.D. - 0.01, 0.05 0.06,0.12 0.01, 0.05
Qaq, Qo RMSE - 0.05,0.43 0.06,0.12 0.01, 0.05
(0.5,0.5) Mean S.E. - 0.01, 0.03 0.06,0.12 0.01, 0.05
Overconfidence - 1.17,1.59 1.03,1.01 1.01, 1.02
Mean 1.33,1.34 0.97,0.71 1.00, 1.01 1.00, 1.00
S.D. 0.13,0.17 0.06,0.12 0.08,0.17 0.06,0.12
51/ 32 RMSE 0.36, 0.38 0.07,0.31 0.08,0.17 0.06,0.12
(1,1) Mean S.E. 0.12,0.16 0.06, 0.10 0.08,0.17 0.06,0.12
Overconfidence 1.08,1.04 1.02,1.15 0.98,1.00 1.00, 1.00
Mean 2.08, 2.85 0.98,1.74 =¥ 1.00, 1.99
S.D. 0.07,0.10 0.04, 0.07 - 0.04,1.10
AL AT RMSE 1.08, 0.85 0.04,0.27 - 0.04,0.10
(1,2) Mean S.E. 0.07,0.10 0.03, 0.06 - 0.04, 0.10
Overconfidence 1.02, 0.98 1.04,1.25 - 1.02,1.01
Mean - -0.56,-1.06  -0.50,-0.49 -0.50, -0.50
S.D. - 0.01, 0.04 0.06,0.12 0.02, 0.05
a1, Qo RMSE - 0.06, 0.56 0.06,0.12 0.02, 0.05
(-0.5,-0.5) Mean S.E. - 0.01, 0.04 0.06, 0.11 0.01, 0.05
Overconfidence - 0.98,1.09 1.04,1.02 1.04,1.02
Mean 1.34,1.34 0.96, 0.63 1.00, 1.01 1.00, 1.00
S.D. 0.25,0.18 0.06, 0.10 0.09, 0.17 0.06, 0.12
Bl, Bg RMSE 0.42,0.38 0.07,0.38 0.09,0.17 0.06, 0.12
1,1) Mean S.E. 0.15,0.17 0.06,0.10  0.08,0.17 0.06,0.12
Overconfidence 1.63,1.07 1.04,1.05 1.03,1.01 1.03,1.00
Mean 2.60, 2.90 0.98, 1.65 - * 1.00, 1.99
S.D. 0.20,0.11 0.03, 0.06 - 0.04,0.10
AL AT RMSE 1.61,0.91 0.04, 0.36 - 0.04,0.10
(1,2) Mean S.E. 0.08, 0.10 0.03, 0.06 - 0.04,0.10
Overconfidence 2.56,1.13 1.00, 1.07 - 0.99, 1.04
Mean - 0.41,0.21 0.51,-0.52 0.50, -0.51
S.D. - 0.02, 0.08 0.10, 0.20 0.03, 0.09
aq, Qo RMSE - 0.10, 0.72 0.10, 0.20 0.03, 0.09
(0.5,-0.5) Mean S.E. - 0.02, 0.05 0.10,0.19 0.02, 0.09
Overconfidence - 0.98, 1.60 1.04,1.03 1.04,1.02
Mean 0.80, 0.80 0.96, 0.72 1.00, 1.01 1.00, 1.01
S.D. 0.08, 0.11 0.06, 0.12 0.09,0.17 0.06,0.12
B, Be RMSE 0.21,0.22 0.07,0.31  0.09,0.17 0.06, 0.12
1,1 Mean S.E. 0.07,0.10 0.06,0.10 0.08,0.17 0.06,0.12
Overconfidence 1.07,1.07 1.04,1.17 1.03,1.00 1.03,1.00
Mean 1.25,1.74 0.98,1.74 -* 1.00, 2.00
S.D. 0.04, 0.07 0.03, 0.07 - 0.04, 0.10
AL A RMSE 0.25, 0.27 0.04, 0.27 - 0.04, 0.10
1,2) Mean S.E. 0.04, 0.06 0.03, 0.06 - 0.04,0.10
Overconfidence 1.04,1.13 1.00, 1.23 - 0.99, 1.01

* The estimates for A’s can be computed using the estimated o and the estimated variance of the error terms. We have not done the
computations yet.
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Table 3: Estimation Results for the Cabinet Formation and Survival Duration

Independent Exogenous
Durations Durations 2SLS FIML
Formation duration (y1)
61 (Scale parameter 1)
Constant 3.473*** 1.877*** 2.602%** 1.944** -1.31 0.171 2.356"** 1.319***
(0.063) (0.249) (0.157) (0.281) (0.998) (2.604) (0.265) (0.416)
Continuation -0.958™** -0.865** -0.944* -0.871*** -1.23*** -0.732%** -1.01%** -0.862* "
(0.14) (0.135) (0.134) (0.136) (0.214) (0.175) (0.138) (0.135)
Investiture 0.019 0.025 0.266 0.036
(0.104) (0.105) (0.188) (0.105)
Effective Parties 0.102** 0.1** 0.201*** 0.105***
(0.041) (0.041) (0.062) (0.041)
Polarization 0.882* 0.9* 1.15 1.168™*
(0.462) (0.463) (1.068) (0.494)
Returnability 0.507* 0.505" 0.711* 0.515
(0.277) (0.277) (0.386) (0.276)
Post-Election 1.173%** 1.215%** 1.147*** 1.126™**
(0.103) (0.130) (0.279) (0.106)
Caretaker 0.317 0.301 0.241 0.414*
(0.214) (0.216) (0.503) (0.22)
a1 Dependency 1
Survival 1.019*** -0.07 0.704*** 0.068 1.036"** 0.086™
(0.083) (0.136) (0.172) (0.383) (0.088) (0.051)
AT (Shape parameter 1)
Constant 1.187*** 1.019*** 1.143*** 1.019*** 1.168*** 1.015%**
(0.043) (0.038) (0.042) (0.038) (0.043) (0.038)
Cabinet survival (y2)
6> (Scale parameter 2)
Constant 5.207*** 6.251*** 513" 6.271%** 5.875*** 6.302** 5.302*** 6.251***
(0.106) (0.182) (0.108) (0.197) (0.420) (0.264) (0.118) (0.182)
Max Duration 0.998*** 0.488*** 0.719*** 0.485"** 1.368™** 0.473*** 0.191*** 0.488***
(0.084) (0.103) (0.123) (0.104) (0.204) (0.14) (0.044) (0.103)
Investiture -0.192%** -0.194*** -0.385"** -0.193***
(0.069) (0.069) (0.121) (0.070)
Effective Parties -0.026 -0.026 -0.071 -0.026
(0.024) (0.024) (0.053) (0.025)
Polarization -1.686™ " -1.694" " -2.495"** -1.685""*
(0.25) (0.252) (0.501) (0.25)
Returnability -0.258 -0.273 -0.312 -0.261
(0.167) (0.177) (0.337) (0.172)
Post-Election 0.314*** 0.315*** 0.379 0.312***
(0.09) (0.090) (0.249) (0.094)
Caretaker -1.092%** -1.096* " -1.022%** -1.092***
(0.148) (0.149) (0.219) (0.148)
oz Dependency 2
Formation 0.251*** -0.023 -0.618*** -0.031 -0.053* 0.002
(0.092) (0.091) (0.206) (0.186) (0.027) (0.026)
Ay ! (Shape parameter 2)
Constant 0.785*** 0.691*** 0.781*** 0.691*** 0.791*** 0.691"**
(0.03) (0.026) (0.03) (0.026) (0.031) (0.026)
Log-Likelihood -1499.24 -1369.39 -1479.32 -1369.22 -1491.02 -1367.53

Note: We could compute the Weibull shape parameter X for the 25LS model by using the other parameter estimates and the estimated
variances. We have not done the computation yet. Significance levels :
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Table 4: The Timing of NAFTA Position Taking

BSAZ Independent Exogenous 2SLS FIML
(1997)
Constituency Factors
Union Membership 3.21** -0.33 -0.34 1.72%* -0.33
(1.19) (0.28) (0.28) (0.87) (0.28)
Perot Vote, % -4.91 0.34 0.39 1.69 0.39
(4.27) (0.57) (0.56) (1.88) (0.56)
Perot Vote, % Squared 15.64 -1.18 -1.48 -5.36 -1.44
(11.72) (1.55) (1.55) (5.32) (1.55)
Mexican Border 1.84** -0.24%* -0.27%* -0.64*** -0.27%*
(0.32) (0.05) (0.05) (0.15) (0.05)
Household Income 0.01 0.01 0.01 0.02 0.01
(0.09) (0.01) (0.01) (0.04) (0.01)
Interest Group Factors
Corporate Contributions -1.44** 0.10 0.09 0.25 0.09
(0.52) (0.07) (0.07) (0.22) (0.07)
Labor Contributions 1.09* -0.09 -0.10 -0.02 -0.09
(0.50) (0.06) (0.06) (0.20) (0.06)
Institutional Factors
NAFTA Committee 0.04 -0.0004 0.002 0.02 0.002
(0.11) (0.0130) (0.013) (0.04) (0.013)
Republican Leadership 0.56** -0.06* -0.05 -0.05 -0.05*
(0.26) (0.03) (0.03) (0.10) (0.03)
Democratic Leadership 0.08 -0.02 -0.02 -0.03 -0.02
(0.23) (0.03) (0.03) (0.09) (0.03)
Individual Factors
Interaction Effect of Ideology and -4.39** 0.44** 0.42* 0.61 0.42*
Union Membership (1.78) (0.22) (0.22) (0.73) (0.22)
Interaction Effect of Ideology and 0.16 -0.02 -0.01 -0.006 -0.01
Household Income (0.13) (0.01) (0.01) (0.049) (0.01)
Shape Parameter A 8.92%** 8.95%** 8.95%**
(0.38) (0.38) (0.38)
Spatial Parameter p -0.09** -0.69** -0.08*
(0.05) (0.32) (0.04)
Log Likelihood | 194277 196.300 196.041

This table compares our results with Table 2 in Box-Steffensmeier et al. (1997). Table 2 in Box-Steffensmeier et al. (1997) is for the
model that explains the timing of position taking by the House members. “Stars” represent the following;  *:10%  s#x:5%  #x%x
: 1%. All of our models were estimated with state fix effects.
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