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Research in political science is increasingly, but independently, modeling heterogeneity and spatial dependence. This article
draws together these two research agendas via spatial random effects survival models. In contrast to standard survival models,
which assume spatial independence, spatial survival models allow for spatial autocorrelation at neighboring locations. I
examine spatial dependence in both semiparametric Cox and parametric Weibull models and in both individual and
shared frailty models. I employ a Bayesian approach in which spatial autocorrelation in unmeasured risk factors across
neighboring units is incorporated via a conditionally autoregressive (CAR) prior. I apply the Bayesian spatial survival
modeling approach to the timing of U.S. House members’ position announcements on NAFTA. I find that spatial shared
frailty models outperform standard nonfrailty models and nonspatial frailty models in both the semiparametric and
parametric analyses. The modeling of spatial dependence also produces changes in the effects of substantive covariates in
the analysis.

Political events, by their nature, involve shared
concerns and interdependent actors. As a conse-
quence, the occurrence of a political event in one

location is often associated with similar events in neigh-
boring locations. Concepts such as the domino effect,
waves of democratization, and policy diffusion highlight
the spatial dimension in many political event processes
(Berry and Berry 1992; Huntington 1991). But while
concepts of spatial interaction and diffusion are central
to many of our theories of event processes in political
science, our approach to modeling this spatial dimen-
sion has often been quite limited. Generally, spatial de-
pendence in survival data has been modeled via simple
indicators such as the number or proportion of neigh-
boring units that previously experienced the event of in-
terest (Berry and Berry 1990; but see Berry and Baybeck
2005; see also Starr 1991). While useful in highlighting
the interdependencies in political event processes, such
an approach does not provide a generalized method for
modeling spatial dependence nor is it consistent with the
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simultaneous nature of spatial, as opposed to temporal,
dependence.

This standard approach to modeling spatial depen-
dence in survival data contrasts with an emerging interest
in modeling spatial dependence in other political sci-
ence data (see, e.g., Beck, Gleditsch, and Beardsley 2006;
Cho 2003; Darmofal 2006; Franzese and Hays 2007; Gim-
pel and Cho 2004). This latter literature applies spatial
econometrics to model spatial dependence in continuous
dependent variables. These studies demonstrate the im-
portance of modeling spatial autocorrelation in order to
avoid biased and inconsistent parameter estimates and bi-
ased standard errors and thus draw valid inferences about
political phenomena.

As is well known, standard econometric approaches
developed for continuous dependent variables are not
applicable for survival data. Right-censoring of time-to-
event data produces observational equivalence between
units experiencing the event at the end of the observation
period and those censored and yet to experience the event.
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As a consequence, survival or event history models incor-
porating a censoring indicator are employed to model
event processes (Box-Steffensmeier and Jones 2004).1

The same complications that right-censoring produces
in standard survival data also preclude the application
of spatial econometric models developed for continuous
dependent variables to spatially dependent survival data.
As a consequence, scholars concerned about modeling
the spatial dependence predicted by our theories of event
processes in political science will wish to employ spatial
survival models that account for spatial autocorrelation
in units’ risk propensity.

Recently, the nonspatial survival modeling literature
has seen an increased interest in the use of random ef-
fects models to account for unobserved heterogeneity in
units’ risk propensity (Hill, Axinn, and Thornton 1993;
Hougaard 2000; Klein and Moeschberger 1997). Here,
scholars account for unmeasured sources of variation in
risk propensity via either unit-specific (individual) or hi-
erarchical (shared) random effects, or frailty terms. By
incorporating such random effects, scholars can account
for the fact that some units are more frail than others—
and thus have a higher propensity to experience the event
of interest—and avoid biased parameter estimates and
violations of the proportional hazards assumption that
are induced by a false assumption of homogeneity (see,
e.g., Box-Steffensmeier and Jones 2004, 147–48). Testing
for unobserved heterogeneity then simply involves esti-
mating the variance term, �, of the random effects. A
significant positive value of � indicates unmodeled het-
erogeneity in risk propensity while a value of � that is
indistinguishable from the null indicates that sources of
variation in risk propensity are accounted for via the co-
variates in the model.

Recent years have seen considerable progress in
the use of frailty models within political science (Box-
Steffensmeier and De Boef 2006; Carpenter 2002; Chiozza
and Goemans 2004; Colaresi 2004; Gordon 2002). These
studies demonstrate the importance of accounting for
unobserved or unmeasured sources of heterogeneity in
event occurrence. But while some of these studies exam-
ine dependence across competing risks (Gordon 2002) or
repeated events (Box-Steffensmeier and De Boef 2006),

1The term “survival model” derives from the study of patient mor-
tality in biostatistics, an important field in the development of
these models. Political scientists also refer to these models as sur-
vival models. Within political science, however, the interest is not
in physical mortality, but instead in the survival of units until they
experience a political event of interest. Thus, for example, political
scientists speak of government or cabinet survival (Warwick 1992),
conflict survival (Regan 2002), and survival in office (Jones 1994).
Survival models are also known as event history and duration
models.

all applications of frailty models in political science as-
sume that the random effects are spatially independent.
Given the theoretical predictions of spatial dependence in
political event processes, political scientists will, I argue,
often wish to allow for spatial dependence across random
effects in their survival models. In this article, I present
an approach to modeling spatially autocorrelated random
effects in survival data.

Specifically, I apply a Bayesian approach in which
random effects at “neighboring” locations are allowed to
exhibit spatial dependence (Banerjee and Carlin 2003;
Banerjee, Carlin, and Gelfand 2004; Banerjee, Wall, and
Carlin 2003). (The definition of “neighbors” is gener-
alizable and need not imply contiguity.) This spatial
dependence is incorporated by specifying a conditionally
autoregressive (CAR) prior developed by Besag, York, and
Mollie (1991) for application in Bayesian image analysis. I
employ the CAR prior to allow for spatially autocorrelated
random effects in time-to-event data across neighboring
units, with the neighbors defined via an adjacency matrix.

Table 1 lists the models I examine in this article.
I examine both semiparametric (Cox) and parametric
(Weibull) survival models and examine both unit-specific
(individual) and hierarchical (shared) frailty models. In
all, I examine the performance of eight different mod-
els: standard Cox and Weibull models with no frailties,
Cox and Weibull models with shared nonspatial frailties,
Cox and Weibull models with shared spatial frailties, and
Weibull models with unit-specific nonspatial frailties and
with unit-specific spatial frailties. I apply these models to
Box-Steffensmeier, Arnold, and Zorn’s (1997) data on the
timing of U.S. House members’ position announcements
on the North American Free Trade Agreement.

The spatial shared frailty models outperform stan-
dard nonfrailty models and nonspatial frailty models in
both the semiparametric and parametric analyses. The
hierarchical spatial Weibull model also outperforms the
unit-specific spatial Weibull model. Posterior means for
substantive covariates differ between the spatial and non-
spatial models. These results argue for the importance of
modeling spatial dependence in random effects survival
models.

TABLE 1 Model Comparisons

Model Cox Weibull

Standard X X
Nonspatial Individual Frailties X
Spatial Individual Frailties X
Nonspatial Shared Frailties X X
Spatial Shared Frailties X X
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The article is structured as follows. The next section
discusses survival models and the standard approach to
frailty modeling in which the random effects are treated as
independent. Next, I examine the Bayesian spatial survival
modeling approach in which spatial dependence between
neighboring random effects is modeled with a spatial
prior. I next apply Bayesian spatial survival modeling to
the timing of U.S. House members’ position announce-
ments on the North American Free Trade Agreement. The
following section compares and contrasts the results of
the Bayesian survival models and discusses their implica-
tions for our understanding of spatial effects in legislative
position taking. I conclude by discussing potential fu-
ture extensions of spatial frailty modeling within political
science.

Survival Models

Survival models seek to explain how the risk, or hazard, of
an event occurring at a given time is affected by covariates
of theoretical interest. In a single-event analysis, such as
this article’s, the hazard rate is the instantaneous risk of
a unit experiencing the event at a given time given that it
has survived (i.e., not experienced the event) up to that
time.2 A critical distinction in survival analysis is how the
baseline hazard (the hazard of the event in the absence
of any covariate effects, i.e., the time dependency in the
event process) is parameterized. In the semiparametric
Cox model, no parametric distribution is specified for the
baseline hazard. As a consequence, rather than employing
a specific distribution for the intervals between event oc-
currences, the Cox model incorporates information only
for the observed event times. In contrast, in paramet-
ric survival models such as the Weibull or Gompertz, a
specific parametric form is assumed for the underlying
baseline hazard.3

In choosing between the Cox model and its para-
metric alternatives, one faces a trade-off between the
Cox model’s flexibility (to various shapes of the base-
line hazard) versus the parametric models’ more precise
estimates of duration dependency (if the correct para-
metric distribution is chosen) and capacity for out-of-
sample prediction. The semiparametric Cox model and
its principal parametric alternatives, however, share the

2Single-event analysis is contrasted with multiple-events analysis, in
which units are at risk of experiencing multiple events of substantive
interest.

3The Cox model is referred to as semiparametric because although
no distributional form is assumed for the baseline hazard, the risk
of event occurrence is still parameterized as a function of covariates.

common assumption of proportional hazards: covariates
are assumed to have proportional effects on the baseline
hazard that do not change with time. If this assumption
is true, then as Box-Steffensmeier and Zorn note, “the
effects of covariates are constant over time” (2001, 973).

The proportional hazards assumption is consequen-
tial because assuming that hazards are proportional when,
in fact, they are nonproportional, can produce biased pa-
rameter estimates and decreases in the power of signif-
icance tests (Box-Steffensmeier and Zorn 2001, 972). It
is thus critical to test for the proportionality of hazards
(via, for example, Grambsch and Therneau’s global test
for nonproportional hazards and Harrell’s rho test for
covariate-specific nonproportionality) and model non-
proportionality when it occurs (typically by interacting
covariates that violate the proportional hazards assump-
tion with a logged measure of time; see Box-Steffensmeier
and Jones 2004).

I examine both semiparametric and parametric spa-
tial survival models. The parametric analysis examines
the Weibull model, which is frequently employed by re-
searchers interested in parametric survival analysis.

As Banerjee, Carlin, and Gelfand (2004) and Box-
Steffensmeier and Jones (2004) show, the hazard rate in
the Cox model takes the form:

h(ti ; xi ) = h0(ti )exp(�′xi ) (1)

where t i is the time to event or censoring for unit i, h0 is
the baseline hazard, xi is a vector of covariates, and � is a
vector of parameters. The Cox model, unlike parametric
survival models, includes no intercept because the base-
line hazard is not parameterized (Box-Steffensmeier and
Jones 2004, 49; see also Banerjee and Carlin 2003). In the
Weibull model, the hazard rate is:

h(ti ; xi ) = � t�−1
i exp(�′xi ) (2)

where � is a shape parameter for the baseline hazard, �

now includes an intercept term (as the baseline hazard is
modeled using the Weibull distribution), and the remain-
ing notation is as in (1). The shape parameter, � , reflects
the shape of the monotonic hazard in the Weibull model,
with � > 1 reflecting a monotonically rising hazard rate,
� < 1 reflecting a monotonically declining hazard, and
� = 1 reflecting a flat hazard (Box-Steffensmeier and
Jones 2004, 25).

Standard Frailty Models

The Cox and Weibull models in (1) and (2) assume
that factors affecting the hazard of event occurrence
are included in the covariate vector, xi. What is the
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effect of omitting factors that affect the hazard? As Box-
Steffensmeier and Jones (2004, 147) note, omitting such
factors reduces the effect of covariates in the model that
increase the hazard and increases the effect of covariates
that reduce the hazard. Thus, scholars will wish to have
a way to account for covariates excluded from the model
that affect the hazard rate.

One strategy for accounting for such omitted covari-
ates is the inclusion of random effect, or frailty terms.
The frailty terms account for the fact that some units
are at greater risk of experiencing the event of interest,
that is, are more frail, due to factors not incorporated
in the model. Either of two standard frailty approaches
are adopted, depending upon the researcher’s prior be-
liefs about the nature of the unobserved heterogeneity
in risk propensity. If the researcher believes that units
exhibit their own unique frailties, she will incorporate
unit-specific, or individual frailty terms for each unit in
her data. Alternatively, if she believes that units are clus-
tered such that units within the same cluster share the
same frailty while frailties are independent across clus-
ters, she will incorporate hierarchical, or shared frailty
terms for each cluster in her data. The basic structure of
the two standard frailty modeling approaches is similar,
and I thus motivate my discussion with the individual
frailty model, discussing afterward how this approach is
modified for the case of shared frailties.

Individual and Shared Frailty Models
with Independent Random Effects

The hazard rate in the Cox model with standard indepen-
dent individual frailties takes the form:

h(ti ; xi ) = h0(ti )exp(�′xi + Wi ), (3)

while the hazard rate in the Weibull model with standard
independent individual frailties takes the form:

h(ti ; xi ) = � t�−1
i exp(�′xi + Wi ), (4)

where Wi ≡ log �i is the individual frailty term, the re-
maining notation in (3) is as in (1), and in (4) as in (2)
(Banerjee, Carlin, and Gelfand 2004; Box-Steffensmeier
and Jones 2004). As can be seen from the equations, the
hazard in the frailty model is a function not only of the
covariate vector, xi, but also of the random effect, W i.

If unmodeled factors produce significant heterogene-
ity in risk propensity, the variance of the frailties will be
distinguishable from zero. Thus, estimating whether ran-
dom effects should be included in the model involves
specifying a probability distribution for the frailties and
estimating the variance, �, of the frailties. The gamma and

inverse Gaussian are often chosen for the random effects
distribution (Therneau and Grambsch 2000, 232–34).

The individual frailty modeling approach is appro-
priate only if the researcher believes that each unit has a
unique unmodeled frailty. If, however, the researcher be-
lieves that units are clustered in a hierarchical structure,
such that units within the same cluster share a common
frailty, a hierarchical, shared frailty modeling approach
is appropriate instead. Here the Cox and Weibull shared
frailty models take the form:

h(tij ; xij) = h0(tij)exp(�′xij + Wj ), (5)

and

h(tij ; xij) = � t�−1
ij exp(�′xij + Wj ), (6)

where unit i is now nested in cluster or stratum j, and
the individual frailty, W i, is now replaced by a shared
frailty, Wj ≡ log �j , for units nested in stratum j (Baner-
jee and Carlin 2003; Banerjee, Wall, and Carlin 2003;
Box-Steffensmeier and Jones 2004). Inference regarding
the appropriateness of the shared frailty model proceeds
analogously to the individual frailty case. A probability
distribution is specified for the shared frailty terms, and
a variance, �, that is distinguishable from zero indicates
that there are unmodeled shared risk factors.

Both the individual and shared frailty approaches
make a critical assumption. In both approaches, the ran-
dom effects are assumed to be independent. In the indi-
vidual frailty model, each unit has a unique frailty that
is independent of other individual random effects. In the
shared frailty model, units within the same cluster share a
common frailty, but the frailties are assumed independent
across these higher-level units.

I argue that this assumption of independent random
effects will often be unrealistic in political science data.
Theories of political event processes predict spatial de-
pendence in event occurrence. If we are unable to model
fully this spatial dependence via substantive covariates,
this will produce spatially autocorrelated random effects.
In the individual frailty approach, neighboring units will
have spatially dependent frailties. In the shared frailty
approach, neighboring strata will have spatially depen-
dent frailties. Given evidence of spatial autocorrelation
in many political science data (see, e.g., Beck, Gleditsch,
and Beardsley 2006; Darmofal 2006; Gimpel and Cho
2004; O’Loughlin, Flint, and Anselin 1994; Shin and Ward
1999), I argue that scholars will often wish to model spa-
tial dependence in random effects.

The modeling approach I examine here also pro-
vides a more realistic and flexible approach to model-
ing dependent data than standard hierarchical models.
The standard approach makes a knife-edge assumption:
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units in the same strata are assumed to exhibit depen-
dence, but the strata themselves, even neighboring strata,
are assumed to be independent. Thus, for example, in
a shared frailty model of legislative behavior with state-
level strata (a commonly employed choice for clustering
political science data), Democratic Representatives Jer-
rold Nadler of New York’s 8th Congressional District and
Robert Menendez of New Jersey’s neighboring 13th Con-
gressional District would be treated as spatially indepen-
dent in the 103rd Congress. This is not consistent with our
understanding of how spatial proximity promotes legisla-
tive interaction (see Caldeira and Patterson 1987). More
generally, because political processes are inherently social
and interdependent, spatial dependence often does not
stop at the stratum’s edge. Instead, neighboring strata of-
ten exhibit spatial dependence. As a consequence, scholars
will often wish to incorporate spatial dependence between
strata rather than making the knife-edge assumption of
spatial independence across strata.

In short, political scientists often have reason to ex-
pect spatial dependence in the political event processes
they seek to model. Standard approaches to modeling
these event processes to date, however, have treated obser-
vations as spatially independent. The Bayesian spatial sur-
vival modeling approach I examine provides researchers
with an approach for modeling the spatial autocorrela-
tion that is predicted by our theories of event processes in
political science. In the next section, I examine semipara-
metric and parametric Bayesian approaches for modeling
spatially dependent survival data.

Bayesian Spatial Survival Modeling

Typically, spatial data in political science take the form
of lattice data, in which a continuous spatial surface is
divided into a grid of (typically irregular) lattice objects,
or polygons, such as counties, states, congressional dis-
tricts, or the like.4 The critical step that distinguishes
spatial modeling of event processes from standard mod-
eling approaches for event processes is the incorporation
of adjacency information for the observations and the pa-
rameterization of spatial dependence across neighboring
polygons. From a Bayesian perspective, this involves in-
corporating a prior to account for the spatial dependence
in the hazards. Typically, a conditionally autoregressive
(CAR) prior incorporating adjacency information is em-
ployed to model this spatial dependence.

4This section draws on the presentation and notation in Banerjee
and Carlin (2003), Banerjee, Carlin, and Gelfand (2004), Banerjee,
Wall, and Carlin (2003), and Bernardinelli and Montomoli (1992).

Before examining the CAR prior, it is critical to dis-
tinguish what we mean by “adjacency” and “neighboring
locations.” Often, substantive theory suggests that spatial
dependence operates geographically; in this case, the term
“neighboring” can be taken literally, with spatial depen-
dence modeled for adjacent polygons. As Beck, Gleditsch,
and Beardsley (2006) demonstrate, however, dependence
in other applications may take a nonspatial form (they
model dependence as a function of trade flows between
countries). Thus, “neighbors” need not imply contigu-
ity and indeed, there need not be any inherent spatial
component to the analysis at all. As a consequence, the
modeling approach examined here is quite general and
can be applied to the more general question of correlated
hazards across observations.

Neighbors are defined via a weights matrix, A. In
an unnormalized weights matrix such as that employed
in this article’s NAFTA application, each neighbor of a
unit is given a weight of 1, while each nonneighbor of a
unit is given a weight of 0. (Thus, aii′ = 1 if units i and
i′ are neighbors, and aii′ = 0 if units i and i′ are non-
neighbors.) This spatial weights approach differs from
the standard i.i.d. perspective on random effects, which,
in a Bayesian framework, implies an exchangeable prior
with a (nonspatial) weights matrix. In the exchangeable
prior, all nondiagonal elements of the nonspatial weights
matrix are given a common value, such as 1. In such an
approach, the random effects are exchangeable under any
geographic permutation of the data (Bernardinelli and
Montomoli 1992, 988).

In the spatial CAR modeling approach, the defini-
tion of neighbors via the weights matrix is a critical
step in modeling spatially dependent event processes,
since it delimits the possible spatial dependence that may
be identified. The definition of neighbors should thus
be guided by substantive theory. Because prior theory
(e.g., Caldeira and Patterson 1987) argues that spatial
proximity between legislators is likely to affect the tim-
ing of position announcements, I examine spatial de-
pendence across geographically adjacent locations in my
application.

Once the researcher has defined neighbors via the
weights matrix, this information is then incorporated in
the CAR prior. In recent years, biostatisticians have em-
ployed the CAR prior for Bayesian spatial shared frailty
modeling (see Banerjee and Carlin 2003; Banerjee, Car-
lin, and Gelfand 2004; Banerjee, Wall, and Carlin 2003).
I extend these models for the first time to the case of
Bayesian spatial individual frailty models. I first examine
the CAR priors for the individual and shared spatial cases
and then examine the full semiparametric and parametric
specifications incorporating the CAR prior.



246 DAVID DARMOFAL

The Conditionally Autoregressive
(CAR) Prior

The standard, nonspatial frailty models in equations 3–6
all assume that the random effects or frailty terms are
independent. From a Bayesian perspective, this is con-
sistent with a specification in which the random effects
distribution is conditional on a hyperparameter, �, with
an exchangeable prior, where � refers to the precision
(the inverse variance, i.e., the inverse of �) of the ran-
dom effects distribution. As in the case of the CAR prior,
the � prior is a unidimensional precision prior for the
joint distribution of the random effects vector. The sin-
gle dimensional prior for the random effects distribu-
tion is employed in survival modeling research by, e.g.,
Banerjee, Wall, and Carlin (2003), Banerjee, Carlin, and
Gelfand (2004), and Lawson (2008). As stated earlier,
the exchangeable prior is induced by not distinguishing
between neighboring and nonneighboring units in the
weights matrix, but instead treating both neighbors and
nonneighbors as exchangeable.

The exchangeable prior, however, is likely to be prob-
lematic for many survival modeling applications. As the
well-known Galton’s problem recognizes, neighboring
units are likely to share similar risk propensities, due ei-
ther to behavioral diffusion or to shared risk factors. If
we are unable to model fully the sources of risk propen-
sity, neighboring units will share spatially autocorrelated
frailties. As a consequence, we will often wish to relax the
assumption of exchangeability. This is accomplished by
allowing the precision parameter, �, to reflect a condi-
tionally autoregressive prior that incorporates neighbor
definitions via the spatial weights matrix.

In the spatial individual frailty model, this CAR(�)
prior has a joint distribution proportional to:

�(I−G)/2exp

⎡
⎣−�

2

∑
i adj i ′

(Wi − Wi ′)2

⎤
⎦

∝ �(I−G)/2exp

[
−�

2

I∑
i=1

mi Wi (Wi − Wi )

]
, (7)

where I is the number of units in the data, G is the num-
ber of unconnected (island) units, i adj i′ indicates that
units i and i′ are adjacent, Wi is the average of the W i′ �=i

neighboring W i, and mi is the number of adjacencies
(Banerjee, Wall, and Carlin 2003, 126; Bernardinelli and
Montomoli 1992).

The conditional distribution of the spatial random
effects that results from the CAR prior is then:

Wi | Wi ′ �=i ∼ N(Wi , 1/(�mi )). (8)

By incorporating the spatial locations of units, the CAR
prior thus produces a conditional distribution for the ran-
dom effects that is normally distributed with a conditional
mean equal to the average of the random effects for neigh-
bors of i and a conditional variance that is inversely pro-
portional to the number of units neighboring i (Thomas
et al. 2004). Thus, where the exchangeable prior displaces
the random effect estimates toward a global mean by not
distinguishing between neighbors and nonneighbors, the
spatial CAR prior displaces these estimates toward a local
mean (Bernardinelli and Montomoli 1992, 989).

The CAR prior for the spatial shared frailty model
follows accordingly. In the spatial shared frailty model,
the individual unit i is now nested in a higher-level cluster
or stratum j, and the random effect refers to this higher-
level stratum, W j . The CAR(�) prior for the spatial shared
frailty model has a joint distribution proportional to:

�(J −H)/2exp

⎡
⎣−�

2

∑
j adj j ′

(Wj − Wj ′)2

⎤
⎦

∝ �(J −H)/2exp

⎡
⎣−�

2

J∑
j=1

m j Wj (Wj − W j )

⎤
⎦ , (9)

where J is the number of higher-level strata in the data,
H is the number of unconnected (island) strata, j adj j′

indicates that strata j and j′ are adjacent, W j is the average
of the W j′ �=j neighboring W j , and mj is the number of
higher-level adjacencies (Banerjee, Wall, and Carlin 2003,
126; Bernardinelli and Montomoli 1992).

The resulting conditional distribution for the strata-
level spatial random effects is then:

Wj | Wj ′ �= j ∼ N(W j , 1/(�m j )). (10)

Analogous to the individual frailty case, the CAR prior
thus produces a conditional distribution for the spatial
shared frailties that is normally distributed with a con-
ditional mean equal to the average of the random effects
for strata neighboring stratum j, and a conditional vari-
ance that is inversely proportional to the number of strata
neighboring j (Thomas et al. 2004). The individual and
shared spatial frailty models also require that a hyperprior,
p(�), be assigned to �. Generally, a Gamma(a,b) hyper-
prior is chosen (Banerjee, Carlin, and Gelfand 2004). A
reference prior should also be employed to gauge the ef-
fect of the Gamma hyperprior (see, e.g., Gelman 2006;
Gelman et al. 2004).

The CAR prior is an improper prior, with the mean of
the distribution of the spatial random effects undefined.
Any constant can be added to the random effects and the
prior remains unchanged (Banerjee, Carlin, and Gelfand
2004, 80). As a consequence of its impropriety, the CAR
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model can only be used as a prior and not as a likelihood
(Banerjee, Carlin, and Gelfand 2004, 80). Because the
CAR prior, as a pairwise-difference prior, is identified only
up to an additive constant, a constraint must be imposed
on the frailties to identify an intercept term (Banerjee,
Wall, and Carlin 2003, 126; Besag et al. 1995). To identify
an intercept in the Weibull models, I thus impose the
constraint that the frailties sum to zero.

Semiparametric Cox Models
with Spatial Frailties

For the Bayesian semiparametric Cox model, the joint
posterior distribution is:

p(�, W, � | t, x, �) ∝ L(�, W; t, x, �) p(W | �) p(�) p(�),

(11)

where t is the collection of event times, � is the collection
of event indicators, and the remaining notation is as in
previous equations. The first term on the right in (11)
is the Cox likelihood and the remaining terms are the
CAR distribution of the frailties, the priors on �, and
the hyperprior on �. The likelihood for the Bayesian Cox
model with spatial individual frailties is then:5

L (�, W; t, x, �) ∝
I∏

i=1

{h0(ti ; xi )}�i

× exp{−H0(ti )exp(�′xi + Wi )},
(12)

while, as Banerjee and Carlin (2003) show, the likelihood
for the Bayesian Cox model with spatial shared frailties is:

L (�, W; t, x, �) ∝
J∏

j=1

n j∏
i=1

{h0(tij ; xij)}�ij

× exp{−H0(tij)exp(�′xij + Wj )}.
(13)

In contrast to standard Cox frailty models, the inclusion
of the conditionally autoregressive prior in the Cox spa-
tial frailty models incorporates the potential spatial de-
pendence among frailties at neighboring locations. The
individual and shared frailty Cox models are completed
by assigning appropriate priors for � and �.

5The Cox model with spatial individual frailties, like its nonspa-
tial counterpart, is only identified in the presence of time-varying
covariates. My NAFTA application does not include time-varying
covariates, and thus I do not estimate Cox models with individual
frailties.

Parametric Weibull Models
with Spatial Frailties

The joint posterior distribution for the Bayesian para-
metric Weibull model is:

p(�, W, � , � | t, x, �)

∝ L(�, W, � ; t, x, �) p(W | �) p(�) p(�) p(�), (14)

where the notation is as in (11), except that � , the shape
parameter for the baseline hazard in the Weibull, is now
included (Banerjee, Wall, and Carlin 2003). The first term
on the right is now the Weibull likelihood, the second is
again the CAR distribution of the random effects, and the
remaining terms are the remaining prior distributions.

The likelihood for the Weibull model with spatial
individual frailties is proportional to:

I∏
i=1

{
� t�−1

i exp(�′xi + Wi )
}�i exp

{ − t�
i exp(�′xi + Wi )

}
,

(15)

while the likelihood for the Weibull model with spatial
shared frailties is proportional to:

J∏
j=1

n j∏
i=1

{
� t�−1

ij exp(�′xij + Wj )
}�ij

× exp
{−t�

ij exp(�′xij + Wj )
}
. (16)

As in the Cox spatial frailty specification, the Weibull spa-
tial frailty model differs from the standard Weibull model
in its inclusion of the CAR prior. The individual and
shared spatial Weibull specifications are then completed
by assigning appropriate priors for �, � , and �. Generally,
a Gamma(�,1/�) prior is chosen for � and, as in the Cox
model, a Gamma(a,b) prior is chosen for � (Banerjee,
Carlin, and Gelfand 2004, 304).

Models with Both Spatial
and Nonspatial Frailties

Researchers may also be interested in estimating survival
models with both spatial and nonspatial frailties. Such an
approach can be useful in examining the relative contri-
butions of spatial and nonspatial effects. Care must be
taken here, however, as the spatial and independent ran-
dom effects are now identified only through their priors
(Banerjee and Carlin 2003, 526). The likelihood for the
Cox model with shared spatial and nonspatial frailties is:

L (�, W; t, x, �) ∝
J∏

j=1

n j∏
i=1

{h0(tij ; xij)}�ij exp{−H0(tij)

× exp(�′xij + Wj + Vj )}, (17)
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while the likelihood for the Weibull model with shared
spatial and nonspatial frailties is:

L (�, W, � ; t, x, �) ∝
J∏

j=1

n j∏
i=1

{
� t�−1

ij exp(�′xij + Wj )
}�ij

× exp
{−t�

ij exp(�′xij + Wj + Vj )
}
,

(18)

where V j represents the nonspatial frailties (with Vj
iid∼

N(0, 1/	)) and the rest of the notation remains as it is
in (13) and (16), respectively (Banerjee and Carlin 2003,
526). The individual model with spatial and nonspatial
frailties is defined analogously. The Cox model with spa-
tial and nonspatial frailties is then completed with the
choice of priors for �, �, and 	 , and the Weibull is com-
pleted with priors for �, �, � , and 	 . The priors previ-
ously discussed for � and � are generally employed for the
joint spatial/nonspatial case, while 	 is generally given a
Gamma(c,d) prior (Banerjee and Carlin 2003).6

Application of Spatial Frailty
Modeling to the Timing of Position

Taking on NAFTA

I apply Bayesian spatial frailty modeling to the timing of
position announcements by members of the U.S. House of
Representatives on the North American Free Trade Agree-
ment (NAFTA). In their analysis of position timing on
NAFTA, Box-Steffensmeier, Arnold, and Zorn (1997) in-
corporated spatial influences via a dummy variable indi-
cating whether the member’s district shared a land border
with Mexico. Spatial effects in position announcements,
however, were unlikely to be limited to the border’s edge. I
posit, instead, that members from neighboring locations
were likely to announce positions at similar times, and
thus exhibit spatial dependence in position timing. Con-
sistent with Galton’s problem, two sets of factors were
likely to produce this spatial autocorrelation.

On the one hand, spatial dependence in position tim-
ing may have occurred as a result of behavioral diffusion.
Caldeira and Patterson (1987) demonstrate that mem-
bers from neighboring legislative districts are more likely
to develop friendships with each other than are members
from more spatially distant districts. Accordingly, I ex-
pect more frequent—and more effective—interpersonal
interaction among members from neighboring districts

6I attempted to estimate a Weibull model with spatial and nonspa-
tial shared frailties for the NAFTA data but was unable to achieve
convergence for several parameters.

than among members from more distant districts, and
greater similarity in the timing of legislative position an-
nouncements as a result.

Alternatively, spatially proximate members may an-
nounce positions at similar times despite little or no
communication between each other. Members from
neighboring locations are more likely to share similar
constituencies, and similar constituent concerns, than
more spatially distant members. Thus, similar factors that
lead to cue taking and cue giving among same-state sen-
ators (Matthews and Stimson 1975) may also produce
spatial dependence in the timing of position announce-
ments among neighboring House members. Members
from neighboring locations may also share similar parti-
san, ideological, or demographic characteristics, produc-
ing similarity in both policy positions and in the timing of
announcements of these positions. Thus, even if members
from neighboring districts rarely talk, they may still ex-
hibit spatially dependent position timing due to common
district or personal attributes.

My analysis thus contrasts with many previous anal-
yses of legislative behavior that have focused on depen-
dence within same-state delegations in that I allow for
dependence across state boundaries. In addition to po-
tential spatial effects, I model three sets of factors likely to
affect position timing. These three sets of factors are con-
stituency, institutional, and individual (member) influ-
ences (see Box-Steffensmeier, Arnold, and Zorn 1997).7

I model constituency factors with two covariates (full
descriptions of all covariates in the models, from Box-
Steffensmeier, Arnold, and Zorn [1997, 336], are pro-
vided in the appendix, along with descriptive statistics).
NAFTA carried different policy effects for constituents
with different economic profiles. Specifically, NAFTA was
expected to pose significant dislocation effects on union
members and low-income citizens, with the high-paying
jobs of the former and the low-skill jobs of the latter par-
ticularly threatened by foreign competition. As a result, I
include the covariates Union Membership, measuring the
percentage of private-sector workers in the member’s dis-
trict who were union members, and Household Income,
measuring the district’s median household income. As
Box-Steffensmeier, Arnold, and Zorn (1997, 327) note,
these covariates as coded in their analysis and mine do
not present clear expectations for effects on the timing
of NAFTA announcements. In each case, members with
high or low values on the variable are expected to an-
nounce earlier than members with intermediate levels

7I chose the covariates for illustrative purposes, to examine the
effects of unmodeled and modeled spatial dependence on frailty
and substantive covariate estimates and model choice statistics.
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due to clearer signals of policy preferences from con-
stituents. I retain Box-Steffensmeier, Arnold, and Zorn’s
operationalization of these covariates.

Institutional influences in the House of Representa-
tives are measured with three covariates. NAFTA Com-
mittee is a dichotomous measure indicating whether the
member was on a committee that acted on NAFTA im-
plementing legislation. Because committee membership
provides an effective stage for cue giving to other mem-
bers, NAFTA committee members are expected to an-
nounce positions earlier than noncommittee members.
Republican Leadership and Democratic Leadership are
dummy variables indicating whether the member held
a position in his or her party’s leadership in the House.
Because Republican leaders were united in their support
for NAFTA, a Republican leadership position is expected
to be associated with earlier position taking. In contrast,
Democratic leaders were divided on the trade agreement,
cross-pressured in some cases by opposition to the agree-
ment among constituents and support for the agreement
by the Clinton administration. As a consequence, this co-
variate does not present clear expectations for the timing
of members’ announcements.

Finally, two interaction terms incorporating member
ideology are included in the model to capture individual-
level influences. The two covariates are Ideology ∗ Union
Membership and Ideology ∗ Household Income.8 Box-
Steffensmeier, Arnold, and Zorn (1997) measure ideol-
ogy with members’ Chamber of Commerce voting scores
(purged of the NAFTA vote) on economic issues. Mem-
bers with voting scores > 50 (indicating more probusiness
voting records) are scored 1 on the dichotomous measure,
while members with scores at or below 50 are scored 0.
Box-Steffensmeier, Arnold, and Zorn posit that it is the
interaction of member ideology and district ideology (as
proxied by union membership and household income)
that is most relevant for the timing of NAFTA position
announcements. I follow their specification and incor-
porate these two interaction terms in the model. Due to
potential cross-pressures between member and district
ideology, neither interaction term presents clear expecta-
tions regarding effects on position timing.

Neighbor Definitions and Priors

I employ distinct neighbor definitions for the individ-
ual and hierarchical frailty models. For the individual
frailty model, I created an adjacency matrix with a queen

8As Box-Steffensmeier, Arnold, and Zorn (1997, 17) note, Ideology
is not entered separately in the model because doing so would
produce an intercept in the Cox model.

contiguity definition, in which each district contiguous
to member i’s district in the 103rd Congress is a neighbor
of member i and each district that is not contiguous to
member i’s district is a nonneighbor. For the hierarchi-
cal model, I nest members of Congress within states and
allow for spatial dependence across the state-level ran-
dom effects. Again I employ a queen contiguity neighbor
definition, in which each state contiguous to state i is a
neighbor of state i and each state not contiguous to state
i is a nonneighbor of state i.9

Employing these two distinct conceptions of neigh-
bors has particular utility for examining the validity of the
standard approach to modeling dependence in legislative
behavior in which neighbors are nested within states. The
standard approach corresponds to the nonspatial shared
frailty model with independent state-level random effects.
The shared spatial frailty model allows us to examine the
validity of treating the state-level random effects as in-
dependent. The individual spatial frailty model, in turn,
allows us to examine whether spatial dependence should
be modeled more locally via neighboring districts, includ-
ing those in neighboring states, or less locally via spatially
autocorrelated state-level frailties.

I complete the specifications by specifying appropri-
ate priors for the parameters in the models. Given that
spatial frailty models have not previously been employed
in political science and prior substantive research pro-
vides little information regarding the values of the spatial
random effects or the values of substantive covariates in
the presence of these spatial frailties, I prefer vague prior
distributions, relying on the data to overwhelm the pri-
ors. I employ a vague hyperprior for � of Gamma(.01,
.01), a prior of N(0, .001) for �0 in the Weibull model,
and priors of N(0, .00001) for the remaining � in both
the Cox and Weibull models.10 I set � = .01, producing a

9The data thus differ in the individual and shared frailty analyses.
Rep. Don Young (R-AK) is excluded from both analyses, since his
district is not contiguous to any other districts. Rep. Neil Aber-
crombie (D-HI) and Rep. Patsy Mink (D-HI) are included in the
individual frailty analysis because their districts are contiguous to
each other but are excluded from the hierarchical frailty analysis
because Hawaii is not contiguous to any other states.

10To examine the sensitivity of the results to the gamma CAR prior,
I also estimated the models using a uniform reference prior for the
CAR prior, following Gelman (2006) and Gelman et al. (2004). The
results are similar whether the gamma or uniform priors are used.
Although the posterior means for the frailty variance parameter,
�, are somewhat smaller under the uniform prior (0.191 vs. 0.195
in the spatial Cox shared frailty models, .005 vs. .011 in the spatial
Weibull individual frailty models, and .007 vs. .018 in the spatial
Weibull shared frailty models), in all cases, the 95% Bayesian cred-
ible intervals for this parameter are distinguishable from zero. The
estimates for the other parameters exhibit only marginal changes.
The reference prior estimates are available from the author.
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Gamma(.01, 100) prior for the shape parameter, � , in the
Weibull model.11

I employ Markov Chain Monte Carlo techniques to
characterize the posterior densities of the parameters and
hyperparameters of interest.12 Specifically, I employed
Gibbs sampling for two separate Markov chains with
overdispersed starting values of 0 and 1 for the intercept,
�0, in the Weibull models, ±3 standard errors from the
frequentist Cox estimates in Box-Steffensmeier, Arnold,
and Zorn (1997, 331) for the remaining �, .01 and .1 for
� , .001 and 1 for �, and .01 and .1 for c and r. I employed
5,000 burn-in iterations for each Markov chain. Conver-
gence was diagnosed via Gelman and Rubin’s diagnostic
(Gill 2002, 399–402), with the diagnostic indicating con-
vergence for each parameter in each model. I retained
10,000 post burn-in iterations for each chain, providing
a sample size of 20,000.

Spatial Dependence in the Timing
of Position Taking on NAFTA

I first examine how the risk of a U.S. House member an-
nouncing a position on NAFTA varied as a function of
time.13 The empirical baseline hazard for the Cox model is
nonmonotonic, but generally increasing over time. Mem-
ber announcements on NAFTA were backloaded—more
than 90% of announcements occurred more than 300
days after Rep. Peter Visclosky’s (D-IN) announcement
of his opposition to NAFTA on August 12, 1992. The data
are, moreover, heavily clustered. More than 80% of mem-
bers announced their positions on September 9, 1993, or

11I employ an Andersen-Gill counting process formulation for the
Cox model. The counting process requires the specification of two
additional priors for c, the researcher’s degree of confidence in
her belief regarding the underlying hazard function, and r, the
researcher’s prior regarding the failure rate per unit of time. I
express weak priors regarding both the values of the hazard function
and the failure rate via priors on c and r of (.0001, .00001) and (.001,
.0001), respectively. For additional information on the counting
process approach, see Andersen and Gill (1982), Clayton (1991),
and Spiegelhalter et al. (2003).

12WinBUGS 1.4.1 was used for the Bayesian analysis.

13I retain Box-Steffensmeier, Arnold, and Zorn’s (1997, 330) cod-
ing and assume that members came under risk of announcing a
position on August 12, 1992, the day that Rep. Peter Visclosky
(D-IN) announced his opposition to NAFTA. “Undecided” and
“leaning” positions are not included in this measure. Members
who did not make a public announcement of their position prior
to the House vote on H.R. 3450, the North American Free Trade
Agreement (NAFTA) Implementation Act, on November 17, 1993,
are recorded as announcing their position on this date. Full de-
scriptions of the data can be found in Box-Steffensmeier, Arnold,
and Zorn (1997).

later; nearly half of members announced their positions
in the month leading up to the House vote.

Such heavily clustered data mitigate against finding
spatial dependence. With so many members announcing
their positions concurrently, it is clear that nonspatial ef-
fects played a significant role in the timing of position
taking. Thus, my particular application serves as a con-
servative test of spatial dependence in time-to-event data.
If we find evidence of significant spatial effects even in
survival data marked by large spikes in event occurrence
such as those in the timing of NAFTA position announce-
ments, we will have reason to expect even stronger spatial
effects in less temporally clustered data.

Assessing Model Choice

Because the spatial CAR prior is an improper prior, Bayes
factors cannot be used to choose among the alternative
models (e.g., Gill 2002). Instead, I use the Deviance Infor-
mation Criterion (DIC; Spiegelhalter et al. 2002) to assess
model choice across the spatial and nonspatial Cox and
Weibull survival models. The DIC, like the more familiar
Akaike Information Criterion (AIC), combines measures
both of model fit and of the effective number of param-
eters (the latter component penalizes models that overfit
the data).

The deviance statistic is central to the model fit com-
ponent of the DIC. The deviance statistic takes the form:

D(�) = −2log f (y | �) + 2logh(y), (19)

where, as Banerjee and Carlin (2003, 532) note, f (y | �) is
the likelihood for the observed data given the parameter
vector � and h(y) is a function of only the data.14 The
intuition behind the deviance statistic is to examine the
improvement in fit produced by the estimation of the pa-
rameter vector �. The model fit is then summarized using
the posterior expectation of the deviance, D = E� | y[D].

Because the estimation of unnecessary parameters in
the parameter vector � naturally improves model fit, it is
important to penalize for overfitting the model. This is
done by calculating the effective number of parameters,
pD, for the model. The effective number of parameters re-
flects the relative role that the data play in estimating the
parameters versus the priors, with larger estimates of the
effective number of parameters indicating that the data
play a larger role. As Gelman et al. (2004, 182) note, in cal-
culating the effective number of parameters, a parameter
receives a value of 1 if it is estimated from the data alone
with no input from the prior, a value of 0 if it is estimated

14This section draws on the discussion and notation in Banerjee
and Carlin (2003) and Banerjee, Wall, and Carlin (2003).
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TABLE 2 Model Choice Statistics

Model P D DIC

Standard Cox 77.43 5201.97
Cox with Nonspatial Shared Frailties 98.92 5170.03
Cox with Spatial Shared Frailties 95.45 5166.85
Standard Weibull 9.24 5204.68
Weibull with Nonspatial 12.17 5228.10

Individual Frailties
Weibull with Spatial Individual Frailties 12.33 5219.19
Weibull with Nonspatial Shared Frailties 12.41 5195.71
Weibull with Spatial Shared Frailties 11.77 5192.05

from the prior alone with no input from the data, and
an intermediate value between 1 and 0 depending upon
the relative contributions of the data and the prior. The
effective number of parameters is calculated as:

pD = E � | y[D] − D(E � | y[�]) = D − D(�̄) (20)

where D is, again, the posterior expectation of the de-
viance and D(�̄) is the deviance taken at the posterior
expectations (Banerjee, Wall, and Carlin 2003, 127). The
effective number of parameters is thus the deviance of the
posterior means subtracted from the posterior mean of
the deviance (Spiegelhalter et al. 2003). Combining the
measure of model fit with the penalty for overfitting, the
DIC then takes the form:

D I C = D + pD . (21)

The DIC of models fit to the same data can be compared
to determine the appropriate model choice. As with other
information criteria, smaller values of the DIC are favored
over larger values.15

Table 2 reports the effective number of parameters
and DIC values for three Cox models and five Weibull
models: standard Cox and Weibull models with no ran-
dom effects, Cox and Weibulls with nonspatial shared
(state-level) random effects, Cox and Weibulls with spatial
shared (state-level) random effects, a Weibull model with
nonspatial individual (district-level) random effects, and
a Weibull model with spatial, individual (district-level)
random effects. In each model, the specification included
the covariates discussed in the fifth section.

As Table 2 shows, in each of the three comparisons
between the spatial and nonspatial frailty models, the

15As Banerjee and Carlin (2003, 532) note, this can be seen from the
fact that small values of the posterior expectation of the deviance
reflect a good fit while a small number of effective parameters
reflects parsimony. The goal, as with any information criterion, is
thus to combine model fit and parsimony.

spatial frailty models outperform their nonspatial coun-
terparts, as indicated by the smaller DIC values. There is,
in short, spatial dependence in the timing of NAFTA an-
nouncements that is not fully captured by the substantive
covariates in the model. Treating the random effects as
though they were spatially independent, as we typically
do, reflects model misspecification.

Importantly, the information criterion advantages
are not produced by overfitting the models with addi-
tional parameters. In both the case of the Cox model and
the shared frailty Weibull model, the spatial frailty model
has a smaller effective number of parameters (pD) than
does the nonspatial frailty model. These spatial frailty
models thus enjoy a parsimony advantage over their non-
spatial counterparts. In the third comparison, for the in-
dividual frailty Weibull models, the spatial model has
only a very marginal increase in the effective number
of parameters over its nonspatial counterpart (12.33 vs.
12.17).

Examining the DICs for the various models, clear
patterns emerge. The models that incorporate spatial de-
pendence in state-level frailties are the preferred model
in both the semiparametric Cox and parametric Weibull
cases. The Cox model with spatial shared frailties outper-
forms both the standard Cox model and the Cox model
with nonspatial shared frailties. The Weibull with spa-
tial shared frailties outperforms the standard Weibull,
the Weibull with nonspatial shared frailties, and the two
Weibull individual frailty specifications. Whether con-
sidering a semiparametric or parametric modeling ap-
proach, in this case scholars should fit a model that ac-
counts for spatial dependence across state-level effects
rather than fitting either a standard model that doesn’t
account for unmodeled heterogeneity in risk propensity,
or a frailty model that treats this heterogeneity as spatially
independent.

More broadly, scholars modeling legislative behavior
have become accustomed to clustering legislators by state
and treating members from different states as indepen-
dent, conditional on the covariates. The DIC values in
Table 2 question the validity of such an approach. Schol-
ars, instead, should consider the possibility that mem-
bers from neighboring states share common unmeasured
characteristics that impact the behavior of interest. The
results also argue that modeling heterogeneity via unit-
specific random effects is not ideal either. The DICs in-
dicate that the argument that the uniqueness of each in-
dividual actor precludes conceptual generalization is not
valid for this particular case of legislative behavior. House
members are not independent actors; neighboring legis-
lators share common risk factors, whether due to direct
behavioral interaction or shared attributes.
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TABLE 3 Posterior Summaries for Cox Models

1 2 3

Union Membership 3.512 3.424 2.736
(1.875, 5.154) (1.243, 5.543) (0.393, 5.055)

Household Income −0.041 −0.106 −0.132
(−0.168, 0.087) (−0.245, 0.027) (−0.272, 0.009)

NAFTA Committee −0.009 −0.023 −0.040
(−0.160, 0.142) (−0.177, 0.130) (−0.193, 0.114)

Republican Leadership 0.348 0.407 0.418
(−0.008, 0.678) (0.040, 0.758) (0.051, 0.764)

Democratic Leadership 0.091 0.033 0.018
(−0.244, 0.405) (−0.312, 0.354) (−0.328, 0.339)

Ideology ∗ Union Membership −4.174 −3.873 −3.778
(−6.676, −1.664) (−6.491, −1.201) (−6.429, −1.138)

Ideology ∗ Household Income 0.142 0.128 0.145
(−0.035, 0.317) (−0.052, 0.307) (−0.034, 0.324)

� 0.082 0.195
(0.026, 0.178) (0.056, 0.442)

Cell entries are the posterior means, with 95% credible intervals in parentheses.
(1 = Standard Cox model, 2 = Cox model with nonspatial shared frailties, 3 = Cox model with spatial
shared frailties)

Cox and Weibull Results

I examine spatial dependence in the timing of NAFTA po-
sition announcements as well as its effects on substantive
covariates via summaries of the posterior densities from
the Bayesian Cox and Weibull analyses.16 Table 3 presents
the summaries for the semiparametric Cox MCMC analy-
sis, while Table 4 presents the summaries for the paramet-
ric Weibull MCMC analysis. In both tables, the first cell
entry is the mean of the posterior density of the particular
parameter of interest while the cell entry in parentheses
below is the corresponding 95% Bayesian credible interval
(formed by taking the 2.5 and 97.5 posterior percentiles).
Descriptions of the models in each column are provided
below the tables.

Examining the Cox summaries in Table 3, we can see
that employing a standard nonspatial frailty model un-
derstates the frailty variance estimate in comparison to
the spatial frailty model favored by the DICs. The poste-
rior mean of the variance of the random effects, �, is more
than twice as large in the spatial model as in the nonspa-
tial model. Spatially proximate members share common
unmodeled risk factors that distinguish them from their
spatially distant colleagues. Modeling these risk factors as

16The Grambsch and Therneau global test and Harrell’s rho
covariate-specific tests showed no violations of the proportional
hazards assumption.

though they were spatially independent understates the
unmodeled heterogeneity in risk propensity.

By mapping the frailties from the nonspatial and spa-
tial Cox models, we can further see the problems that are
induced by modeling spatially dependent risk factors as
though they were spatially independent. Figure 1 presents
a map of the posterior means of the nonspatial state-level
frailties—means estimated under the assumption of spa-
tial independence. Figure 1 suggests a checkerboard pat-
tern, with little spatial clustering in the random effects.

Figure 2 maps the posterior means from the spatial
Cox model that takes into account the spatial depen-
dence between the state-level frailties. As can be seen
from Figure 2, there is, in fact, a strong spatial clustering
in the unobserved risk factors. There are distinct spatial
bands in the random effects. Portions of the Northeast,
upper Plains, and West were marked by particularly high
risk propensity (and thus, all else equal, members from
these states were more likely to be early announcers of
NAFTA positions). Members from the Rocky Mountain
states shared the next level of hazards. Next, members
from a band of states extending from the industrial Mid-
west, southwest into Oklahoma shared similar risk factors.
Next, we see a set of shared hazards extending from the
border states to Pennsylvania. Finally, we see a clustering
in the Carolinas of low risk factors for NAFTA announce-
ments. In contrast to the false impression of independent
random effects suggested by Figure 1, we can see from
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TABLE 4 Posterior Summaries for Weibull Models

1 2 3 4 5

Constant −19.14 −18.59 −18.84 −18.83 −18.91
(−21.24, −17.29) (−20.09, −17.04) (−20.35, −17.63) (−20.43, −17.09) (−20.61, −17.09)

Union Membership 1.154 1.102 0.966 1.021 1.006
(−1.035, 3.290) (−1.094, 3.212) (−1.292, 3.238) (−1.267, 3.266) (−1.344, 3.271)

Household Income −0.034 −0.034 −0.042 −0.041 −0.044
(−0.203, 0.133) (−0.207, 0.136) (−0.210, 0.128) (−0.213, 0.129) (−0.216, 0.129)

NAFTA Committee −0.011 −0.011 −0.007 −0.008 −0.008
(−0.220, 0.196) (−0.222, 0.194) (−0.217, 0.199) (−0.217, 0.200) (−0.216, 0.197)

Republican Leadership 0.119 0.117 0.124 0.123 0.124
(−0.392, 0.585) (−0.397, 0.582) (−0.386, 0.587) (−0.391, 0.584) (−0.386, 0.588)

Democratic Leadership 0.027 0.025 0.026 0.026 0.028
(−0.438, 0.453) (−0.456, 0.456) (−0.439, 0.452) (−0.443, 0.455) (−0.446, 0.454)

Ideology ∗ Union −1.593 −1.514 −1.350 −1.412 −1.434
Membership (−5.167, 1.962) (−5.028, 2.003) (−4.977, 2.180) (−5.057, 2.182) (−5.006, 2.187)

Ideology ∗ Household 0.043 0.040 0.048 0.044 0.048
Income (−0.194, 0.282) (−0.197, 0.281) (−0.192, 0.288) (−0.200, 0.285) (−0.193, 0.286)

� 3.173 3.081 3.123 3.121 3.134
(2.869, 3.520) (2.828, 3.330) (2.925, 3.371) (2.834, 3.383) (2.835, 3.413)

� 0.008 0.011 0.011 0.018
(0.002, 0.021) (0.002, 0.032) (0.003, 0.030) (0.003, 0.064)

Cell entries are the posterior means, with 95% credible intervals in parentheses.
(1 = Standard Weibull model, 2 = Weibull model with nonspatial individual frailties, 3 = Weibull model with spatial individual frailties,
4 = Weibull model with nonspatial shared frailties, 5 = Weibull model with spatial shared frailties)

Figure 2 that the spatial location of members played a
significant role in the timing of their position announce-
ments on NAFTA.

Table 3 demonstrates the importance of modeling
spatial dependence in random effects if we wish to draw
accurate inferences about substantive covariates of in-
terest. The posterior means for the spatial frailty model
differ from those in the standard, nonfrailty Cox model,
and in all but one case, differ more from the latter than
do the means from the nonspatial frailty model. Note, for
example, the changes in the posterior means for Union
Membership and the Ideology ∗ Union Membership inter-
action in the spatial model versus the standard Cox model.
Similarly, the means for the Democratic Leadership effects
are noticeably different across the two models. Where
the standard Cox model predicts that a position in the
Democratic leadership increases the hazard of a NAFTA
announcement by 9.5%, the spatial Cox model predicts
an increase in the hazard of only 1.8%.

Table 4 reports the posterior summaries for the five
Weibull models. Although the parametric assumption of
the Weibull makes it more restrictive, the Weibull specifi-
cations also allow for the estimation of individual frailty

models. As a result, the Weibulls allow us to compare how
spatial frailty effects differ at the individual and shared
levels.

In both the individual and shared Weibulls, the frailty
effects are larger in the spatial models favored by the DICs
than in the nonspatial models. The mean of the variance
parameter, �, is also noticeably larger in the Weibull with
spatial shared frailties than in the Weibull with spatial
individual frailties. Thus, consistent with the DICs, it is
particularly important in estimating position timing to
account for spatial dependence across state-level random
effects. As we would expect given the smaller values of
� in the Weibull models, the differences in effects across
models on substantive covariates are not as dramatic as
in the Cox specifications.

Examining the effects of substantive factors on
NAFTA position timing, we can gauge the effect of con-
stituency, institutional, and individual factors by exam-
ining the posterior summaries from the best-performing
model according to the DIC, the Cox spatial shared frailty
model. As we can see from Table 3, the main effect of
large union memberships in a member’s district was to
increase the hazard of a NAFTA position announcement.
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FIGURE 1 Nonspatial Cox State-Level Frailties

FIGURE 2 Spatial Cox State-Level Frailties
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Economically conservative members from districts with
large union memberships, however, had reduced hazards
of NAFTA announcements, as indicated by the negative
value for the mean on the Ideology ∗ Union Membership
interaction. This suggests, then, that cross-pressures de-
layed announcements for some members. Also of note,
members of the Republican leadership had increased haz-
ards of NAFTA announcements; this is as we would ex-
pect given the Republican leadership’s united support for
the trade agreement. Overall, constituency, institutional,
and individual characteristics all influenced the timing of
NAFTA position announcements.

Conclusion

In this article I have presented an approach to modeling
spatial dependence in political event processes. The im-
portance of modeling spatial autocorrelation in survival
data is clear: many of our theories of event processes in
political science predict spatial dependence among neigh-
boring units. If we are unable to model fully this spatial
dependence, the result will be spatially autocorrelated un-
measured risk factors among neighboring units. Political
scientists examining event processes will, therefore, of-
ten not wish to assume that frailties among neighboring
observations are spatially independent. Instead, scholars
will often have strong theoretical justification for mod-
eling spatial dependence in the random effects among
neighboring observations. The conditionally autoregres-
sive prior allows political scientists to incorporate this
spatial dependence in their survival models.

The article’s results highlight the importance of mod-
eling the spatial autocorrelation that is common to so
many political science data. The Deviance Information
Criterion (DIC) values favored the spatial shared frailty
models (in both semiparametric and parametric forms)
over both standard nonfrailty models and nonspatial
frailty models. The posterior mean of the random ef-
fects variance parameter in both the semiparametric and
parametric models also differed from the mean for the
nonspatial variance parameter. Incorporating the spatial
CAR prior also produced distinct changes in the posterior
means for substantive covariates.

This initial analysis of spatial frailties in political time-
to-event data examined single-spell event processes. Fu-
ture research can extend Bayesian spatial survival models
to examine spatial dependence in more complex event
processes. Often political events are repeated events; units
are at risk of experiencing the same type of event multi-
ple times. Substantive theory predicts significant spatial

dependence in repeated event processes. For example, in-
ternational conflicts occur among the same participants
repeatedly, with particular regions such as the Middle
East particularly prone to such repeated conflicts. A more
complex model would examine spatial dependence in
competing risks, in which units at any time are at risk
of experiencing any of multiple types of events. We could
easily, for example, imagine policymakers making choices
among various health policy reforms where the choice of
the particular policy is shaped by the decision processes
in neighboring states or communities.

At their base, political concerns are shared concerns.
As a corollary, political events carry significance, in large
part, because they are not isolated events. A conflict in
one location may spill over and produce conflicts in
neighboring locations. Democratization in one nation
may produce a wave of democratization in neighboring
countries. Political event processes, in short, take place
in both space and time. To draw valid inferences about
the factors shaping political event processes we must ac-
count for both these spatial and temporal dimensions.
The Bayesian approach examined here presents an effec-
tive approach for political scientists wishing to account
for space and time in their models of political event
processes.

Appendix
Variable Descriptions

Dependent Variable: Timing of Position. The number of
days after August 11, 1992, until the member of Congress
stated a yes or no position on NAFTA. Mean: 403.14, Stan-
dard Deviation: 70.16, Minimum: 1, Maximum: 463.

Independent Variables

Union Membership. Proportion of private-sector work-
ers belonging to a union in the member’s district, 1991–
92. Data are from the Current Population Survey. Values
on variable are mean-centered. Mean: .00, Standard De-
viation: .06, Minimum: −.10, Maximum: .20.

Household Income. Median household income in the
district in thousands of dollars. Data are from the Almanac
of American Politics, 103rd Congress. Values on variable
are mean-centered. Mean: −.01, Standard Deviation: .84,
Minimum: −1.62, Maximum: 2.65.

NAFTA Committee. Dichotomous variable indicating
whether member was on a committee that acted
on NAFTA implementing legislation. Coded 1 if the
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representative was a member, 0 otherwise. Mean: .30,
Standard Deviation: .46, Minimum: 0, Maximum: 1.

Republican Leadership. Dichotomous variable indicat-
ing whether member was in a Republican leadership posi-
tion in the House. Coded 1 if minority leader, conference
chair, vice-chair, secretary, minority whip, chief deputy
whip, deputy whip, or assistant deputy whip, 0 other-
wise. Mean: .04, Standard Deviation: .20, Minimum: 0,
Maximum: 1.

Democratic Leadership. Dichotomous variable indicat-
ing whether member was in a Democratic leadership po-
sition in the House. Coded 1 if Speaker, majority leader,
caucus chair, vice-chair, secretary, majority whip, floor
whip, ex-officio whip, chief deputy whip, or assistant
deputy whip, 0 otherwise. Mean: .05, Standard Devia-
tion: .22, Minimum: 0, Maximum: 1.

Ideology (included in interaction terms). Dichotomous
variable based on 1993 Chamber of Commerce voting
score (with NAFTA vote purged). Coded 0 if rating was
≤50, 1 otherwise. Mean: .44, Standard Deviation: .50,
Minimum: 0, Maximum: 1.
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