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Abstract 

Political units often spatially depend in their policy choices on other units. This also 

holds in dyadic settings where, as in much of international relations research, the focus 

of the analysis is the pair or dyad of two political units. Yet, with few exceptions, social 

scientists have analyzed contagion only in monadic datasets, consisting of individual 

political units. This article categorizes all possible forms of modeling spatial lags in 

both undirected and directed dyadic data. This enables scholars to formulate and test 

novel mechanisms of contagion, thus ideally paving the way for studies analyzing 

spatial dependence between dyads of political units. We illustrate the modeling 

flexibility gained from an understanding of the full set of specification options for 

spatial effects in dyadic data by an application to the diffusion of bilateral investment 

treaties between developed and developing countries, building and extending on Elkins, 

Guzman and Simmons. (2006. Competing for Capital: The Diffusion of Bilateral 

Investment Treaties, 1960 2000. International Organization 60 (4):811-846). We come 

to different conclusions about the channels through which bilateral investment treaties 

diffuse. We find that rather than a capital importing country being influenced by the 

total number of BITs signed by other capital importers, as modeled in the original 

article, a capital importing country is only more likely to sign a BIT with a capital 

exporter if other competing capital importers have signed BITs with this very same 

capital exporter. Similarly, other capital exporters’ BITs with a specific capital importer 

influence an exporter’s incentive to agree on a BIT with the very same capital importer. 
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1. Introduction 

Policy choices of one political unit are often not independent of policies implemented in 

other units, in which case they are said to depend spatially on each other. Recently, so-

cial scientists have become very interested in analyzing processes of ‘policy contagion’, 

‘policy diffusion’, and ‘policy spill-over’ across jurisdictions.1 The vast majority of 

these studies have used a monadic dataset.2 In contrast, with few exceptions diffusion 

analysis remains inexistent in studies adopting a dyadic framework, i.e. a setting where 

the unit of analysis is the pair or dyad of two political units, which has particularly 

gained importance in international relations research and which has become increasing-

ly popular over the last decade or so.3 This is surprising because spatial dependence 

exists in a many dyadic settings. What one unit does in relation to other units, with 

which it forms a dyad, will often influence as well as be influenced by the relations of 

other dyads.  

One potential reason for the lack of studies analyzing spatial dependence in a 

dyadic framework is that political scientists are not aware of the many specification 

options for modeling such dependence in dyadic data. Recognizing the various ways in 

which spatial effects in dyadic data can be modeled will enable scholars to formulate 

and test different and novel diffusion channels, thus facilitating and hopefully spurring a 

whole new generation of studies analyzing spatial dependence between dyads of 

                                                 
1  We use the terms contagion, diffusion and spill-over interchangeably even if they often represent 

somewhat different modes of spatial dependence. 

2  See, for example, Cho 2003, Murdoch and Sandler 2004, Simmons and Elkins 2004, Jahn 2006, 

Franzese and Hays 2006, Gleditsch and Ward 2006, Salehyan and Gleditsch 2006, Swank 2006, 

Brooks 2007. 

3  The rare examples of studies analyzing spatial dependence in dyadic data include Porojan 2001, 

Manger 2006, Gleditsch and Gartzke 2006, Elkins et al. 2006. 
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political units at all levels of the political system – from the global and international 

right down to the local. 

This paper makes two contributions. First, our analysis enriches the thriving 

literature applying dyadic data and calls on researchers to take spatial dependence in 

such data seriously. Spatial dependence often seems to be theoretically warranted, but is 

practically always ignored. For example, the conclusion of bilateral and multilateral 

trade, investment, alliance and other agreements among some dyads most likely 

influences the incentives for other dyads to conclude similar agreements. The conclu-

sion of such agreements often generate externalities, increase competition, induce co-

operation, or lead to coercion, learning, emulation or other effects by which the policy 

choices of other dyads are affected. Yet, to our knowledge only three studies analyze 

spatial dependence in the diffusion of BITs, preferential trade agreements and bilateral 

alliance formation, respectively.4 Another good example is the democratic peace 

literature. King argues that “dyadic observations in international conflict data have 

complex dependence structures. (…) [I]n dyadic data, observation 1 may be U.S.-Iraq; 

observation 2, U.S.-Iran; and observation 3, Iraq-Iran. The dependence among these 

separate observations is complicated, central to our theories and the international 

system, critical for our methodological analyses, and ignored by most previous 

researchers.”5 We agree with this judgment. Spatial dependence in international conflict 

is typically ignored,6 leading to biased estimates of the observed intra-dyadic and unit-

specific explanatory variables. However, contrary to King we do not believe that 

Bayesian hierarchical or random effects models provide the methodologically optimal 

                                                 
4  Elkins et al. 2006, Manger 2006 and Gleditsch and Gartzke 2006, respectively. 

5  King 2001, 498 (emphasis in original). 

6  We are not aware of any dyadic conflict study that models spatial dependence. 
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solution if researchers are indeed interested in spatial effects. Rather, the spatial 

dependence should be modeled directly by the inclusion of spatial lags in dyadic data 

analyses. If theory suggests the existence of spatial dependence, then modeling spatial 

patterns as nuisance – as in the “spatial error” model or King’s hierarchical model – will 

be inferior to directly testing for spatial dependence by fitting a spatial lag model, 

because none of the different possible ‘nuisance models’ allows to directly test the 

spatial hypotheses derived from the theory.7  

Second, the few studies that actually do analyze spatial dependence in dyadic data 

have done so in a limited way, focusing solely on aggregate forms of contagion. A good 

example is Elkins et al.’s study of the diffusion of bilateral investment treaties (BITs).8 

The authors only consider aggregate target contagion from capital-importing countries, 

where the decision of a capital importer to sign a BIT with a capital exporter depends on 

the weighted sum of BITs signed by all other capital importers, regardless of the 

potential capital exporter with which these existing contracts have been signed. Yet, 

there is nothing in the theory of BIT diffusion which necessarily suggests such an 

aggregate form of contagion, being unconditional on the specific dyad under observa-

tion. From a theoretical perspective, it seems at least as plausible to argue that a capital 

importer’s BIT with a specific capital exporter depends on the BITs signed by other 

capital importers with that very same capital exporter – but not with any other capital 

exporting country. 

This research note discusses all possible forms of channels through which policies 

may diffuse in dyadic data. We start by briefly discussing spatial dependence in 

monadic settings before categorizing the different and complex ways of modeling 

                                                 
7  Beck et al. 2006. 

8  Elkins et al. 2006. 
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spatial effects in dyadic data. We will show that in undirected dyadic data, dyads can 

only spatially depend on the policy choices of other dyads, which is similar to the 

monadic setting in which units can only depend on the policy choices of other units. In 

directed dyadic data, there is more flexibility. Here we have of course the same 

possibility of dyad contagion as in undirected data. However, given that in directed data 

one can distinguish the source from the target of the interaction, researchers can 

additionally model four more forms of contagion. Two of these model contagion as 

emanating from the aggregate policy choices of other sources and other targets, which 

leads to aggregate source contagion and aggregate target contagion, respectively. If, 

however, contagion does not come from the aggregate policy choices of other sources or 

other targets, but only from their policy choices with respect to a specific third party, 

then we get the two remaining modeling options of specific source contagion and 

specific target contagion, respectively. In other words, the probability that source i 

interacts with target j increases if (but only if) i already interacts with other targets m 

similar to j or if j already interacts with other sources k similar to i.  

Together, there are thus five forms of contagion for directed dyadic data, which can 

be combined with various specifications of the weighting matrix. The spatial analysis of 

dyadic data therefore offers multiple options to researchers and makes the choice of the 

correct model a difficult task – a task in which theory needs to inform the specification 

of the spatial lags in the empirical model.9

In order to demonstrate the full potential of modeling spatial dependence in dyadic 

data, we extend the analysis of Elkins et al. on the diffusion of BITs by modeling and 

testing all possible forms of spatial lags. To our knowledge, their study was the first 

published article to include spatial lags in a directed dyadic sample and it is also com-

                                                 
9  See also Plümper and Neumayer 2009. 
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mendable for clearly specifying and justifying their modeling approach. Our analysis 

provides additional insights into the study of BIT diffusion. While we find that Elkins et 

al. were right in arguing that competition among capital-importing target countries 

drives BIT spillovers, our results suggest that a capital importer’s decision to sign a BIT 

with a capital exporter only depends on similar importers’ BITs with the very same 

capital exporter rather than on the similar importers’ total number of BITs with any 

capital exporter. In other words, we find that dyad-specific target contagion matters 

rather than aggregate target contagion. In addition, we provide evidence that the 

diffusion process also works through competition among capital-exporting source coun-

tries: when other capital exporters have signed a BIT with a specific capital importer, a 

capital exporting nation is more likely to also seek a BIT with the very same capital 

importer. Hence, here again, diffusion is driven by dyad-specific source contagion. 

Thus, we reproduce Elkins et al’s finding that the agreement of BITs between two 

countries spatially depends on the choices of other countries, but we come to different 

conclusions with respect to the channels through which BITs diffuse. 

 

2. Spatial Dependence in Dyadic Data: A Categorization 

Spatial effects between two jurisdictions occur whenever the marginal utility of one unit 

depends on the policy choices of at least one other unit.10 There is no shortage of 

theories predicting processes of policy diffusion and spill-over across units.11 All of 

                                                 
10  Franzese and Hays 2008, 3. 

11  Elkins and Simmons 2005, Simmons et al. 2006, and Franzese and Hays 2008, 2, among others, 

distinguish between coercion (i.e. what Levi-Faur 2005 calls top-down approaches to diffusion), 

externalities (Simmons and Elkins 2004; Franzese and Hays 2006), competition (Hallerberg and 

Basinger 1998; Basinger and Hallerberg 2004), cooperation (Genschel and Plümper 1997), 

learning (Mooney 2001; Meseguer 2005), and emulation (Weyland 2005). 
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these theories can also be applied to dyadic frameworks. Moreover, these theories are in 

principle compatible with all of the types of contagion categorized below in the sense 

that, depending on the context and the exact formulation of these theories, each theory 

can require one or more of these types of contagion. 

We will show that dyadic data allows the modeling of far more complex forms of 

spatial dependence than monadic data. To see why this is the case, we start with a brief 

exposition of spatial effects in monadic data. Then we discuss in detail spatial depend-

ence in dyadic data. 

 

2.1. Spatial Dependence in Monadic Data 

Besides spatial error models, which are rarely useful for political science research,12 

two main ways of modeling spatial dependence exist. By far the most popular one and 

the one we focus on here is the spatial lag model, which regresses the dependent 

variable on the spatially lagged dependent variable. However, everything we say 

equally applies to spatial-x models, which regress the dependent variable on the 

weighted values of one or more independent explanatory variables (other than the de-

pendent variable), and to spatial error model, which seek to identify spatial dependence 

in the error term.. 

In its simplest purely cross-sectional form without control variables spatial lag 

models in a monadic dataset can be formulated as: 

iki ik
k

y ywρ ε= +∑   . (1) 

                                                 
12  Beck et al. 2006. 
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The spatial lag ik k
k

yw∑  consists of two elements, namely what in the following we will 

refer to as the “spatial y” and the spatial weighting matrix .ikw 13 The spatial y is the 

contemporaneous or temporally lagged value of the dependent variable in all units k. 

This is multiplied with an  block-diagonal spatial weighting matrix, which 

measures the relative connectivity between N number of units i and N number of units k 

in the off-diagonal cells of the matrix (the diagonal of the matrix has values of zero as 

there i = k and units cannot spatially depend on themselves). The spatial autoregression 

parameter  gives the impact of the spatial lag on the dependent variable. We will 

discuss the issue of specifying the weighting matrix in more detail below in section 2.5. 

N N⋅

ρ

Of course, in reality, researchers usually do not estimate the basic model displayed 

in (1a) or (1b), but add control variables, use a cross-sectional time-series data set, 

control for temporal dynamics,14 control for common trends and common shocks with 

period dummies and sometimes account for unobserved spatial heterogeneity (or spatial 

clustering) with unit fixed effects. To keep the exposition simple, in what follows we 

will ignore everything that distracts from the modelling of spatial dependence itself and 

therefore employ the most basic cross-sectional setting, always keeping in mind that 

such a model can and should often be extended to include a time dimension, dynamic 

modelling, control variables etc.15

                                                 
13  We would call  the spatially lagged dependent variable, which we regard as the more 

appropriate term, if Anselin 2003, 159 and others did not use this term for the entire spatial lag 

ky

ik k
k

yw∑ .  

14  Beck and Katz 1995; Plümper et al. 2005. 

15  We will similarly neglect all issues of estimation of spatial lag models, which is complicated by 

the fact that with inter-dependent units of analysis, spatial dependence models typically suffer 
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In monadic data, the specification of spatial lags gives researchers some flexibility 

with respect to the variable that measures connectivity among units, but they leave 

researchers little choice on the specification of the weighting matrix or on the 

specification of the spatial y.16 Dyadic data allows more flexible and different 

specifications of both the weighting matrix and the spatial y. Dyadic data comes in two 

forms – undirected and directed – and we discuss the different options for spatial lags 

available in both settings in turn after a brief introduction to the differences between 

monadic and dyadic data. 

 

2.2. Dyadic Data 

Dyadic data consists of observations in which two individual units form a pair (the 

dyad). There exist directed and undirected dyadic data. In directed dyadic data, the 

interaction between two dyad members ij initiates with i and is directed toward j. There 

is a source and a target, an origin and a destination, a sender and a recipient, a giver and 

a taker, an aggressor and a victim, or some similar directed relationship. For example, in 

international trade one can distinguish between exporters and importers. In foreign 

investment one can distinguish between home and host countries. In international 

migration or remittance flows, one can distinguish sending and recipient countries. In 

inter-state violent conflict, there exist aggressor and victim states, and so on. 

In undirected dyadic data, it is either unclear from the data which of the two dyad 

members initiated the interaction or this question is theoretically unimportant. There-

                                                                                                                                               
from endogeneity (see Anselin 1988; Ward and Gleditsch 2002; Franzese and Hays 2006, 2007, 

2008). There are also important specification choices that researchers need to consider, which we 

discuss in a separate article (Plümper and Neumayer 2009).  

16  If the weighting variable used is directed, then researchers can specify  instead of . See 

section 2.5 for more details. 

kiw ikw
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fore, whilst one can still distinguish i from j, one either cannot distinguish between ij 

and ji or does not want to make such a distinction. Consequently, the variable of interest 

is identical for dyads ij and ji and researchers typically keep only one or the other in 

their dataset to avoid ‘double counting’.17 Theory can typically determine the choice 

between undirected and directed dyadic data. To illustrate, take the conclusion of a 

contract as an example. If the contract is voluntarily entered or if it is of no further 

interest who was the initiator of the contract, then an undirected dyadic dataset suffices. 

If, however, researchers have an interest in who initiated the contract or if contract 

agreement has not been reached voluntarily or if the contract means different things to 

the two contract partners, then this could, and in fact should, be analyzed with a directed 

dyadic dataset. 

Bilateral investment treaties (BITs) provide a good example of a case in which 

contracts mean different things to the two contracting partners. These treaties grant 

foreign investors certain rights by limiting the policy autonomy of the government of 

the country hosting the investment, whereas few, if any, costs are imposed by the treaty 

on either the foreign investor or its home government.18 BITs are, at least putatively, 

entered voluntarily, and it is not always clear who initiated the treaty.19 Nevertheless, 

even though in principle BITs are symmetric in that both governments face the same 

restrictions, in reality the vast majority of BITs have been concluded between countries 

with radically different net foreign investment positions. For the predominantly capital 

                                                 
17  Undirected dyadic data are commonly used in the international conflict literature (Russett, Oneal 

and Davis 1998; Gartzke, Li and Boehmer 2001). 

18  Guzman 1998; Neumayer and Spess 2005. 

19  Elkins et al. 2006 argue that capital-importing developing countries are the major initiators of 

BITs, whereas Neumayer 2006 argues that BITs predominantly initiate from capital-exporting 

developed countries. 
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exporting country, the BIT mainly provides rights to its investors with few actual 

restrictions on its policy autonomy, whereas the predominantly capital importing 

country experiences the full restrictions on its policy autonomy (which can still pay off 

due to the economic benefits of increased inward FDI). Because of the asymmetry of 

the treaty’s effect, it makes sense to analyze the conclusion of BITs in a country dyad 

dataset that is directed from the capital-exporting to the capital-importing country, as 

Elkins et al. do. The decision to treat a dyadic relationship as directed or undirected thus 

requires theoretical justification.  

 

2.3. Modeling Spatial Dependence in Undirected Dyads 

The modeling of spatial dependence in undirected data strongly resembles that of 

monadic data. The only difference is that instead of contagion stemming from other 

units, it comes from other dyads. Hence, to model spatial dependence in undirected 

dyadic data researchers make the dependent variable in a dyad between i and j a 

function of the weighted sum of the dependent variable of all other dyads:  

pqij ijkm
km ij

yy ρ εω
≠

= +∑   , (3a) 

which due to the undirectedness of the dyadic dataset is equivalent to  

pqji jimk
mk ji

yy ρ εω
≠

= +∑  . (3b) 

We have denoted the connectivity or weighting matrix as pqω . In section 2.5 we will 

discuss five different specifications of the weighting matrix, such that 

( )( ){ , , , , }pq ik im jk jm ij kmw w w w wω ∈ , but these are not exhaustive since combinations of 

these links can also be theoretically warranted. We leave a detailed explanation and 

discussion of the weighting matrix to section 2.5.  

Equations (3a) and (3b) are appropriate if, for example, one thinks that the decision 

of whether country i and country j enter into a voluntary treaty depends on the weighted 
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sum of existing treaties in all other dyads, where the weight is given by pqω . This form 

of contagion we call undirected dyad contagion.20 It is the modeling strategy adopted in 

Manger’s analysis of the diffusion of preferential trade agreements and in Gleditsch and 

Gartzke’s analysis of the effect of alliance ties on international conflict.21

 

2.4. Modeling Spatial Dependence in Directed Dyads  

Both monadic and undirected dyadic data offer only one option each for modeling 

contagion. In contrast, there are five options for modeling spatial dependence if we 

analyze directed dyadic data. The reason is that in directed dyads two actors i and j have 

an asymmetric interaction and one can distinguish dyads ij, where unit i is the source 

and unit j is the target, from dyads ji where these roles are reversed. This means 

contagion can come from other dyads, as in undirected dyadic data, but contagion can 

also merely come from other sources or from other targets. Moreover, where contagion 

stems from other sources or other targets, it can be their aggregate policy choices that 

matter or only their choices with respect to the specific dyad under consideration. 

Starting with the option that directly resembles the modeling of spatial dependence 

in undirected dyadic data, dyad ij can be modeled to be more likely to sign a BIT if 

other dyads between capital-exporting and capital-importing countries have already 

                                                 
20  Undirected dyad contagion can be further restricted such that all dyads containing either unit i or 

unit j are excluded from having a contagious effect. Such exclusive undirected dyad contagion 

would be represented by 
,

pqij ijkm
k i m j

yy ρ εω
≠ ≠

= +∑ . 

21  See Manger 2006 and Gleditsch and Gartzke 2006. 
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agreed on such a treaty. This form of spatial dependence we call directed dyad 

contagion.22 Hence: 

pqij ijkm
km ij

y yρ εω
≠

= +∑   . (4) 

Equation (4) describes a situation in which the probability of two countries i and j sign-

ing a BIT depends on the weighted sum of all other BITs existing between capital ex-

porting countries k and capital-importing countries m. 

In directed dyad contagion, the aggregate policy choices of other, similar dyads 

matter. In the remaining four forms of contagion in directed dyadic data, one can, first, 

assume that the aggregate policy choices of other sources and other targets matter. In 

addition, one can also assume that only a subset of the sources (targets) influence the 

dyad under observation, namely those sources (targets), which are linked to the target 

(source) of the dyad under observation. If the policy choice of the directed dyad ij 

spatially depends on the aggregate actions of other sources k , that is on their 

relationship with all other targets m, not just the specific target j, then we get what we 

name aggregate source contagion: 

( i≠ )

ε+

                                                

pqij ijkm
k i m

y yρ εω
≠

= +∑∑   (5) 

Alternatively, one can make the policy choice of dyad ij depend on the aggregate 

actions of other targets m, i.e. on their policy choices with all other sources k, not just 

the specific source i. This leads to aggregate target contagion: 

pqij ijkm
k m j

y yρ ω
≠

= ∑∑  (6) 

 
22  As in the undirected case, directed dyad contagion can similarly be further restricted such that all 

dyads containing either source i or target j are excluded from having a contagious effect. Such 

exclusive directed dyad contagion would be represented by 
,

pqij ijkm
k i m j

yy ρ εω
≠ ≠

= +∑ . 
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Equation (6) is appropriate if the BIT decision of dyad ij spatially depends on the 

aggregate or total number of BITs that other capital importers m (  have concluded 

with any capital exporting country k. 

)

ε

j≠

Additionally, instead of policy choices depending on the aggregate choices of other 

sources or targets, they may well depend on the choices of other sources or targets in 

relation to the specific dyad under consideration. With 

pqij ijkj
k i

y yρ ω
≠

= +∑  (7) 

the probability of, say, two countries i and j signing a BIT depends on the weighted sum 

of BITs signed by other capital exporting countries k with the very same capital 

importing country j. This we name specific source contagion. In comparison to the 

aggregate source contagion represented by equation (5), equation (7) describes a 

situation in which other sources k only affect i’s interaction with j if countries k have 

signed a BIT with the very same target country j. In other words, Canada’s interest in 

signing BITs with capital importers remains largely unaffected by the total number of 

BITs the US, Germany, France etc. have signed. However, if the US, Germany, France 

and others sign a BIT with – say Chile – the incentives for Canada to also sign a BIT 

with Chile increases.  

Lastly, in equation (8) country j’s incentive to sign a BIT with country i depends on 

the weighted sum of BITs signed by other capital importing countries m with the very 

same capital-exporting country i: 

pqij ijim
m j

y yρ εω
≠

= +∑   , (8) 

This type of spatial dependence we name specific target contagion. Compared to the 

aggregate target contagion described by equation (6), equation (8) describes a situation 

in which other targets m only affect j’s interaction with i if countries m have signed a 

BIT with the very same source country i. In other words, Chile’s interest in signing 



16 

BITs with capital exporters remains largely unaffected by the total number of BITs 

Argentina and Brazil has signed. However, if Argentina and Brazil sign a BIT with – 

say the US – the incentives for Chile to also sign a BIT with the US increases. 

 

2.5  The Choice of Weighting Matrices 

The specification of spatial effects requires two choices. First, the researcher needs to 

specify the spatial y, as discussed above. Second, one also needs to specify the type of 

weighting matrix used to model the connectivity between units or dyads that form the 

spatial dependence.23

In monadic data analysis, the weighting matrix provides a link between unit i and 

unit k. For each observation iy , the corresponding element of the spatial lag gives a 

weighted sum of the ky  observations, with weights always given by the relative connec-

tivity between i and k. Hence, the spatial effect is a weighted function of the dependent 

variable in all other units. The connectivity can be directed as with, say, exports. This 

leads to two possible link functions, namely, pq ikwω = , which would measure exports 

from i to k; and pq kiwω = , which would measure exports from k to i. If the connectivity 

is undirected as with, e.g., contiguity or geographical distance, then there is only one 

link function since . ik kiw w=

Compared to monadic data, the choice of weighting matrix becomes more 

complicated in dyadic data. Starting with undirected dyadic data, let us distinguish basic 

from more complex link functions. As for the basic ones, the effect of the spatial y may 

be weighted by a link function measuring connectivity between either unit i or unit j on 

                                                 
23  We do not discuss the issue of row standardization here. It is an important issue (see Plümper 

and Neumayer 2009) – but equally important for monadic and dyadic data. 
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the one hand and other units, call them k(  or m( , on the other hand. Formally, 

the weighting matrix 

) )i≠ j≠

pqω  can thus take the following four different forms: , 

, 

pq ikwω =

pq kiwω = pq jmwω = , or . Note that there are four (rather than two) basic link 

functions because even if the spatial y is undirected, the variable of connectivity can of 

course be directed. If connectivity is undirected, however, then there are only two basic 

link functions: 

pq mjwω =

pq ik kiw wω = =  and pq jm mjw wω = = . More complex functions link dyads 

rather than units with each other. These will be discussed below for directed data. 

Finally, one can create further link functions by combining any of these link functions 

with each other in any way. We provide two examples further below. 

In directed dyadic data, it is useful again to distinguish basic link functions, i.e. 

those that link either sources or targets with each other, from more complex link 

functions that link dyads with each other. As for basic link functions, in aggregate and 

specific source contagion the link function can represent connectivity between the 

source unit i and other source units k ( pq ikwω =  or pq kiwω = ).24 Whereas in aggregate 

and specific target contagion it can measure connectivity between the target unit j and 

other target units m ( pq jmwω =  or pq mjwω = ).25 In directed dyad contagion, any of the 

four basic link functions just presented can be used. 

                                                 
24  Strictly speaking, other link functions are possible (for example, the weighting matrix could 

measure connectivity between i and m), but these two are the most plausible ones. A similar 

point applies, mutatis mutandis, to the weighting matrices listed for aggregate and specific target 

contagion. 

25  As before, these collapse to one each if connectivity is undirected. 
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Link functions that represent connectivity between dyads are more complex and are 

bound to be employed far less commonly than the more basic link functions.26 For 

aggregate and specific source contagion, the link function can represent connectivity 

between the dyad ij and dyads kj, i.e. connectivity between the dyad consisting of 

source unit i and target unit j on the one hand and dyads comprised of other source units 

k and the same target unit j on the other hand. This leads to either  or 

. For aggregate and specific target contagion, the link function can measure 

connectivity between the dyad ij and dyads im, i.e. connectivity between the dyad 

consisting of source unit i and target unit j on the one hand and dyads comprised of the 

same source unit i and other target units m on the other hand, which would lead to either 

 or . For both undirected and directed dyad contagion, any of 

these complex link functions can be employed.

( )( )pq ij kjwω =

( )( )pq kj ijwω =

( )( )pq ij imwω = ( )( )pq im ijwω =

27 Additionally, the link function can 

measure connectivity between dyad ij and dyads km, i.e. either  or 

. 

( )( )pq ij kmwω =

( )( )pq km ijwω =

                                                 
26  The reason is that in order to create these complex link functions one needs a dataset that links 

dyads with dyads, i.e. a so-called 4-adic dataset with dimension (Ni·Nj) (Ni·Nj) T, where Ni is the 

number of sources, Nj the number of targets and T the number of time periods. For many 

applications, this would lead to a dataset too big to be handled by a personal computer. In 

contrast, the Stata ado-files provided by the authors can create spatial lags employing the more 

basic link functions from a simple dyadic dataset of dimension (Ni·Nj) T as they parse through a 

virtual 4-adic dataset. 

27  For undirected dyad contagion, simply read this paragraph with the words “source” and “target” 

deleted. For example,  links dyad ij to dyads kj, i.e. link the dyad of unit i with j 

to dyads consisting of units other than i with unit j. 

( )( )pq ij kjwω =
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As with undirected data, further link functions can be created by combining in any 

way any of the basic or complex link functions with each other. The two simplest ways 

of combining connectivities are linear addition and multiplication. Other functional 

forms may be theoretically warranted in certain cases. 

 

2.6. Summary 

In this section, we have categorized all possible forms of spatial dependence along the 

distinction between monadic data, undirected dyadic data, and directed dyadic data. 

Table 1 summarizes all the available specification options for spatial lags. 

< Insert Table 1 around here > 

Clearly, not only does the proper specification of the spatial y become more flexible 

when researchers move from monadic to undirected dyadic data and from there to 

directed dyadic data.28 Researchers also gain degrees of freedom in the specification of 

the weighting matrices. In sum, the increased flexibility means that the analysis of 

spatial effects in dyadic data sets requires much more theoretical reasoning than in 

monadic data. Researchers need to consider what type of contagion their theoretical 

model demands and also justify the specification of the weighting matrix. 

 

3.  Application: Spatial Dependence in a Directed Country Dyad Sample of 

BIT Diffusion 

In order to demonstrate how the different forms of spatial dependence can lead to dif-

ferent insights on the process of policy diffusion, we build upon and extend Elkins et 

al.’s analysis of the diffusion of BITs over the period 1970 to 2000 using a Cox 

                                                 
28  In addition, one can of course combine all the possible spatial lags of directed dyadic data into 

one estimating equation. Such a model, however, is very likely to suffer from multicollinearity. 
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proportional hazard model.29 They argue that competition among potential host 

countries, typically developing countries, for FDI causes the diffusion of BITs.30 We 

restrict our analysis to dyads in which source countries i are Western developed 

countries and countries j (targets) are developing countries, giving us a sample of 

dimension  in which sources never become targets and vice versa.i jN N T⋅ ⋅ 31

Elkins et al. propose three different measures of competition for the weighting 

matrix: export-market, export-product and infrastructure competition. For our 

application we use export-product competition, which we regard as theoretically most 

plausible.32 The weighting matrix thus measures the extent to which countries export a 

similar basket of goods.33

Elkins et al. analyze a variant of aggregate target contagion by estimating a variant 

of equation (6), namely 

*
1 1ijt jmt kmt ijt

k m j
y w yρ ε− −

≠

= +∑∑   . (9) 

                                                 
29  Their analysis covers the period 1960 to 2000, but data for the 1960s often seem to be 

extrapolated backward, which we do not follow. 

30  In their directed dyadic country sample, the richer country of a dyad is always the origin country 

i and the poorer country is the destination country j and dyads between high-income countries 

are excluded. 

31  Western developed countries are defined as Canada, the US, Western European countries, Japan, 

Australia and New Zealand. These countries typically do not conclude BITs with each other and 

FDI flows almost exclusively from developed to developing countries over the period to 2000. 

32  Results are similar for using one of the other two weighting matrices (results available upon 

request). 

33  Measured on a scale from -1 to 1 (from total dissimilarity to total similarity). Like Elkins et al., 

to make it strictly non-negative we add 1 to this measure so it runs from 0 to 2. 
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where y* is the sum total of BITs in force in each host country in year t-1.34 Note that 

by using y* rather than y in the spatial dependence variable, this is not strictly speaking 

a spatial lag model. Spatial dependence derives from the sum total of existing BITs in 

other developing countries m in year t-1, with connectivity measured by a row-

standardized matrix that measures connectivity between j and m, that is, by export-

product competition among developing countries. In other words, a developing country 

j is more likely to sign a BIT with a developed country i at time t if other developing 

countries m with a similar basket of export-products have a larger sum total of BITs in 

place with developed countries k in the period t-1. 

To this, we add all the other possible forms of spatial dependence, which are all 

consistent with common micro-foundations seeking to explain the spread of BITs. We 

do so in order to show what happens to the results of Elkins et al., but also because 

these other forms can be theoretically justified. To start, we will analyze aggregate 

source contagion by estimating a variant of equation (5), namely 

*
1 1ijt ikt kmt ijt

k i m
y w yρ ε− −

≠

= +∑∑   . (10) 

The only difference to Elkins et al. is that now competition among developed countries 

causes the spread of BITs rather than competition among developing countries. This 

specification can be motivated if one follows the argument that developed countries are 

usually the driving force behind the conclusion of BITs.35

Both forms of spatial dependence so far assumed that the aggregate behavior of 

competing developing or developed countries matters for other dyads’ decisions to 

conclude BITs. However, it may well be that countries look more specifically at the 

                                                 
34  Control variables are suppressed from the formal exposition for simplicity. 

35  Neumayer 2006. 
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question with whom their competitors have signed a BIT, not just how many BITs have 

been signed by competitors no matter with whom. With 

1 1ijt jmt imt ijt
m j

y w yρ ε− −
≠

= +∑   , (11) 

a developing country j more likely accepts a BIT with a developed country i if other 

export-product competing developing countries m have previously concluded a BIT 

with the same developed country i (specific target contagion). Whereas with 

1 1ijt ikt kjt ijt
k i

y w yρ ε− −
≠

= +∑   , (12) 

a developed country i more likely concludes a BIT with developing country j if other 

export-product competing developed countries k have previously concluded a BIT with 

that same developing country m (specific source contagion).  

Finally, it is conceivable as well that both countries of a dyadic pair ij are influ-

enced by the behavior of other competing developed and other competing developing 

countries with respect to each other. This leads us to model directed dyad contagion in 

the form of 

1 1 1ijt ikt jmt kmt ijt
km ij

y w w yρ ε− − −
≠

= +∑   , (13) 

where country i is more likely to sign a BIT with country j if other developed countries 

k with whom country i competes have previously signed a BIT with other developing 

countries m with whom country j competes.36

                                                 
36  We have chosen a multiplicative functional form connecting the weighting matrix of export-

product competition among developed countries ( ) with that of developing countries ( ). 

By doing so we implicitly assume that both competitions are simultaneously important for the 

spatial lag. A linear additive form would have assumed that competition among, say, developing 

countries can substitute for the lack of competition among developed countries. The results 

below are hardly affected if one chooses this alternative functional form. 

ikw jmw
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Table 2 presents the estimation results. We include most of the control variables of 

Elkins et al. (2006) using the same sources of data, leaving out variables with poor data 

availability, variables which had no effect in their analysis as well as variables that do 

not vary across dyads (the flexible baseline hazard captures their effect). To be 

consistent with their analysis we do not instrument for the spatial lags or apply spatial 

maximum likelihood even though this may be warranted given serial correlation in the 

data, in which case the use of spatial lags temporally lagged by one time period cannot 

fully solve the endogeneity problem. Importantly, we normalize the spatial effect 

variables to fall into the interval from 0 to 100 by dividing each lag by its maximum and 

multiplying by 100. We do this because before normalization the spatial effect variables 

are in different units, given that we follow Elkins et al.’s (2006) use of y*, the sum total 

of BITs in force, rather than y for aggregate target and source contagion. Normalization 

allows us to directly compare the relative importance of all the spatial effect variables 

with each other without needing to compute conditional effects. 

< Insert Table 2 around here > 

Models 1 to 5 estimate the effect of each spatial lag separately. In column 1 the 

spatial lag models target contagion. The lag coefficient is positive and statistically 

significant, corroborating the finding of Elkins et al. that the aggregate past behavior of 

other export competing developing countries matters for the conclusion of a BIT 

between a developed and a developing country. In column 2 the spatial lag models 

source contagion instead. The lag coefficient is statistically insignificant, suggesting 

that the aggregate past behavior of other export competing developed countries does not 

matter for the agreement on BITs.  

In column 3 we move away from aggregate behavior and the spatial lag models 

specific target contagion. The lag coefficient is positive and highly significant, 

suggesting that a developing country is more likely to sign a BIT with a specific 
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developed country if other export competing developing countries have an existing BIT 

with the same developed country. Column 4 reports a model of specific source 

contagion. The coefficient of this spatial lag is again positive and statistically 

significant. This result qualifies the finding of column 2. The aggregate BIT behavior of 

other competing developed countries as such does not matter, but if other competing 

developed countries have signed a BIT with a specific developing country, then this 

makes it more likely that a developed country will also signs a BIT with this specific 

developing country j. In column 5, we test directed dyad contagion, which does not 

have an effect statistically different from zero. Accordingly, we find no evidence that a 

developing country is more likely to sign a BIT with a developed country if other 

export-product competing developing countries have previously signed BITs with other 

export-product competing developed countries. 

So far, we have included the spatial lag variables separately. However, these spatial 

lags could be correlated with each other. A harder test of the various diffusion channels 

thus requires their joint inclusion in one model. Unfortunately, the source and target 

contagion spatial lags are so highly correlated with each other that their simultaneous 

inclusion leads to severe multicollinearity problems, whereas the correlations among the 

other spatial lag variables remain moderate. We therefore present two sets of 

regressions, one including all spatial lags but the source contagion one (column 6) and 

the other including all spatial lags but the target contagion one (column 7). Strikingly, 

with the dyadic contagion spatial lags included, aggregate target contagion no longer 

matters. Instead, we find evidence that the diffusion of BITs works exclusively through 

specific source and target contagion. Column 8 reports the results from a model which 

includes only these two significant forms of contagion. 

One can also compare the goodness of fit of the estimated models with each other. 

Note that each of models 1 to 5, which estimate separate and isolated forms of 
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contagion, are nested in either models 6 or 7. Both the Akaike Information Criterion 

(AIC) and the Bayesian Information Criterion (BIC) suggest that models 6 and 7 fit the 

data better than the restricted models 1 to 5. This suggests that the models with multiple 

forms of contagion perform better than all models with individual forms of contagion. 

However, model 8, which includes only specific source and target contagion has the 

lowest AIC and BIC of all the models. Since model 8 is itself nested in both models 6 

and 7, this suggests that aggregate source and target contagion do not improve the 

model fit relative to a model that only contains dyad-specific forms of source and target 

contagion. From this perspective, model 8 is clearly superior to all other models. 

The normalization of spatial lag variables allows us to assess their relative substan-

tive importance. We find that the effect of the specific target contagion spatial lag is 

about twice as large as the effect of the specific source contagion lag, suggesting the 

former is the substantively more important diffusion channel. In conclusion, we find 

that Elkins et al. were right in arguing that competition among developing countries 

exerts an important influence on the diffusion of BITs. However, policies do not diffuse 

via competition among capital importers at the aggregate level, but via their competition 

at the dyad-specific level. In addition, Elkins et al. neglected competition among 

developed countries for signing BITs with specific developing countries, which also has 

a statistically significant, but substantively less important effect compared to 

competition among developing countries.  

Our findings are consistent with several theories of policy diffusion. It seems, 

however, that theories of policy learning and bargaining theories of policy concessions 

explain the specific forms of BIT diffusion better than theories of economic 

competition. If theories of competition were valid, one should find evidence for the 

aggregate form of diffusion that Elkins et al. have modeled. If other competing capital 

importers and exporters agree on BITs, then this should affect the allocation of 
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investment flows across countries since BITs reduce the risk of foreign investment, 

thereby inducing a capital importer or exporter to react by similarly seeking to conclude 

more BITs. Yet, the superiority of specific forms of contagion in our empirical analysis 

suggests that other governments learn from a BIT that two countries agree upon that 

these two countries are indeed willing to sign BITs. A capital importer which accepts a 

BIT with one capital exporting country is less likely to resist another capital exporter’s 

suggestion to also agree on a BIT. The same applies for a capital exporter: having 

signed a BIT with one capital importer signals willingness to conclude a BIT with 

another capital importer as well. In addition, our results inform the debate over whether 

BITs mainly serve as a commitment or signaling device (see Neumayer and Spess 

2005). If capital importers sign BITs to signal to any potential investor an investment-

friendly domestic climate, then aggregate target contagion should matter: if one’s 

competitors have concluded more BITs then one needs to conclude more BITs to send a 

firm signal to potential investors. That aggregate target contagion does not seem to 

matter suggests that BITs mainly serve as a commitment device to protect investment 

from the specific capital exporter with whom a BIT has been concluded. 

 

4. Conclusion 

This research note has demonstrated that spatial analyses can be fruitfully extended to 

dyadic relations between countries or other political units. In particular, we have shown 

that the menu of choice increases by moving from monadic to undirected dyadic data 

and increases further still when analyzing directed dyadic data. We have illustrated the 

modeling possibilities in directed dyadic data by extending Elkins et al.’s analysis of the 

diffusion of BITs. Elkins et al. correctly argued that competition among capital 

importers determines the spread of BITs, but we conclude that the diffusion of BITs is 

more specific, with a capital importer’s decision to sign a BIT with a capital exporter 
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only depending on whether competing other capital importers have signed a BIT with 

the very same capital exporter and not with any capital exporter. In addition, we found 

evidence for similar dyad-specific source contagion working via competition among 

capital exporters. 

In our application, all types of contagion have theoretical plausibility and were 

therefore tested. In general, however, researchers should not mine the data for potential 

evidence of all types of contagion, but test only those types of contagion specified by 

their theory. Aggregate source and/or target contagion will often be a plausible diffusion 

channel, but the specific channels can be equally, if not more appropriate. To give but 

three examples: In the bipolar world of the Cold War period one might theorize that 

alliances diffused primarily via directed dyad contagion: if the Soviet Union allied with, 

say, India this increased the likelihood that the United States would ally with 

neighboring Pakistan. With economic sanctions, one might consider specific source 

contagion as most appropriate: as some states impose sanctions on a specific target, the 

likelihood increases that other states will follow suit. With preferential bilateral trade 

agreements between developed and developing countries, one might theorize that 

diffusion works mainly via specific target and specific source contagion: if, say, Chile 

has managed to conclude such an agreement with the US, other developing countries 

such as Peru, Colombia and Panama want to conclude a similar treaty with the US, 

while other developed countries such as Canada, the European Union and Japan seek a 

similar treaty with Chile. A better understanding of the full set of options of specifying 

spatial effects in dyadic data will allow formulating and testing novel hypotheses 

predicting dependence of a dyad of two political units on the policy choices of other 

sources, other targets or other dyads. 
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Table 1. Spatial lag specification in monadic and dyadic data. 
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Table 2. Spatial Dependence in the Diffusion of Bilateral Investment Treaties. 

 model 1 
aggregate target 

contagion 

model 2 
aggregate source 

contagion 

model 3 
specific target 

contagion 

model 4 
specific source 

contagion 

model 5 
directed dyad 

contagion 

model 6 
multiple forms 
of contagion 
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of contagion 
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specific forms 
of contagion 
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    (1.31) (0.96) (0.09)  
extractive industries /exports (host) -0.002 -0.002 -0.003 -0.002 -0.002 -0.002 -0.002 -0.002 
 (1.18) (1.24) (1.63) (0.94) (1.23) (1.31) (1.32) (1.32) 
common law (host) -0.336 -0.349 -0.398 -0.257 -0.352 -0.306 -0.310 -0.310 
 (3.13)*** (3.25)*** (3.70)*** (2.37)** (3.26)*** (2.82)*** (2.85)*** (2.85)*** 
IMF credit dummy (host) 0.413 0.426 0.375 0.197 0.429 0.132 0.137 0.135 
 (3.63)*** (3.76)*** (3.32)*** (1.72)* (3.79)*** (1.15) (1.19) (1.17) 
ln GDP (host) 0.224 0.227 0.195 0.132 0.224 0.094 0.093 0.093 
 (4.34)*** (4.44)*** (3.80)*** (2.49)** (4.37)*** (1.75)* (1.74)* (1.73)* 
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 (1.20) (1.66)* (1.72)* (1.97)** (1.75)* (1.73)* (1.84)* (1.79)* 
capital account (% of GDP) (host) 1.259 1.229 1.006 0.825 1.217 0.635 0.612 0.620 
 (2.28)** (2.24)** (1.83)* (1.56) (2.23)** (1.18) (1.14) (1.16) 
level of democracy (host) 0.011 0.010 0.006 0.007 0.009 0.006 0.005 0.005 
 (1.39) (1.28) (0.81) (0.95) (1.17) (0.78) (0.65) (0.68) 
diplomatic representation (host) 0.008 0.007 0.010 0.007 0.007 0.012 0.011 0.011 
 (2.75)*** (2.40)** (3.52)*** (2.40)** (2.34)** (3.76)*** (3.59)*** (3.71)*** 
bilateral trade to GDP of host 3.288 3.071 2.518 3.028 2.978 2.227 2.138 2.180 
 (2.16)** (1.99)** (1.48) (1.95)* (1.93)* (1.28) (1.23) (1.26) 
colonial ties 1.055 1.057 0.562 1.069 1.054 0.620 0.618 0.617 
 (4.43)*** (4.42)*** (2.29)** (4.49)*** (4.41)*** (2.54)** (2.53)** (2.52)** 
common language -0.113 -0.109 0.017 -0.088 -0.098 0.068 0.067 0.067 
 (0.60) (0.58) (0.09) (0.47) (0.52) (0.36) (0.35) (0.35) 
AIC | BIC 7299 | 7419 7311 | 7431 7018 | 7138 7154 | 7274 7312 | 7432 6854 | 6999 6855 | 7001 6852 | 6980 
-ll 3635.5 3641.7 3494.9 3563.0 3641.9 3405.0 3410.7 3410.8 
BITs: 555. Dyads: 2411. N: 38395. Z-statistics in brackets. *, **, *** significant at 10, 1 and 0.1% level, respectively. 
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