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In this paper, we demonstrate the econometric consequences of different specification

and estimation choices in the analysis of spatially interdependent data and show how to

calculate and present spatial effect estimates substantively. We consider four common

estimators—nonspatial OLS, spatial OLS, spatial 2SLS, and spatial ML. We examine ana-

lytically the respective omitted-variable and simultaneity biases of nonspatial OLS and spa-

tial OLS in the simplest case and then evaluate the performance of all four estimators in bias,

efficiency, and SE accuracy terms under more realistic conditions using Monte Carlo experi-

ments. We provide empirical illustration, showing how to calculate and present spatial effect

estimates effectively, using data on European governments’ active labor market expendi-

tures. Our main conclusions are that spatial OLS, despite its simultaneity, performs accept-

ably under low-to-moderate interdependence strength and reasonable sample dimensions.

Spatial 2SLS or spatial ML may be advised for other conditions, but, unless interdepen-

dence is truly absent or minuscule, any of the spatial estimators unambiguously, and often

dramatically, dominates on all three criteria the nonspatial OLS commonly used currently

in empirical work in political science.

1 Introduction

Empirical work in political science, while recognizing that panel and time-series-
cross-section (TSCS) data usually correlate across both time and space, has tended

Authors’ note: This research was supported in part by National Science Foundation grant no. 0318045. We thank
Chris Achen, Jim Alt, Kenichi Ariga, Neal Beck, Jake Bowers, Kerwin Charles, Bryce Corrigan, Tom Cusack,
David Darmofal, Jakob de Haan, John Dinardo, Zach Elkins, John Freeman, Fabrizio Gilardi, Kristian Gleditsch,
Mark Hallerberg, John Jackson, Aya Kachi, Jonathan Katz, Mark Kayser, Achim Kemmerling, Gary King, Hasan
Kirmanoglu, James Kuklinski, Tse-Min Lin, Xiaobo Lu, Walter Mebane, Covadonga Meseguer, Michael Peress,
Thomas Pluemper, Dennis Quinn, Megan Reif, Frances Rosenbluth, Ken Scheve, Phil Schrodt, Beth Simmons,
Duane Swank, Wendy Tam Cho, Craig Volden, Michael Ward, and Gregory J. Wawro for useful comments on this
and/or other work in our broader project on spatial econometric models in political science. Bryce Corrigan, Aya
Kachi, and Xiaobo Lu each provided excellent research assistance and Kristian Gleditsch, Mark Hallerberg, and
Duane Swank also generously shared data. We alone are responsible for any errors.

� The Author 2007. Published by Oxford University Press on behalf of the Society for Political Methodology.
All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

140

Advance Access publication March 16, 2007 Political Analysis (2007) 15:140–164
doi:10.1093/pan/mpm005



to model temporal dependence directly. But spatial interdependence, if considered at
all, is modeled solely as a nuisance to be ‘‘corrected’’ or to which standard error
(SE) estimates should be made ‘‘robust’’ (panel-corrected standard errors [PCSE]).
That is, current practice in political science (much of our own past work included)
relies almost exclusively on nonspatial or, at most, ‘‘nuisance spatial’’ models. As
argued and discussed elsewhere in this issue, direct modeling of temporal dynamics
is methodologically and substantively laudable, and we follow that practice explic-
itly in our empirical example and at least implicitly in our analytic and simulation
studies. This paper emphasizes cross-sectional interdependence, i.e., spatial depen-
dence across units. In it, we determine and discuss the econometric consequences of
alternative specification and estimation choices in empirical analyses of such spatial
interdependence in TSCS data and show how to calculate and present substantively
interesting spatial effects.

Relegating spatial interdependence to nuisance is often problematic on econometric
grounds and, more often and importantly still, on substantive grounds because many
political science contexts imply substantively meaningful and interesting interdependence
across units of observation. The frequently ignored spatial relationships in TSCS data are
an important part of the politics that political scientists aim to study. In comparative
politics, for example, likelihoods and outcomes of demonstrations, riots, coups, and/or
revolutions in one country almost certainly depend in substantively crucial ways on such
occurrences in other countries (e.g., through demonstration effects or snowballing). In U.S.
politics examples, election outcomes or candidate qualities or strategies in some contests
surely depend on those in others, and individual legislators’ votes certainly depend on
others’ votes or expected votes. In comparative and U.S. microbehavioral research, the
recently surging interest in contextual or network effects usually refers to the effects on each
individual’s behavior or opinion of sets of other individuals’ opinions or behavior; e.g.,
a respondent’s opinion on some policy likely depends on the opinions of her state, district,
community, or social group. In international relations, the interdependence of states’ ac-
tions is almost the definition of the subject matter. States’ entry decisions in wars, alliances,
international organizations, e.g., heavily depend on how many and who enter and how. In
comparative and international political economy (C&IPE), too, such spatial interdepen-
dence is very often substantively large and central. For example, globalization, i.e., in-
ternational economic integration, implies strategic and nonstrategic interdependence
across domestic politics and policies. Spatial interdependence is substantively central to
the very concept of integration in general and to the fears and hopes surrounding global-
ization in particular. In short, spatial interdependence is ubiquitous, and often quite central,
throughout the substance of political science.

We organize the paper thus. Section 2 presents and discusses our generic empirical
model, which contains distinct unit-level, contextual, context-conditional, and spatial-
interdependence components to establish the significance of spatial models to political
science research and to separate conceptually several often-conflated sources of spatial
correlation. We then discuss specification and estimation strategies, focusing on four com-
mon estimators—nonspatial OLS, spatial OLS, spatial 2SLS, and spatial ML. Section 3
examines analytically the respective omitted-variable and simultaneity biases of nonspatial
OLS and spatial OLS for a simple but general case. Section 4 then evaluates the performance
of all four estimators in bias, efficiency, and SE accuracy terms, using Monte Carlo simu-
lations of more realistic contexts. We provide an empirical example and illustration of
estimation and presentation of spatial econometric models in Section 5. Section 6
concludes.
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2 Specifying and Estimating Spatial Econometric Models

We begin by specifying a generic spatial econometric model intended to reflect the basic
structure of many political science arguments evaluated in TSCS data. Perhaps especially
attuned to C&IPE, the model involves unit-level explanators (e.g., individual or domestic
factors), dit, exogenous-external conditions or shocks (e.g., oil prices, technology), si, and
context-conditional responses to external shocks (i.e., unit responses to exogenous-
external conditions may depend on unit characteristics), d9it5s9t, as well as interdepen-
dence processes, q

P
j 6¼i wijyjt:

yit 5 q
X
j6¼i

wijyjt þ d9itbd þ s9tbs þ ðd9it5s9tÞbds þ eit: ð1Þ

Interdependence refers to processes by which outcomes in some units, yj, affect out-
comes in others, yi:

1 We distinguish such interdependence processes, which will induce
spatial correlation, from responses to spatially correlated outside influences—call these
exogenous-external conditions or common shocks—and/or to spatially correlated unit level
factors, both of which will also induce spatial correlation. Correlation across units can
arise through any of these components of our generic model. For example, a country might
respond to spatially correlated internal or exogenous-external political economic shocks
by lowering its capital tax rate (the unit-level or contextual terms, d9itbd or s9tbs), and its
response to the external or internal shocks may depend on contextual or domestic con-
ditions (the term reflecting context conditionality, d9it5s9tð Þbds), but the magnitude of its
response may further depend on how its competitors respond and, conversely, its own
response may affect the tax rates that policy makers in other countries choose (the term
reflecting spatial interdependence, q

P
j 6¼i wijyjt).

In this paper, we focus on C&IPE models like (1) that contain domestic (unit-level),
exogenous-external (contextual), and context-conditional explanators as well as interde-
pendence processes, and methods for estimating such models. We do not consider models
with solely unit-level (domestic), contextual (exogenous-external), or context-conditional
factors, although such models are also in common use, except to note that, if interdepen-
dence is important, estimates of coefficients for unit-level and contextual variables in such
models will be inefficient in the best of circumstances and, more usually, biased and
inconsistent as well. Indeed, a central challenge for empirical researchers, known as
Galton’s Problem, is the difficulty of distinguishing responses to spatially correlated
contextual or unit-level conditions from interdependence. On one hand, to ignore or in-
adequately model interdependence processes when they are present will lead analysts to
exaggerate the importance of common shocks and thus privilege contextual (exogenous-
external) or unit-level (domestic) explanations. On the other hand, if simultaneity prob-
lems discussed below are insufficiently redressed, modeling interdependence with spatial
lags will lead analysts to misestimate (usually overestimate) the importance of interde-
pendence at the expense of common shocks, especially insofar as such common shocks are
inadequately modeled. Instrumental-variables (IV) or maximum likelihood (ML) estima-
tors (spatial two-stage least squares [S-2SLS] or S-ML) may provide effective resolutions
(in somewhat different regards, under somewhat different conditions) to this dilemma.

1We do not consider models where interdependence arises unequally or solely through ŷj and/or ej: For compre-
hensive textbook treatment of spatial econometrics, including such spatial error models and the like, see Anselin
(1988) and, for newer developments, Anselin (2001).
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2.1 Estimating Models with Spatial Interdependence

Much political science substance and theory will imply empirical models like (1).
Econometrically, however, obtaining good (unbiased, consistent, efficient) coefficient
estimates and accurate SEs in general, and, in particular, distinguishing effects of spatially
correlated domestic, exogenous-external, and context-conditional factors from those of
interdependence processes are not simple tasks. The first and primary consideration is the
relative and absolute precision and power with which the empirical model specifies and
measures its alternative nonspatial and spatial components, i.e., the interdependence part
q
P

j 6¼i wijyjt

� �
and the parts reflecting common, correlated, or context-conditional re-

sponses to unit-level and exogenous-external factors ðd9itbd; s9tbs; and d9it5s9tð ÞbdsÞ: In-
sofar as unit level/domestic factors and/or the incidence and effects of exogenous-
contextual/external factors correlate spatially (which is likely), and in patterns similar
to the interdependence patterns (also likely), the two mechanisms produce similar effects,
so inadequacies or omissions in specification of the one tend, quite intuitively, to induce
overestimation of the other’s impact.

Secondarily, however, even if the spatial and nonspatial components are modeled per-
fectly, the spatial lags in this empirical model will be endogenous (i.e., covary with resid-
uals), so estimates of qwill suffer simultaneity bias. As with the primary omitted variable or
relative misspecification concern, these secondary simultaneity issues will tend to bias con-
clusions on the strengths of nonspatial and interdependence mechanisms in opposite direc-
tions. That is, relative failure to model either the nonspatial or spatial aspects adequately will
tend to bias conclusions in favor of the other aspect; likewise, inadequate redress of the
simultaneity involved in modeling interdependence will tend induce misestimation (often,
but not necessarily, overestimation) of the strength of interdependence and thereby bias con-
clusions toward the one (usually interdependence) and against the other (usually nonspatial).

Spatial lagged–dependent variable, or just spatial lag models like (1) are an effective
specification for estimating and testing the sign and strength of interdependence. In matrix
notation,

y5qWyþ Xbþ e; ð2Þ

where y is an NT � 1 vector of observations (N units, T time periods per unit) on the
dependent variable stacked by unit (i.e., unit 1, time 1 to T, then unit 2, time 1 to T);2 q is
the spatial autoregressive coefficient; W is an NT � NT block-diagonal spatial-weighting
matrix, with elements wij reflecting the relative degree of connection from unit j to i.3 Wy
is thus the spatial lag; i.e., for each observation on yit, the corresponding element of Wy
gives a weighted sum of the yjt, with weights given by the relative connectivity from j to i.
X is an NT � K matrix of observations on K independent variables; b is a K � 1 vector
of coefficients on X; e is an NT � 1 residual vector. Note that each T � T block along
W’s block diagonal,4 which is the block multiplying yi itself in the spatial lag–weighted

2As issues of temporal dependence are largely orthogonal to the spatial issues discussed here (see below and
Franzese and Hays 2006a), and as other contributions to this volume emphasize temporal issues in TSCS data,
we will assume for simplicity that Xb contains a full and effective model of the temporal dependence (e.g., time-
lagged dependent variables) through most of our discussion. However, we will discuss substantive interpretation
and presentation of estimated effects in models containing spatiotemporal dependence below, so we prefer to
retain the i,t subscripts here.

3Our notation here is somewhat nonstandard, the subscripts to wij not being the ordinates in W of those elements.
4The methodological literature on spatial dependence mostly focuses on cross-section data (T 5 1). In this case,
each block referenced in the text and surrounding notes has just one element.
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sum, is all zeros;5 each of the off-diagonal T � T blocks has zero off-diagonal elements,6

but nonzero diagonal elements, which we denote w_ij, reflecting the contemporaneous
spatial correlation in y. Note also that, as the wij elements of W reflect the relative
connectivity from unit j to i, W may not be symmetric.7 Finally, q gives the impact on
the outcome in i of the outcomes in all the other ðj 6¼ iÞ spatial units, each weighted by wij.

Thus, q gauges overall interdependence strength, and the wij describe the relative mag-
nitudes of specific interdependence paths between units. Typically, the set of wij is deter-
mined by theoretical and substantive argument as to which units will have greatest effect on
outcomes in which others.q is the coefficient onW’s prespecified spatial weights, giving the
strength of interdependence along those prespecified paths.8 In C&IPE, e.g., the interde-
pendence induced by international economic competition might be operationalized as a set
of weights, wij, based on the trade- or capital-flow shares of countries j in country i’s total.
The inner product of that vector of weights with the stacked dependent variable y then gives
as a regressor the weighted average (or sum) of y in the other countries j that time period.Wy
gives the entire set of these vector inner products—here, the trade- or capital-flow–weighted
averages—for all countries i and j. In other contexts (as well as in C&IPE), diffusion might
alternatively occur via contiguity (borders), leader-emulation, cultural-connection, or other
mechanisms. Here, outcomes from some unit or set of units {j}, but not the outcomes from
other units, would be expected to diffuse to the outcome in i. This implies that the weights
are (n{j} � 1)�1 for those ij where i and j both belong to some group (e.g., share a border,
language, or membership in an institution or any other group) and 0 for all others. Call this
class of interdependence patterns comembership; our simulations below will reflect a special
case of comembership interdependence where all sample units are comembers of the same
group and affect each other equally, implying uniform weights of (N � 1)�1.

To estimate equation (2), one could simply omit Wy and estimate b by ordinary least
squares regression of y on X: nonspatial OLS. Despite obvious omitted-variable biases and
inefficiency (and the lack of any estimate at all of q), this ‘‘strategy’’ of ignoring spatial
interdependence is currently the most common (although often with spatial SE corrections:
PCSE or certain types of clustering). A second strategy, almost as simple to implement and
in increasing use, estimatesb and q by OLS regression of y on bothX andWy: Spatial OLS.
Unfortunately, becauseWy is endogenous, S-OLS will suffer simultaneity biases. ML offers
a third strategy of estimating q and b in a model that specifies the joint likelihood of y to
reflect the spatial interdependence (Ord 1975). Spatial ML is computationally intense,
especially as N � T dimensionality rises, but its parameter estimates will be consistent
and asymptotically efficient if the model, including the interdependence pattern, is correctly
specified. A fourth strategy instruments for Wy using X and WX. This IV by S-2SLS strat-
egy also produces consistent and asymptotically efficient estimates, provided its necessary
conditions are met: namely, that the X are indeed exogenously related to y.9

5If y also manifests temporal dynamics, only W’s prime diagonal is zero; the off-diagonal elements of the T � T
block diagonal are nonzero and reflect these temporal dynamics.

6That is, unless y exhibits spatial, cross-temporal interdependence so yit affects yjs for some i 6¼ j and t 6¼ s.
7In fact, symmetric W is unlikely in most C&IPE contexts (at least), where it would imply, e.g., equal-strength
effects United States/Belgium and Belgium/United States. Such asymmetry is one reason spatial approaches
that exclusively stress error covariance have less useful applicability in political science than spatial lag models,
although symmetric W may be more likely in some more homogenous contexts.

8The accuracy of W’s prespecification, both absolutely and relative to the nonspatial components of the model, is
of crucial empirical, theoretical, and substantive importance. Strategies for parameterizing W and estimating
such models are of great interest but as yet mostly remain for future work to develop.

9See Kelejian et al. (2003) and Kelejian and Robinson (1993) for more complete lists of estimators and more
thorough coverage of the IV/method-of-moments class of estimators.
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The two simplest estimators (OLS, S-OLS) are, as just noted, misspecified and so
inconsistent, due to omitted variables (OLS) or simultaneity (S-OLS). This does not imply
that their bias, inconsistency, and inefficiency will necessarily be large though, or that they
will perform equally badly, or even that consistent estimators like S-2SLS or S-ML will
necessarily outperform them in finite samples. Thus, the two ‘‘sophisticated’’ options
asymptotically dominate the two simple ones, but we must still explore the relative
performance of all four in samples and models reflecting typical political science TSCS
contexts to assess which may be best strategies in practice, and by how much, under what
conditions. Our experiments suggest that the omitted-variable biases of the current default
practice of nonspatial OLS generally are large, whereas the simultaneity biases of S-OLS
are typically smaller, especially as the strength of interdependence, q, remains modest in
truth and domestic and exogenous-external factors are well-specified and powerful explan-
ators. In fact, in some conditions (modest interdependence and small samples), S-OLS can
perform adequately in mean-squared error in comparison to S-2SLS and S-ML even if IV
instrumentation or ML joint-likelihood specification is perfect. At greater interdependence
strength, however, the simultaneity bias grows large, and using one of the consistent
estimators is more crucial. There we find that the (perhaps) simpler S-2SLS can perform
acceptably well compared to S-ML under some conditions, notwithstanding IVestimators’
known inefficiency relative to ML (and least squares [LS]), but also that S-ML seems to
dominate more notably in other conditions and is rarely outperformed.

3 Analytical Results for OLS and S-OLS: Omitted-Variable and
Simultaneity Biases

We now demonstrate analytically, in a case simplifying equation (2) to a single regressor, x,
that both nonspatial and spatial OLS estimates are biased and inconsistent in the presence
of interdependence, and we specify those biases precisely. S-OLS estimation of equation
(2) is inconsistent because the regressor Wy, the spatial lag, covaries with the residual, e.
The reason is simple: the spatial lag, Wy, being a weighted average of outcomes in other
units, places the left-hand side of some observations on the right-hand side of others: text-
book simultaneity. To see the implications of this endogeneity, first rewrite equation (2) as

y5Qdþ e; where Q5 ½Wy x� and d5 ½q b�9: ð3Þ

The asymptotic simultaneity bias for the S-OLS estimator is then given by

plim d̂S�OLS 5dþ plim
Q9Q

n

� ��1 Q9e
n

� �" #
: ð4Þ

In the case where x is exogenous, we can rewrite the biases expressed in equation (4) as

plim d̂S�OLS 5
q

b

� �
þ 1

j C j
covðWy; eÞ � varðxÞ

�covðWy; eÞ � covðWy; xÞ

� �
;

where C5 plim
Q9Q

n

� �
: ð5Þ

So, e.g., in the likely common case of positive interdependence and positive covariance of
the spatial lag and exogenous regressors, S-OLS would generally overestimate interde-
pendence strength, q̂, and correspondingly underestimate domestic, exogenous-external,
and/or context-conditional effects, b̂:
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Conversely, the bias in b̂ induced by omitting the spatial lag when interdependence
exists—i.e., in nonspatial OLS—is simply omitted-variable bias, the formula for which is
well known to be Fb where F is the matrix of coefficients obtained by regressing the
omitted on the included variables and b is the vector of (true) coefficients on the omitted
variables. In this case,

plim b̂OLS 5bþ q� covðWy; xÞ
varðxÞ : ð6Þ

q̂OLS [ 0; of course, which is biased by �q. Thus, in the same likely case as above, OLS
overestimates domestic, exogenous-external, or context-conditional effects while ignoring
spatial interdependence.

We find further intuitions by simplifying even more radically to just two units (with one
x each):

y1 5q12y2 þ b1x1 þ e1

y2 5q21y1 þ b2x2 þ e2:
ð7Þ

In equation (7), Cov y1; e2ð Þ5 q12

1�q21q12

� �
Var e2ð Þ: Using ĝ5gþ Q9Q

n

� ��1Q9e
n for OLS

coefficients then reveals that:

S-OLS bias of q̂21 5
1

n
ðQ9QÞ�1

22 � q12

1 � q12q21

� �
� Varðe2Þ: ð8Þ

The {2, 2}th element of Q9Q/n is Vðy1) and so is positive as is the corresponding element
of the matrix inverse. Thus, the simultaneity bias in q̂21has the same sign as the true q12.10

Note the subscript reversal; it is intuitive. If Japan affects the United States negatively
and the United States affects Japan positively, e.g., then S-OLS’s simultaneity-
biased estimates of U.S./Japan interdependence would, by ignoring dampening feedback
from the negative Japan/U.S. effect, induce underestimation of the positive U.S./Japan
dependence. Trying to estimate the negative Japan/U.S. interdependence by S-OLS
would conversely incur positive bias by ignoring the countervailing U.S./Japan feedback.
Thus, oppositely signed interdependencies induce S-OLS simultaneity biases favoring
interdependence-strength underestimation. We suspect that actual diffusion mechanisms
more usually involve same-signed interdependence and so conclude that the simultaneity
biases in S-OLS will usually inflate interdependence-strength estimates.

From equation (8), we also see that S-OLS’s simultaneity bias will be large only as the
function of q12 and q21 in the second term times the ratio of Vðe2Þ to Vðy1Þ is large. Thus,
simultaneity-induced overestimation of q will be large only insofar as mutual interdepen-
dence is relatively strong and outcomes are relatively inexplicable by the exogenous
(nonspatial) model factors. To restate this substantively, S-OLS will suffer sizable simul-
taneity biases only if and insofar as spatial interdependence is strong and unit-level
(domestic) and contextual (exogenous-external) factors account for relatively little sys-
tematic variation.

Finally, the omitted-variable biases in nonspatial OLS are larger the more domestic or
exogenous-external factors correlate spatially. With fully common exogenous-external
factors (e.g., time period fixed effects, as in our simulations), x1 5 x2 and OLS

10Note that we assume throughout that 0 � q , 1. Spatial unit-roots, q � 1, are highly problematic statistically
but, thankfully, also highly improbable substantively. This implies that 0 � q12q21 , 1 also.
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yields b̂1 5 b1 þ q21b2þq12q21b1
1�q12q21

, greatly overestimating the importance of common shocks.
Conversely, omitting common shocks when such are present induces great simultaneity-

induced overestimation of q; S-OLS yields q̂12 5 q12 þ
b1b2þq21b

2
1

ð1�q12q21Þ½b22þb21q
2
21
þq2

21
varðe1Þþvarðe2Þ�

:

In sum, S-OLS estimates of equation (1) or equation (2) suffer simultaneity bias; OLS
estimates of equation (1) or equation (2) exclude the spatial lag and so suffer omitted-
variable bias. S-OLS estimates of (net) interdependence from j to i will have bias of the
same sign as the (net) interdependence from i to j.11 If feedback from j to i and i to j
reinforce (have the same sign), then S-OLS estimates will exaggerate interdependence.
With countervailing feedback (opposite sign), which is probably less common, S-OLS
attenuates q̂: Moreover, simultaneity-induced inflation bias in q̂S�OLS induces attenuation
bias in b̂S�OLS, the coefficient on nonspatial factors. The q̂OLS [ 0 imposed by OLS, in turn,
induces inflation bias in b̂OLS: These conclusions hold in degree as well: insofar as one
specifies interdependence inadequately—absolutely, and relatively to the model’s nonspa-
tial components—one tends to underestimate the former and overestimate the latter, and
vice versa. When spatial lags are generated with arbitrary and so likely inaccurate weights,
e.g., interdependence-strength estimates will likely be biased downwards and unit-level,
contextual, or context-conditional explanations conversely privileged. All these problems’
magnitudes, intuitively, increase with the general strength of interdependence, q, and with
the spatial correlation of domestic (unit-level), exogenous-external (contextual), and
context-conditional regressors. Researchers interested in evaluating the relative strengths
of unit-level, contextual, and interdependence effects thus especially need to weigh care-
fully these specification and estimation-strategy considerations.

Fortunately, IV and ML methods for redressing the simultaneity problems of S-OLS
exist. However, S-2SLS may suffer quasi instrument (Bartels 1991) and efficiency prob-
lems characteristic of all IV estimators, and S-ML is computationally demanding and not
yet well implemented in software packages commonly used by political scientists. Fur-
thermore, S-2SLS and S-ML, like all IV and ML, have only asymptotic properties (con-
sistency and asymptotic efficiency, asymptotic normality), so their performance in realistic,
limited samples demands further exploration. Moreover, even in these simple cases that we
explored analytically, determining whether OLS omitted-variable or S-OLS simultaneity
biases will typically be appreciable, which might be the larger concern typically, and how
either OLS or S-OLS compare with S-2SLS or S-ML short of ‘‘asymptopia’’ is difficult. We
turn therefore to Monte Carlo simulation to compare these estimators in richer, more
realistic scenarios.

4 Experimental Evaluations of the Four Estimators

4.1 Design of the Simulation Exercises (Monte Carlo Experiments)

The true model generating the data for our experiments is the reduced-form solution of
equation (2):12

y5 ðI� qWÞ�1Xbþ ðI� qWÞ�1e; ð9Þ

with matrixX comprisingd5 {dit}, s5 {st},ds5 {ditst}, as in our generic context-conditional
model (1). Residuals, e, are an NT� 1 vector of i.i.d. draws from a standard normal distribution.

11‘‘Net’’ here means including all the indirect feedback through third parties.
12We assume that the spatial multiplier, (I � qW), is invertible, which serves to debar spatial unit-roots.
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d is also an NT� 1 vector of i.i.d. draws from a standard normal, which, being unit-i and time-t
specific, represent unit-level (domestic or individual) factors unique to each unit-time. s is an
NT � 1 stack of T vectors of size N � 1. Each subvector has N identical elements, but each
of the T subvectors differs from others. s thus represents a set of common shocks (contextual
factors), one per time period, each hitting each cross-sectional unit equally, and each also
drawn i.i.d. standard normal.13 The interaction term, ds, reflects the notion that unit-level
variables condition the effects of these common shocks. Finally, the true model involves in-
terdependence, with average magnitude q and relative connectivities from units j to i of wij.

We then generate y by equation (9) using coefficients (bd, bs, bds, q)5 (1, 1, 1, q), varying
q from .1 to .9 and sample dimensions over subsets of N 5 {5, 10, 25, 40, 50}� T 5 {20, 35,
40, 50} across experiments. Recall that the spatial weights, wij, give the relative impact of
each j on each i in the spatial interdependence pattern given byW, whereas q gives the general
strength of interdependence following this pattern. Thus, larger q (for a given �wij)

14 implies
stronger interdependence. We assume that the spatial dependence is time invariant—i.e., the
wij connecting j to i persists in all T periods without change—so each diagonal element of
each T � T off-diagonal block inW is equal. We also assume spatial connectivity to manifest
without time lag, i.e., within an observation period. As Beck et al. (2006) note, time-lagged
spatial lags need not covary with contemporaneous residuals, which alleviates estimation
issues arising from endogeneity. However, many substantive contexts and data set structures
will combine to suggest that interdependence across units occurs within the time span of one
observational period, and, even if not, time-lagged spatial lags only alleviate the endogeneity
insofar as temporal and spatiotemporal dynamics are modeled adequately.15

Finally, all data in our experiments are temporally uncorrelated; effectively, we are
assuming that temporal dependence is successfully modeled elsewise (e.g., by time-lagged
dependent variables) or absent (as likely, e.g., in pooled independent surveys).16 We then
set the interdependence pattern between spatial units by fixing all these wij elements of W
to (N � 1)�1. That is, every unit affects every other unit equally, so the spatial lag is just an
unweighted average of the dependent variable for the other units that time period.17

To estimate spatial lag models, researchers must prespecify this spatial-weights matrix,
W. This prespecification is a crucial theoretical and empirical step in studying interdepen-
dence.18 As already stressed, distinguishing between and evaluating the relative strength of
interdependence and that of unit-level or contextual effects rely firstly upon the relative
precision with which these alternative sources of spatial correlation are specified. Our
simulations, on the other hand, simply set all nonzero elements (i.e., the off-block-diagonal

13Note: s is one regressor, not a set of time period dummies. This assumes that the researcher effectively models
exogenous-external conditions with some covariate (e.g., terms of trade). Franzese and Hays (2004) explore the
implications of measurement/specification error in this crucial step.

14Following the spatial econometrics literature, we row normalize the wij to sum to 1 for each row i of W, so the
parenthesis is unnecessary. Although little discussed, row normalization is not necessarily substantively neutral.
It implies that per-unit connectivity declines with numbers of connected units, or, e.g., that connectivity via
trade depends only on shares of trade and not total trade exposure.

15As Beck et al. (2006) also stress, one can and should test the sufficiency of the modeled temporal dynamics as
usual. Franzese and Hays (2004) discuss some tests to explore residual spatiotemporal dynamics.

16Franzese and Hays (2006a) consider temporal and spatial dependence jointly and find confirmation that tem-
poral and spatial estimation issues are largely orthogonal, so we can safely discuss estimation issues regarding
spatial interdependence while assuming temporal dependence to have been modeled otherwise. We do discuss,
however, substantive interpretation of estimates from models containing both temporal and spatial dependence
because spatiotemporal interactions are important there.

17This is similar, especially for binary outcomes and relatives like durations, to the (unweighted) counts or
proportions of the other units with y 5 1 or y 5 0 often used in those contexts.

18Strategies for parameterizing and estimating W according to theoretical/substantive expectations would be of
great interest but are, as yet, undeveloped. See also note 7.
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diagonals) of the W specified for estimation to (N � 1)�1. That is, the hypothetical re-
searcher estimates models with spatial lags given as unweighted averages of the dependent
variable in the other cross-sectional units each period on the right-hand side, with instru-
mentation (S-2SLS) or without (S-OLS). S-ML likelihoods specified for empirical estima-
tion likewise reflect this flat pattern of interdependence. In these experiments, in other
words, interdependence is truly homogenous, and the hypothetical researcher has correctly
specified the estimation-weighting matrix to equal the true one exactly.19

We evaluate nonspatial OLS, and S-OLS, S-2SLS, and S-ML, the LS estimators with
and without PCSEs (i.e., estimates of the variance-covariance matrix of the coefficient
estimates that are ‘‘robust to,’’ i.e., consistent in the presence of, spatial correlation). We re-
port some subset of experiments conducted over sample dimensions N 5 {5, 10, 25, 40, 50},
T 5 {20, 35, 40, 50}, q 5 {.1, . . ., .9}.20 Each table reports 1000 trial experiments;
the figures show parameter sweeps in 100-trial experiments. We report means of coeffi-
cient estimates and the LS and ML SEs and PCSEs; actual SDs of coefficient estimates;
and root mean-squared errors (RMSEs) of coefficient estimates. Comparing mean param-
eter estimates to their true values gives their (small sample) biases. By comparing mean
reported SEs to true SDs of coefficient estimates, we observe SE accuracy and how well
PCSEs may redress inaccuracies. RMSE is the square root of the sum of the square of the
bias plus the variance of the estimated coefficients, and thus combines bias/consistency
and efficiency concerns (with squared bias and variance weighted equally).

4.2 The Estimators: OLS, S-OLS, S-2SLS, and S-ML

To detail the estimators’ mechanics: nonspatial OLS simply regresses y on X, omitting
Wy, i.e., ignoring spatial interdependence; S-OLS regresses y on X and Wy. Both are
inconsistent given spatial interdependence, OLS suffering omitted-variable and S-OLS
simultaneity biases.

S-2SLS also implements relatively easy. The W matrix already constructed to generate
spatial lag y is also used to generate spatial lags of X, WX, which then serve as instruments
for Wy. To elaborate the standard IV ‘‘solution’’ to endogeneity—i.e., covariance of
regressors, here Wy, with residuals—is to find some variables, Z, that covary with the
endogenous regressors but do not covary with the dependent variable (i.e., e) except
insofar as they relate to those regressors. Given such a Z, the IV estimator, biv 5

(X9Z)�1Z9y, is consistent and asymptotically efficient (but usually inefficient in small
samples relative to noninstrumented estimators like LS or ML). Practically, 2SLS imple-
ments this by, first, regressing the full set of X, including endogenous regressors, on Z and
the exogenous X, and, second, regressing y on (all) the fitted X’s from this first stage. If the
instruments Z are indeed perfectly exogenous, i.e., their covariance with e is exactly zero,
then IV estimators will be consistent and asymptotically efficient regardless of how
strongly the instruments covary with the endogenous regressors for which they instrument.
If not, i.e, if the instruments are even slightly correlated with e, then the Z are only quasi
instruments (Bartels 1991), and mean-squared-error benefits or costs of instrumentation
will depend on the ratio of the covariance of instruments with endogenous regressors to the
(inestimable) covariance of Z with e. In our experiments, the X9s (i.e., d and s) are i.i.d.,
and in particular independent of the draws for e, so our WX are perfect instruments by

19Franzese and Hays (2004, 2006a) explore the consequences of measurement/specification error in this step and
of patterns of interdependence other than this flat or homogenous one.

20These subsets suffice to demonstrate our major experimental findings. A much larger set of results are available
(as is software to conduct further simulations oneself) from the authors upon request.
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construction. More commonly in practice, researchers will often confront right-hand side
Xi that are endogenous to left-hand side yi—i.e., the standard endogeneity concern that y
causes X as well as X causes y. If so, and if X exhibits spatial correlation also, then WX
will offer only imperfect quasi instruments at best (intuitively, because j’s X will also
contain some of i’s y). In principle, researchers should be able to combine a standard 2SLS
estimation strategy to address X-y simultaneity with the S-2SLS estimation strategy just
described to address the spatial simultaneity. Failing that (e.g., if perfectly valid instru-
ments for the standard endogeneity problem prove difficult to discover, as they usually do),
we expect that the utility of the available WX as quasi instruments will depend on the
relative magnitudes of the intra-e interdependence, call it c, of the intra-X in-
terdependency, call it q, the causal mechanism from y to X, call that magnitude a, and
the causal mechanism from X to y, call it b. For now, we advise researchers either to
employ only strictly exogenous x (i.e., those x whose exogeneity is most certain) in
generating the spatial instruments WX, or, if they trust our conjecture, to explain why
the x used in WX have good ‘‘Bartels Ratios,’’ which in this case translates to high qb/ca.21

Implementing S-ML is not much more complicated, although the maximization is
computationally intense even while relying on a simplifying approximation to the de-
terminant of (I-qW). To see the minor complication, start by isolating the stochastic
component of the spatial lag model:

y5 qWyþ Xbþ e0e5 ðI� qWÞy� Xb[Ay� Xb: ð10Þ

Assuming i.i.d. normality, the likelihood function for e is then just the typical linear one:

LðeÞ5 1

r22p

� �NT
2

exp � e9e
2r2

� �
; ð11Þ

which, in this case, will produce a likelihood in terms of y as follows:

LðyÞ5 j A j 1

r22p

� �NT
2

exp � 1

2r2
ðAy� XbÞ9ðAy� XbÞ

� �
: ð12Þ

This still resembles the typical linear normal likelihood, except that the transformation
from e to y, is not by the usual factor of 1, but by jAj5 jI � qWj. Since jAj depends on q,
each recalculation of the likelihood in the maximization routine must recalculate this
determinant for the updated q values. Ord’s (1975) solution to this computational inten-
sity issue was to approximate jWj by Pi ki because the eigenvector l in this approxima-
tion does not depend on q. Then, jI � qWj 5 Pi 1 � kið Þ, which requires the estimation
routine only to recalculate a product, not a determinant, as it updates.22 The estimated

21We have begun to consider this conjecture in some simulations (Franzese and Hays 2004), but we have not yet
explored it fully analytically or experimentally, nor have we yet considered the practical details of combining
2SLS for endogeneity of X and y with S-2SLS for spatial simultaneity of y. Note: q, b, c, a magnitudes cannot
be estimated without a model whose identification conditions must assume them. That is, as Bartels stressed, the
parameters that determine the quality of quasi instruments cannot be estimated; one can only offer theoretical/
substantive arguments about their likely relative magnitudes.

22Unfortunately, the approximation may be numerically unstable (Anselin 1988, 2001). On the other hand, S-ML
may enjoy a practical advantage over S-2SLS in multiple W models in that S-ML does not require differentiated
instrumentation for each W to gain distinct leverage on its corresponding q. The instruments, WX, would differ
by virtue of W differing for the alternative interdependence processes, so S-2SLS is estimable for multiple W
models even with identical X in the WX instruments, but we harbor doubts about the practical identification
leverage obtainable thereby.

150 Robert J. Franzese, Jr. and Jude C. Hays



variance-covariances of parameter estimates follow the usual ML formula (negative the
inverse of Hessian of the likelihood) and so are also functions of jAj. The same approxi-
mation serves there.

4.3 Simulation Results

We note first that noticeable estimation problems arise virtually exclusively in q̂, of course,
and in b̂s; intuitively because omission or misestimation of q̂ will induce biases primarily
in the factors that correlate most closely with the missing/misestimated interdependence.
In our experimental design of homogenous interdependence and fully common shocks,
that factor is decidedly s. To conserve space, therefore, we report and discuss estimates
related to those s and Wy regressors only.

Table 1 reports coefficient estimates for the subset sample dimensions and parameter
values of N 5 {5, 40}, T 5 {20, 40}, and q 5 {.1, .5}. We see first that, as analytically
shown for the simplest case, any bias in q̂ induces a bias in b̂s in approximate proportion
and of opposite sign. Furthermore, as claimed, nonspatial OLS’s erroneously imposed zero
interdependence induces overestimates of b̂s, noticeably so even at weaker interdepen-
dence and radically so at stronger q. Simple S-OLS dramatically improves over this badly
misspecified nonspatial OLS, replacing the latter’s sizable omitted-variable biases with an
actual estimate of q. The estimate does suffer a simultaneity bias, but that bias remains
modest at lesser interdependence strength and virtually vanishes in larger samples with
low q. However, the S-OLS simultaneity biases do become appreciable at greater q. In
Table 1, S-2SLS emerges clearly dominant by an unbiasedness criterion, hardly erring at
all on average, across any sample dimensions or parameter values. S-ML performs mostly
acceptably also, with biases mostly below 5%, except in smaller samples at lower q, where
it misses rather badly in percentage (although not in absolute) terms.

Table 1 Average coefficient estimates across 1000 trials (bias)

Coefficient OLS S-OLS S-2SLS S-ML

q 5 .1 fN 5 5 fT 5 20 fb̂s 1.112 1.027 1.003 1.048
q̂ — 0.078 0.097 0.063

T 5 40 fb̂s 1.112 0.991 1.001 1.021
q̂ — 0.108 0.099 0.082

N 5 40 fT 5 20 fb̂s 1.112 1.049 0.994 1.050
q̂ — 0.055 0.105 0.054

T 5 40 fb̂s 1.112 0.999 1.003 1.026
q̂ — 0.101 .098 0.077

q 5 .5 fN 5 5 fT 5 20 fb̂s 1.999 0.837 0.998 1.050
q̂ — 0.579 0.499 0.475

T 5 40 fb̂s 2.001 0.826 1.000 1.029
q̂ — 0.587 0.500 0.487

N 5 40 fT 5 20 fb̂s 2.004 0.861 1.008 1.050
q̂ — 0.570 0.497 0.474

T 5 40 fb̂s 2.000 0.844 1.002 1.025
q̂ — 0.578 0.499 0.487

Number of unbiased wins/ties 0 2 14 0
Number of times noticeable (�5%) bias 16 10 0 10

Note. Unbiasedness winner in bold italics and notable or appreciable biases in italics.
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We also plot the percentage biases for each of the estimators across a range of interde-
pendence strengths, q 5 {.1, . . ., .9}, in grids of graphs arrayed by sample dimensions—
we show N 5 {25, 50}, T 5 {20, 50}—such as in Fig. 1 for q̂ and Fig. 2 for b̂s: The x axes
in both figures are the true q. The y-axis in Fig. 1 is the estimated bias in q̂ (i.e., the average
q̂ minus the true q) and in Fig. 2 just average b̂s directly. The figures reinforce the
conclusion that S-2SLS dominates on unbiasedness grounds, as the dotted line is always
closest to zero in Fig. 1 and to one in Fig. 2. S-ML performs a little worse in the smaller
T samples, but effectively closes the gap by the larger T sample sizes. Figure 1 shows
clearly the asymptotic unbiasedness (consistency) of both estimators’ q̂ ‘‘kicking in’’ as
either N or T increases; their b̂s estimates, on the other hand, show this convergence mostly
in N and barely if at all in T. Interestingly, S-2SLS has a (smaller) positive small sample
bias to q̂; whereas S-ML has a (perceptibly larger) negative one; i.e., their convergence is
from above and from below, respectively.23 Finally, their induced biases in b̂s are (smaller
and) oppositely signed, as expected. S-OLS, meanwhile, we can now see, actually begins
with a negative bias to q̂ at very low q, crossing an unbiased point and turning positive
somewhere between the q5 .1 value reported in Table 1 and q5 .2 or so. Over most of the
range, q̂S�OLS suffers positive (i.e., inflation) bias, as we would generally expect. Inter-
estingly, the bias peaks in absolute terms at around the q5 .5 value reported in Table 1, but
the magnitudes of these biases do not seem to depend in any intuitive way on sample
dimensions.24 As seen in Fig. 2, once again, the induced bias in b̂s maintains opposite sign

Fig. 1 Estimated bias in q̂ plotted against true q across representative N � T sample dimensions.
Dashed line, S-OLS; dotted line, S-2SLS-IV; dashed-dotted line, S-ML.

23We have no intuition to impart for this intriguing finding.
24The proportionate bias, not shown, peaks at around q 5 .4. Also interestingly, all three q̂ estimators approach

(S-2SLS: stays) unbiased as q/1. Our intuition for this finding is underdeveloped, but we suspect it may be
related to a result proven in Lin et al. (2006).
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of the simultaneity bias in q̂S-OLS; with the S-OLS estimated importance of exogenous-
external conditions falsely trending downward linearly. The bias of the nonspatial OLS
‘‘estimate’’ of q is, of course, �100%. (Plotted, it would be a �45� line from 0 to �1.) The
induced biases in the nonspatial OLS b̂s are the omitted-variable biases considered
analytically above. Their magnitudes are a function of q and not of the sample dimensions.
No omitted-variable bias if q 5 0, of course, but bias grows dramatically with q. In fact,
the bias magnitude crosses 100% at q5 .5, echoing the bottom of Table 1. Bias continues
to rocket from there, formulaically by 1

1�q � 1
� �

� 100%; requiring an alternative axis
and truncation thereof at 400% to keep the other estimators’ biases, some of which are
themselves appreciable, in view. The disastrous implications of failing to model spatial
interdependence when it occurs even moderately should now be abundantly clear.

Unbiasedness, being correct on average, is only one desirable property. We also prefer
estimators that are generally close to true parameters, thus adding efficiency (sampling
variation) concerns to bias ones. RMSE summarizes these concerns by adding the square
of bias to the variance (then taking the square root), thus weighing those terms equally.
Table 2 reports the RMSE of each parameter estimate under the same 2 � 2 � 2 subset
combinations of q, N, and T values as in Table 1.

From the perspective of RMSE, which combines bias and efficiency considerations in
its specific way, summary of the results is much simpler: S-ML weakly dominates. Non-
spatial OLS is very nearly (weakly) dominated by any spatial estimator and, in all sample
dimensions, performs poorly at lower interdependence and abysmally at greater. S-OLS
and S-2SLS both perform intermediately by this summary measure, but for different
reasons. S-OLS suffers more bias but is relatively more efficient than S-2SLS, which
has the opposite debilities. By the RMSE weighting, the net of these concerns may slightly
favor S-2SLS over S-OLS, but S-ML weakly dominates either (although usually by less

Fig. 2 Estimated b̂s plotted against true q across representative N � T sample dimensions. Solid
line, nonspatial OLS; dashed line, S-OLS; dotted line, S-2SLS-IV; dashed-dotted line, S-ML;
nonspatial OLS results plotted against the larger-scale second y-axis on the right.
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than 25%). Again, we can see results across additional sample dimensions over more
widely varying interdependence strengths in two grids of graphs paralleling those above.
In Fig. 3 we can easily see that (a) all three spatial estimators yield smaller RMSE of
q̂ as N, T, and/or true q increase, (b) S-OLS’s efficiency tends to outweigh S-2SLS’s
unbiasedness in RMSE terms at smaller true q and sample sizes (i.e., dashed below dotted)
and the opposite at greater true q and sample sizes (dotted below dashed), and (c) S-ML
(weakly) dominates in RMSE terms across all q and sample sizes. Figure 4 shows much
the same pattern for RMSE of b̂s, although here S-OLS comes closer to being weakly
dominated by S-2SLS and the near universal domination of nonspatial OLS by any spatial
estimator is underscored dramatically by the necessity of the larger-scale second y-axis.

A third property of interest to empirical researchers is the accuracy of the estimators’
reported SEs of their estimates. Table 3 reports, for the N 2 {5, 40}, T 2 {20, 40}, q 2 {.1, .5}
subset of scenarios, ratios of the average reported SE (or PCSE) across the 1000 trials to
the actual SD of the estimated parameters across those trials. SE accuracy ratios equal to
(less than, greater than) one imply honest reporting (understatement/overconfidence, over-
statement) on average. For the most part, nonspatial OLS reports inaccurate SEs for b̂s
except at small q. That is, at stronger interdependence, not only do omitted-variable biases
favor overstating nonspatial factors’ importance but also inaccurate SEs foster egregious
overconfidence (64% or so) in that erroneous conclusion! PCSE only partially ameliorates
this aspect of nonspatial OLS’s flaws, still leaving 16%–22% overconfidence over these
sample dimensions. As we have seen, S-OLS generally redresses the biases and ineffi-
ciencies of nonspatial OLS adequately at lower q, but we now see that it tends also to
report the uncertainty of those better estimates with some overconfidence (7%–28.5%) in q̂
and b̂s SEs. Here, PCSE near uniformly worsens matters, yielding 12%–32% overconfi-
dence. Intuitively, PCSE improves OLS SE estimates because the pattern of unmodeled
spatial correlation there will correlate with s’s parts of the X9X matrix, which is precisely

Table 2 RMSE across 1000 trials (efficiency and bias)

Coefficient OLS S-OLS S-2SLS S-ML

q 5 .1 fN 5 5 fT 5 20 fb̂s 0.167 .216 .235 .162
q̂ — .115 .177 .106

T 5 40 fb̂s 0.139 .125 .139 .107
q̂ — .093 .103 .070

N 5 40 fT 5 20 fb̂s 0.119 .215 .211 .104
q̂ — .191 .188 .096

T 5 40 fb̂s 0.116 .119 .136 .062
q̂ — .105 .120 .057

q 5 .5 fN 5 5 fT 5 20 fb̂s 1.04 .242 .253 .171
q̂ — .110 .108 .066

T 5 40 fb̂s 1.021 .211 .146 .116
q̂ — .100 .061 .044

N 5 40 fT 5 20 fb̂s 1.01 .216 .270 .213
q̂ — .107 .131 .105

T 5 40 fb̂s 1.00 .185 .135 .129
q̂ — .092 .065 .063

Number of RMSE wins/ties 0 0 0 16
Number of clearly (.50%) dominated 13 8 7 0

Note. RMSE winner in bold italics and clearly dominated RMSEs in italics.
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that to which PCSE is consistent. It worsens S-OLS SE estimation because simultaneity
bias in q̂ is all that induces the spatial correlation that remains in the ee9 matrix. This
pattern will also correlate with Wy’s and s’s parts of the X9X matrix, thereby leading PCSE
to ‘‘correct’’ unnecessarily. S-2SLS produces SE estimates within 11% of true estimation
variation except in the experiment with strong interdependence, N 5 40 and T 5 20
sample dimensions, where reported SEs are 22%–23% overconfident. S-ML consistently
produces SE estimates within 11% of true estimation variation without exception, and so
emerges as nearly (weakly) dominant on this desideratum also.

Figures 5 and 6 plot SE accuracy ratios in the now-familiar grid of broader experimental
conditions, generally confirming the conclusions drawn from the (different) tabulated
subset. Nonspatial OLS is not only greatly and increasingly biased at moderate to strong
interdependence but wildly overconfident regarding b̂s over that range as well. S-OLS
offers acceptably honest SE reporting for b̂s and q̂ in longer T samples and across most of
the middle ranges of q values in shorter T ones, but the latter, unfortunately, are exactly the
ranges where its bias is worst. S-ML and S-2SLS SEs are both acceptably accurate over
most q strengths and sample dimensions, and, although S-2SLS has some difficulty with the
N 5 50 [ T 5 20 case as it did with the N 5 40 [ T 5 20, neither emerges as uniformly
dominant.25 Indeed, reminiscent of Beck and Katz’s (1995, 1996) critique of Parks-Kmenta,

Fig. 3 RMSE q̂ plotted against true q across representative N � T sample dimensions. Dashed line,
S-OLS; dotted line, S-2SLS-IV; dashed-dotted line, S-ML.

25LeSage’s S-ML MatLab code uses ee9 in the variance-covariance formula, whereas the maintained assumptions,
most directly the sphericity of V(e), would allow the tighter e9e/n. Using ee9 is roughly equivalent to calculating
PCSEs for the ML estimates. Our tables impose e9e/n; our figures use LeSage’s original ee9. Both produce the
correct calculation in expectation under current assumptions, but the former is more efficient (whereas the latter
should be more consistent or robust to deviations from error sphericity that relate to the patterns in the
regressors’ variance-covariance matrix). This relative inefficiency and the smaller number of the graphed trials
probably account for the greater variability in the S-ML SEs performance seen there.
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notice that all the spatial estimators, especially the LS ones, seem to require longer T length
relative to N width samples (even more so than just larger samples) for their best SE
accuracy. S-2SLS and S-ML thus emerge as the clear winners on SE accuracy.

4.4 Conclusions from Analytic and Simulation Results

In summary, we have shown analytically that nonspatial OLS ignores spatial interdepen-
dence and suffers omitted-variable biases fostering overestimation of nonspatial unit-level
(domestic, individual) and contextual (exogenous-external) effects as a result. In simula-
tions, we demonstrated that these biases quickly become substantively sizeable at even
very modest interdependence strength (q. .1 or so) and gargantuan at greater q. The biases
concentrate in common shocks for homogenous diffusion processes. SEs for these over-
estimated effects are also dramatically underestimated in these ranges, and PCSE offers
only limited amelioration. In short, given any noticeable interdependence, nonspatial OLS
is an unmitigated disaster. We have also shown analytically that S-OLS suffers converse
simultaneity biases that tend toward overestimation of interdependence strength, inducing
underestimation of nonspatial factors’ roles. However, our simulations demonstrated that
these simultaneity biases generally remain mild over a small-to-moderate interdependence
range (q, .3 or so). S-OLS is also rather efficient, so only its problems with SE accuracy
in smaller T samples would argue against it as a simple and effective strategy for mildly
spatially interdependent contexts. Programs and instruments to implement S-ML and
S-2SLS, each consistent and asymptotically (normal and) efficient under its assumptions,

Fig. 4 RMSE b̂s plotted against true q across representative N � T sample dimensions. Solid line,
nonspatial OLS; dashed line, S-OLS; dotted line, S-2SLS-IV; dashed-dotted line, S-ML; nonspatial
OLS results plotted against the larger-scale second y-axis on the right.
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are available to handle other contexts.26 Our simulations show S-2SLS to be admirably
unbiased in both parameter and SE estimation,27 especially as sample sizes increase, but
efficiency can be an issue.28 S-ML, for its part, weakly dominates or nearly does so across
sample-dimension and parameter-value conditions in mean-squared error terms, especially
and importantly so in smaller sample size, smaller q conditions. It does suffer some
negative bias at lower interdependence strengths, and possibly some mildly erratic SE
estimation under some conditions, but neither problem seems very large in magnitude.
Therefore, comparing the two consistent estimators, S-ML and S-2SLS, against the simpler
alternative S-OLS, we conclude that modest interdependence strength and imperfect exo-
geneity of instruments29—common conditions, we suspect—favor adequacy of the simpler
LS over the IV or ML spatial estimators. Conversely, when interdependence is stronger,
a consistent estimator should be chosen over S-OLS, whose simultaneity bias grows. S-ML
has efficiency advantages over S-2SLS, although these come at some nonnegligible

Table 3 Mean reported SE divided by SD across 1000 trials (SE accuracy)

OLS S-OLS

Coefficient SE PCSE SE PCSE S-2SLS S-ML

q 5 .1 fN 5 5 fT 5 20 fb̂s .871 .895 0.814 .758 0.901 0.938
q̂ — — 0.773 .727 0.893 0.943

T 5 40 fb̂s .914 .975 0.928 .880 0.971 0.965
q̂ — — 0.859 .826 0.971 0.955

N 5 40 fT 5 20 fb̂s .927 .951 0.727 .689 0.943 0.911
q̂ — — 0.715 .677 0.931 0.890

T 5 40 fb̂s .867 .933 0.849 .807 0.926 0.956
q̂ — — 0.829 .790 0.925 0.942

q 5 .5 fN 5 5 fT 5 20 fb̂s .491 .799 1.034 .831 0.901 0.936
q̂ — — 0.961 .776 0.907 0.916

T 5 40 fb̂s .485 .822 1.017 .857 0.993 .979
q̂ — — 0.980 .837 1.016 1.010

N 5 40 fT 5 20 fb̂s .364 .782 0.933 .745 0.770 0.938
q̂ — — 0.914 .728 0.779 0.936

T 5 40 fb̂s .370 .836 1.010 .840 0.941 0.924
q̂ — — 1.000 .837 0.954 0.914

Number of SE accuracy wins/ties 0 2 4 0 3 7
Number of notable/massive

(.12.5%/.25%) inaccuracies 6/4 4/0 7/2 15/5 2/0 0/0

Note. SE accuracy winner in bold italics, notable (.12.5%) inaccuracies in italics, and massive (.25%)

inaccuracies in bold.

26At the moment, S-2SLS is easier to implement than S-ML with the software packages commonly used by
political scientists. We have not found existing S-ML code for Stata, e.g., to be reliable or efficient. LeSage’s
(1999) MatLab code, sar.m available from www.spatial-econometrics.com, is both once one corrects a crucial
error in line 183 of the code; the line references the incorrect element of the estimated coefficient variance-
covariance matrix for returning the SEs of the spatial lag coefficient. One might also want to tighten the SE
formula as suggested in note 23.

27Whether PCSEs might further improve or worsen SE estimation awaits further research.
28Generalized method of moments extensions of S-2SLS (see, e.g., Kelejian 1993) might improve efficiency.
29Franzese and Hays (2004) show imperfect instruments add inconsistency to IV’s inefficiency concerns.
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computational costs. The downward small sample bias of S-ML versus S-2SLS’s upward
one, plus their generally accurately reported SEs, suggests that S-ML might also be
the more conservative hypothesis-testing option. On the other hand, unbiasedness and
perhaps simplicity argue for S-2SLS, but either will typically work to redress S-OLS’s
simultaneity biases at stronger interdependence strengths. And, to repeat, nonspatial OLS
is absolutely disastrous and to be avoided unless interdependence is known to be very weak
or nonexistent.

5 Empirical Illustration: Estimating and Calculating Spatial Effects in
TSCS Models

Calculation and presentation of effects in empirical models with spatial interdependence,
as in any model beyond the purely linear additive, involve more than simply considering
coefficient estimates.30 In empirical models containing spatial dynamics, as in those with
only temporal dynamics, coefficients on explanatory variables give only the predynamic
impetuses to the outcome, which, incidentally, are actually unobservable if spatial dynam-
ics are instantaneous (i.e., incur within an observation period). This section discusses the
calculation of spatial multipliers, which allow expression of the effects across units of
counterfactual shocks (Anselin 2003), and it applies the delta method to compute SEs for

Fig. 5 SE q̂ accuracy plotted against true q across representative N � T sample dimensions. Dashed
line, S-OLS; dotted line, S-2SLS-IV; dashed-dotted line, S-ML. SE accuracy is gauged by the ratio of
the average estimated SE to the true SD of the sampling distribution. Values less than one indicate
overconfidence.

30Even in models differing from the purely linear additive only in containing (time) dynamics (see, e.g., DeBoef
and Keele 2005) or multiplicative interaction terms (see, e.g., Kam and Franzese 2007), coefficients and effects
are different things.
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these effects. We illustrate these calculations with an analysis taken from Franzese and
Hays (2006b) that estimated spatiotemporal lag models to assess empirically the strategic
interdependence among European countries in active labor market policy, specifically
labor market training (LMT) spending.31 We also compare the four estimators here to
show that the choice of estimator clearly influences the inferences one draws from the data
regarding the determinants of LMT expenditures.

Spatiotemporal-lag models add temporally lagged dependent variables to spatially
lagged ones in equation (2):

y5qWyþ /Myþ Xbþ e; ð13Þ

where the dependent variable, y, is a vector of cross sections stacked by periods this time
(i.e., the N first-period observations, then the N second-period ones, etc.). In this ordering,
we can express W as the Kronecker product of a T � T identity matrix and an N � N
spatial-weights matrix IT5WNð Þ:M is an NT � NT matrix of zeros except for ones on the
minor diagonal at coordinates (N þ 1, 1), (N þ 2, 2), . . ., (NT, NT � N), so My is the first-
order temporal lag, making / the temporal autoregressive coefficient.

Fig. 6 SE b̂s accuracy plotted against true q across representative N � T sample dimensions. Solid
line, nonspatial OLS; dashed line, S-OLS; dotted line, S-2SLS-IV; dashed-dotted line, S-ML. SE
accuracy is gauged by the ratio of the average estimated SE to the sampling distribution SD. Values
less than one indicate overconfidence.

31The conditional likelihood for the spatiotemporal-lag model, which assumes that the first observation is non-
stochastic, is a straightforward extension of equation (12) (see Elhorst 2001, 2003, 2005). Our focus here is on
presenting spatiotemporal dynamics, so we do not discuss it here (see Franzese and Hays 2006a).
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With positive employment spillovers across borders, countries have incentives to free
ride on neighbors’ LMT expenditures. If so, the estimated spatial lag coefficient q̂ should
be negative. In a sample of annual data from 1987 to 1998 in 15 European countries,32 the
dependent variable y is the log of LMT expenditures per unemployed worker ($2000,
purchasing-power parity [PPP]). In addition to its spatial and temporal lags, we include as
regressors: macroeconomic performance (gross domestic product [GDP] per capita, un-
employment), labor market characteristics (deindustrialization, union density), external
conditions (trade openness, foreign direct investment), domestic politics (Left Party and
Christian Democratic cabinet seats, left libertarian vote, government consumption), and
country and year dummies to allow unit and period effects, a strategy that, given the
tendency for inadequate modeling of such heterogeneity to induce overestimation of
spatial interdependence, errs conservatively against our hypothesis of interdependent
active labor-market (ALM) policy.

We calculated the spatial lag, Wy, using a standardized binary contiguity weights matrix
that first codes wij 5 1 for countries i and j, which share borders, and wij 5 0 for pairs ij,
which do not.33 Then, we row standardize the resulting matrix by dividing each cell in
a row by that row’s sum. We then estimate equation (13) by OLS, S-OLS, S-2SLS, and
S-ML. Given the analytical and experimental results of previous sections, we expect the OLS
estimates for b (and /) to suffer inflation bias and the S-OLS estimates to suffer attenu-
ation bias. The S-OLS estimate forq is likely to be inflated. We expect both S-2SLS and S-ML
to give unbiased estimates with the latter’s relative efficiency yielding smaller SEs.

Table 4 presents a subset of the estimates that are affected most consequentially by the
choice of estimator. The OLS results show a marginally statistically significant positive
relationship of union density and deindustrialization to government LMT spending. As
expected, these estimates are larger than any of the spatial estimators’ estimates of those
coefficients, likely reflecting the omitted-variable bias of the nonspatial estimator, and
favoring these (apparently spatially correlated) domestic explanators. Note also that
the S-OLS estimates for b (and /) are smaller than the S-2SLS and S-ML ones, whereas
q̂S-OLS is larger. This likely reflects S-OLS’s simultaneity inflation bias in q̂; and its cor-
responding induced attenuation bias in b̂S-OLS(and /). Penultimately, the SE estimates for
the S-ML estimator are indeed smaller than the S-2SLS SE estimates as expected. Finally,
notice also that the spatial estimates on both the union density and deindustrialization

Table 4 LMT expenditures in Europe (1987–1998)

LMT/unemployed LMT/unemployed LMT/unemployed LMT/unemployed

Temporal lag .583*** (.078) .439*** (.081) .494*** (.085) .488*** (.068)
Spatial lag — �.435*** (.101) �.269** (.125) �.288*** (.068)
Union density .018* (.011) .008 (.010) .012 (.011) .011 (.009)
Deindustrialization .062* (.034) .041 (.032) .049 (.033) .048* (.029)
Estimator OLS S-OLS S-2SLS S-ML

Note. All regressions include fixed period and unit effects; those coefficient estimates suppressed to conserve

space. The spatial lags are generated with a binary contiguity–weighting matrix using shared territorial borders as

the criterion, excepting that France, Belgium, and the Netherlands are coded as contiguous with Britain and

Denmark as contiguous with Sweden. All the spatial weights matrices are row standardized.

Significant at *10%, **5%, ***1%.

32Austria, Belgium, Denmark, Germany, Greece, Finland, France, Ireland, the Netherlands, Norway, Portugal,
Spain, Sweden, Switzerland, and the United Kingdom.

33We code France, Belgium, and the Netherlands as ‘‘contiguous’’ with Britain, and Denmark with Sweden.
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variables are statistically insignificant, which demonstrates that the inferences one
draws about the relationship of domestic factors like labor market characteristics (union
density and deindustrialization) to LMT spending depend on the estimator chosen.
Given what we know about the relative performance of the estimators, we conclude that
ignoring the spatial interdependence among European Union (EU) member states’ LMT
spending (nonspatial OLS) could lead to the mistaken conclusion that union density
significantly increases LMT (a Type I error caused by omitted-variable bias), whereas
estimating a spatial lag model by S-OLS could lead incorrectly to a failure to reject the
null hypothesis that deindustrialization does not affect spending on LMT (a Type II
error caused by an induced simultaneity bias). Moreover, the analyst who estimates equation
(13) by S-OLS will overestimate the substantive magnitude of free riding in EU member
states’ LMT.

Note that the estimated effects of individual EU countries’ ALM policies on their
neighbors’ are not understood immediately and fully from the q̂ estimate alone. To see
these effects, we need to calculate the spatial multiplier implied by model (13). Calculat-
ing the cumulative steady-state spatial effects is most convenient working with the spa-
tiotemporal-lag model in (N � 1) vector form:

yt 5qWyt þ /yt�1 þ Xtbþ et: ð14Þ

To find the long-run, steady-state, equilibrium (cumulative) level of y, simply set yt�1

equal to yt in equation (14) and solve. This gives the following steady-state effect, assum-
ing stationarity and that the exogenous right-hand side terms, X and e, remain permanently
fixed to their counterfactual levels:

yt 5qWyt þ /yt þ Xtbþ et 5 ðqWþ /IÞyt þ Xtbþ et

5 ½IN � qW� /IN ��1ðXtbþ etÞ

5
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To get SE estimates for these steady-state estimates, we use the delta method; i.e., give
a first-order Taylor series linear approximation to nonlinear equation (15) around the
estimated parameter values and determine the asymptotic variance of that linear approx-
imation. To do this, begin by denoting the ith column of S as si and its estimate as ŝi: The
steady-state spatial effects of a one-unit increase in explanatory variable k in country i are
then sibk giving delta method SEs of

b
Vð̂sib̂kÞ5

@ŝib̂k

@û

" #d
VðûÞ @ŝib̂k

@û

" #
9
; ð16Þ
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where û[ ½q̂ /̂ b̂k�9; @ŝib̂k

@û

h i
[

@ŝib̂k

@q̂
@ŝib̂k

@/̂
ŝi

h i
; and the vectors @ŝib̂k

@q̂

h i
and @ŝib̂k

@/̂

h i
are

the ith columns of b̂kŜWŜ and b̂kŜŜ; respectively.
Table 5 illustrates calculations of equations (15) and (16) for a subset of countries in our

sample using the S-ML estimates of equation (14) from Table 4. The first number in each
cell is the steady-state effect of a 1% increase in the column country’s level of deindus-
trialization on the row country’s LMT. The number in parentheses is the SE of this spatial
effect. In Table 5, we see that a permanent 1% increase in the levels of Austrian, German,
and Swiss deindustrialization increases their respective spending on LMT by 10.2% in the
long run. Also, focusing on the statistically significant feedback, a permanent increase in
Germany’s level of deindustrialization reduces LMT expenditures in Switzerland by 1.3%,
and the same increase in Switzerland decreases spending in Germany by .8%.

The spatiotemporal response path of the N � 1 vector of unit outcomes, yt; to the
exogenous right-hand side terms, X and e, could also emerge by rearranging equation (14)
to isolate yt on the left-hand side:

yt 5 ½IN � qWN ��1f/yt�1 þ Xtbþ etg: ð17Þ
This formula gives the response paths of all units {i} to hypothetical shocks to X or e in
any unit(s) {j}, just by setting Xt or etð Þ to one in the rows corresponding to {j}. This
formulation is especially convenient for plotting estimated response paths in a spreadsheet,
e.g. To calculate marginal spatiotemporal effects (noncumulative), i.e., the incremental
change at some time t þ k in the overtime path resulting from a permanent one-unit change
in an explanatory variable at time t, and their SEs, working with the entire NT � NT matrix
is easier. Simply redefine S in equation (15) as S[ INT � qW� /M½ ��1 and follow the
same steps. Franzese and Hays (2006a) illustrate calculation and presentation of such
response paths with confidence intervals for a replication of Beck et al. (2006).

6 Conclusion

Our analytic and experimental explorations suggest, first, that the omitted-variable biases
of excluding interdependence in nonspatial OLS pose far greater concerns than the simul-
taneity biases of including them in S-OLS, under a wide range of likely substantive
conditions. Analysts who ignore interdependence will typically overestimate domestic
(individual), exogenous-external, and context-conditional effects, with this overestimation
concentrating in those factors most correlated with the omitted interdependence mecha-
nism. Therefore, researchers always do better to include the spatial lags needed to specify
the interdependence implied by theory than to ignore/omit that implication. However, we
also showed that simultaneity biases from S-OLS regressions that include spatial lags to

Table 5 Steady-state spatial effects of deindustrialization on training

Austria Germany Switzerland

Austria .102* (.061) �.025 (.016) �.027 (.017)
Germany �.01 (.006) .102* (.061) �.008* (.005)
Switzerland �.018 (.011) �.013* (.008) .102* (.061)

Note. The cells report steady-state spatial effects of a 1% increase in the column country’s degree of deindus-

trialization on its own LMT expenditures and the expenditures of its European counterparts (identified by the

rows). SEs for this effect are in parentheses.

*Significant at 10%.
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reflect interdependence can be appreciable when interdependence is more than moderate,
that the biases tend toward overestimating interdependence strength (q), and that under-
estimation of its SE also occurs regularly.34 Thus, hypothesis tests based on S-OLS
estimations of correctly specified models like (2) or (13) would often be biased toward
finding strong interdependence effects, with the relevant t statistics having inflated numer-
ators and deflated denominators.

Fortunately, one can estimate models of interdependent processes like (2) or (13) by
S-2SLS or by S-ML to obtain consistent estimates of q and b. In fact, the former is not
difficult to implement35 because the spatial structure of the data itself suggests potential
instruments. Valid instruments must satisfy that their (asymptotic) covariance with endog-
enous regressors—here, the spatially lagged outcomes in other units—are nonzero, and
preferably large, whereas their (asymptotic) covariance with the residual is zero. Fortu-
nately, too, our experiments show that such S-2SLS estimates produce not only consistent
estimates but also essentially unbiased ones, even in relatively small samples under the
experimental conditions considered here. Moreover, the accompanying S-2SLS SE esti-
mates fairly accurately reflect the true sampling variability of the coefficient estimates
across most sample size and parameter conditions explored. This suggests that S-2SLS,
unlike S-OLS, will produce acceptably unbiased hypothesis tests. Unfortunately, S-2SLS
is not very efficient and, indeed, is often outperformed in mean-squared error terms by
simple S-OLS and almost always by S-ML. Therefore, these unbiased hypothesis tests
may also be relatively weak.

S-ML seems to offer weakly dominant efficiency and generally solid performance in
unbiasedness and SE accuracy, although it sometimes yields relatively little in reduced
bias or enhanced efficiency relative to S-OLS and falls a little short of S-2SLS on un-
biasedness grounds. Considering its computational intensity against this winning, but not
universally dominant, performance, we do not see compelling reason to favor S-ML
estimation too strenuously and generally over alternatives at this point. Nor do we neces-
sarily see reason to push either of the consistent estimators, S-ML or S-2SLS, in all cases
because S-OLS performs quite acceptably well under weak or mild interdependence-
strength circumstances and, indeed, in some experimental conditions, even better than
these more complicated alternatives. Unless one is certain that interdependence is zero or
very small, however, the nonspatial models that are currently the common default are
clearly inferior and to be avoided.
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