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a b s t r a c t

We propose applying the multiparametric spatiotemporal autore-
gressive (m-STAR)model as a simple approach to estimating jointly
the pattern of connectivity and the strength of contagion by that
pattern, including the case where connectivity is endogenous to
the dependent variable (selection). We emphasize substantively-
theoretically guided (i.e., structural) specifications that can support
analyses of estimated spatiotemporal responses to stochastic or co-
variate shocks and that can distinguish the possible sources of spa-
tial association: common exposure, contagion, and selection (e.g.,
homophily). We illustrate this approach to dynamic, endogenous
interdependence – which parallels models of network–behavior
co-evolution in the longitudinal networks literature – with an em-
pirical application that aims to disentangle the roles of economic
interdependence, correlated external and internal stimuli, and EU
membership in shaping labormarket policies in developed democ-
racies in recent years.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Social scientific interest in and application of spatial modeling has burgeoned lately.1 This is a
welcome development because the dependence of outcomes in some units on outcomes in others
(or the behavior of some actors on the behavior of others), i.e., spatial interdependence, is substantively

I An Appendix with related material is available at http://www.umich.edu/~franzese.
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ubiquitous and theoretically central across the social sciences. At the same time, the study of network
interdependence has emerged as a central topic of research in a number of social scientific disciplines.
Despite the obvious conceptual, theoretical, and substantive overlap between spatial and network

interdependence, spatial econometric and network analytic research have developed largely in
isolation.2 This is partly because spatial econometricians and network analysts tend to ask slightly
different questions in their research and to have correspondingly differing objectives. The former
tend to analyze the effects of spatial interdependence on outcomes or behaviors (i.e., contagion),
taking the pattern of connectivity as given, while the latter emphasize analysis of network formation
(i.e., selection), taking actors’ attributes and behaviors as given. Furthermore, spatial econometricians
tend primarily to conceive such spatial/network effects as the effects of alters’ actions on ego’s actions
via their spatial/network connections, whereas network analysts tend to emphasize the effects on
actions of network structure and ego’s position in that network structure. Although both explaining
networks and understanding how network interdependence influences outcomes generally interest
social scientists, and although many have called for synthesis in empirical analyses of contagion and
selection, as yet very few models can account for contagion and selection simultaneously.
From the perspective of social network analysis, Snijders and colleagues’ co-evolution model

(as reviewed below3) represents the furthest advance toward combining contagion and selection.
For many other kinds of social science applications, though, the model has some significant
limitations, particularly for research in comparative and international political economy (C & IPE),
an area highlighted by our illustration. To begin to reduce some of these limitations, we suggest
the multiparametric spatiotemporal autoregressive (m-STAR) model as a spatial econometric analogue
to the network co-evolution model. Section 2 next offers introduction to the specification,
estimation, and interpretation of baseline spatiotemporal autoregressive (STAR) models. Ensuing
sections will then show how to apply the m-STAR extension of STAR models as a means to estimate
simultaneously the patterns of interdependence (i.e., network selection) and the behavioral responses
of units to other units’ behaviors (i.e., contagion), including the possibility of endogenizing the
pattern of interdependence (i.e., the network) dynamically to the outcome (i.e., the possibility of
network–behavior co-evolution).

2. Spatiotemporal models of interdependence: Specification, estimation, interpretation

Analysis of time-series cross-section (TSCS) data, which typically manifest both temporal and
spatial dependence importantly, is common in the social sciences. In C & IPE, for instance,
interdependence often arises strongly, and substantively and theoretically centrally, as it does in the
contexts of policy diffusion and of globalization, tax competition, and policy autonomy, for example.
To estimate effects and draw inferences validly in such contexts, analysts generally do best to specify
both temporal and spatial dependence directly in their empiricalmodels by using spatial and temporal
lags.4 A baseline such spatiotemporal autoregressive (STAR) model could include, for instance, a first-
order temporal lag and a contemporaneous spatial lag:

y = ρWy+ φMy+ Xβ+ ε. (1)

The dependent variable, y, is an NT × 1 vector of cross-sections stacked by periods (i.e., the N first-
period observations through theN in period T ). Next, ρ is the spatial autoregressive coefficient, giving
the strength of interdependence operating along the pattern given byWNT , theNT×NT block diagonal
spatial weighting matrix. Each of N × N weights matrices,WN,t , on the block diagonal ofWNT have
elements wij,t reflecting the relative connectivity from unit j to i in period t . Thus, for each yit , the
spatial lag, Wy, gives a weighted sum of the yjt , with weights wij,t : a direct and straightforward

2 The same may be said, to a perhaps somewhat lesser extent, of spatial statistics and network analysis.
3 The Appendix also provides further description of these network analytic co-evolution models.
4 Some scholars use spatial methods to purge their data of spatial association; others use spatial methods to study these
associations. We are more interested in the substantive implications of spatial and network patterns, and so adopt the latter
approach.
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reflection of the dependence of each unit i’s outcome on other units’ outcomes. (Note that W here
is data, pre-specified and given.)M is an NT ×NT matrix with ones on the lower first-minor diagonal,
i.e., at coordinates (N + 1, 1), (N + 2, 2), . . . , (NT ,NT − 1), and zeros elsewhere.My is thus a typical
first-order temporal lag, withφ its coefficient.X containsNT observations on k independent variables;
β is its k× 1 vector of coefficients; and ε is an NT × 1 vector of i.i.d. stochastic components.5

The simultaneity of the spatial lag regressor, Wy, would clearly bias OLS estimation of spatial
autoregressive models (spatial OLS or S-OLS). Consistent and asymptotically efficient estimation by
maximum likelihood is reasonably straightforward though.6 The conditional likelihood for the STAR
model [13–15], which assumes the first observations are non-stochastic, is a simple extension of the
standard spatial autoregressive (or SAR)model likelihood. To see this, start by rewriting the SARmodel
with the stochastic component on the left:

y = ρWy+ Xβ+ ε⇒ ε = (I− ρW) y− Xβ ≡ Ay− Xβ, (2)

whereMy, first-order time lag of y, is now the first column of X and φ the first row of β.7 Assuming
i.i.d. normality, the likelihood for ε is just the typical linear normal one:

L(ε) =
(
1/σ 22π

) NT
2 exp

(
−ε′ε/2σ 2

)
, (3)

which, applying the change of variables theorem, produces this likelihood in terms of y:

L(y) = |A|
(
1/2πσ 2

) NT
2 exp

((
−1/2σ 2

)
(Ay− Xβ)′ (Ay− Xβ)

)
. (4)

This resembles the CLNRM likelihood, except that the transformation from ε to y is not by the usual
factor, 1, but by |A| = |I − ρW|.8 Written in (N × 1) vector notation, this STAR model conditional
likelihood is conveniently separable into parts, like so:

Log f yt ,yt−1,...,y2|y1 = −
1
2
N (T − 1) log

(
2πσ 2

)
+ (T − 1) log

∣∣AN,t ∣∣− 1
2σ 2

T∑
t=2

ε′tεt (5)

where

AN,t = (IN − ρWN,t) and εt = yt − φyt−1 − ρWN,tyt − Xtβ.

The unconditional (exact) likelihood function, which retains the first-period observations as non-
predetermined, is more complex [15]:

Log fyt ,...,y1 = −
1
2
NT log

(
2πσ 2

)
+
1
2

N∑
i=1

log
(
(1− ρωi)2 − φ2

)

5 Higher order temporal dynamics would simply add further properly configured weights matrices, altering the implied
spatiotemporal dynamics but not complicating estimation. Similarly, STARmodelsmight also include temporally lagged spatial
lag variables, like: yt = ρWN,tyt + θWN,t−1yt−1 + φyt−1 + Xtβ + εt . This too would change the spatiotemporal dynamics
implied by the model but not complicate its estimation. Likewise, spatial lag independent variables can be added (giving a
spatiotemporal version of the so-called spatial Durbin model), again complicating the implied dynamics but not estimation.
Other feasible complications ignored here include: non-rectangular data sets or missing data, non-zero off-diagonal blocks of
WNT , and non-spherical error covariance structure (including spatial error components or spatial lag error models). All would
complicate exposition greatly without commensurately enhancing expository illumination.
6 Franzese andHays [17,18,21,22,24] explored these simultaneity biases of S-OLS and omitted-variable biases of OLS omitting
the spatial lag analytically and by simulation, finding the latter are generally larger, often far larger, than the former. We also
discussed consistent (and asymptotically efficient) estimation by S-2SLS (or S-GMM), which could proceed withWX as valid
instrument forWy, given the already assumed exogeneity ofW and X. However, our simulation analyses have so far shownML
estimation to be nearly weakly dominant, so we describe only it next.
7 N.B., althoughWy complicates the conditional likelihood in terms of y (see footnote 8),My does not.
8 This difference complicates estimation somewhat in that the determinant |A| involves ρ, and so requires recalculation at
each iteration of the likelihood maximization routine.
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+ (T − 1) log |AN,t | −
1
2σ 2

T∑
t=2

ε′tεt −
1
2σ 2

ε′1

((
AN,1 − φIN

)′)−1
×

(
A′N,1AN,1 − φ

2A′N,1A
−1
N,1

(
A′N,1A

−1
N,1

)′)−1 (AN,1 − φIN)−1 ε1 (6)

where
ε1 = (IN − φIN) y1 − ρWN,1y1 − x′1β.

With large T , the first observation contributes little to the total likelihood, so scholars can safely use
the simpler conditional likelihood for estimation.
One easy way to ease or even erase the simultaneity problem of S-OLS is to time lag the spatial

lag (see, e.g., [5]). Insofar as time lagging the spatial lag renders it pre-determined – that is, as
interdependence does not incur instantaneously (meaning:within an observational period, asmeasured,
given themodel) – OLS’s bias disappears asymptotically (T →∞). Formally, the STARmodelwith time
lagged spatial lag is

yt = ηWN,t−1yt−1 + φyt−1 + Xtβ+ εt . (7)
Elhorst ([13]: 126–130) derives the unconditional log-likelihood for this model as

Log fyt ,...,y1 = −
1
2
NT log

(
2πσ 2

)
+
1
2

N∑
i=1

log
(
1− (φ + ηωi)2

)
−
1
2σ 2

T∑
t=2

ε′tεt

−
1
2σ 2

ε′1

((
IN − BN,1

)′)−1 (IN − BN,1B′N,1
)−1 (I− BN,1

)−1
ε1, (8)

with ε1 = y1 − (φ + ηWN,1)y1 − X1β; εt = yt − ηWN,t−1yt−1 − φyt−1 − Xtβ; BN,1 = φIN + ηWN,1.
Note that the second and last terms in (8) bias OLS estimation of the time lagged spatial lag STAR
model, although this bias goes to zero as T →∞. Thus, (i) if T is large, (ii) if spatial interdependence
processes do not operate within an observational period but only with a time lag (as measured and
modeled), and (iii) if spatiotemporal dynamics are modeled well enough for these conditions not to
become violated throughmeasurement cummisspecification error, then simple OLS with time lagged
spatial lag regressor(s) is a valid and effective estimation strategy. In many social scientific contexts,
however, these conditions for valid OLS estimation greatly strain substantive credulity.
Regarding stationarity, the conditions and issues arising in spatiotemporally dynamic models are

reminiscent of those in more familiar solely time dynamic models. Let ω be an eigenvalue ofW; then
the spatiotemporal process is covariance stationary if∣∣φ (I− ρW)−1∣∣ < 1, or, equivalently, if

{
|φ| < 1− ρωmax, if ρ ≥ 0
|φ| < 1− ρωmin, if ρ < 0. (9)

For instance, with positive temporal and spatial dependence andW row standardized, ωmax = 1, and
so stationarity familiarly requires φ + ρ < 1.
Interpretation of effects in empiricalmodelswith spatiotemporal interdependence, as in anymodel

beyond the strictly linear additive and separable, involvesmore than just eyeing coefficient estimates.
With spatiotemporal dynamics, as with solely temporal dynamics, coefficients on other regressors
give only the pre-dynamic impulses from those variables to the outcome. That is, coefficients
represent only the pre-interdependence feedback impetus (often inherently unobservable) to
outcomes from other regressors. For fuller substantive interpretation of spatiotemporally dynamic
models, one must calculate spatiotemporal multipliers (as explained next). These multipliers allow
expression of estimated responses of the dependent variable across all units, accounting the
spatiotemporal dynamics, to shocks to covariates or errors in any unit(s). They also afford estimation
of the long run, steady state, or equilibrium9 effects of permanent such shocks.10 We apply the delta
method to derive analytically the approximate asymptotic variance–covariance matrix (standard

9 Weuse the terms long run, steady state, and equilibrium effects loosely, interchangeably, to refer to the estimated asymptotic
level of outcomes y following a hypothetical permanent shock.
10 Anselin [3], Franzese and Hays [17,18,21,22,24], LeSage and Pace [50] discuss these multipliers more fully.
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errors) for these response path and long run effect estimates; these standard errors could also be
simulated of course.
One calculates cumulative, long run steady state (LRSS) spatiotemporal effects most conveniently

working with the STAR model in (N × 1) vector form:
yt = ρWN,tyt + φyt−1 + Xtβ+ εt . (10)

Setting yt−1 equal to yt and solving produces the LRSS level of y, assuming stationarity and exogenous
RHS terms, X and/or ε, permanently fixed to their hypothetical levels11:

yt = ρWN,tyt + φyt + Xtβ+ εt =
(
ρWN,t + φI

)
yt + Xtβ+ εt

=
[
IN − ρWN,t + φIN

]−1
(Xtβ+ εt)

=



1− φ −ρw1,2 · · · · · · −ρw1,N

−ρw2,1 1− φ
...

...
. . .

...
... 1− φ −ρw(N−1),N

−ρwN,1 · · · · · · −ρwN,(N−1) 1− φ



−1

t

(Xtβ+ εt)

≡ S× (Xtβ+ εt) .12 (11)
(Decomposing εt = δ+υt with δ fixed andυt stochastic is conceptually useful in calculating responses
to counterfactual shocks to the outcomes in some unit(s), which could then be considered shocks to
δ.) Again, the delta or parametric bootstrap methods can provide standard error estimates for these
estimated LRSS responses.
The spatiotemporal response path of the N × 1 vector of unit outcomes, yt , to hypothetical shocks

to the exogenous right hand side terms, X and ε, could also emerge by rearranging (10) to isolate yt
on the left hand side:

yt =
[
IN − ρWN,t

]−1 [φyt−1 + Xtβ+ εt ] = S [φyt−1 + Xtβ+ εt ] . (12)
This formula gives the response paths of all units {i} to counterfactual shocks to X or ε in any
unit(s) {j}, including shocks in {i} itself/themselves, by setting (Xtβ+ εt ) to the values reflecting that
hypothetical in row(s) {j}. For the marginal (i.e., non-cumulative) spatiotemporal effects or response
paths, and their standard errors, working inNT×NT matrix form is easier. Simply redefine S in (11) as
S ≡ [INT −ρW−φM]−1 and follow the same steps as are given thereafter. We illustrate calculation of
estimated spatiotemporal responses (with delta method standard errors) in presenting our empirical
application below.13

3. The multiparametric spatiotemporal (m-STAR) model, with co-evolution

Given the crucial role of the quality ofW’s pre-specification to estimation results and inferences,14
strategies for estimating the pattern of connectivity within empirical models in which unobserved

11 In the case of time-variantWN,t one must also fixW to some desired set (or path) of long run values.
12 Another way to write (11) is yt = [IN − {ρ/(1 − φ)}WN,t ]

−1
{1/(1 − φ)}(Xtβ + εt ). This formulation highlights that, to

get the steady state responses, one simply weights the parameters ρ and β in the immediate spatial effect calculation by the
temporal multiplier (as emphasized, e.g., in [50]).
13 In C & IPE specifically, and in research involving TSCS data sets (i.e., relatively small N , large T ) more generally, one is
frequently interested in unit-specific counterfactuals (as in our illustrative application, for example). In analyses of data sets
with far larger numbers of units, especially when anonymously sampled, unit-specific responses will be of far less interest, and
one is likely to prefer scalar summary average effect calculations (as suggested in [50], for instance) to vectors of unit-specific
ones.
14 Franzese and Hays [25,26] demonstrate analytically and in simulations, for instance, that relative misspecification of
W tends to attenuate estimates of ρ while inflating those of the β on the x’s most correlated with the true pattern of
interdependence (i.e., withWy).
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patterns of interconnections among units affect outcomes in those units have long interested spatial
econometricians greatly. However, progress has been limited with regard to one or more central in-
terests in social science research into interdependence: distinguishing the potential sources of spatial
association—contagion, common exposure, or selection; testing or gauging the relative strengths of
alternative mechanisms of contagion; calculating substantive spatiotemporal counterfactual effects;
and allowing, or even potentially endogenizing, time-varying connectivity patterns.
Kooijman [47] and Openshaw [52] first suggested inductively choosingW to maximize Moran’s I

for y or to optimize univariate spatial lag models of y. Modern, sophisticated approaches following in
that spirit include Boots and Dufournaud’s [7] construction of binary contiguity matrices by marking
dyads as contiguous or not to maximize the spatial association along that W; Griffith’s [33–35]
and Getis and Griffith’s [31] spatial filtering strategies for extracting factors that maximally purge
spatial association from y; Getis and Aldstadt’s [29,30] similar aim, by a different route,15 to
separate the ‘‘variables being adjusted for spatial effects’’ into one component subject to spatial
lag autocorrelation and one not; or Fernandez-Vazquez and Rodriguez-Valez’s [16] alternative tack,
noting that, assuming row normalization and exclusively non-negative wij, the rows of W can be
seen as probability distributions for maximum entropy estimation ofwij simultaneously with spatial
lag parameter, ρ, and covariate coefficients, β. Along another strategic line, Conley [12] proposed
an instrumental variable (IV) approach to enhance robustness to errors in measured distances, dij
(or in their mapping to wij). Chen and Conley [11] and Pinkse et al. [55] extend this line, adopting
semiparametric approaches that approximate the unknown function mapping the distance metric(s),
dij, to a univariate wij, by some flexible sequence of parametric families (e.g., polynomials in d),
which they consistently estimate by IV or by sieves [32]. Bhattacharjee and Jensen-Butler [6] go
further, building from Meen [51] to estimate ρW without pre-specifying a distance metric, i.e., non-
parametrically, directly from the spatial association of residuals from a first-stage non-spatial model.
Ourm-STAR approach resemblesmost that of Conley andChen andConley, excepting the IV projection
of instruments onto a single dimension in estimating/instrumenting wij, which undermines any
distinction of alternative mechanisms of interdependence. The non-parametric strategies in this vein
share that limitation and furthermore must relegate any spatial dynamics exclusively to the error
term because, as Anselin [2] first stressed, the first-stage non-spatial estimated errors are consistent
only under spatial error and not spatial lag models.16 The inductive strategies, as promising as they
are toward their own aims, also exhibit one or more important limitations with regard to our list
of research goals. In general, these limits can be summarized thus: univariate, pre-filtering, and/or
non-parametric strategies tend to treat spatial effects or dynamics as nuisance to be purged or, at
most, relegated to the error term, to treat all spatial association as arising from a single source,
and/or to model association in ways that complicate or debar the extension to dynamic, endogenous
interdependence and/or the consideration of the sorts of substantive counterfactuals that we seek.
Our m-STAR strategy is simpler and parametric in its approach to these aims of distinguishing the
potential sources of spatial association—contagion, common exposure, or selection; of testing or
gauging the relative strengths of alternative mechanisms of contagion; of calculating substantive
spatiotemporal counterfactual effects; and of allowing, or even potentially endogenizing, dynamic
patterns of connectivity (networks).
In network analysis, on the other hand, estimation of the processes generating ties in observed

networks, i.e., of selection, rather than the effects of alters’ actions on egos’ actions through the
network, i.e., of contagion, is more usually the object of the study. Network models generally take
the characteristics of units, including their behaviors, as given, exogenous explanators of which ties,
typically seen in exclusively binary terms, will form between actors. From this vantage point, spatial

15 The procedure finds a maximum distance, dc , beyond which spatial correlation is negligible and sets weights wij in row i
equal to a function of the [53] statistic of local association,G∗i (dc), to 1, or to 0. Coefficients on dummies for rowswith allwij = 0
then estimate the non-spatial component. Getis and Aldstadt [30] write a genetic algorithm for optimizing the procedure.
16 Moreover, at least the current implementations of these approaches: identify the joint estimate of the interdependence
pattern and strength from observed spatial association in part by assuming that ρW fully captures all spatial association; they
require symmetric and constantW; and they cannot separately identify ρ andW (our approach shares this last limitation).
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econometric attempts to estimate and, ultimately, to endogenizewijwithinmodels of interdependent
unit outcomes mirror network analytic attempts to model the co-evolution of unit behavior with the
generation of network ties between units. In many social science research contexts, however, unlike
the assumptions of extant network co-evolution models, relative connectivity is of degree rather
than binary and, more dauntingly, the effective connectivity may not be directly observed.17 Rather,
commonly, one observes only some covariates theorized to relate to the effective connection. In C
& IPE, for instance, such as in our application’s context of interdependent ALM policymaking, many
of the theorized connections arise through inherently unobservable economic competition in labor,
capital, or goodsmarkets.We observe only trade or capital flows or other symptoms of or contributors
to competition.
In the network analytic tradition, Snijders and colleagues [61–63,65,66] have advanced perhaps

furthest on this crucial next task in empirical modeling of dynamic, endogenous networks cum
interdependence.18 In this task, Snijders et al. [66] emphasize, as have we from a spatial econometric
perspective, that the core challenge of disentangling the sources of network association (a.k.a., spatial
correlation) is threefold. First, one must distinguish influence (i.e., contagion or interdependence) from
selection (e.g., homophily) and from social contexts (i.e., common exposure) because, as we have shown
elsewhere [20,21], any omissions or inadequacies in modeling those distinct sources of network
or spatial correlation will bias inferences in favor of the included or better modeled mechanisms.
Then, they also emphasize three further issues confronting such attempts: discrete time observation
of continuous time processes, the need to control for alternative mechanisms and pathways by
which observed networks and outcomes may arise, and the network dependence of the actors which
precludes estimation by common statistical techniques, most of which assume independence.
To address these issues, they model the co-evolution of networks and behavior thus. N actors are

connected by an observed, binary, endogenous, and time-variant matrix of ties, x, with elements
xij(t)—in our notation,WNT , with elementswij,t . A vector of N observed, binary behaviors, z, at time t
has elements zi(t)—i.e., our yt and yit . Additional exogenous explanators may exist at unit or dyadic
level, vi(t) or wij(t)—i.e., our X. Opportunities arise for actors to change their network connections,
switching at most 1 tie on or off, at continuous time fixed rate, λneti , according to an exponential
model. At present, λneti is assumed constant for all i, j, t , though in principle one could parameterize
it. Likewise, opportunities to increment, decrement, or leave the behavior arise at rate λbehi .

19 When
an opportunity to change network ties arrives for some i, imay choose to alter the status of any one
of its N − 1 ties to ‘on’ or to ‘off’ or to leave all ties unchanged. i makes these choices by comparing
the values of some objective function of this form:

f neti (x, x′, z)+ εneti (x, x
′, z) =

∑
h

{
βneth × sneth (i, x, x

′, z)
}
+ εneti (x, x

′, z), (13)

where x′ is an alternative network under consideration, which can differ from the existing network, x,
only by changing atmost one element of (only) row i.20 sneth (·) is some statistic, i.e., some function of the

17 Both of these distinctions may result more from common simplifying assumptions in network analysis than from their
underlying substance, however. Connections in friendship networks, for instance, are probably in truth more of relative degree
than binary, and we often may not observe those friendship ties even as directly and imperfectly as by survey response
indicating them or gauging their closeness.
18 Leenders [48,49] presages. Hoff and colleagues [41–43] offer an alternative, Bayesian latent space approach. The Appendix
offers a more detailed overview of the model of Snijders and colleagues. Our review follows [61,65,66] most specifically.
19 Since observation occurs at discrete intervals, the freedom to vary these continuous time rates renders the assumptions of
one actor making one unit-valued change in his/her network ties or behavior at a time essentially inconsequential. As greater
frequency and/or magnitude of changes are observed, estimates of these occurrence rates at this unobserved instantaneous
level simply rise to compensate. This does not, however, relax the strong assumption of conditional independence of these
actors’ choices.
20 Snijders et al. ([66]:21) actually omit the stochastic component from the right hand side of (13), and seem to carry this
omission into the simulationmodel implementation and the associated estimation.We suspect that this is highly consequential
because it suppresses the dependence across units or dyads of their multinomial choices (see footnote 21) of which if any xij to
switch on or off.
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data, x, x′, z, that reflects the actor’s objectives (ideally, substantively-theoretically derived) regarding
to the network, x, and behaviors, z. The βneth to be estimated are the relativeweights of these objectives.
Assuming the εneti (x, x

′, z) extreme value distributed, independently across actors (see footnote 20)
andover time, yields themultinomial logitmodel of categorical choice. Similarly,when anopportunity
to change behavior arrives, actor i compares the value of an analogous objective function under each
of three possible actions: increment or decrement by 1 or leave unchanged. Formally, i compares z to
z′ given x and zj6=i. Again assuming i.i.d. extreme value stochastic components, the multinomial logit
emerges.
Identification of themodel derives froma battery of strong conditional independence assumptions,

namely: conditional on the existing vector of behaviors and set of network ties, each unit’s choices on
its network ties and on its behavior and its selection to act on its ties or behavior are all independent of
each other and of all other units’ choices and selections. Operationally, this amounts to conditioning
on the first observation and assuming that simultaneity is not effectively instantaneous (as elaborated
above) and that temporal precedence implies causal precedence.21 Given this, estimation proceeds
by simulating sequences of behaviors, z, and networks x, and searching over permissible values of
the parameters, λ and β, to minimize discrepancy from the observed sequences of x and z to the
simulated sequences. Standard errors could then derive from jackknife or bootstrapped resampling
[64] if explicit likelihoods or moment equations are unavailable for applying the standard analytic
formulae.
Some features of this network co-evolution model, for all the remarkable advances it represents,

are limiting (at least) for C & IPE. First, least critically, relative connectivity of the units and
many behaviors or attributes of interest are less often binary or ordinal in C & IPE. In the
canonical globalization and tax competition context, for instance, the outcomes of interest are tax
rates, and many sources of interdependence will surround the (continuous) strength of economic
competition. Second, more importantly, strengths of relative connectivity are often unobserved, or
even unobservable, at least in C & IPE. Continuing the example, we observe only some covariates
theorized to relate to the unobserved strengths of competition, such as geographic contiguity and
proximity or trade and capital flows. Thus, the left hand side of the selection components of network
co-evolutionmodelswould have no data. Indeed, one could estimate networks and their determinants
only by estimating their impact on actors’ behaviors, given some model of how networks matter for
that behavior and how the observed covariates relate to the unobserved network ties. Third, temporal
precedence often will not suffice to assure causal precedence in C & IPE contexts. Most political
economy relations are strategic and, in strategic interactions, the effect of alters on ego can even
be based on expected futures. The strategic interdependence of policies across units, for example,
arises from policymakers’ simultaneous play of a game in which each actor’s optimal policy depends
on others’ current or expected future policies. Moreover, as previously noted, empirically practically,
simultaneousmeanswithin an observational period, etc., andmany C& IPE contexts have high frequency
behavior and/or network changes relative to far lower periodicity of observation. Consider capital
flows versus annual budgets, for example. Finally, conditioning on the first observation is least
consequential with large T , yet typical C & IPE data sets have only moderate T (e.g., 20–40 years)

21 Some identification issues seem to us to persist, notwithstanding these strong assumptions. For one, assuming independent
multinomial decisions for the endogenous behaviors, network ties, and selections to act would seem to undo some of the
allowance for dependence in those choices, although it yields the great advantage of perhaps validating standard multinomial
logit and exponential hazard rate models for those system components. Another issue is that included among the conditioning
explanators are various measures of network structure or units’ places therein. These are functions of the ties between actors
(and possibly also their behaviors), i.e., of the outcomes of the actors’ multinomial choices. Heckman’s [40] critique of including
the actual outcomes on the right hand side of such latent variablemodelsmay apply. If so, including latent variables or estimated
probabilities instead as then requiredwould imply stochastic component dependence across units, rendering thesemultinomial
logits N dimensional rather than simple unidimensional optimization exercises. However, beyond some conjectures we offer
in the conclusion, we have little progress on those issues to offer here, nor do we know of any other scholarship that has
made greater progress on these issues in this behavior–network co-evolution context. Spatial econometricians have made
considerable progress on this multidimensional optimization issue of interdependent latent variable models (and we have also
discussed some of these options for political scientists: Franzese and Hays [22,24–26], Hays [36], Hays and Kachi [39]), but
entirely outside of the co-evolution context.
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and longitudinal network data sets only very small T (less than 5 periods, even just two). Obviously,
to a considerable extent, these are all general concerns, not necessarily restricted to C & IPE.
As Leenders ([49]:165) also notes: most research on network/spatial dependence either studies

the formation of networks (selection), taking unit attributes and behaviors as given, or the effects on
units’ behaviors of network interdependence (contagion), taking patterns of connectivity as given.
Spatial econometricians have primarily worked in the latter mode; network analysts have primarily
worked in the former; but both are eager to combine the two. Although other differences in tendency
appear to us – e.g., spatial econometricians tend primarily to conceive network effects as the effects of
alters’ actions on ego’s via their connections, whereas network analysts tend to stress the effects of
network structure and ego’s position in it on actions – the difference in core question – what explains
networks vs. how does network dependence affect outcomes – seems to us the most crucial. Among
network analysts, co-evolutionmodels like that just reviewed represent the greatest advances toward
combining of contagion and selection.
Our approach comes instead from a spatial econometric vantage point, so it begins with the

spatiotemporal lag model, (1), and seeks to expand its specification to allow estimation of W, the
matrix of relative connectivity, a.k.a. the network, i.e., to model thewij as a parameterized function of
covariates observable at unit, dyadic, or exogenous external level. This model of the wij corresponds
to selection from the view and in the language of network analysts. For instance, the sociologists’
homophily (‘‘like seeking like’’), if based on exogenous characteristics of ego and alter, parallels,
from the spatial econometric view, a model of wij as a function of some xi and xj. If we consider
(some function of) the vector of behaviors of interest, y, among these explanators ofW, this parallels
a stronger form of homophily selection in which network ties and actors’ behaviors are jointly
endogenous, raising greater statistical challenges. Thus, the STAR model with estimated, endogenous
spatial weights is the spatial econometric analogue to the network co-evolution model, integrating
contagion and selection. Now consider m-STAR, i.e., a multiple-spatial-weights STARmodel, from this
vantage point:

y = ρ1W1y+ ρ2W2y+ · · · + ρRWRy+ φMy+ Xβ+ ε

= Wy+ φMy+ Xβ+ ε, whereW ≡
R∑
r=1

ρrWr , (14)

or, in scalar notation,

yi,t = ρ1
∑
j

w1ij,tyj,t + ρ2
∑
j

w2ij,tyj,t + · · · + ρR
∑
j

wRij,tyj,t + φyi,t−1 +
∑
k

xki,tβk + εi,t

=

∑
j

(
ρ1w

1
ij,t + ρ2w

2
ij,t + · · · + ρRw

R
ij,t

)
yj,t + φyi,t−1 +

∑
k

xki,tβk + εi,t

=

∑
j

{(∑
r

ρrw
r
ij,t

)
yj,t

}
+ φyi,t−1 +

∑
k

xki,tβk + εi,t . (15)

As line 2 of (15) perhaps best clarifies, the term in parentheses is a parameterized (linear additive)
model of the weights on yj6=i in affecting yi, with the wij being the covariates expected to explain
the pattern and relative strength of interdependence and the ρr being their coefficients to estimate.
Thus, we can conceive the m-STAR model as a spatiotemporal lag model with estimated W, with
Ŵ =

∑
r ρ̂rWr being a weighted sum of the Wr , which are the covariates thought to explain net

connectivity. (Note the scaling issue though: the interdependence strength and the pattern in which
it occurs are not separately, but rather only jointly, identified in this model of implicit net network
interdependence.) If, furthermore, anyWr has elements that are functions of y, thenW and y are jointly
endogenous, making (15) a co-evolution model.
The sorts of models of W, i.e., of networks, expressible thus are limited, without considerable

further complication, to those with continuous relative strengths of ties, wij. For truly binary
connectivity, one would need to transform the term in parentheses by, say, applying the log odds
function and a decision rule to convert probabilities to (0, 1). (If one believes, as we tend to do, that
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connectivity is a degree, measured at best with error, this is no limitation.) These or other non-linear
additive models of wij would also generally entail multidimensional integration complications (see
footnote 21). Then, too, the cost in estimation complexity of enriching the model of connectivity by
addingWr covariates is high compared to that of adding unit, dyad, or exogenous external covariates
to the Xβ term (but perhaps not compared to similarly enriching network co-evolution models).
The approach has some major advantages too though, notably among them simplicity and that fully
developed likelihoods for them-STARmodel exist, at least in the exogenousWr case, both the simpler
one that conditions on the first observation and the unconditional one better suited for instantaneous
interdependence or small T . Thus, we can apply all the apparatus for estimating spatial econometric
models and all the procedures for interpreting their spatiotemporally dynamic effects discussed
above. Conversely, we can use all the standard network analytic tools interpret and present the
estimated implicit net network interdependence, Ŵ, as we shall see.
The conditional likelihood for m-STAR extends (4) for STAR:

ln L(ρ, φ, β, σ ; y,X) = ln(2πσ 2)−NT/2 + ln |A| −
1
2σ 2

ε′ε, (16)

where

A = INT −W and ε = Ay− φMy− Xβ.

The unconditional likelihood extends (6) analogously. The estimated variance of Ŵij is

Ŵ =
∑
r

ρ̂rWr ⇒
̂Var(Ŵ(i,j)) =

[
W(i,j)
1 W(i,j)

2 · · ·W
(i,j)
R

]
�̂ρ̂

[
W(i,j)
1 W(i,j)

2 · · ·W
(i,j)
R

]′
, (17)

where �̂ρ̂, the estimated variance–covariance matrix of ρ̂, is minus the inverse of the Hessian of the
likelihood in the usual fashion. Written in (N × 1) vector notation, the conditional likelihood for the
m-STAR is again mostly conveniently separable into parts:

Log f yt ,yt−1,...,y2|y1 = −
1
2
N (T − 1) log

(
2πσ 2

)
+ (T − 1)

R∑
r=1

log
∣∣IN − ρrWN,r,t

∣∣
−
1
2σ 2

T∑
t=2

ε′tεt where εt = yt −
R∑
r=1

ρrWN,r,tyt − φyt−1 − Xtβ, (18)

and the unconditional (exact) likelihood analogously extends (6). In our example, T is large enough
that the more compact conditional likelihood is acceptable.
Co-evolution models, i.e., models where network connectivity,W, is some function of y, present

larger challenges. Our simple stratagem for a first cut is to invoke the same poor man’s exogeneity
as is assumed in network co-evolution models (and widely elsewhere): i.e., temporally lag the y in
this function explainingW and assume that the conditions required for this identification approach
hold sufficiently well. As just argued, however, this does not address the problem of true or effective
simultaneity, which seems a likely situation for C & IPE contexts at least. We will therefore propose in
the conclusion a two-step estimation procedure addressing true simultaneity for future exploration.

4. Empirical illustration

The Appendix demonstrates analytically and through simulations that the S-ML estimator
performs well in absolute terms and greatly outperforms simpler least squares estimators for these
m-STAR models. Our findings there parallel those from our earlier studies [17,18,21,22,24]—notably,
in highlighting how:

1. Omission (or relative misspecification) of common exposure, contagion, or selection sources of
network/spatial association induces overestimation of included (or better specified) sources, with
the biases distributed across the included in proportion to how similar are the spatial association
patterns induced by the omitted and included sources;
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Fig. 1. Disaggregated active labor market expenditures in the OECD, 1980–2003.

2. The simultaneity bias of least squares generally inflates estimates of contagion (and/or of selection,
whichever is stronger), inducing deflation bias in other sources, again in proportion to the
similarity of spatial association patterns induced by these sources.

So we proceed here in the text directly to our illustrative application.
To illustrate application of our m-STAR approach (with first-cut identification strategy of time

lagging assumed adequate), we extend our previous analysis of active labor market (ALM) policies
[19]. First, we extend the sample to include both EU and non-EU states22 to allow distinction of
interdependence among EU members due to co-membership from global interdependence. Intra-
EU diffusion would suggest positive contagion and intra-EU free-riding, negative. Next, as argued in
[19], geographic contiguity may induce free-riding (and negative contagion) among bordering states,
primarily via employer location decisions.23 Lastly, economic competition suggests competitive races
(to bottom, mean, top, or elsewhere), implying positive ALM policy interdependence in proportion to
the economic interchange between states.
OECD data sets give ALM program expenditures by five categories: labor market training (LMT),

youth measures, subsidized employment (SEMP), public employment services and administration,
and disability measures. Fig. 1 plots OECD average spending by type over time. SEMP and LMT are
the two largest components over the entire sample period, accounting for 26.9% and 26.7% total
expenditures.
Table 1 gives the programmatic breakdown in ALM expenditures by state, revealing great variation

across the sample. Sweden and Denmark were big spenders per capita ($360.88 and $287.20 (2000,
PPP$)); theUS andGreece spent least ($43.72; $34.97). Table 1 also reveals some spatial clustering: the

22 Annual 1980–2003 data for 21 OECD countries (of which 8 are EU members at the start, rising to 14 by the end): Australia,
Austria, Belgium, Canada, Denmark, Germany, Greece, Finland, France, Ireland, Italy, Japan, New Zealand, the Netherlands, Norway,
Portugal, Spain, Sweden, Switzerland, the UK, and the US.
23 The key mechanism seems to be this: effective ALM policies enhance attractiveness to firms of locating production
in the spending economy, which, because firms tend to locate at borders to minimize transport and transaction costs
while maximizing ‘‘comparative advantages’’ (or tax evasions), in turn enhances the appeal of locating in bordering states.
Corroborating evidence is in [54], inter alia.
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Table 1
Disaggregated active labor market expenditures per capita (2000 PPP$).

AUS AUT BEL CAN DEN FIN FRA DEU GRE IRE ITA

Employment services &
admin

28.85 33.06 41.35 38.44 20.48 22.47 25.98 46.59 10.77 32.36 0
(37.54) (29.68) (15.69) (39.1) (7.13) (10.46) (14.39) (19.12) (30.8) (15.19) (0)

Labor market training 10.05 41.58 43.99 46.18 117.32 67 49.74 71.61 7.84 43.26 7.14
(13.08) (37.32) (16.69) (46.98) (40.85) (31.19) (27.56) (29.38) (22.41) (20.3) (8.02)

Youth measures 8.36 4.63 3.41 3.92 24.57 17.65 42.47 12.83 6.8 37.11 31.47
(10.88) (4.16) (1.29) (3.99) (8.55) (8.22) (23.53) (5.26) (19.45) (17.42) (35.38)

Subsidized employment 21.51 18.62 146.9 7.07 69.26 87.79 49.75 65.7 8.28 87.35 24.68
(27.98) (16.71) (55.73) (7.19) (24.12) (40.87) (27.56) (26.96) (23.67) (41) (27.74)

Measures for disabled 8.08 13.51 27.94 2.7 55.58 19.12 12.56 46.95 1.28 13 0
(10.52) (12.13) (10.6) (2.75) (19.35) (8.9) (6.96) (19.27) (3.67) (6.1) (0)

Total ALMP 76.87 111.41 263.61 98.3 287.2 214.81 180.51 243.72 34.97 213.08 88.97

JPN NTH NWZ NOR PRT ESP SWE CHE GBR USA OECD

Employment services &
admin

47.65 24.48 17.46 33.36 14.93 12.97 44.98 20.81 36.4 12.1 26.76
(68.44) (11.58) (15.85) (15.91) (17.04) (14.69) (12.46) (22.57) (37.71) (27.67) (17.34)

Labor market training 7.48 48.72 39.62 36.28 26.47 19.23 101.86 17.01 15.5 13.48 41.12
(10.75) (23.04) (35.96) (17.31) (30.22) (21.78) (28.22) (18.45) (16.06) (30.82) (26.65)

Youth measures 0.24 11.01 10.44 11.53 26.48 7.73 14.32 0.55 28.34 6.68 14.84
(0.34) (5.21) (9.48) (5.5) (30.23) (8.76) (3.97) (0.59) (29.36) (15.29) (9.61)

Subsidized employment 12.73 16.69 34.73 23.87 14.77 45.7 91.75 20.05 11.68 2.24 41.44
(18.28) (7.89) (31.53) (11.39) (16.86) (51.77) (25.42) (21.74) (12.1) (5.13) (26.86)

Measures for disabled 1.53 110.57 7.91 104.59 4.95 2.64 107.98 33.79 4.61 9.22 29.29
(2.19) (52.28) (7.18) (49.89) (5.65) (2.99) (29.92) (36.65) (4.77) (21.09) (18.98)

Total ALMP 69.62 211.47 110.15 209.63 87.59 88.28 360.88 92.22 96.52 43.72 154.3

Parentheses contain spending as a percentage of total spending on active labor market programs.

Scandinavian states spent much more than the OECD average; the Portuguese and Spanish averages
over this period are within $1; and Australia, New Zealand, Canada, and the US spent well below
average. What explains these patterns: strategic policy interdependence, similar exogenous external
conditions, correlation of domestic factors, or some as yet unconsidered selection process?
We estimate an m-STAR model with co-evolutionary dynamics to address this question.24 The

model, in matrix notation, is

y =

[
R∑
r=1

ρrWr

]
y+ φMy+ γ Ly+ Xβ+ ε, (19)

where y, ALM expenditures, is an NT × 1 vector of cross-sections stacked by periods as described
before. The rth spatial autoregressive coefficient is ρr , and Wr is an NT × NT block diagonal
spatial weighting matrix. Each Wr,t contains elements wrij,t reflecting a particular basis from which
we expect interdependence in ALM policy to arise: geographic proximity, EU co-membership, and
economic interdependence. These are the exogenous explanators of net network interdependence:
Ŵ =

∑
r ρ̂rWr . In the other new term, γ is the co-evolutionary dependence parameter, and L is an

NT × NT ‘‘policy distance’’ matrix with |yi,t−1 − yj,t−1| in cells (it, jt). The addition of γ Ly, therefore,
reflects a substantive proposition that states with more similar ALM policies (specifically, spending
levels) affect each other’s ALM policies more (γ < 0), as in the network analyst’s homophily, or less
(γ > 0, heterophily), than do states with less similar policies. It is the endogenous determinant of the
implicit net network in our conceptualization. The rest is as before:My is the first-order time lag, φ its
coefficient; Xβ are the exogenous non-spatial components and ε the disturbances assumed i.i.d.

L contains lagged y’s, so (19) is a system of N equations non-linear in the endogenous variable.
This greatly complicates spatiotemporal dynamics. Without linear multipliers or analytic solutions

24 Case et al. [10], Brueckner and Saavedra [8], Fredriksson and Millimet [27], Redoano [57], Allers and Elhorst [1] among
others have used spatial lag models to test strategic policy interdependence hypotheses, but none use multiple spatial lags or
consider co-evolution.
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for steady states, we must calculate spatiotemporal co-evolutionary responses to changes in X or δ
recursively. To start, rewrite (19) as t cross-sections:

yt = WN,tyt + φyt−1 + γ [abs (5 [yt−1 ⊗ IN ])] yt + Xtβ+ εt (20)

where yt ,WN,t , and Xt are N × 1, N × N , and N × 1 matrices, and5 is an N × N2 matrix produced
by horizontally concatenating N separate N × N matrices. The ith N × N matrix in 5 has −1’s on
its diagonal and 1’s for each element of the ith column, except for element (i, i) which is 0, as are all
remaining elements. For instance, with N = 3,

5 =

[0 0 0 −1 1 0 −1 0 1
1 −1 0 0 0 0 0 −1 1
1 0 −1 0 1 −1 0 0 0

]
. (21)

The function abs is element by element absolute value; its argument gives the vector of differences
yi,t−1 − yj,t−1, reflecting policy distance. In reduced form, (20) is

yt =
[
IN −WN,t − γ [abs (5 [yt−1 ⊗ IN ])]

]−1
(φyt−1 + Xtβ+ εt) . (22)

Our empirical analysis estimates (19) and applies (22) to study total ALM spending and its two
largest components, subsidized employment (SEMP) and labormarket training (LMT). Our dependent
variables are measured per capita (2000, PPP$), and the key right hand side variables, which allow
us to evaluate the spatial interdependence among our sample states, are the various spatial lags of
ALM spending. In detail, our spatial lags, Wry, use four different weights matrices (R = 4). W1 is a
binary contiguity weights matrix, coding wij = 1 for states i and j that share a border and wij = 0 for
states that do not, with exceptions France, Belgium, and Netherlands treated as contiguous with UK,
Denmarkwith Sweden, and New Zealandwith Australia.W2 is an EU co-membershipweightsmatrix;
i.e., wij = 1 if both i and j are EU members and wij = 0 otherwise.W3 has weights that reflect the
trade (imports+ exports) shares between sample states,25 andW4 is the policy distance co-evolution
matrix described above, with |yi,t−1 − yj,t−1| in cells (it, jt). For estimation, we row standardize (as
commonly done in spatial econometrics research) all four matrices by dividing each cell in a row by
that row’s sum.26
We also include several domestic variable controls, starting with macroeconomic performance as

gauged by the real GDP growth and unemployment rates. Governments in wealthier economies tend
to provide more public goods and services (Wagner’s Law), suggesting a positive coefficient estimate
for real GDP. Alternatively, Baumol’s Disease, which refers to how decreasing relative productivity
in service sectors renders financing of public services increasingly costly as economies grow and
shift toward service sector activity, suggests a negative relation of wealth to spending. GDP growth,
though, shouldmostly capture pseudo-automatic responses tomacroeconomic conditions, and so get
a negative coefficient. We expect positive unemployment coefficient for the same reason.
Next, we control three structural features of a state’s economy related to its labor markets and

exposure to external shocks. The labor market factors are union density and Iversen and Cusak’s
[44] deindustrialization measure. Higher union density boosts the influence of organized labor, so
we expect it to have positive coefficient. Iversen and Cusak [44] argue that workers cross significant

25 More exactly, wij,t sums exports i to j and j to i and imports i from j and j from i and divides by 4 times i’s GDP. We use
all four values to average across the slight discrepancies in the data. Our trade flow W may raise concerns for some about
the endogeneity of those wij,t or the possibility of strong connectedness among our units. We do not view either as a serious
practical issue here. First, given row standardization, our weights reflect relative shares of trade across partners. Insofar as ALM
programs may stimulate the economy, they would increase trade with all partners, but we do not expect states’ ALM spending
to affect dyadic trade shares noticeably. (For example, US ALM spending likely explains extremely little of why the US trades
more with Canada than Austria.) Second, note that strongly connectedW are those in which all the off-diagonal elements are
close to their maximum values. Our trade flowW has all non-zero, but not remotely all near maximum, elements. Moreover,
insofar as a strong connectivity bias may arise, with positive interdependence (as found here), the bias is downward [60]. That
is, strong connectivitywould likely induce underestimation of the interdependence generated by trade ties.
26 Row normalization is not necessarily substantively neutral (see, e.g., [56]).
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skill barriers in shifting to services from manufacturing and agriculture. Thus, we expect deindus-
trialization to spur LMT also. Many argue that global economic exposure spurs government spend-
ing, especially on programs that help workers adjust to external shocks (e.g., [59,9,45,58,38,37]).27
Wemeasure exposure by trade openness.
We also include the working age share of the population, the share of cabinet seats held by left and

Christian Democratic parties, and the share of general election votes won by Left Libertarian parties.
Working age voters are natural constituencies for ALM programs, whereas the benefits for retired
voters are indirect at best, so political pressure for ALM policies should increase with working age
population shares. Scholars have variously identified Social Democratic, Christian Democratic, and
Left Libertarian parties as key supporters of active social policies, albeit of/to/for different precise
natures, extents, or reasons (see, e.g., [28,67,46]). The simpler left–right ideological dimension may
also relate to ALM programs.
Table 2 presents our results.We estimate three regressions for each dependent variable: the first is

non-spatial with country indicators, the second spatial with country indicators, and the third spatial
with country and time indicators. Using period dummies is a flexible way to model common OECD-
wide trends and/or common (exogenous) shocks in ALM expenditures. Recall that themost important
issue methodologically in obtaining good estimates of the strength of interdependence, i.e., of ρ, is to
model well any alternative mechanisms by which the outcomes might correlate spatially, such as
common exogenous shocks (e.g., global economic conditions) or correlated domestic factors (this is
Galton’s Problem). From that perspective, the set of country and year dummies serve as a powerfully
conservative way to account for common (or correlated) outside shocks or spatially correlated (near
common) domestic factor. Failure to account for such alternatives will bias spatial lag coefficient
estimates, usually positively.28

The non-spatial and spatial model estimates support differing explanations for total ALM
expenditures. The non-spatial model points to domestic real GDP growth, oddly indicating a strong
procyclicality to total ALM (although not to its LMT or SEMP components), and to the labor market
structures of deindustrialization and especially union density. The spatial models suggest that the
effects that the non-spatial models attribute to domestic growth and trade exposure instead reflect
spatial diffusion of responses to global conditions. The odd procyclicality in ALM policy fades or
reverses to the more plausible countercyclicality in the spatial models. Also interestingly, all three
models find sizable differences in sources of LMT versus SEMP spending. LMT seems closely related
to workforce age demographics and not very closely related to our labor market structural or
institutional measures. SEMP, in contrast, counts strong labor and deindustrialization among its
sources, and not age demography. The spatial models controlling for common shocks also show ALM
policy, especially SEMP, notably countercyclical to the domestic economy. Perhapsmost interestingly,
the spatial models suggest that, while total ALM spending is not especially partisan, its composition
is decidedly so, with LMT associated positively and SEMP negatively with left cabinets. More centrally
for us, finally, Wald tests of the spatial lag coefficients reveal strong evidence of interdependence
in ALM policy, the t-tests on 13 of the 24ρr estimates being significant at conventional levels
and the six joint tests of the 4ρr estimates per spatial model all overwhelmingly rejecting null
hypotheses of zero coefficients, i.e., of thenon-spatialmodel.29 In particular, total ALMspending seems
strongly spatially interdependent along all four dimensions of proximity, SEMPmuch less so, and LMT
intermediately. Consequently, coefficient estimates in non-spatialmodels, especially of total ALM,will
almost certainly suffer from omitted-variable bias.
We focus, therefore, on the spatial models of total ALM spending and, in particular, on the

most conservative time dummies model 3. In this model, we see few strong and significant

27 Others stress how increased international exposure produces competitive pressures favoring smaller governments, but this
is more properly reflected by spatial lags, as in ourW3y term here (see, e.g., Basinger and Hallerberg [4] or Franzese and Hays
[21,23]).
28 See the Appendix for background on Galton’s Problem and for analytic and simulation results that support the continued
centrality of its redress to valid and accurate inference in the m-STAR context.
29 Likelihood ratio tests of the models and information criteria also strongly favor the spatial models.
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effects of domestic conditions net of interdependence, common shocks, and fixed state-specific
factors. Point estimates suggest positive ALM spending response to unemployment, union density,
deindustrialization, and working age population, but only the response to union density is significant
and sizable. They show negative responses to real GDP growth, trade exposure, Christian Democratic
cabinet seats, and Left Libertarian vote shares, but only the last and the response to domestic growth
are close to significant and sizable. No response to left cabinet seats emerges, though we have
already noted that this seems to mask a strongly left partisan shifting from SEMP to LMT in the
composition of ALM spending. Regarding the estimated pattern of interdependence, i.e., the implicit
net network, we find interdependence strongly negative among bordering states and moderately
negative among EU states. The sign and relative strengths of interdependence obtained from these
patterns are consistent with our [19] argument regarding positive externalities inducing free-riding.
The negative EU co-membership ρ̂ also bolsters the case for those concerned that the EU is not
adequately fostering coordination in employment policy. The positive coefficient for the tradeweights
spatial lag, conversely, supports arguments of globalization-induced competition. The coefficient on
the (endogenous) policy distance spatial lag is negative and quite significant (for total ALM, and for
LMT and SEMP as well). This indicates lesser dependence of domestic ALM spending on states whose
spending differs more from the domestic level; policymakers follow more closely those more similar
to them, as revealed by the similarity in their policies: homophily in network analytic terms.
We are satisfied that ALM policy exhibits statistically significant interdependence, and that

patterns of interdependence relate to geographic contiguity and to EU co-membership in ways
that indicate policy free-riding, to trade relations in a manner implicating globalization and policy
competition, and to policy distance so as to suggest homophily, but what do these results tell us of
the net sign and substantive magnitude of this implicit net network or of the contagion effects of
some states’ ALM policies on policymakers in other states via this estimated network? What do they
say about the ALM policy responses across these interdependent political economies to hypothetical
variations in domestic and/or foreign conditions or policies? Answers and fuller interpretation of the
co-evolutionary spatiotemporal effects and dynamics that these estimates imply require the spatial
multiplier given in (22).
The non-linear spatial multiplier in (22) captures feedback from, say, Belgium on France and other

states, and back from France and those others onto Belgium, and so on. The immediate time t effect
on policies in all 21 states, yt , from a given set of time t − 1 policies, yt−1, including spatial feedback,
can be calculated with this spatial multiplier for any desired counterfactual shocks to the rest of the
right hand side of (22). To find the LRSS (cumulative) level of y, we must solve (22) recursively. With
exogenously time-varyingW, like our tradeweights,W3, we also need to specify the values ofW3 that
we assume to obtain in the period considered or in the long run. With endogenously time-varyingW,
like our policy distance matrix W4, the system is much more complex. (Stationarity, e.g., must not
only obtain initially but also continue to hold as dynamics unfold.) To get variance estimates, once
again, we could use the delta method or simulate them by a parametric bootstrap of the procedure
described above. Given the considerable non-linearity of (22), the simulated standard error estimates
may have better properties; they are certainly far easier to generate.
Table 3 illustrates calculation of the estimated co-evolutionary spatiotemporal responses to

hypothetical shocks. For this example, we start with the 2001 values for all exogenous variables (the
last year forwhich all the states have data) and, using the parameter estimates frommodel 3 of Table 2,
determine the LRSS levels of expenditures by recursive calculation of (20). Then, with the system at
this steady state, we shock each state’s ALM spending by $1 (i.e., a $1 shock to δ) and calculate the
new LRSS. These results show the estimated system to be reasonably stable and these LRSS effects
sizable. The specific pattern found suggests convergence, with previously low/high spenders spending
more/less in the new steady state.
We can also use (20) to plot estimated co-evolutionary spatiotemporal paths of responses to

hypothetical shocks. Again using the 2001 values of the exogenous variables and starting from the
LRSS that would emerge from those values and the parameter estimates, Fig. 2 plots as an example
the ten-period response in German, Austrian, and French ALM spending to a $10 permanent positive
shock to Germany’s ALM spending (δ). Note the differences in how France and Austria respond to
the German shock, Austria converging toward Germany’s permanently higher ALM spending and
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Table 3
Effects of a common counterfactual ($1) shock to ALM spending.

Pre-shock steady state Post-shock steady state Difference in steady state
ALM spending ($) ALM spending ($) ALM spending ($)

Australia 528.08 525.95 −2.13
Austria 150.52 150.29 −0.23
Belgium 450.67 446.25 −4.42
Canada 156.81 173.08 16.27
Denmark 545.71 544.77 −0.94
Finland 104.48 113.76 9.28
France 478.34 474.95 −3.39
Germany 466.87 465.8 −1.07
Greece 70.11 79.13 9.02
Ireland 85.04 92.6 7.56
Italy 109.87 115.55 5.68
Japan 472.63 476.32 3.69
Netherlands 456.02 452.09 −3.93
New Zealand 120.55 132.16 11.61
Norway 525.74 523.6 −2.14
Portugal 432.16 416.63 −15.53
Spain 100.25 110.89 10.64
Sweden 577.26 575.66 −1.6
Switzerland 332.48 357.31 24.83
United Kingdom 118.28 128.2 9.92
United States 204.54 211.22 6.68

Fig. 2. Co-evolutionary spatiotemporally dynamic response of German, Austrian, and French ALM spending to a +$10
permanent shock to German ALM spending.

France returning to its status quo ante. These reflect the latent structure of interdependence between
these three states, which can be illustrated as exemplified in the network table and graphic shown
next.
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Table 4
Estimated ALM policy interdependencies, i.e., the net ALM policy network, in 1981.

AUS CAN FIN FRA NTH NWZ ESP SWE GBR USA

AUS 0.000 0.022 −0.371*** 0.160** −0.182* −0.905*** −0.025 −0.481** 0.179 1.123**
(0.000) (0.095) (0.140) (0.075) (0.096) (0.326) (0.023) (0.195) (0.200) (0.566)

CAN −0.177** 0.000 −0.351*** −0.164** −0.129** −0.097*** −0.120*** −0.553*** 0.020 1.092
(0.073) (0.000) (0.126) (0.075) (0.055) (0.036) (0.046) (0.200) (0.064) (0.787)

FIN −0.283** −0.159** 0.000 −0.072 0.080 −0.140*** −0.227** −0.246 0.493 0.075
(0.114) (0.075) (0.000) (0.165) (0.102) (0.051) (0.101) (0.317) (0.308) (0.180)

FRA 0.047** −0.071 −0.347** 0.000 −0.033 −0.207*** −0.275* −0.418** −0.345 0.565*
(0.022) (0.062) (0.142) (0.000) (0.250) (0.076) (0.145) (0.204) (0.222) (0.306)

NTH −0.293** −0.082 −0.134* 0.051 0.000 −0.039** −0.175* −0.238 −0.531* 0.357
(0.114) (0.056) (0.070) (0.313) (0.000) (0.016) (0.099) (0.149) (0.290) (0.280)

NWZ −0.463 0.001 −0.244*** −0.220* −0.005 0.000 −0.214*** −0.439*** 0.575** 0.529
(0.328) (0.062) (0.089) (0.116) (0.028) (0.000) (0.082) (0.163) (0.272) (0.343)

ESP −0.038 −0.055 −0.381*** −0.220 −0.053 −0.190*** 0.000 −0.502** 0.240 0.720**
(0.025) (0.047) (0.146) (0.308) (0.124) (0.069) (0.000) (0.214) (0.215) (0.355)

SWE −0.243** −0.148* −0.638** 0.033 0.113 −0.169*** −0.190* 0.000 0.560 0.203
(0.106) (0.083) (0.299) (0.188) (0.141) (0.062) (0.101) (0.000) (0.354) (0.231)

GBR −0.215* 0.057 −0.175* −0.619*** −0.405** 0.034* −0.124 −0.270 0.000 0.633
(0.114) (0.080) (0.104) (0.218) (0.186) (0.021) (0.094) (0.198) (0.000) (0.387)

USA 0.008 0.284 −0.382*** 0.108 −0.069 −0.146** 0.040 −0.54**0 0.217 0.000
(0.070) (0.455) (0.143) (0.111) (0.106) (0.062) (0.042) (0.214) (0.190) (0.000)

Dependent variable: total ALM spending; model: 3. Actual weights multiplied by 10 (and standard errors adjusted accordingly)
to improve table formatting.
* Significant at the .10 level.
** Significant at the .05 level.
*** Significant at the .01 level.

Using (17), we can also show the estimated weights matrix, i.e., the estimated pattern of implicit
net network interdependencies in ALM policy among these states, as Table 4 does for the estimated
network using the 1981 covariate values.30
We can also depict these estimated patterns and strengths of interdependence using graphical

methods familiar in network analysis as, e.g., Fig. 3 does for the estimated implicit net ALM policy
network in 1991.31EUmember state nodes are circles, others squares; Europeannodes are black, others
gray; dotted edges represent positive net ties, negative solid; edge thicknesses reflect the stronger
of the two connections between nodes (this being a directed network); the size of each arrowhead
reflects the estimated strength of the tie in that direction. Only ties significant at the .05 level are
depicted.32

5. Conclusion and discussion

In [19], we estimated single-lag STAR models of ALM policy using binary contiguity (borders)
weights matrices and a sample of European states over the period 1987–1998. Our estimated
coefficients on the spatial lags in those regressions were negative and statistically significant, and
we argued that those results suggested appreciable ALM policy free-riding in the EU. The results here,
using an m-STAR model to consider multiple possible patterns and pathways (i.e., mechanisms) of
ALMpolicy interdependence among the developed democraciesmore broadly, are strongly consistent
with the conclusion that free-riding dynamics dominate among EUmembers and that these dynamics
emerge specifically to a great extent due to cross-border spillovers as we had suggested. We also

30 Tables for the 1991 and 2001 values are too large to show effectively but are available on request.
31 The Appendix gives analogous graphs for the 1981 and 2001 estimates. The placement algorithm for the figure is NetDraw’s
‘‘Spring Embedding’’ with ‘‘Distances+ Node Repulsion’’ as the layout criteria, using 100 iterations following a random initial
layout with ‘‘distance between components’’ set to 5 and ‘‘proximity’’ being determined using ‘‘geodesic distances’’.
32 Wemight plot as singletons nodes with all their estimated in- and out-dependencies insignificant, or of negligible strength,
but there are no such ones in this example.
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Fig. 3. The estimated network of ALM policy interdependence, 1991.

find now some evidence of positive dependence deriving from trade-related competition, supporting
globalization-induced competitive races sorts of arguments, and that policymakers follow most
closely foreign policymakers from similar states, where similarity is gauged by the level of the policy
in question; i.e., we find evidence of homophily in policymaking.
Methodologically, we have proposed the m-STAR model as providing a simple way to estimate

the patterns and pathways of network interdependence simultaneously with estimating the effect of
those network interdependencies on units’ actions. We would suggest, in particular, that the m-STAR
model is well conceived to address two different kinds of aims that empirical researchers may have
in spatial and spatiotemporal modeling. On the one hand, as means of simultaneous estimation of
net interdependencies and the effects of those interdependencies, the m-STAR model confronts the
heavy reliance of spatial and spatiotemporal empirical results on the relative and absolute accuracy
and power of the researcher’s specifications of the spatial (W) and non-spatial (X) components of
the model. On the other hand, the m-STAR model also directly addresses social science researchers’
interest in testing, or gauging the relative strengths of, alternative potential paths, or mechanisms, by
which network cum spatial interdependence may operate.
Within this framework, we have suggested and started upon the more ambitious agenda of

endogenizing those two co-evolutionary components: network/interdependence patterns and unit
behavior/action. At present, however, our strategy for addressing the simultaneity of network
selection and network/spatial contagion/interdependence effects was the poor man’s exogeneity of
merely time lagging any endogenous components ofW and then assuming the strong conditions for
the validity of that identification strategy to hold. As we emphasized, however, this does not really
address true or effective simultaneity, which seems a likely situation for C & IPE contexts at least. We
therefore propose in conclusion a two-step estimation procedure for future exploration. First, apply
spatial instrumental variables (or two-stage least squares or the generalized method of moments:
S-IV, S-2SLS, S-GMM; see, e.g., [12]) to obtain consistent (and asymptotically efficient) estimates of the
endogenouswij and their estimated variance–covariance matrix. That is, use the exogenousWr and X
– recall that their exogeneity was already assumed – to instrument the (y in the) endogenous L. Then,
draw from this estimated multivariate distribution the (ŷ in) L̂ to insert in the appropriate likelihood,
either the conditional (16) or the unconditional extension of (6).Maximize this likelihood q times, each
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timewith new draws from that first-stage instrumented L̂. The averages of these q second-stage S-ML
estimates should then be the point estimates of parameters, and the estimated variance–covariance
matrix of those parameter estimates should be the average of the estimated variance–covariance
matrices across the iterations plus (1+ q) times the sample variance–covariance matrix in the point
estimates across iterations (as, e.g., in multiple imputation). This estimator should inherent desirable
properties from S-IV (or S-2SLS or S-GMM) and S-ML as far as we can intuit, although we can offer
no proof of properties yet. Assessment of the proposed estimator and direct comparison to network
co-evolution approaches are the obvious next steps.
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Appendix. Supplementary data

Supplementary material associated with this article can be found, in the online version, at
doi:10.1016/j.stamet.2009.11.005. Replication data and code available from the authors’ web pages.
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