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Abstract 

In this paper  we propose simple diagnostic tests, based on ordinary least-squares 
(OLS) residuals, for spatial error autocorrelation in the presence of a spatially 
lagged dependent variable and for spatial lag dependence in the presence of spatial 
error  autocorrelation, applying the modified Lagrange multiplier (LM) test de- 
veloped by Bera and Yoon (Econometric Theory, 1993, 9, 649-658). Our new tests 
may be viewed as computationally simple and robust alternatives to some existing 
procedures in spatial econometrics. We provide empirical illustrations to demonstrate 
the usefulness of the proposed tests. The finite sample size and power performance 
of the tests are also investigated through a Monte Carlo study. The results indicate 
that the adjusted LM tests have good finite sample properties. In addition, they 
prove to be more suitable for the identification of the source of dependence (lag or 
error) than their unadjusted counterparts. 
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1. Introduction 

In spatial data analysis, model specification issues have recently become 
an integral part of spatial econometric modeling (see, for example, Anselin, 
1988a,b, 1992a; Blommestein, 1983; Florax and Folmer, 1992; and Kelejian 
and Robinson, 1992). On the basis of the Lagrange multiplier (LM) 
principle, Anselin (1988c) proposed several diagnostic tests for spatial 
econometric models. In particular, the focus was on detecting model 
misspecification due to spatial dependence (in the form of an omitted 
spatially lagged dependent variable and spatial error autocorrelation) as well 
as spatial heterogeneity (in the form of heteroskedasticity). In deriving a 
joint test for spatial dependence and spatial heterogeneity, Anselin (1988c) 
observed that the inverse of the information matrix for the joint LM test is 
block diagonal between the spatially dependent and the heteroskedastic 
components, and hence the joint test statistic is the sum of the two 
corresponding component statistics, where the test for the heteroskedastic 
part is identical to the Breusch and Pagan (1979) statistic. However, the 
spatially dependent part cannot be decomposed further into two one- 
directional test statistics that correspond to the spatially lagged dependent 
variable and spatial error autocorrelation respectively. As emphasized in 
Anselin (1988c), this is because of the s tructural  re la t ionship  between spatial 
autoregressive processes in the dependent variable and the disturbance 
term, which results in the absence of block diagonality of the information 
matrix between the corresponding elements (see Anselin, 1988c, p. 8). 

Noting this, Anselin (1988c) proposed an LM test for spatial error 
autocorrelation in the presence of a spatially lagged dependent variable. 
However, implementation of the suggested test requires nonlinear optimi- 
zation or the application of a numerical search technique (see Anselin and 
Hudak, 1992). In this paper we apply the modified LM test developed by 
Bern and Yoon (1993) to spatial models and propose simple diagnostic tests 
for spatial dependence that are based on the results of ordinary least-squares 
(OLS) estimation. 

In Section 2 we briefly summarize the main results on the distribution of 
standard LM tests when the alternative hypothesis is misspecified, and 
present the modified LM test which is robust under local misspecification. 
Section 3 develops new diagnostic tests for spatial error autocorrelation and 
for a spatially lagged dependent variable in the presence of local misspecifi- 
cation in the form of a spatially lagged dependent variable or spatial error 
autocorrelation, respectively. In Section 4 we provide some evidence on the 
performance of the robust tests, both in the form of some simple empirical 
examples as well as on the basis of results of a series of Monte Carlo 
simulation experiments. We close with some concluding remarks in Section 
5. 
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2. A general approach to testing in the presence of  a nuisance parameter 

Consider a general statistical model represented by the log-likelihood 
function L(y, ~O, qb), where 3/ is a parameter  vector, and for simplicity qJ and 
4, are assumed to be scalars. Suppose an investigator sets 4, = 0 and tests 
H0: qJ = 0 using the log-likelihood function L,(3", O)= L(3", ~0, 0). The LM 
statistic for testing H 0 in L1(3', ~) will be denoted by LM~. Let  us also 
denote  0 = (3' ', qJ, &)' and 0 = (~ ' ,  0, 0)', where ~ is the maximum likelihood 
(ML) estimator of 3" when qJ = 0 and th = 0. The score vector and the 
information matrix are defined, respectively, as 

"OL(O)" 
03" 

OL(O) OL(O) 
d(O ) - O0 OqJ 

oL(O) 
. 0 4 ~  . 

and 

[ 1 o2L(O)] V J~ J~ J~l  
J(O)= -E "-~ O0 c30' I = J*~ J~ J ~  " 

LJ~ J ~  J~ I 

If LI(T, ~) were the true model,  then it is well known that under H0: ~b = 0, 
the following certain regularity conditions (see, for example, Serfling, 1980, 
p. 155), 

1 ~ p 1 ~ ~ D 2 
L M ,  = ~ d,~( O) J~.,( O)d~( O)---~X ,(0), 

D 
where J,~.~(O)=J~,(O)-J~z,(O)j~l(o)J:,~,(O). We use ~ to denote conver- 
gence in distribution. Under  this set-up, asymptotically the test will have the 
correct  size and will be locally optimal. Now suppose that the true log- 
likelihood function is Lz(T, ~)  = L(T , 0, ~b), SO that the alternative L,(y, qs) 
is misspecified. Using a sequence of local values 4' = 6/X/N, Davidson and 
MacKinnon (1987) and Saikkonen (1989) obtained the asymptotic dis- 
tribution of LM~, under Lz(y, qb) as 

D 2 
LM~-----~X, (A),  (1) 

where the non-centrality parameter  A is given by A = 6'J~+.J~.lJ+~.~6, with 
- J,~J~ Jv~. Owing to the presence of this non-centrality parame- 

ter,  LM~, will reject the null hypothesis H0: ~O = 0 more often than allowed 
by the size of the test, even when ~0 = O. Therefore ,  the test will have an 
incorrect size. Note that the crucial quantity is J+~.~ which can be 
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interpreted as the conditional covariance between d ,  and d , ,  given dv (see 
Anderson,  1984, pp. 36-37).  If J**.v = 0, then the local presence of the 
parameter  4, has no effect on LM, .  

Using (1), Bera and Yoon (1993) suggested a modification to L M ,  so that 
the resulting test is robust to the presence of 4,. The modified statistic is 
given by 

. 1 ~ 
L M ,  = ~ - [ d , ( 0 )  - Jo,.v(O)J~!v(O)d,(O)]' 

x [J,.~(t~) - J**.,(O)J2!,(O)J,~.,(O)]-' 

x [d,(t~) - J,~.,(O)J2!r(g)de,(O)l. (2) 

This new test essentially adjusts the asymptotic mean and variance of the 
standard LM~,. Another  way to look at LM~ is to view the quantity 
j ~ - 1  ,4,.z,(O)J4,.z,(O)de~(O) as the prediction of d,(O) by d~(0). Here ,  d,(O) is 
the score of the parameter  whose effect we want to take into account 
in constructing the modified test statistic. Therefore ,  d , ( 0 )  - 
j ~ -1 2 ~ o,.v(O)J~,.v(O)d,(O) is the part of d , ( 0 )  that remains after eliminating the 
effect of d,(O).  Bera and Yoon (1993) showed that, under qJ = 0  and 
4' = 6/X/N, LM~ has a central X~ distribution. Thus, LM~ has the same 
asymptotic distribution as L M ,  with 4' = 0 and 4' = 0, thereby producing a 
test with asymptotically the correct size for a locally misspecified model. 
Two things regarding LM~ are worth noting. First, LM~ requires estimation 
only under the joint null, namely for the constrained model in which both 
qJ = 0 and 4' = 0. Given the full specification of the model L(T, ~b, 4') it is of 
course possible to derive an LM test for 6 = 0 in the presence of 4'. 
However ,  that requires ML estimation of 4' which could be difficult to 
obtain in some cases. Secondly, when J**.v = 0, LM~ = LM, .  This is a 
simple condition to check in practice. As mentioned before,  if this condition 
is true,  L M ,  is an asymptotically valid test in the local presence of 4'. 

3.  Tes t s  for  spat ia l  d e p e n d e n c e  

As in the treatment of Anselin (1988c), we consider the mixed regressive- 
spatial autoregressive model with a spatial autoregressive disturbance: 

y = 4 , W ~ y +  X y  + u ,  

u = 4 ,W~u + e ,  (3) 
8 ~ N(0, o'21) . 

In this model,  y is an (N x 1) vector of observations on a dependent  
variable recorded at each of N locations, X is an (N x k) matrix of 
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exogenous variables, and y is a (k x 1) vector of parameters.  ~b and qJ are 
scalar spatial parameters.  W 1 and W E are (N × N)  observable spatial weights 
matrices with positive elements, associated with the spatially lagged depen- 
dent  variable and the spatial autoregressive disturbance, respectively. These 
spatial weight matrices represent 'degree of potential interaction' between 
neighboring locations and are scaled such that the sum of the row elements 
in each matrix is equal to one. After  such row standardization, the weights 
matrix is asymmetric (and positive), with elements less than or equal to one. 
Typically, the elements of the weights matrix are derived from information 
on contiguity (i.e. two observations having a common boundary) ,  although 
more general approaches are possible as well (see Ord, 1975; Cliff and Ord, 
1981; Upton and Fingleton, 1985; Anselin 1988a, for discussions of the 
propert ies and importance of the W matrix). It is the inclusion of these 
spatial weights matrices that renders the spatial models to depart  from the 
standard linear model,  thereby limiting the applicability of standard econo- 
metric procedures based on the OLS method. 

Note that for model (3) to be identified, it is necessary that the weights 
matrices for the spatial autoregressive terms in the dependent  variable and 
the errors be different, W1 # W E, of that the matrix X contain at least one 
'exogenous '  variable in addition to the constant term. An alternative 
specification for which there are no such potential problems and which leads 
to identical results in terms of the tests considered in this paper, is the 
so-called mixed spatial autoregressive moving average model (Huang,  
1984). In such a model the error  terms follow a spatial moving average 
process: 

u = ~bWze + e ,  (4) 

but otherwise the specification is identical to (3). 
We are interested in testing H0:~0 = 0 in the presence of the nuisance 

parameter  ~b. As before,  let 0 = (y ' ,  qJ, 40'. Since, under the null of ~ = 0 
(but not in the general case, see Anselin, 1988a), the information matrix is 
block diagonal between the 0 and ~r 2 parameters,  we need only consider the 
scores and the information matrix evaluated at 00 = (7 ' ,  0, 0)'. On the basis 
of the results in Anselin (1988a, ch. 6) these follow as 

1 
d~ = ' - 7  X ' u  , 

or 

1 
d ,  = - - 2  u ' W 2 u  , 

or 

1 
de~ =----2 u ' W l  y , 

or 
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and  

J = - -  T22 0-2 7210 -2 , ( 5 )  

N0-2 k ( W l X ,  y) ,  x T120- 2 (W1X'Y) ' (WIX') I )  -}- TII0 -  2 

where ,  as in Ansel in  (1988a), we use the nota t ion  T 0 = tr[W~Wj + W:W/] ,  
i, j = 1, 2, with tr denot ing  the trace of  a matrix. F r o m  (5) it follows that  

1 
Jq,0.v - N T21 ' 

1 
J¢,.~, = -~- T22 , 

and  

1 
J4,.v = N0-2 [ ( W ~ X y ) ' M ( W L X T )  + Tllo-2],  (6) 

where  M = I -  X ( X ' X ) - ' X ' .  Note  that  J,~.~ # 0, since T21 > 0 ( the e lements  
of  the spatial weights matr ices are always positive). A modif ied L M  test for  
the  null hypothesis  H0: q /=  0 can easily be ob ta ined  as 

[ f f 'Mzff /S  2 -  T 2 1 ( N f , . , ) - l  f f 'W,y/6-2] 2 
L * - T 2 N ~ - I  (7) M ,  T 2 2 - (  2 , ) ( J ~ . , )  ' 

where  t7 = y - X ~  are the OL S  residuals, with 6 2 = a'a/N, and f rom (6) it 
follows that  

(NJ, t,.v) -1 = ~-2[(WIX,~) 'M(W,X,~)  + T~,6-21 - '  . 

As poin ted  out  in Ansel in  (1988a), one  can interpret  (WIX-~) as the spatially 
lagged O L S  predic ted values. 

We can also consider  the case where  the spatial weights matr ices W~ and 
W 2 are the same.  This is of ten more  realistic in practice,  since there  may  be 
g o o d  reasons  to expect  the s tructure of  spatial dependence  to be the same 
for  bo th  the dependen t  autoregress ive (AR)  variable and the e r ror  term. 
Sett ing W 1 = W 2 = W is always possible when  the al ternative of  interest  is a 
spatial  moving  average  ( M A )  er ror  term,  as in (4). Howeve r ,  for  mode l  (3),  
there  may  be identification problems.  It can easily be shown that  the test 
statistics are the same for  an A R  and an M A  error ,  since, under  the null, 
the result ing score and informat ion  matrix e lements  are identical; this is a 
typical  characteris t ic  of  LM tests (see, for  example,  Bera  and Ullah,  1991). 

W h e n  W 1 = W 2 = W, the following simplifying results hold for  the matrix 
t race expressions:  

T,1 = T2, = T22 = T =  t r [ (W'  + W ) W ] ,  
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g¢ 
and the statistic LM~, becomes 

[ a ' W a / ~  2 -  T(Nfe , .v ) - la 'Wy/~2]  2 

LM~ - r[1 - -  T ( N Y e , . , ) ]  - 1  (8) 

The conventional one-directional test LM+ given in Burridge (1980) is 
obtained by setting ~b = 0 to yield 

[~7'w~7/~2] 2 
L M ,  - T (9) 

A comparison of (8) with (9) clearly reveals that LM~, modifies the standard 
LM~ by correcting the asymptotic mean and variance of the score for the 
asymptotic correlation between de, and de,. 

Let us now consider the LM test for H0: q/= 0 in the presence of the th 
A parameter derived in Anselin (1988c). We denote this statistic by LM~ : 

[ :~ 'w2:~ / 6-2] 2 
LM~ - T22 _ (T2,A)2v~r(~) , (10) 

where t~ is a vector of ML residuals under the null model, y = ¢kWly + X y  + 
u, obtained by means of non-linear optimization or a search technique (see 
Anselin and Hudak,  1992, for practical details). T2~ A in (10) denotes 
tr[W2W1A-'  + W2WIA-1] ,  with A = I - ~ W  1. Comparing LM~ with LM~ in 
(8), it is readily seen that LM~ does not have the mean correction factor in 
LM~. This is because LM~ uses the restricted ML estimator of th, for which 
de, = 0. We may view LM~ as the spatial version of the Durbin h statistic, 
which can also be derived from the general LM principle. Unlike Durbin's 
h, however, LM~ cannot be computed using the OLS residuals (this is not a 
problem for LM~),  since in the spatial case the model requires nonlinear 
optimization even under H0: q, = 0. 

We can also obtain LM~ easily to test H0: th = 0 in the presence of local 
misspecification involving a spatial dependent error process with parameter 
qJ, say ~0 = 6/~/N,  which yields 

[ a ' W , y / 5  - 2 -  T~2T22~ a'W2a/ff-212 
LM~ - N.~.v - ( rz , )Zr~)  (11) 

For local misspecification in the form of a spatial MA error process (or a 
properly identified AR error process), assuming W 1 = W 2 = W, the above 
expression simplifies to 

[ f f 'Wy / (2  - a 'Wf f /~2]:  (12) 
L M :  - N L .  , - T 
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It  is s traightforward to see that the standard and one-directional Lagrangian 
test statistic, LM6, given 0 = 0, is obtained as 

[ 5 ' W l y / 5 2 ]  2 
LM~ - N L . ,  (13) 

Note  that this statistic is identical to the one shown in Eq. (32) in Anselin 
(1988c). 

Similar to the approach taken for LM~,  we can also formulate  a LM test 
for  H0: qb = 0 in the presence of the 0 parameter .  This is another  special 
case of  the general f ramework  outlined in Anselin (1988a, ch. 6). We denote  
such a statistic by LM~:  

[tl 'B'BW~y] 2 
LM~ - , (14) 

H~ - Ho6 v~r( O)H'o~ , 

where fi is a vector of residuals in the ML estimation of the null model  with 
spatial A R  errors, y = Xy + (I - OW2)-le, with 0 '  = [y '  0 o "2] and B = I -  
~ W  z. The  terms in the denominator  of (14) are 

H ,  = tr W~ + tr(BWIB -')'(BW1B -1) + ~ (BW1XT),(BW1XT), 
or 

F 1 ] = ~.2 (BX) BW, Xy  

H'o, [tr(W2B-,),BWIB-I + tr W2W, B-I  , 

and vfir(0) is the est imated variance matrix for the paramete r  vector 0 in the 
null model .  

As given in Eq. (31) of  Anselin (1988c), a test for both 4) and 0, based on 
OLS estimation,  takes the form (assuming W 1 = W 2 = W): 

[ a , W y / a  2 _ a,wa/ 2] [a,wa/ 2] 2 
+ (15) 

LM,~¢ - N.~. v - T T 

The  statistic is distributed as X~(0) and will of course result in a loss of 
power  compared  with the proper  one-directional test when only one of the 
two forms of misspecification is present.  Note  that this statistic is not the 
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sum of  (9) and (13),  but  interestingly the sum of  respectively (9) and (12) or  
(8) and (13) instead:  

LM** = L M ,  + LM~ = L M ,  + LM~ . (16) 

The  first equali ty in (16) follows directly f rom (9) and (12),  and the second 
follows after some  s t ra ightforward rea r rangements  of  the terms in (8) and 
(13).  In  o ther  words ,  the two-direct ional  L M  test for  ~b and ~b can be 
d e c o m p o s e d  into the sum of  the uncor rec ted  one-direct ional  test for  one  
type  o f  al ternat ive and the adjus ted  form for  the o ther  al ternative.  Table  1 
summar izes  the different  forms of  the tests for  the respective null hypo th-  
eses and sources of  local misspecification. 

Anse l in  (1988c) also derived an LM test for  spatial residual autocorre la-  
t ion in the presence  of  heteroskedast ic i ty ,  assuming no spatially lagged 
d e p e n d e n t  variable.  T he  statistic is given by 

[~ '~-lW2a ]2 
. (17) 

where  t~ is a vec tor  of  residuals in the M L  est imat ion o f  the null mode l  with 
a d iagonal  e r ro r  covar iance  matrix /2 incorpora t ing  heteroskedast ic i ty .  
Us ing  the informat ion  matr ix given in Ansel in  (1988c) it is easy to check 
that  J**.v = 0 in this model .  This implies that  our  modif ied LM* would  
rever t  to  the convent iona l  L M  test given in (9). In  o ther  words ,  the simple 
s t andard  L M  statistic in (9) would  give asymptot ical ly  the same inference as 
(17) in the presence  o f  local  heteroskedast ic i ty  wi thout  the computa t iona l  
difficulties associated with (17). 

Table 1 
Overview of tests 

Null hypothesis Parameter Test statistic 

Spatial error, O Spatial lag, ~b 

Ho: ~/, = 0 - Set to zero LM, 
L A Ho: ~k = 0 - Unrestricted, M, 

estimated 
Ho: 0 = 0 - Unrestricted, LM~ 

not estimated 
Ho: qb = 0 Set to zero - LM, 
Ho: tk = 0 Unrestricted, - LM~ 

estimated 
H0: qb = 0 Unrestricted, - LM~ 

not estimated 
H0: ~b = 0, ~b = 0 - - LM** 
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4. Comparative performance of the tests 

4.1.  E m p i r i c a l  i l lustration 

To gain more  concrete insight into the propel'ties of the new tests in the 
realistic contexts encountered in empirical work in regional science and 
urban  economics,  we first present  the results for the various LM tests in 
three  illustrative examples.  These examples are chosen specifically to 
highlight different types of spatial effects. Their  substantive interpretat ion is 
therefore  not considered here. The first regression is a simple relationship 
be tween  crime and housing value and income in 1980 for 49 neighborhoods 
in Columbus,  O H ,  and was used extensively to illustrate various spatial 
regression models in Anselin (1988a). 1 The second model is a neoclassical 
mult iregional  investment  model  f rom Florax (1992), est imated using 1984 
data  for 40 C O R O P  regions in The Netherlands.  2 The third model  is a 
simple linear relationship between labor cost (wages) and labor productivity, 
and an educational variable, degree of unionization and highway investment 
expendi tures  (as a proxy for public infrastructure) est imated using 1983 data 
for the 48 contiguous U.S. states. 3 

The  results for the LM tests considered in this paper  as well as the ML 
est imation of the spatial A R  coefficients ( ~  and qJ) with the associated 
l ikelihood ratio (LR) test statistics in their respective alternative models  are 
listed in Table  2. To  provide a rough idea of the overall quality of these 
models ,  the adjusted R 2 obtained in the OLS regression of the null model  is 
given in the first row of the table as well. All estimates and tests were 
carried out by means of the SpaceStat  software package (Anselin, 1992b, 
1994). 

The  three sets of results reflect two situations often encountered in 
empirical  work that takes spatial effects into account: (a) strong significance 
for  both  one-directional tests; and (b) strong significance for one kind 
combined  with weak-or  non-significance for the other.  For the Columbus 
model ,  the two-directional test L M ~  ( p < 0 . 0 1 )  and both uncorrected 
one-directional  tests L M ,  ( p = 0 . 0 2 )  and LM6 ( p < 0 . 0 1 )  are highly 

1 The data are listed in Table 12.1, p. 189 of Anselin (1988a). Estimation results are given in 
Anselin (198a, ch. 12). 

2 The model used here is the linear version of the model outlined in table 7.1, p. 201 of 
Florax (1992). It relates investment in buildings by the manufacturing sector to output, 
investment in equipment, user cost of capital, degree of urbanization, distance to the core 
region, contagious knowledge diffusion and hierarchical knowledge diffusion. For details and 
estimation results, see Florax (1992, ch. 8). 

3 Data are based on the U.S. Bureau of Economic Analysis Regional Economic Information 
System database and selected U.S. census sources. The estimation results are available from the 
authors. 



L. Anselin et al. / Regional Science and Urban Economics 26 (1996) 77-104 87 

Table 2 
Test results in the empirical examples ~ 

Columbus, Ohio The Netherlands U.S. states 
N =  49 N = 4 0  N = 4 8  

R 2 0.533 0.694 0.521 

LM,~,~ 9.44 7.97 5.07 
LM,  5.72 2.43 4.35 
LM~ 0.08 0.14 3.65 
LM~ 0.32 0.96 3.36 
LM~ 9.36 7.83 1.42 
LM,~ 3.72 5.54 0.72 
LM~ 1.76 0.54 1.26 

0.562 0.459 0.465 
(0.134) (0.164) (0.153) 

LR~ 7.99 3.84 5.09 

q~ 0.431 0.349 0.188 
(0.118) (0.115) (0,155) 

L R ,  9.97 7.47 1.38 

"The  one-directional tests are distributed as Xz~, with critical levels of 3.84 (p  = 0.05) and 
6.63 (p  =0.01) .  The two-directional test is distributed as X], with critical levels of 5.99 
(p  = 0.05) and 9.21 (p  = 0.01). The estimates for qJ and 4~ are based on maximum likelihood 
estimation in a model with an A R  error (setting ~b = 0) and a model with an A R  lag (setting 

= 0) respectively. Values in parentheses below the estimates are asymptotic standard errors. 

significant. In addition, the spatial AR coefficients ~ and ~ are positive and 
strongly significant (at p < 0.01) in the respective alternative models, as are 
the associated LR tests. There is a slight edge in favor of the spatial lag 
model in terms of overall fit (log-likelihood of -182.4 vs. -183.4 for the 
error model). In other words, this is an instance where the lag model is the 
likely alternative and the 'impression' of error dependence indicated by the 
LM~ test is spurious. In contrast to the uncorrected LM, and LM~ tests, 
more convincing and reliable evidence is available from the new LM~ and 
LM~ tests. LM~ is not at all significant, while the LM~ test is significant at 

L A p slightly greater than 0.05. The M,  test based on the residuals of the ML 
estimation of the spatial lag model provides an indication similar to LM~ 
(p =0.57 vs. p =0.78 for LM,) ,  but the LM~ test is not significant 
(p = 0.18). For the Dutch data, the two-directional test is significant as well 
(p = 0.02), but of the uncorrected one-directional tests, this is only the case 
for the lag test LMo (at p < 0.01; the p-value for LMo is greater than 0.10). 
The corrected tests confirm this pattern, though more so for LM~ (with 
p --0.70 vs. p = 0.12 for LM~) and again with slightly less power for LM~ 
(p =0.02 vs. p<0 .01  for LM~). Both autoregressive coefficients are 
positive and highly significant in the respective alternative models, though 
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here as well the lage model is the correct one, with an edge in terms of fit 
A * (log-likelihood of -155 .5  vs. -157.3) .  4 Again, the LM~ and LM~ tests are 

A in agreement  and fail to reject the null hypothesis, but so does LM6.  In the 
U.S. model,  the two-directional test is not significant (p  = 0.08), but the 
uncorrected one-dimensional test LM~, indicates the presence of error  
dependence (p  = 0.04). The uncorrected one-directional test for a spatial 
lag is not significant (p  =0.23) .  In the alternative models, the spatial 
autoregressive coefficient in the error  model is highly significant (p  < 0.01), 
while the one in the lag model is not (p  = 0.23). Both LM~ (p  = 0.06) and 
LM~ (p  = 0.07) point in the direction of error  dependence,  but with lower 
power  than the uncorrected test. As expected, LM~ is not significant. Note 
that the numerical values of LM~ and LM~,  both of which taken into 
account the potential for lage dependence (but in different ways), are very 
similar, but this is not the case for LM~ and LM~. Of these two, the former 
tends to indicate the proper  alternative, while the latter has low power in an 
alternative model with 'significant' error  dependence.  

Overall,  these initial results point to a satisfactory behavior of the new 
tests. Their  power is less than that of the uncorrected tests against the 
'correct '  alternative. However ,  they seem less likely to indicate the 'wrong' 
alternative in the sense that they are not significant against it, while their 
uncorrected counterparts are. A major computational advantage of the new 
tests is that they can be calculated from the results of standard OLS 
regression. In contrast,  the LM~ and LM~ tests require maximization of the 
non-linear likelihood function for either the spatial lag or spatial error  
model.  In addition, they may be affected by pre-testing considerations (see 
Florax and Folmer,  1992). 

While these encouraging results are of course very limited in scope, it 
should be noted that they were obtained for fairly small sample sizes, 
whereas the properties of the tests are asymptotic in nature. 

4.2.  M o n t e  Car lo  s i m u l a t i o n  

A more extensive view of the performance of the new tests is provided by 
the results of a series of Monte Carlo simulations in which the nature of the 
data generating process, and, in particular, of the "local" misspecification, is 
under  complete control. We focus specifically on the size and power of the 
new tests relative to their uncorrected one-directional counterparts and to 
the two-directional test. All these tests are based on estimation by OLS. The 
LM~ and LM~ tests considered in the previous section were not included in 

4 In addition, in the spatial error model the common factor hypothesis is rejected by a Wald 
test (p < 0.05), further indicating the inappropriateness of this alternative. See Anselin (1988a, 
ch. 13) for further discussion of these specification tests. 
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the Monte  Carlo study, due to the computational burden of estimating the 
null model by means of ML procedures. Also, the initial evidence provided 
by the empirical examples suggests they may have inferior power. Anselin 
and Florax (1994) report  the results of a larger set of simulation experiments 
where other  test procedures for spatial dependence are also considered. 

4.2.1. Experimental  design 
The experimental  design used in the Monte Carlo simulations is based on 

a format  extensively used in earlier studies (e.g. Anselin and Rey,  1991; 
Florax and Folmer,  1992). The model under the null hypothesis of no spatial 
dependence  is the classical regression model: 

y = X y + u .  

The N observations on the dependent  variables are generated from a vector 
of standard normal random variates u. To obtain the explanatory variables 
X, an N x 3 matrix is generated,  consisting of a constant term and two 
variates drawn from a uniform (0, 10) distribution (consequently, the 
associate regression coefficients y equal 1). This matrix of explanatory 
variables is held fixed in the replications. In addition to a normal error,  a 
lognormal error  term is generated as well, with mean and variance equal to 
that of the normal variates. For each combination of parameter  values, 5000 
replications were carried out. The tests are evaluated at their theoretical 
(asymptotic) critical values for a = 0.05 and the proport ion of rejections 
(i.e. the proport ion of times the computed test statistic exceeded its 
asymptotic critical value) is reported. For a nominal Type I error  of 0.05, 
the 5000 replications yield a sample standard deviation of 0.0031, which is 
judged sufficiently precise for our  purposes. 

The configurations used to generate spatial dependence are formally 
expressed in four weights matrices. These correspond to sample sizes 40, 81 
and 127. The weights matrices of size 40 and 127 are for two actual 
irregularly shaped regionalizations of The Netherlands. 5 The weights ma- 
trices for N = 81 correspond to a regular square 9 × 9 grid, with continuity 
defined by both the rook criterion (four neighbors, having a side in 
common;  to the north,  south, east and west) and the queen criterion (eight 
neighbors, including the rook neighbors as well as those having a vertex in 
common).  In this series of experiments we included both regular and 
irregular weights, the irregular ones to reflect the types of economic regions 
often encountered in empirical work, and the regular ones to focus on the 
effect of the characteristics of the connectivity structure on the properties of 

5 For N= 40, these are the same COROP regions used in the empirical illustration. For 
N = 127, they are the so-called 'economic geographic' regions in The Netherlands, which 
aggregate into the COROP regions. 
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the tests. It is important  to note that in space the sample size (N) is not the 
only variable important  in achieving convergence to asymptotic propert ies  of  
tests and estimators.  As shown in Anselin (1988a), the degree of inter- 
connectedness  between observations (locations) is also an important  factor 
in determining the extent to which the central limit theorems on dependent  
spatial processes hold (i.e. the various mixing conditions described in 
Anselin,  1988a, ch. 5). For the weights matrices used here,  the average 
number  of  connections for an observation are, respectively, 4.2 and 4.7 for 
the Dutch  regions, 3.6 for the rook case and 6.7 for the queen case. The 
lat ter  two values reflect the influence of boundary conditions (for central 
observat ions in the regular lattice, four and eight are the number  of 
connections,  respectively). Finally, in our simulation experiments  all weights 
matrices are used in row-standardized form (i.e. such that the row elements  
sum to one) and the same weights are used in both lag and error  
specifications (i.e. W 1 = W 2 = W, in our notation). 

We considered four types of alternative hypothesis of spatial dependence.  
Three  of these are one-directional,  i.e. a function of a single spatial 
pa ramete r ,  and one is two-directional, i.e. a function of two spatial 
parameters .  The spatially dependent  observations are generated by means 
of an appropr ia te  spatial t ransformation applied to a vector  of errors or 
'observat ions '  of uncorrelated values, as follows: 

(a) Spatial A R  error: 

u = ( I -  ~ t w ) - l e  , 

where e is a vector of standard normal ( log-normal)  variates, the other  
notat ion is as before.  The resulting vector of  spatially autocorrelated errors 
u is added to the X T  vector to generate a vector of observations on the 
dependent  variable y. 

(b)  Spatial M A  error: 

u = ( I +  ~bW)e ,  

with the spatially autocorrelated errors u added to the explanatory variables 
in the same way as for (a). 

(c) Spatial A R  lag: 

y = ( I -  c k W ) - ' ( X y  + u ) ,  

where u is a vector of standard normal ( log-normal)  variates. 
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(d) Spatial A R M A  (SARMA)  process: 

y = (I - ~bW)-~[Xy + (I + tpW)e]. 

For the one-directional alternative hypotheses, the spatial parameters  
take on values from 0.1 to 0.9. For  ease of interpretation, negative 
parameter  values are excluded (see Anselin and Rey,  1991, for a discussion 
of the complications caused by negative parameter  values). The maximum 
value of 0.9 reflects the constraint on the Jacobian term [I - ~'W[ for the A R  
processes and 1I + ~'W[ for the MA processes, where ~" represents the spatial 
parameter  ~b or ~. As is well known the Jacobian term simplifies to an 
expression in the roots of the weights matrix, as shown in Ord (1975) for 
A R  processes: 

lnll - ~'W[ = ~] In(1 - Go.)i), (18) 
i 

where the to/ are the eigenvalues of the weights matrix. Consequently,  the 
restriction on the parameter  is of the form ~" < 1/toi, Vi. The resulting 
acceptable parameter  space for AR processes is 6 

1/tomi n < ~" < 1/to . . . .  (19) 

where the subscripts indicate the minimum and maximum eigenvalues, 
respectively, in real terms (see Anselin, 1988a). For MA processes, ~" should 
be replaced by -~" in expression (18). For row-standardized weights, the 
largest eigenvalue is always 1, and 1/tOmi . -< - 1 ,  which effectively constrains 
the positive parameter  values to ~" < 1. The combinations of parameter  
value, spatial configuration and error  distribution yield a total of 216 cases 
for  the three one-directional alternatives. For the two-directional S A R M A  
process, constraint (19) holds separately for the A R  and MA parameters,  
yielding 81 parameter  combinations (positive values only),  for a total of 648 
cases. 

4.2.2. Results 
The empirical size of the tests is given in Table 3 for four spatial weights 

and for both normal and log normal error  terms. Since the specified critical 
values were for a = 0.05, a significant deviation from this rejection propor-  
tion would indicate a bias of the tests in finite samples. For 5000 replications 
and under  a normal approximation to the binomial, a 95% confidence 
interval centered on p = 0.05 would include rejection frequencies between 
0.044 and 0.056. It is encouraging to note that for N =  127, with normal 

6 For  a different perspective,  see Kelejian and Robinson (1995), where the parameter  space 
is defined over the entire range of real values, with the exception of at most  N singularity 
points.  
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Table 3 
Empirical  size of  tests a 

Tes t  N = 40 N = 81 (queen) N = 81 (rook) N = 127 

Normal distribution 
L M ,  0.046 0.046 0.056 0.049 
L * M ,  0.046 0.049 0.053 0.051 
L M ,  0.052 0.054 0.054 0.051 
LM~ 0.055 0.052 0.055 0.054 
LM~,  0.051 0.045 0.057 0.048 

Log-normal distribution 
L M ,  0.033 0.034 0.047 0.041 
LM~ 0.038 0.041 0.046 0.043 
L M ,  0.049 0.051 0.052 0.048 
LM~ 0.050 0.052 0.053 0.056 
LM,~+ 0.042 0.043 0.047 0.050 

a A 95% confidence interval for p = 0.05 with 5000 replications is 0.044 < p  < 0.056. 

error terms, all tests yield rejection frequencies within this range. Moreover, 
the four one-directional tests yield rejection frequencies roughly within the 
95 % confidence interval in all four samples. This indicates a correct size for 
even moderately sized and small data sets. For LM,~ and LM~, this is in 
general agreement with the results in Anselin and Rey (1991). 

The poorest performance results were for the rook case (relative to the 
queen configuration for the same sample size), where LM** and LM,  
slightly over-reject the null hypothesis, and LM~ is very close to the upper 
bound of the confidence interval. A similar result occurred in Anselin and 
Rey (1991), where differences in empirical size were also found when 
different weights matrices were used for the same number of observations. 
It is not clear why the rook case stood out in this respect. The only 
indication as to how it differs from the other layouts is that it yields the 
smallest maximum eigenvalue of the four configurations (but its rejection 
frequencies are always higher). To some extent, this influence of the choice 
of the weights matrix is counterintuitive, since there is not spatial depen- 
dence present. It further highlights the difference between the two-dimen- 
sional spatial dependence and serial dependence in time-series analysis, 
which is one-dimensional (and one-directional). In one dimension, first- 
order dependence (first-order autocorrelation) is defined unambiguously, 
while this is not the case in two dimensions. As shown in Anselin and Rey 
(1991, table 4), this is an issue particularly in small samples and is much less 
pronounced as the number of observations increases (in the limit, the size of 
N dominates the effect of the connectedness structure). 



L. Anselin et al. / Regional Science and Urban Economics 26 (1996) 77-104 93 

A misspecification in the form of a log-normal error term seems to affect 
the size of the tests more for the error  tests than for the lag tests, as was the 
case in Anselin and Rey (1991). For  LM,  and LM~, the rejection frequency 
remains in the 95% interval for the four cases, while the LM~, test 
significantly under-rejects for N = 40 and the queen case. Both error  tests, 
L M ,  and LM~,, significantly under-reject  in three configurations (for N = 40 
and 127, and for the queen case). In practice, under-rejection of the null 
hypothesis when no spatial dependence is present does not have any 
consequences,  since the standard estimation results are interpreted as they 
should be (without taking spatial effects into account). 

Overall,  these results suggest that the new L M ,  and LM~ tests are 
unbiased, even in small to moderately sized data sets, and in this respect 
perform very similarly to their uncorrected counterparts.  

Tables 4, 5 and 6 report  the empirical rejection frequencies for the five 
tests against the three forms of one-directional spatial dependence,  for 
normally distributed error  terms. 7 We focus in particular on the extent to 
which the new tests differ from their uncorrected counterparts.  In Table 4, 
L M ,  clearly achieve the highest power, and in the largest sample results in 
90% rejection rates for 4`-> 0.4. The penalty for using LM~ is very small, 
and a small price to pay for the gain in robustness. While its power is 
inferior to that of L M ,  in the smaller samples, it becomes almost in- 
distinguishable for N = 127. As the simulation experiments in Anselin and 
Rey (1991) showed, LM~ has 'good power'  against A R  error  terms, but 
always less than LM, .  This is confirmed here. Therefore ,  the application of 
L M ,  alone could lead to the wrong inference. In contrast, the power 
function for LM~ is always much flatter. This test performs remarkably well, 
in the sense that it yields low rejection frequencies even for 4' = 0.9 (e.g. 
25% rejection with N = 127). The correction for error dependence in LM~ 
thus seems to work in the right direction when no lag dependence is present,  
especially for small values of 4'. The two-directional LM~, test also has 
power against AR error  dependence,  and in this respect is superior to L M , ,  
and very similar to LM~. When comparing these two ways of taking into 
account potential lag dependence,  it turns out that LM~, is slightly superior 
for N = 40 and the queen case, while there is a slight edge for L M ,  for the 
rook case and N = 127. However ,  especially for high values of 4', the two 
tests are virtually indistinguishable. In other  words, in testing against spatial 
A R  error  dependence and relative to LM, ,  a similar loss in power occurs 

7 The results for log-normal errors are very similar. The power of the test is slightly less than 
for the normal case for small values of the spatial parameter, but not distinguishable for larger 
values. The relative rankings of these and other tests in terms of power are not affected. Details 
are given in Anselin and Florax (1994). 
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Table 4 
Power of tests against first-order spatial AR er rors -  normal distribution a 

N q/ LM, LM~ LM, LM~ LM,~, 

40 0.1 0.064 0.066 0.067 0.067 0.071 
0.2 0.125 0.109 "0.089 0.076 0.122 
0.3 0.242 0.207 0.125 0.081 0.222 
0.4 0.401 0.333 0.180 0.096 0.365 
0.5 0.612 0.524 0.253 0.122 0.564 
0.6 0.790 0.689 0.379 0.141 0.753 
0.7 0.910 0.830 0.540 0.154 0.885 
0.8 0.974 0.923 0.724 0.166 0.962 
0.9 0.996 0.972 0.899 0.171 0.994 

81 
(queen) 

81 
(rook) 

127 

O. 1 0.066 0.065 0.063 0.063 0.072 
0.2 O. 161 O. 146 0.091 0.075 O. 158 
0.3 0.312 0.285 0.119 0.082 0.276 
0.4 0.533 0.490 O. 174 O. 105 0.494 
0.5 0.758 0.697 0.279 O. 122 0.707 
0.6 0.898 0.866 0.399 O. 159 0.871 
0.7 0.973 0.958 0.579 O. 199 0.965 
0.8 0.995 0.991 0.767 0.264 0.992 
0.9 1.000 0.999 0.933 0.356 0.999 

O. 1 0.072 0.070 0.052 0.048 0.063 
0.2 0.208 O. 179 0.079 0.056 O. 164 
0.3 0.431 0.389 O. 107 0.057 0.350 
0.4 0.691 0.645 0.153 0.063 0.603 
0.5 0.889 0.839 0.271 0.066 0.831 
0.6 0.974 0.952 0.402 0.083 0.953 
0.7 0.997 0.991 0.595 0.093 0.993 
0.8 1.000 0.999 0.811 0.118 0.999 
0.9 1.000 1.000 0.965 0.159 1.000 

0.1 0.118 0.112 0.068 0.058 0.108 
0.2 0.353 0.318 0.107 0.073 0.300 
0.3 0.683 0.628 O. 184 0.084 0.609 
0.4 0.900 0.869 0.301 0.103 0.867 
0.5 0.986 0.975 0.464 O. 123 0.978 
0.6 0.998 0.996 0.651 O. 157 0.998 
0.7 1.000 1.000 0.844 0.187 1.000 
0.8 1.000 1.000 0.964 0.221 1.000 
0.9 1.000 1.000 0.999 0.247 1.000 

a The tests are for a one-directional alternative, hence 4' = 0. 

w h e t h e r  t h e  r o b u s t  L M ,  o r  t h e  t w o - d i r e c t i o n a l  L M * *  is u s e d .  T h e  f o r m e r  

h a s  t h e  a d v a n t a g e  t h a t ,  w h e n  c o m p a r e d  w i t h  L M ~ ,  it p o i n t s  t o  t h e  c o r r e c t  

a l t e r n a t i v e  ( i . e .  L M ~  has  h i g h e r  p o w e r  t h a n  L M ~  a g a i n s t  e r r o r  
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Table 5 
Power of tests against first-order spatial MA er rors -  normal distribution" 

95 

N tk LM, LM~ LM~ LM~ LM** 

40 0.1 0.061 0.063 0.063 0.058 0.072 
0.2 0.103 0.097 0.086 0.075 0.104 
0.3 0.190 0.163 0.098 0.078 0.178 
0.4 0.307 0.259 0.135 0.085 0.279 
0.5 0.445 0.370 0.178 0.101 0.389 
0.6 0.570 0.479 0.219 0.113 0.522 
0.7 0.682 0.582 0.266 0.118 0.630 
0.8 0.779 0.682 0.313 0.143 0.729 
0.9 0.854 0.766 0.353 0.142 0.816 

81 
(queen) 

81 
(rook) 

127 

0.1 0.062 0.063 0.061 0.061 0.071 
0.2 0.134 0.122 0.078 0.067 0.127 
0.3 0.250 0.226 0.106 0.085 0.227 
0.4 0.401 0.370 0.138 0.085 0.360 
0.5 0.550 0.502 0.179 0.096 0.496 
0.6 0.686 0.638 0.223 0.107 0.630 
0.7 0.795 0.749 0.272 0.117 0.749 
0.8 0.875 0.839 0.312 0.131 0.836 
0.9 0.937 0.905 0.379 0.133 0.909 

0.1 0.071 0.069 0.055 0.050 0.065 
0.2 0.176 0.161 0.069 0.047 0.140 
0.3 0.400 0.362 0.092 0.045 0.303 
0.4 0.646 0.582 0.131 0.051 0.531 
0.5 0.823 0.771 0.177 0.051 0.730 
0.6 0.924 0.889 0.234 0.053 0.864 
0.7 0.973 0.954 0.290 0.055 0.944 
0.8 0.995 0.984 0.342 0.057 0.984 
0.9 0.997 0.994 0.411 0.058 0.994 

0.1 0.114 0.106 0.066 0.067 0.103 
0.2 0.322 0.285 0.104 0.069 0.267 
0.3 0.583 0.538 0.154 0.074 0.509 
0.4 0.825 0.781 0.217 0.080 0.771 
0.5 0.937 0.910 0.293 0.103 0.903 
0.6 0.983 0.970 0.385 0.111 0.968 
0.7 0.997 0.993 0.466 0.113 0.992 
0.8 1.000 0.998 0.532 0.124 0.999 
0.9 1.000 1.000 0.618 0.133 1.000 

a The tests are for a one-directional alternative, hence ~b = 0. 

d e p e n d e n c e ) ,  p r o v i d i n g  an  a l t e r n a t i v e  w a y  to  c a r r y  o u t  t h e  d e c i s i o n  r u l e  o f  

A n s e l i n  a n d  R e y  (1991) .  In  c o n t r a s t ,  t h e  r e s u l t s  o f  t h e  L M ~ ,  t e s t  d o  n o t  

p r o v i d e  an  i n d i c a t i o n  o f  w h i c h  a l t e r n a t i v e  m a y  c a u s e  t h e  m i s s p e c i f i c a t i o n  
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Table 6 
Power of tests against first-order spatial AR lag-  normal distribution ~ 

N ~b LM, LM~ LM, LM~ LM6, 

40 

81 
(queen) 

81 
(rook) 

127 

0.1 0.067 0.048 0.193 
0.2 0.147 0.040 0.554 
0.3 0.331 0.033 0.858 
0.4 0.609 0.026 0.978 
0.5 0.822 0.018 0.998 
0.6 0.956 0.010 1.000 
0.7 0.993 0.002 1.000 
0.8 1.000 0.001 1.000 
0.9 1.000 0.006 1.000 

0.183 0.150 
0.501 0.458 
0.797 0.783 
0.959 0.966 
0.994 0.996 
0.999 1.000 
1.000 1.000 
1.000 1.000 
1.000 1.000 

0.1 0.084 0.052 0.299 0.276 0.234 
0.2 0.260 0.062 0.810 0.777 0.734 
0.3 0.610 0.118 0.992 0.984 0.980 
0.4 0.904 0.248 1.000 1.000 1.000 
0.5 0.990 0.441 1.000 1.000 1.000 
0.6 1.000 0.632 1.000 1.000 1.000 
0.7 1.000 0.802 1.000 1.000 1.000 
0.8 1.000 0.860 1.000 1.000 1.000 
0.9 1.000 0.351 1.000 1.000 1.000 

0.1 0.073 0.057 0.463 0.568 0.372 
0.2 0.162 0.063 0.967 0.955 0.931 
0.3 0.321 0.061 1.000 1.000 1.000 
0.4 0.557 0.061 1.000 1.000 1.000 
0.5 0.806 0.051 1.000 1.000 1.000 
0.6 0.969 0.027 1.000 1.000 1.000 
0.7 0.999 0.010 1.000 1.000 1.000 
0.8 1.000 0.001 1.000 1.000 1.000 
0.9 1.000 0.000 1.000 1.000 1.000 

0.1 0.142 0.045 0.653 0.607 0.549 
0.2 0.547 0.053 0.996 0.993 0.992 
0.3 0.927 0.092 1.000 1.000 1.000 
0.4 0.998 0.116 1.000 1.000 1.000 
0.5 1.000 0.077 1.000 1.000 1.000 
0.6 1.000 0.027 1.000 1.000 1.000 
0.7 1.000 0.002 1.000 1.000 1.000 
0.8 1.000 0.000 1.000 1.000 1.000 
0.9 1.000 0.000 1.000 1.000 1.000 

a The tests are for a one-directional alternative, hence $ = 0. 

e r r o r .  T h e s e  g e n e r a l  p a t t e r n s  a r e  c o n f i r m e d  fo r  t h e  s p a t i a l  M A  e r r o r  

d e p e n d e n c e  in T a b l e  5. T h e r e  a r e  a f e w  i n t e r e s t i n g  d i f f e r e n c e s ,  h o w e v e r .  

F i r s t  t h e  p o w e r  o f  all t e s t s  is c o n s i d e r a b l y  l o w e r  t h a n  fo r  c o m p a r a b l e  v a l u e s  
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of the AR  error  parameter ,  s Secondly, the LM6 test no longer has good 
power against error  dependence.  For example, for N = 40, the null hypoth- 
esis is rejected by L M ,  in only 35% of the cases for q, = 0.9, compared with 
90% in Table 4. To some extent this is to be expected, given the much 
greater  similarity between a lag process and a spatial A R error  process (e.g. 
in the form of a spatial Durbin model) ,  while such a similarity does not exist 
with MA errors. However ,  the clear superiority of LM~ relative to LM~ in 
this context,  and the same relationship between LM~ and LM~, would tend 
to strengthen the decision rule of Anselin and Rey (1991). 

In Table 6 the LM~ test is clearly the most powerful test against a spatial 
A R  lag, achieving a 95% rejection level for ~b > 0.3 in the smallest sample, 
and for ~b > 0.1 in the rook (N = 81) and N = 127 configurations. The LM~¢ 
and LM~ tests have only slightly less power and are almost indistinguishable 
in the largest data set. In other  words, the penalty in terms of power for the 
robustness against error  dependence in LM~, when none is present, in 
almost negligible. However ,  there is hardly any power difference between 
this test and the two-directional LM6~, test that explicitly takes error  
dependence  into account. 

Overall,  the power functions of the three lag tests compare favorably with 
the one for tests against error  dependence.  This reliability of the lag tests is 
encouraging, since the consequences of ignoring a spatial lag (as an omitted 
variable) when one should be included (i.e. inconsistent estimates) are much 
more  serious than the consequences of ignoring spatially correlated errors 
(less efficient estimates). 

The  L M ,  test also has 'power '  against a spatial lag, although much less 
than the lag tests, and therefore LM~ by itself cannot be used to identify the 
dependence  structure. The behavior of LM~ is very interesting. Except 
somewhat  for ~b = 0.7 and 0.8 in the queen case (N = 81), this test has no 
power against lag dependence,  as it should. Moreover ,  its power function 
tends to decrease with increasing values of ~b. For small values of 4,, the 
reject ion frequency of LM~ is very close to its expected value of 0.05, but 
for large values it becomes almost negligible (except for the queen case). 
Since the LM~ test is robust to 'local' misspecification, this is not surprising. 
However ,  a clear discrepancy between the indications of LM~, and LM~, 
while both LM~ and LM~ are significant, would provide strong evidence for 
lag dependence  as opposed to error  dependence.  The extent to which such a 

8 In a strict sense, the parameter values for an AR error process and an MA error process are 
not equivalent, since each process implies a different range for the spatial interaction between 
observations. For an AR process, all observations interact, whereas for a MA process, only the 
first- and second-order neighbors interact. In other words, the same parameter values imply a 
stronger interaction for an AR process than for an MA process. 
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decision rule would hold in a specification search characterized by pre- 
testing remains to be investigated further. 

So far, our results have indicated that there is little loss in power from 
using the robust tests in situations where the alternative is one-directional. 
However ,  it is also important to assess the performance to the tests when a 
mixture of both forms of dependence is present, e.g. when the alternative is 
a S A R M A  process. For this case we present partial results, summarized in 
four representative figures, which are projections of the power surface for a 
given value of one parameter  onto the axis plane of the other. 9 Not reported 
are the results for the two-directional LM6~, test, which has excellent power 
against this set of alternatives, achieving 95% rejection frequencies for 
~b ---0.4, V4', even in the smallest sample. For N = 127, a 95% rejection is 
obtained for all but three parameter  combinations (th = 0.1 and 4' -< 0.3). 

The power functions in Figs. 1 and 2 -  for N = 1 2 7 -  illustrate the extent 
to which the LM~, test is robust to the presence of lag dependence.  For 
small values of ~ in Fig. 1, the power function mimics that of the tests 
against first-order MA error  dependence,  with power slowly increasing with 
values of 4'. The curves for th = 0.0 and ~b = 0.1, in particular, are very close, 
confirming the proper  behavior of this test against 'local' misspecification. 
For  higher values of th (e.g. ~b = 0.5 in Fig. 1), there is a clear loss in power, 
even for high values of 4'. For the smaller sample sizes, similar patterns are 
obtained,  though overall at a considerable lower level of power. An 
alternative view is provided by the power functions in Fig. 2. Here ,  each 
power  curve shows how the rejection frequency changes with ~b, while 
holding 4' constant. This illustrates the strange behavior of LM~ with 
increasing values of ~b and provides some insight into the performance of the 
test under  'non-local'  alternatives. As shown in the discussion of one- 
directional alternatives, the power function is almost horizontal for 4' = 0.0 
and small values of th, as it should be. However ,  this is not the case for 
higher values of ~b, where power first increases and then decreases to 
become negligible for high ~b, even for high values of 4'. Similar erratic 
patterns are found for the other samples, though less dramatic for N = 40 
(with a much flatter, decreasing pattern with ~b). Overall, our results 

L * indicate that we will obtain reliable inference from M~, in the presence of a 
modest  amount  of lag dependence (say ~b ~< 0.4). For higher values of ~b, we 
can expect LM~ to be highly significant (to cast doubts on LM~),  even in 
the presence of strong error dependence (see Figs. 3 and 4 and the 
discussion below). 

9 Complete results, as well as additional figures, are provided in Anselin and Florax (1994). 
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Fig. 1. Power of LM~ against S A R M A  (1, 1), M A  dimension, N =  127 (dashed lines 
correspond to ~b =0.0 ,  0.1, 0.2, 0.3, 0.4 and 0.5). 

In  contras t  to  LM~,, the power  funct ions o f  LM~ seem almost  unaf fec ted  
by  the  value o f  ~/,. In Fig. 3, for  N = 40, the power  curves for  the five values 
o f  ~, are virtually identical and illustrate the good  pe r fo rmance  of  this test 
against  spatial A R  alternatives.  1° Similarly, in Fig. 4, for  the same sample  
size, the power  curves are more  or  less hor izontal  with ~b, even for  high 
values.  The  difference in proper t ies  be tween  lag and er ror  tests is thus 
ma in ta ined  for  their  robust  forms,  in the presence  of  misspecification. 
Overal l ,  LM~ comes  across as much  more  reliable than L M ~ ,  and very  

~0 In contrast to the previous case, this good performance is already obvious for N = 40. 
Figures for the other sample sizes are similar, except that still higher power is achieved against 
q~>O. 
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L * Fig. 2. Power of M ,  against S A R M A  ('1, 1), AR dimension, N =  127 (dashed lines 
correspond to ~b = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5). 

similar in power to L M ~ .  The robust tests thus seem more appropriate to 
test for lag dependence in the presence of error  correlation than for the 
reverse case. Again, this is not unimportant,  since the consequences of 
ignoring lag dependence are more severe. 

5. Concluding remarks 

In this paper we have proposed simple diagnostic tests for spatial 
dependence.  The proposed tests can be implemented using OLS residuals 
and are robust to the local presence of a nuisance parameter.  Our empirical 
examples demonstrate the usefulness of the tests. In addition, the results 
f rom Monte  Carlo experiments show that the proposed tests have very good 
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finite sample properties. In practice, they should be useful in identifying the 
dependence  structure that may be present in spatial regression models. 

Anselin (1990) reviewed some other  robust approaches to specification 
testing in the context of spatial econometric models, focusing on techniques 
that are robust to the presence of heteroskedasticity of an unknown form. 
For  example,  following Davidson and MacKinnon (1985), Anselin (1990) 
considered heteroskedasticity-robust tests for spatial error  autocorrelation as 
well as spatial lag. Essentially these may be viewed as tests for conditional 
mean specification robust against misspecification of the conditional vari- 
ance. It is worth pointing out that in the cases considered in Anselin (1990), 
the information matrix between the parameters of the conditional mean 
function and those of the conditional variance will be block diagonal. For 
example,  this occurs when the unknown heteroskedasticity is parameterized,  
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as in Breusch and Pagan (1979). In the situations considered here, however, 
the information matrix is not block diagonal, so that Davidson and 
MacKinnon's general approach is not applicable. Therefore our proposed 
tests may be viewed as computationally simple and robust alternatives to 
some available procedures in spatial econometrics. 
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