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The Poisson model, discovered nearly two centuries ago, is the basis for analyses of

rare events. Its first applications included descriptions of deaths from mule kicks. More

than half a century ago the Poisson model began being used in geographical analysis.

Its initial descriptions of geographic distributions of points, disease maps, and spatial

flows were accompanied by an assumption of independence. Today this unrealistic

assumption is replaced by one allowing for the presence of spatial autocorrelation in

georeferenced counts. Contemporary statistical theory has led to the creation of pow-

erful Poisson-based modeling tools for geographically distributed count data.

Introduction

Although the 1711 draft version of de Moivre’s The Doctrine of Chance indicates

that he came very close to discovering the Poisson distribution (Hald 1998, p. 214),

Siméon-Denis Poisson is credited with introducing the distribution in 1837 that

bears his name, when he published rules of probability based on the incidence of

fatalities in the French army because of mule kicks. Although the Poisson distribu-

tion constituted an important contribution to mathematical probability theory, wid-

er appreciation of its importance did not occur until 1898, when von Bortkiewicz

published data on the number of deaths by horse or mule kicks in 10 (of 14 re-

ported) corps of the Prussian army, each observed over 20 years. Shortly thereafter,

appearing in one of the oldest textbooks on statistics, Bowley (1901, pp. 301–02)

fitted the Poisson model to deaths from anthrax during the years 1875–1894. One

feature of the Poisson distribution is that it deals with the occurrence of discrete

events whose individual probability is low, but whose number of opportunities for

occurrence is very high (the law of large numbers). During the century that fol-

lowed Bortkiewicz’s paper, the Poisson probability model has been used to

describe and analyze rare events (the law of small numbers; Falk etal. 1994), rang-
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ing from accident frequencies (or other types of malfunctions/failures), through

queuing situations, to zoological sampling involving catch–recatch strategies. The

many different types of spatial problems that are reviewed in this article have stim-

ulated quantitative geographers’ interest in the Poisson model.

The description and explanation of map patterns of objects or events has been

of continuing interest in geography since its quantitative revolution in the 1950s

and 1960s. The Poisson distribution has played an important role in this work. This

article briefly reviews how geographers who are engaged in spatial analysis have

applied the Poisson distribution, and how its specification as a model has been

adapted to meet the requirements of specific problems.

The Poisson distribution may be defined in the following way. Let Y denote a

random variable whose values are constrained to be nonnegative integers that are

counts of the number of times some event occurs. Let P{Y 5 y} denote the prob-

ability that the random variable Y takes the particular value y. If

PfY ¼ yg ¼ e�lly

y!
; l > 0; and y ¼ 0; 1; 2; . . . ; ð1Þ

then Y is said to have a Poisson distribution with intensity parameter l. Fig. 1 shows

examples of the Poisson distribution for different values of l. As l increases, the

Poisson distribution first becomes relatively more symmetric (Fig. 1b, c), and then

relatively less peaked (Fig. 1d), approximating a normal distribution as l goes to

Figure 1. Histograms of 10,000 values randomly drawn from four Poisson distributions, up-

on which a normal curve with the same mean and variance has been superimposed. (a) Top

left: l5 0.5. (b) Top right: l5 3. (c) Bottom left: l5 25. (d) Bottom right: l5 50. Note: The

maximum frequency on the vertical axis decreases as l increases.
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infinity. A Poissonness plot (Hoaglin 1980), which is comparable with a normal

quantile plot, results in points along a straight line when the data follow a Poisson

distribution. Fig. 2 shows examples of this plot for selected values of l. Fig. 2b

illustrates that as l decreases from 25 to 0, the probability of observing counts even

as large as 10, becomes negligible. The binomial example (Fig. 2c, d) illustrates that

when data deviate from a Poisson distribution, the points form a curved line. An

important property of the Poisson distribution is that both its mean and its variance

equal l; hence, straight lines appear as in Fig. 2.

The Poisson distribution may be used as an approximation to the binomial

distribution when the probability of some phenomenon occurring is very small

(e.g., Po0.01) but the number of trials (n) is very large (e.g., n41000). Suppose n

trials of an experiment are carried out so that the outcome for each trial is either a

‘‘success’’ (denoted by 1) or a ‘‘failure’’ (denoted by 0). Let P denote the probability

of a ‘‘success’’ (0oPo1); hence, (1� P) denotes the probability of a ‘‘failure.’’ The

outcome of each trial is independent of all other trials, and the probabilities of

success and failure remain the same throughout n trials. If Y denotes the random

Figure 2. Poissonness plots, where count metameter 5 ln(theoretical frequency for count

k)1ln[(count k)!]. Top: l5 0.5 (open circle), 1 (plus), 2 (cross), 5 (solid square), 10 (asterisk),

25 (solid circle). (a) Top left: theoretical results. (b) Top right: simulated results based on

100,000 replications (note: many of the very rare extreme values do not get sampled).

Bottom: Poisson variable results are denoted by a solid circle, and binomial variable results

are denoted by an asterisk. (c) Bottom left: theoretical results for Poisson l5 25, and bino-

mial n 5 50 and p 5 0.5. (d) Bottom right: simulated results based on 100,000 replications for

Poisson l5 2, and binomial n 5 11 and p 5 0.5.
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variable that counts the number of successes in n trials, then

PfY ¼ yg ¼ n!

y!ðn � yÞ! Pyð1� PÞn�y ; P > 0; and y ¼ 0; 1; 2;:::;n; ð2Þ

is said to have a binomial distribution with parameters n and P. If n gets very large

(n ! 1) whereas P gets very small (P ! 0), such that the product nP ! l (a con-

stant), then under these conditions the distribution of Y can be shown to converge

in the limit to a Poisson distribution whose mean is given by nP. (A proof of this

result is given, for example, in Meyer [1970, pp. 161–62].) Therefore, the Poisson

distribution is used as a model to describe the outcome of a series of a large

number, n, of independent trials where the probability, P, of a ‘‘success’’ in each

trial is small (e.g., Po0.01).

Consider another situation in which a total of n point events are allocated to a

spatially continuous geographic region A in such a way that:

1. the number of points found in nonoverlapping subregions in A are independ-

ent;

2. the probability of finding two or more points in a sufficiently small subregion

(DA) is negligible (more formally, [probability of two or more events in DA]/

jDAj ! 0 as jDAj ! 0); and

3. the distribution of the number of points found in any subregion B of A is di-

rectly proportional to the area of B (denoted jBj), does not depend on the

location of B, and follows a Poisson distribution with mean ljBj.

Given these assumptions, the number of point events in any subregion B of A is

a random variable that follows a Poisson distribution with intensity parameter l,

which defines the density of points per unit area. This situation defines a (homo-

geneous) Poisson process, also sometimes referred to as complete spatial random-

ness, the basic model for randomness in two-dimensional space (Cressie 1991, p.

586). Fig. 3 shows one realization of a Poisson process having n 5 250 points. Note

that even though the process is random, subregions can be identified from visual

inspection that show apparent clusters of points, the reason for which is explained,

for example, in Cressie (1991, p. 586).

Such events may be observed using randomly or contiguously placed quadrats

in A, in which case data comprise counts. This aggregation results in a significant

loss of spatial information, because the relative positions of events within each

quadrat are discarded. In earlier studies, quadrat location was also ignored, thus,

discarding still more spatial information (see Cressie 1991, pp. 588–94). Of note is

that the associated likelihood function for statistical analysis purposes is different in

the case of quadrat counts compared with when the original point locations are

recorded (Cressie 1991, Chapter 8).
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Early geographic applications of the Poisson distribution

Applications of the Poisson distribution in the 1950s and 1960s fell broadly into

three categories: analysis of quadrat counts, analysis of point patterns, and iden-

tifying when the number of times an event has occurred is extreme. In the 1960s,

fitting probability models became an important way of describing certain types of

maps. Berry and Marble’s (1968) edited collection provides an interesting range of

papers that reflects this type of work, including a pioneering study by Matui (1932)

of the distribution of scattered villages in two regions on the Tonami Plain in Japan.

Both regions were partitioned into N contiguous quadrats—regular square spatial

units of the same size, jBj. Let Y(i) denote the number of events (villages) in quadrat

i (i 5 1, . . . ,N) for a selected region. Under the assumption of an underlying Poisson

process for the distribution of villages, Equation (1) becomes

PfYðiÞ ¼ yðiÞg ¼ e�ljBjljBjyðiÞ

yðiÞ! ; yðiÞ ¼ 0; 1; 2; . . . ; i ¼ 1; 2; . . . ;N: ð3Þ

The mean of the Poisson process, ljBj, is estimated by Siy(i)/N, which is its

maximum likelihood estimator. The frequency distribution of observed counts can

be compared with the theoretical frequency distribution that would arise if the

Siy(i) villages followed a Poisson distribution with mean ljBj ¼ SiyðiÞ=N. Matui

shows that the distribution of village counts, by quadrats, for one of the regions on

the Tonami Plain follows a Poisson distribution, while the other does not.

If data are available for the location of objects on a continuous surface, then

tests can be undertaken that compare the average observed with the expected

Figure 3. The geographic distribution of coordinates that are pairs of random drawings from

a bivariate uniform distribution.
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distance between nearest neighbors under the assumption of a Poisson point proc-

ess. King (1962) provides an illustration of this approach, analyzing the spatial

pattern of settlements in different U.S. states. More recently, tests for randomness

where the spatial information on point locations is retained are based on K function

analysis, which allows tests to be performed simultaneously along a continuum of

scales (Ripley 1981).

Another important application of the Poisson model is the identification of ar-

eas where the numbers of events of a particular type are unlikely to have occurred

by chance alone. This is an early example of cluster detection. Choynowski (1959)

proposed the following test for regions with different sizes of at-risk populations,

and then applied a Poisson model to the incidence of brain tumors in a region of

Poland subdivided into 17 counties. In his application, Equation (3) becomes

PfYðiÞ ¼ yðiÞg ¼ e�lðiÞlðiÞyðiÞ

yðiÞ! ; yðiÞ ¼ 0; 1; 2; . . . ; i ¼ 1; 2; . . . ; 17; ð4Þ

where Y(i) is the number of brain tumors in county i, and the mean, l(i), depends on

the size of the at-risk population in county i. The Poisson model is used here as an

approximation to the binomial model. The number of trials in county i is its at-risk

population, and the probability of having a brain tumor is very small. Under the

assumption that brain tumors occur at random across a region, l(i) is estimated as

the product of the assumed region-wide risk (p 5 the total number of cases divided

by the total population at risk in a study region) times the size of the at-risk pop-

ulation in county i (i.e., n(i)). Choynowski’s test, for each county, involves calcu-

lating P{Y(i) � y(i)}, where y(i) is the observed number of brain tumors in county i.

The null hypothesis that an observed count could be due to chance variation is

rejected when a probability is less than or equal to a, the level of significance. This

test amounts to establishing, for any county i, whether or not its observed count lies

in the right-hand (a � 100%) tail of the Poisson distribution with parameter l(i).

Rejection of the null hypothesis might encourage an analyst to explore whether

area-specific factors are responsible for a high count.

Some of the early applications of the Poisson model in locational analysis were

undertaken in the belief that this was a first step in trying to identify the underlying

process responsible for an observed spatial pattern of objects. Such an agenda had

its limitations, as Matui (1932) points out. The ‘‘mere coincidence of their super-

ficial characters (does not imply) that the two phenomena have also the same

causes’’ (Berry and Marble 1968, p. 152). In other words, just because a map pat-

tern can be described by a Poisson distribution does not necessarily imply that the

underlying process generating it was a purely random one. Getis and Boots (1978)

demonstrate this point with examples of different stochastic location processes that

give rise to the same probability distribution of counts by quadrat. At best, fitting

such models provides a description of a static situation that is a manifestation, at a

given point in time, of some underlying space–time process.

Geographical Analysis Special Issue

128



Similarly, apparent clusters of cases can occur even in a completely spatially

random pattern (see Fig. 3). As the number of tests increases (i.e., as the number of

quadrats, counties, or subregions increases), the probability of finding at least one

areal unit for which the null hypothesis is rejected converges to 1. This complica-

tion is known as the problem of multiple testing, and for independent tests, can be

corrected in a conservative way that preserves an overall level of significance, a, by

incorporating a Bonferroni adjustment to significance levels for the individual tests

(i.e., a/(number of tests)).

Subsequent attention has focused on this as well as on other aspects of the

problem of analyzing map patterns. The following observations apply to fitting the

Poisson distribution or, indeed, any other probability model to a spatial data set:

� Scale effects. The goodness of fit of a Poisson model may depend on the choice

of quadrat size, implying that different sized quadrats should be investigated. In

the case of distance-based tests, not only first, but also second, third, and

higher order nearest neighbor statistics must be examined. Ripley (1981) de-

veloped the K function, which provides a description and hypothesis test for

point patterns at a continuum of scales. See Haining (1982) for a K function

application to settlement geography. The identification of clusters depends on

the relationship between the geographical extent of any real cluster and the

size of the spatial partitioning unit used in an empirical analysis. Openshaw

et al. (1987) developed the geographical analysis machine (GAM) to test for

clusters at different scales. Subsequent developments by, among others, Besag

and Newell (1991) and Kulldorff (1997, 1998), have addressed different as-

pects of the multiple testing problem.

� Partition effects. At any given scale, the goodness of fit of a model could de-

pend on the specific choice of surface partitioning, which is important because

of the arbitrary nature of partitionings such as census tracts. The combination

of scale and partitioning effects has become known as the modifiable areal unit

problem (MAUP; Holt et al. 1996a, b; Tranmer and Steel 1998).

� Boundary (i.e., edge) and frame effects. The choice of study area, as well as its

areal extent and shape, can influence results. Detection of a cluster of points

depends on the size of a study region, whereas the fit of a model to describe

spatial variation can be affected by the shape of a study area (Haining 1990, p.

373), as well as by the distribution of locations within a region to which at-

tribute values are tagged (Unwin and Wrigley 1987). At the boundary, nearest

neighbors lying outside a region may be unknown, and statistics need to be

adapted to reflect this lack of data (Ripley 1981; also see Griffith 1983, 1985;

Griffith and Amrhein 1983). (See Gatrell et al. (1996) for an application in

medical geography using Ripley’s K function with an edge correction.)

� Spatial heterogeneity. Spatial variation may arise because the appropriate

model formulation varies across a map—subregional map descriptions require

different model forms and/or varying parameters of a single model form. In
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other words, the underlying structure or generation mechanism is not the same

across the entire map. In the case of a Poisson process, not all parts of a study

region may be equally likely to contain the object or event of interest (e.g., not

all parts of an area may be equally appropriate for settlement), resulting in l
varying across a geographic landscape (see ‘‘Models assuming independence

between neighboring counts’’). So-called ‘‘local statistics’’ (e.g., LISA statistics)

based on analyzing spatially defined subsets of data may be used to investigate

for the presence of these situations (Getis and Ord 1992; Anselin 1995; Ha-

ining 2003, pp. 250–63).

� Location errors. Errors in recording the location of an event can have impli-

cations for detecting the presence of clusters, as well as for testing whether a

map pattern shows evidence of clustering (Kulldorff 1998).

Evolution of Poisson-based forms of spatial analysis

Developments in the use and specification of the Poisson model within spatial

analysis have followed three basic thrusts, namely: modified Poisson process mod-

els for describing spatial variation, explaining variation in Poisson counts, and Po-

isson modeling of spatial flows.

Modified Poisson process models

Models assuming independence between neighboring counts

In the study by Matui (1932), one of the two regions of the Tonami Plain had a

count distribution, by quadrats, that did not conform to a Poisson distribution.

Dacey (1964) revisited the data set using a modified Poisson model. He superim-

posed a second process on the Poisson process defined by Equation (3). In this

second process, a second set of points is distributed at random under the constraint

that no quadrat could receive more than one point. This is a Bernoulli process. The

combination of Poisson and Bernoulli processes yields a ‘‘point pattern more reg-

ular than random.’’ This was a modification Dacey was to use in other applications

(see, e.g., Dacey 1966b). It is an example of an additive mixed Poisson process.

Other Poisson mixtures deal with the problem of spatial heterogeneity by combin-

ing the weighted sum of two spatially separated Poisson processes that have dif-

ferent intensity parameters. These models are summarized and discussed in Getis

and Boots (1978, pp. 45–48), who also discuss the class of multiplicative mixed

models. This latter class includes compound models in which the Poisson intensity

parameter (l) is itself a random variable. When l varies from quadrat to quadrat as

an independent G random variable, the resulting distribution for the counts is neg-

ative binomial (see, e.g., Dacey 1966a). Multiplicative mixed models also include

generalized models that involve a two-stage process. The location of, say, a set-

tlement is the outcome of a Poisson location process; the number of houses in the

settlement (the ‘‘offspring’’) also is the outcome of a Poisson process (leading to a

Neyman Type A distribution). Alternatively, the second-stage process is the out-

come of a truncated Poisson process that prohibits the occurrence of a zero count,
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thus ensuring that settlements always have at least one house (a Thomas process).

Getis and Boots (1978, pp. 48–70) discuss these and other models at length.

Models allowing for spatial correlation between neighboring counts

All of the preceding models assume that area counts are independent. In the case of

the generalized models described in ‘‘Early geographic applications of the Poisson

distribution,’’ the ‘‘offspring’’ are simply counts with no spatial distribution. There is

an implicit assumption that, in a quadrat-based analysis, any spatial dispersion of

offspring is very small relative to the scale of quadrats.

In many generic contexts the assumption of independence between neighbor-

ing counts cannot be expected to hold. One source of spatial dependence could be

the nature of the underlying process generating the data. Haining (2003, pp. 15–

22), for example, discusses different types of generic spatial processes that would

invalidate the independence assumption, including dispersal processes in which

the dispersion range is moderate to large relative to the scale of the spatial units in

terms of which the process is observed and measured. Retaining information on the

location of the spatial units now becomes important. To model such situations—

that is, to model both the aspatial counts and the spatial variation in those counts—

Besag (1974) defined a general class of models that could be used to describe dif-

ferent types of spatially correlated data. He called these ‘‘auto-models,’’ and he

included in his paper the ‘‘auto-Poisson’’ model. Let PfYðiÞ ¼ yðiÞjfY ðjÞg; j 2
NðiÞg denote the conditional probability that the random variable Y(i), defined at

location i, takes on the particular value y(i), given the values of Y at the sites that are

the neighbors of i, say N(i). If

PfYðiÞ ¼ yðiÞjfYðjÞg; j 2 NðiÞg ¼ e�lðiÞlðiÞyðiÞ

yðiÞ! ; yðiÞ ¼ 0; 1; 2; . . . ; ð5Þ

where ln½lðiÞ� ¼ aðiÞ þ
P

j2NðiÞ bði; jÞyðjÞ, then the {Y(i)} are said to have an auto-

Poisson distribution with intensity parameter l(i), through which spatial depend-

ency is introduced. The parameter a(i) is an area-specific effect. The term

b(i,j) 5 b(j,i), following customary practice in this area of modeling, might be spec-

ified as follows: b(i,j) 5 g w(i,j), where g is a spatial autoregressive parameter. The

term w(i,j) equals 0 or 1; this term represents the neighborhood structure of the

areas under study. Thus, if N(i) denotes the set of neighbors of area i, then w(i,j) 5 1

if j is a neighbor of i [jAN(i)]; otherwise, w(i,j) 5 0. In addition, w(i,i) 5 0 must be

assumed. However, there is a problem with this model. When consistency condi-

tions are enforced (e.g., the probability of all possible outcomes must sum to 1),

then g � 0. Therefore, the auto-Poisson model can only describe map patterns with

negative spatial correlation—that is, where the underlying processes are compet-

itive. Because negative spatial autocorrelation rarely is encountered in practice, this

restriction severely limits the applicability of this model. Kaiser and Cressie (1997)

circumvent this negativity constraint by Winsorizing counts to a finite set of inte-

gers, which sets an upper limit on the largest count that can occur. Winsorizing
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involves systematically replacing extremely high counts with the value of some cut-

off criterion (after Barnet and Lewis 1978), and is similar to truncating extreme

counts. The infinite sum of a Poisson probability model is replaced with a finite

sum, whose upper limit is an acceptable most extreme count, which utilizes all of

the Poisson type counts information in a data set.

Although the Kaiser–Cressie modification of the auto-Poisson model allows

positive spatial autocorrelation to be captured with a single parameter, Griffith

(2002, 2003) proposes a spatial filtering approach to modeling spatially correlated

Poisson counts that usually requires far more than one parameter. In his approach a

map represents the realization of n independent Poisson samples, one for each

areal unit, where the mean, l(i)—and hence, the variance—varies across the map

and is spatially structured. In this model

ln½lðiÞ� ¼ aðiÞ þ
XK

k¼1

ZðkÞEði; kÞ;

where E(i,k) is the value for areal unit i associated with the kth eigenvector of the

matrix (I–D)W(I–D) that appears in the numerator of the Moran Coefficient. W is

the matrix of w(i,j) values describing an assumed neighborhood structure (see the

preceding discussion), I is the identity matrix, and D is a matrix containing 1/n in

each of its cells. Kon is the number of eigenvectors used to construct a spatial filter,

and Z(k) and a(i) are parameters to be estimated, where a(i) denotes area-specific

effects. Specification of spatial structure derives from assumptions about which

areal units are neighbors. This model formulation specifies spatial heterogeneity in

the mean and thus has similarities with the mixture models discussed in ‘‘Models

assuming independence between neighboring counts.’’ It differs from that for the

auto-Poisson model, in which Poisson samples are only conditionally independent.

Furthermore, Griffith’s specification allows counts to be positively autocor-

related—containing anywhere from weak to strong levels—because spatial corre-

lation is embedded into the mean response of a Poisson model.

Yet another way to capture positive or negative spatial autocorrelation in a

Poisson model is to define the mean response as

ln½lðiÞ� ¼ aðiÞ þ SðiÞ; ð6Þ

where S(i) is a random variable (or random effect). When S 5 {S(1), S(2), . . ., S(n)} is

defined by the conditional autoregressive (CAR) model (Besag 1974)—whose mul-

tivariate normal covariance is specified in matrix form as (I� tW)�1 s2—positive

or negative spatial autocorrelation can be introduced into the counts Y(i) through

the spatial autoregressive parameter (t) of the CAR model. Unlike the auto-Poisson

model given by Equation (5), each Y(i) value is an independent sample from a Po-

isson distribution, given S. As with Griffith’s model specification, spatial autocor-

relation is captured by the spatial structure of the intensity parameter across a map.
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(See Wakefield et al. (2000) for a discussion of applications of these models in the

context of disease mapping.)

Explaining variation in Poisson counts

Regression is the basic workhorse of statistics for analyzing relationships. Poisson

counts are modeled using the log-linear function

ln fE½YðiÞ�g ¼ ln½lðiÞ� ¼ b0 þ b1X1ðiÞ þ . . . ::þ bkXkðiÞ; ð7Þ

where E[Y(i)] denotes the expected value of the Poisson variable Y(i), X1, . . ., Xk are

a set of k predictors or explanatory variables, b0 is the intercept parameter, and b1,

bk are the k regression coefficient parameters. If size differences exist (e.g., areal

units have varying population sizes), then an offset variable (i.e., a variable whose

coefficient is set equal to one, rather than estimated) needs to be included (see, e.g.,

McCullagh and Nelder (1989), for an introduction to this class of models; see, e.g.,

Lovett and Flowerdew (1989) and Flowerdew and Geddes (1999) for geographical

applications of these models).

The Poisson model assumes that the mean and variance of a random variable

are equal. In the case of area data, because of within- and between-area hetero-

geneity, overdispersion is likely to be present; that is, E[Y(i)] 5 l(i) but Var[Y(i)]4
l(i). For example, when modeling the distribution of disease counts by area, over-

dispersion should be anticipated because: (1) population heterogeneity occurs

within spatial units (e.g., in terms of genetic composition and lifestyle differences)

and (2) important covariates are missing from the model specification, either be-

cause they have been overlooked or because measurements for them are unavail-

able. Spatial autocorrelation induces overdispersion. Fig. 4 illustrates the effects of

increasing levels of positive spatial autocorrelation (the Moran Coefficient (MC) and

the Geary Ratio (GR)) on a Poisson distribution (l5 5) generated with a spatial

filtering model specification. Considerable overdispersion coincides with the pres-

ence of strong positive spatial autocorrelation. Fig. 5 portrays the geographic dis-

tributions associated with the histograms appearing in Fig. 4. Fig. 5a exhibits a

Figure 4. Histograms (in percentages) of 10,000 values—geographically distributed across a

100 � 100 regular square tessellation—randomly drawn from three Poisson distributions for

which l5 5. (a) Left: a negligible spatial autocorrelation case (MC 5 0.011, GR 5 0.989). (b)

Middle: a moderate positive spatial autocorrelation case (MC 5 0.414, GR 5 0.591). (c)

Right: a strong positive spatial autocorrelation case (MC 5 0.982, GR 5 0.081).
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random distribution across the map of counts between 0 and 18. Fig. 5b exhibits a

clustering of counts between 0 and 4 in the upper right-hand quadrant, and counts

between 8 and 19 in the lower left-hand quadrant of the map. Fig. 5c exhibits a

more pronounced clustering with the same geographic pattern contained in Fig. 5b;

but in this case counts between 8 and 51 cluster in the lower left-hand quadrant of

the map. Spatial autocorrelation induces a centripetal effect, amalgamating many

of the smaller nonzero counts with larger counts, creating more 0 and very small

counts and a few excessively large counts.

The ratio of the residual deviance to the corresponding residual degrees of

freedom indexes the extent of overdispersion present after fitting a model; over-

dispersion is indicated when this ratio is significantly greater than 1 (note: 1.2 often

is used as a threshold). Overdispersion can be handled by recognizing that the

frequency distribution of a dependent variable resembles a particular probability

distribution, even though establishing the precise form of the statistical model for

the data may not be possible. Of course, without a proper statistical model

maximum likelihood estimates of parameters cannot be computed because no

likelihood function exists to maximize. In this situation a researcher can resort to

quasi- (or pseudo-) maximum likelihood techniques. Here, inference is valid if the

conditional mean is correctly specified: if the link function correctly relates the

mean to covariates and/or if the variance is correctly related to the mean. Most log-

likelihood asymptotic theory transfers to the quasi-likelihood case, which justifies

computing standard errors and likelihood ratio statistics (McCullagh and Nelder

1989, Chapter 9). The quasi-likelihood approach involves the introduction of an

artificial parameter that is a scaling factor, Z, that accounts for overdispersion while

relating the mean and variance. For Poisson-like data, VAR[Y(i)] 5Zl. This cor-

rection for overdispersion, for which Z41, is equivalent to multiplying a covari-

ance matrix by a scalar dispersion parameter to account for extra-Poisson variation.

Some statistical packages (e.g., STATA and SAS) enable a researcher to compute

Figure 5. The geographic distributions of the Poisson variables portrayed in Fig. 4, with

counts classified by approximate tertiles: white denotes 0–4, gray denotes 5–7, and black

denotes 8–ymax. (a) Left: negligible spatial autocorrelation. (b) Middle: moderate positive

spatial autocorrelation. (c) Right: strong positive spatial autocorrelation.
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estimates of Z. But overdispersion in Poisson data often is accounted for by resort-

ing to use of the negative binomial model. One commonly used specification of the

mean–variance relationship in this case is s2 5 l1Zl2; Z is the extra-Poisson var-

iation parameter to be estimated, with Z5 0 for a Poisson random variable.

If overdispersion is due to factors that generate spatial structure, such as missing

covariates that are spatially autocorrelated, then a researcher might choose a ran-

dom effects model of the form

lnfE½YðiÞ�g ¼ ln½lðiÞ� ¼ b0 þ b1X1ðiÞ þ . . .þ bkXkðiÞ þ SðiÞ; ð8Þ

where S(i) denotes the normal CAR model with spatial autocorrelation parameter t
(see ‘‘Models allowing for spatial correlation between neighboring counts’’). Pa-

rameters of Equation (8) can be estimated using the Bayesian software package

WinBUGS (see, e.g., Wakefield et al. 2000; Spiegelhalter et al. 2002).

Equation (8) is used for estimating the relative risk of, say, disease by area, and

identifying significant covariates that explain spatial variation in relative risk. In

Equation (4), by definition, l(i) 5 E(i)r(i). E(i) is the expected number of cases of a

disease given the age and sex composition of the population in area i, using the age-

and sex-specific rates from some larger population; r(i) is the relative risk for area

i—that is, the area-specific risk that cannot be attributed to the composition of the

population, and, therefore, may be the result of factors that are unique to area i. The

maximum likelihood estimate of r(i) is Y(i)/E(i), that is, the observed count divided

by the expected count. Several problems are associated with this estimator. First, if

Y(i) is missing, then r(i) cannot be computed. Second, in the case of rare diseases

and where counts are accumulated over a short period of time, Y(i) often is 0, and

hence r(i) 5 0, which most likely is a serious underestimate. Third, the standard

error of r(i), given by Y(i)1/2/E(i), is a decreasing function of the size of the popu-

lation at risk in area i. Extreme values of r(i) tend to be associated with areas having

small populations; statistically significant values of r(i)—that is, values of r(i) that are

significantly different from 1—tend to be associated with areas having large pop-

ulations. One solution to these types of problems is to adopt a principal from kriging

and spatial interpolation, namely, to use information contained in data for neigh-

boring areas, and a spatially structured S(i) fulfills this role. Model [8] does this type

of borrowing through the S(i) term. In this case the log-mean response in Equation

(8) takes the form

ln½lðiÞ� ¼ ln½EðiÞ� þ ln½rðiÞ�;

where ln[E(i)] is an offset variable, and the right-hand side of Equation (8) is the log-

relative risk for area i that explains the variation in risk as well as the spatially

structured random effects term.

Poisson modeling of spatial flows

Flowerdew and Aitkin (1982) argue that the normal log-linear regression model

provides an incorrect specification for spatial interaction models. They specify the
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following model for flows, T(i,j), between an origin i and a destination j:

P ½T ði; jÞ ¼ tði; jÞ� ¼ e�lði;jÞlði; jÞtði;jÞ=tði; jÞ!; ð9Þ

where the expected value is given by E[T(i,j)] 5 l(i,j) 5 ea m(i)dm(j)b d(i,j)g; m(i) and

m(j), respectively, denote the ‘‘masses’’ (i.e., sizes) of origin i and destination j; and

a, b, d, and g are parameters. Equation (9) models flows as interpoint movement

counts; hence, there is the specification of a discrete distribution. Flowerdew and

Aitkin show the superiority of Poisson regression over ordinary least squares log-

linear regression. Flowerdew and Lovett (1988) extend Equation (9) to singly and

doubly constrained spatial interaction models, again assuming independent

‘‘mass’’ terms. For these constrained models, the Poisson regression formulation

allows goodness-of-fit assessment (i.e., model diagnostics) and the inclusion of ad-

ditional covariates to the basic ‘‘mass’’ terms and distance metric. Unfortunately,

this formulation does not incorporate spatial dependencies in the origin and des-

tination ‘‘mass’’ terms. Consequences of overlooking such spatial structure effects

are conceptualized in Curry (1972), with their presence empirically demonstrated

by Griffith and Jones (1980). One possible reformulation to account for them was

posited by Bolduc et al. (1989, 1992, 1995). A more recent discussion of this topic

appears in Tiefelsdorf (2003).

Concluding comments

This article provides a brief historical overview of the Poisson model and the ev-

olution of its use in spatial analysis. This history traces a time path that begins with

researchers ignoring spatial dependence in georeferenced count data, and ends

with more contemporary analyses that offer a number of different ways of repre-

senting spatial dependency in such counts. Modern statistical theory, especially

generalized linear model theory, and modern software, such as WinBUGS and

MCMC algorithms (also see Wolpert and Ickstadt 1998), make implementation of

models for counts that handle spatial dependence a feasible undertaking.

The use of log-normal approximations, with or without spatial model elements,

should be a practice of the past. Not only has the application of the Poisson model

come a long way from the days of deaths from mule kicks, but new statistical theory

also has led to the creation of a powerful modeling tool for geographically distrib-

uted count data.
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