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Influential Data

As we have scen, linear statistical models—particularly linear regression -
analysis—make strong assumptions about the structure of data, assump-
tions that often do not hold in applications. The method of least squares, which
is typically used to fit linear models to data, is very sensitive to the structure of
the data, and can be markedly influenced by one or a few unusual observations.

We could abandon linear models and least-squares estimation in favor of
nonparametric regression and robust estimation.! A less drastic response is also
possible, however: We can adapt and extend the methods for examining and
transforming data described in Chapters 3 and 4 to diagnose problems with a
linear model that has been fit to data, and—often—to suggest solutions.

I shall pursue this strategy in this and the next two chapters. The current
chapter deals with unusual and influential data. Chapter 12 takes up a variety of
problems, including nonlinearity, nonconstant error variance, and nonnormality.
Collinearity is the subject of Chapter 13.

Taken together, the diagnostic and corrective methods described in these
chapters substantially extend the practical application of linear models. These
methods are often the difference between a crude, mechanical data analysis,
and a careful, nuanced analysis that accurately describes the data and therefore
supports meaningful interpretation of them.

! Methods for nonparametric and robust regression were introduced informally in Chapter 2
and will be described in more detail in Chapter 14.
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11.1 Qutliers, Leverage, and infiuence

Unusual data are problematic in linear models fit by least squares because
they can unduly influence the results of the analysis, and because their pres-
ence may be a signal that the model fails to capture important characteristics of
the data. Some central distinctions are illustrated in Flgure 11.1 for the simple
regression model Y = a + BX + &.

In simple regression, an outlier is an observation whose dependent-variable
value is conditionally unusual given the value of the independent variable. In
contrast, a univariate outlier is a value of Y or X that is unconditionally unusual;
such a value may or may not be a regression outlier.

Regression outliers appear in Figure 11.1(a) and (b). In Figure 11.1(a), the
outlying observation has an X-value that is at the center of the X-distribution;
as a consequence, deleting the outlier has little impact on the least-squares fit,

(a) (b)

X

Figure 11.1. Leverage and influence in simple regression. In each graph, the solid line
gives the least—squares regression for all of the data, while the broken line gives the
least-squares regression with the unusual data point {the asterisk) omitted. () An outlier
near the mean of X has low leverage and little influence on the regression coefficients.
() An outlier far from the mean of X has high leverage and substantial influence on
the regression coefficients. (¢) A high-leverage observation in line with the rest of the
data does not influence the regression coefficients. In panel (c), the two regression lines
are separated slightly for visual effect, but are, in fact, coincident.
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leaving the slope B unchanged, and affecting the intercept A only slightly. In
Figure 11.1(b), however, the outlier has an unusual X-value, and thus its deletion
markedly affects both the slope and the intercept. Because of its unusual X-value,
the outlying last observation in Figure 11.1(b) exerts strong leverage on the
regression coefficients, while the outlying middle obscrvation in Figure 11.1(a)
is at a low-leverage point. The combination of high leverage with a regression
outlier therefore produces substantial influence on the regression coefficients. In
Figure 11.1(c), the last observation has no influence on the regression coefficients
even though it is a high-leverage point, because this observation is in line with
the rest of the data—it is not a regression outlier. :

The following heuristic formula helps to distinguish among the three con-
cepts of influence, leverage, and discrepancy (“outlyingness”):

Influence on coefficients = Leverage x Discrepancy

A simple and transparent example, with real data from Davis {1990}, ap-
pears in Figure 11.2. These data record the measured and reported weight of 183
male and female subjects who engage in programs of regular physical exercise.
Davis’s data can be treated in two ways:

* We could regress reported weight (RW) on measured weight (MW), a dummy
variable for sex (F, coded 1 for women and 0 for men), and an interaction re-
gressor (formed as the product MW x F). This specification follows from the
reasonable assumption that measured weight, and possibly sex, can affect re-
ported weight. The results are as follows (with coefficient standard errors in
parentheses):

RW =136 + 0.990MW + 40.0F — 0.725(MW x F)
(3.28)  (0.043) (3.9)  (0.056)

R2=0.89 §; =466

Were these results taken seriously, we would conclude that men are unbiased re-
porters of their weights (because A = 1.36 ~ 0 and B, = 0.990 ~ 1), while
women tend to overreport their weights if they are relatively light and underre-
port if they are relatively heavy (the intercept for women is 1.36 + 40.0 = 41.4
and the slope is 0.990—0.725 = 0.265). Figure 11.2, however, makes it clear that
the differential results for women and men are due to one female subject whose
reported weight is about average (for women), but whose measured weight is ex-
tremely large. Recall that this subject’s measured weight in kilograms and height
in centimeters were erroneously switched. Correcting the data produces the re-
gression '

RW =136 +0.990MW + 1.98F — 0.0567(MW x F)
(1.58)  (0.021) (2.45)  (0.0385)

R*=0.97 §.=224

which suggests that both women and men are unbiased reporters of their weight.

2 Davis’s data were introduced in Chapter 2.
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Figure 11.2. Davis’s data on reported and measured weight for women (F) and men
(M), showing the least-squares linear regression line for each group (the broken line for
men, the solid line for women). The outlying observation has a substantial effect on the
fitted line for women.

® We could {as in our previous analysis of Davis’s data) regress measured weight
on reported weight, sex, and their interaction, reflecting a desire to use reported
weight as a predictor of measured weight. For the uncorrected data:

MW =179 -+ 0.969RW + 2.07F — 0.00953(RW x F)
(5.92) (0.076)  (9.30) (0.147)

R*=0.70  Sp=28.45

The outlier does not have much impact on the coefficients for this regression
(both the dummy-variable coefficient and the interaction coefficient are small)
precisely because the value of RW for the outlying observation is near RW
for women. There is, however, a marked effect on the multiple correlation and
standard error: For the corrected data, R? = 0.97 and §; = 2.25.

Unusual data are problematic in linear models fit by least squares
' because they can substantially influence the results of the analysis, and
because they may indicate that the model fails to capture important
features of the data.
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11.2 Assessing Leverage: Hat Values

The so-called hat value b; is a common measure of leverage in regression.>

These values are so named because it is possible to express the fitted values Y
{(“Y- hat”) in terms of the observed values Y;:

Yi=byYi+hyYot bVt hyY, = by,
: i=1

Thus, the weight /;; captures the contribution of observation Y; to the fitred
value Y If by is large then the 7th observation can have a substantial impact
on the Jrth fitted value. It can be shown that b;; = 377, hz, and so the hat value
b; = b; summarizes the potential influence (the leverage) of Y; on all of the fitted
vaiues. The hat values are bounded between 1/n and 1 (i.e., 1/n < b; < 1), and
the average hat value is b = (k + 1)/n (where & is the number of regressors in
the model, excluding the constant).

In simple-regression analysis,* the hat values measure distance from the
mean of X:

Y
hi _ 1 + ?SXI X)u
n Zj=1 (X; — X)?

In multiple regression, b; measures distance from the centroid (point of means)
of the X’s, raking into account the correlational and variational structure of the
X’s, as illustrated for & = 2 in Figure 11.3. Multivariate outliers in the X-space
are thus high-leverage observations. The dependent-variable values are not at all
involved in determining leverage.

For Davis’s regression of reported weight on measured weight, the largest
hat value by far belongs to the 12th subject, whose measured weight was
wrongly recorded as 166 kg: b, = 0.714, This quantity is many times the
average hat value, b = (3 +1)/183 = 0.0219.

Observations with unusual combinations of independent-variable val-
ues have high leverage in a least-squares regression. The hat values #;
provide a measure of leverage. The average hat value is b = (k+1)/n.

*For derivations of this and other properties of leverage, outlier, and influence diagnostics,
see Section 11.8.

*See Exercise 11.3. Note that the sum in the denominator is over the subscript j because the
subscript 7 is already in use.
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Figure 11.3, Elliptical contours of constant leverage (constant hat values %;) for £ =2
independent variables. Two high-leverage points appear, both represented by asterisks.
One point has unusually large values for each of X; and X, but the other is unusual
only in combining a moderately large value of X, with a moderately small value of X,.
(These contours of constant leverage are proportional to the standard data ellipse,
introduced in Chapter 9.)

11.3 Detecting Ouiliers: Studentized Residuals

To identify an outlying observation, we need an index of the unusualness
of Y given the X’s. Discrepant observations usually have large residuals, but it
turns out that even if the errors &; have equal variances (as assumed in the gen-
eral linear model), the residuals E; do not: V(E;) = o(1 — b;). High-leverage
observations, therefore, tend to have small residuals—an intuitively sensible re-
sult, because these observations can coerce the regression surface to be close to

them.

Although we can form a standardized residual by calculating

E.

I 1

this measure is slightly inconvenient because its numerator and denominator are
not independent, preventing E; from following a f-distribution: When |E;| is
large, S = ‘/ Y E?/(n~k — 1), which contains E?, tends to be large as well.
Suppose, however, that we refit the model deleting the ith observation, obtaining

an estimate Sg_; of g, that is based on the remaining # — 1 observations. Then
the studentized residual

E

! S [11.1]

C STk

has independent numerator and denominator, and follows a ¢-distribution with
n —k — 2 degrees of freedom.
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An alternative, but equivalent, procedure for finding the studentized resid-
uals employs a “mean-shift” outlier model:

where D is a dummy regressor set to 1 for observation i and 0 for all other
observations:

1 forj=1g

0 otherwise

Thus,

E(Y)=a+BiXu+ - +BXp+y
EY)=a+p X+ --+B Xy forj#i

It would be natural to specify the model in Equation 11.2 if, before examining
the data, we suspected that observation 7 differed from the others. Then, to test
Hy: v = 0 (i.e., the null hypothesis that the ith observation is zot an outlier),
we can calculate #;, = ?/gﬁ(?). This test statistic is distributed as ¢, , ,
under Hy, and (it turns out) is the studentized residual E} of Equation 11.1.
Hoaglin and Welsch (1978) arrive at the studentized residuals by succes-
sively omitting each observation, calculating its residual based on the regression
coefficients obtained for the remaining sample, and dividing the resulting resid-
ual by its standard error. Finally, Beckman and Trussell (1974) demonstrate the
following simple relationship between studentized and standardized residuals:

. n—k—2 -
B =By — [11.3]
I

If  is large, then the factor under the square root in Equation 11.3 is close to 1,
and the distinction between standardized and studentized residuals essentially
disappears.” Moreover, for large #, the hat values are generally small, and thus
it is usually the case that

E.
E;‘:Eﬁ-:f
E

* Here, as elsewhere in statistics, terminology is not wholly standard: E! is sometimes called
a deleted studentized residual, an externally studentized residual, or even a standardized resicdual;
likewise, E; is sometimes called an internally studentized residual, or simply a studentized residual.
It is therefore important, especially in small samples, to determine exactly what is being calculated
by a computer program before using these quantities.
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. 11.3.1 Testing for Qutfiers in Linear Models

Because in most applications we do not suspect a particular observation in
advance, but rather want to look for any outliers that may occur in the data,
we can, in effect, refit the mean-shift model # times,® once for each observation,
producing studentized residuals F}, E3, ..., E¥. Usually, our interest then focuses
on the largest absolute E7, denoted E,,,. Because we have picked the biggest of
n test statistics, however, it is not legitimate simply to use ¢,_,_» to find a p-value
for EY,.: For example, even if our model is wholly adequate, and disregarding
for the moment the dependence among the Ef’s, we would expect to obtain
about 5% of Ef’s beyond t ;5 o 42, about 1% beyond ¢y ~ £2.6, and so
forth. _

One solution” to the problem of simultaneous inference is to perform a
Bonferroni adjustment to the p-value for the largest absolute Ef. The Bonfer-
roni test requires either a special z-table or, even more conveniently, a computer
program that returns accurate p-values for values of # far into the tail of the
t-distribution. In the latter event, suppose that p’ = Pr( £, ,_, > E..). Then
the Bonferroni p-value for testing the statistical significance of EX__ is p = 2np’.
The factor 2 reflects the two-tail character of the test: We want to detect large
negative as well as large positive outliers.

Beckman and Cook (1983) have shown that the Bonferroni adjustment is
usually exact in testing the largest studentized residual. Note that a much larger
E% .. 1s required for a statistically significant result than would be the case for
an ordinary individual #-test.

In Davis’s regression of reported weight on measured weight, the largest
studentized residual by far belongs to the incorrectly coded 12th observation,
with Ef; = —24.3. Here, n —k — 2 = 183 — 3 -2 = 178, and Pr(¢;;3 > 24.3) ~
10~*%. The Bonferroni p-value for the outlier test is thus p ~ 2 x 183 x 10758 ~
4 x 1078, an unambiguous result.

. Put alternatively, the 5% critical value for EZ,, in this regression is the
value of #1753 with probability .025/183 = 0.0001366 to the right. That is,
Efax = t178, 0001366 = 3-714; this critical value contrasts with 2,753 g25 = 1.973,
which would be appropriate for testing an individual studentized residual iden-
tified in advance of inspecting the data.

11.3.2 Anscombe's insurance Analogy

: Thus far, I have treated the identification (and, implicitly, the potential cor-
rection, removal, or accommodation} of outliers as a hypothesis-testing problem.
Although this is by far the most common procedure in practice, a more reason-
able (if subtle) general approach is to assess the potential costs and benefits for
estimation of rejecting an unusual observation.

61t is not necessary literally to perform » auxiliary regressions. Equation 11.3, for example,
permits the computation of studentized residuals with little effort.

7 A graphical alternative is to construct a quantile-comparison plot for the studentized residu-
als, comparing the sample distribution of these quantities with the z-distribution for n—k—2 degrees
of freedom. See the discussion of nonnormality in Section 12.1.
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Imagine, for the moment, that the observation with the largest E* is simply
an unusual data point, but one generated by the assumed statistical model:

Yi=a+B X+ +B Xy + 5

with independent errors g; that are each distributed as N(0, a?). To discard
an observation under these circumstances would decrease the efficiency of es-
timation, because when the model—including the assumption of normality—is
correct, the least-squares estimators are maximally efficient among all unbiased
estimators of the regression coefficients.

If, however, the observation in question does not belong with the rest (e.g.,
because the mean-shift model applies), then to eliminate it may make estimation
more efficient. Anscombe (1960) developed this insight by drawing an analogy
to insurance: To obtain protection against “bad” data, one purchases a policy
of outlier rejection, a policy paid for by a small premium in efficiency when the
policy inadvertently rejects “good” data.®

Let g denote the desired premium, say 0.05—that is, a 5% increase in esti-
mator mean-squared error if the model holds for all of the data. Let z represent
the unit-normal deviate corresponding to a tail probability of g(n — k — 1)/n.
Following the procedure derived by Anscombe and Tukey (1963), compute m =
1.4 +0.85z, and then find

1

, m:—2 n—k=—1
E, = (1*4(n—k—1))‘/ > [11.4]

The largest absolute standardized residual can be compared with E/, to determine
whether the corresponding observation should be rejected as an outlier. This
cutoff can be translated to the studentized-residual scale using Equation 11.3:

. | on—k—2
Ei=E, s [11.5]

In a real application, of course, we should inquire about discrepant observations
rather than simply throwing them away.’

For example, for Davis’s regression of reported on measured weight, n =
183 and k = 3; so, for the premium g = 0.05, we have

gin—k—1)  0.05(183 —3—1)

= (.04
” 153 0.0489

From the unit-normal table, z = 1.66, from which m = 1.44+0.85x 1.66 = 2.81.
Then, using Equation 11.4, E, = 2.76, and using Equation 11.5, E, = 2.81.
Because EI . = |E},| = 24.3 is much larger than E7, the 12th observation is
identified as an outlier.

¥ An alternative is to employ a robust estimaror, which is a bit less efficient than least squares
when the model is correct, but much more efficient when outliers are present. See Section 14.3.
? See the discussion in Section 11.7.
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A regression outlier is an observation with an unusual dependent-
variable value given its combination of independent-variable val-
ues, The studentized residuals Ef can be used to identify outliers,
through graphical examination, a Bonferroni test for the largest abso-
lute E?, or Anscombe’s insurance analogy. If the model is correct (and
there are no true outliers), then each studentized residual follows a
t-distribution with # — k — 2 degrees of freedom.

11.4 Measuring Influence

As noted previously, influence on the regression coefficients combines lever-
age and discrepancy. The most direct measure of influence simply expresses the
impact on each coefficient of deleting each observation in turn:

D;JZB]_B](—I) fori:1,...,nand;’=0,1,__,’k

where the B; are the least-squares coefficients calculated for all of the data, and
the Bj_;) are the least-squares coefficients calculated with the ith observation
omitted. {So as not to complicate the notation here, I denote the least-squares
intercept A as By.) To assist in interpretation, it is useful to scale the D; by
(deleted) estimates of the coefficient standard errors:

D.

* o

SE_(B;)

Following Belsley, et al. (1980), the D;; are often termed DFBETA;;, and the Df;
i are called DFBETAS,.

One problem associated with using the D;; or the Df; is their large
number—n(k + 1) of each. Of course, these values can be more quickly and ef-
fectively examined graphically than in numerical tables. We can, for example,
construct an index plot of the D}’ for each coefficient, j =0, 1, ..., k—a sim-
ple scatterplot with D}, on the vertical axis versus the observation index i on
the horizontal axis. A more informative, if more complex, alternative is to con-
struct a scatterplot matrix of the D}; with index plots (or some other univariate
display) on the diagonal.l® Nevertheless, it is useful to have a single summary
index of the influence of each observation on the least-squares fit.

Cook (1977) has proposed measuring the “distance” between the B; and
the corresponding B;._;, by calculating the F-statistic for the “hypothesis” that
B; = Bj_j, for j =0, 1,..., k. This statistic is recalculated for each observation

'® This interesting display was suggested to me by Michael Friendly of the Psychology De-
partment, York University.
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i=1,...,n. The resulting values should not literally be interpreted as F-tests—
Cook’s approach merely exploits an analogy to testing to produce a measure of
distance that is independent of the scales of the X variables. Cook’s statistic can
be written (and simply calculated) as

El2 h.
D, = d
T k+1 1—@

In effect, the first term in the formula for Cook’s D is a measure of discrepancy,
and the second is a measure of leverage. We look for values of D; that are
substantially larger than the rest.

Observations that combine high leverage with a large studentized
residual exert substantial influence on the regression coefficients.
Cook’s D-statistic provides a summary index of influence on the
coefficients.

Belsley et al. (1980) have suggested the very similar measure!!

DFFITS, = E}

3

Except for unusual data configurations, D; oz DFFITS?/(k + 1).

Because all of the deletion statistics depend on the hat values and residuals,
a graphical alternative to either of these general influence measures is to plot the
E} against the b; and to look for observations for which both are big. A slightly
more sophisticated (and more informative) version of this plot displays circles of
area proportional to Cook’s D instead of points (see Figure 11.6 on page 285).
We can follow up by examining the D;; or Dj; for the observations with the
largest few D;, [DFFITS;|, or combination of large b; and |E}|.

For Davis’s regression of reported weight on measured weight, all of the
indices of influence point to the obviously discrepant 12th observation:

Cook’ Dy, = 85.9 (next largest, Dy; = 0.065)
DFFITS;;, = —38.4 {next largest, DFFITS;, = 0.512)
DFBETAS,, 1, = DFBETAS; 1, =0
DFBETAS, ;, = 20.0, DFBETAS; ;, = —24.8

Notice that the outlying observation 12, which is for a female subject, has no
impact on the male intercept By (i.e., A) and slope B;.

11 Other global measures of influence are available {see Chatterjee and Hadi, 1988, Chapter 4,
for a comparative treatment).
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11.4.1 Influence on Standard Errors

In developing the concept of influence in regression, I have focused on
changes in regression coefficients. Other regression outputs are also subject to
influence, however. One important regression output is the set of coefficient sam-
pling variances and covariances, which capture the precision of estimation in
TEgression.

Recall, for example, Figure 11.1(c), in which a high-leverage observation
-exerts no influence on the regression coefficients because it is in line with the rest
of the data. Recall, as well, that the estimated standard error of the least-squares
slope in simple regression is

SE

VI - X2

By increasing the variance of X, therefore, a high-leverage in-line observation
serves to decrease SE(B) even though it does not influence the regression coeffi-
cients A and B. Depending on the context, such an observation may be consid-
ered beneficial—because it increases the precision of estimation—or it may cause
us to exaggerate our confidence in the estimate B.

In multiple regression, we can examine the impact of deleting each ob-
servation in turn on the size of the joint confidence region for the regression
coefficients.!? The size of the joint confidence region is analogous to the length
of a confidence interval for an individual regression coefficient, which, in turn,
is proportional to the standard error of the coefficient. The squared length of
a confidence interval is, therefore, proportional to the sampling variance of the
coefficient, and, analogously, the squared size of a joint confidence region is pro-
portional to the “generalized variance” of a set of coefficients.

An influence measure proposed by Belsley et al. {1980) closely approxi-
mates the squared ratio of volumes of the deleted and full-data confidence re-
gions for the regression coefficients:'3

SE(B) =

1

n—k—2+E?

COVRATIO; = %]

i

Observations that increase the precision of estimation have values of COV-
RATIO that are larger than 1; those that decrease the precision of estimation
have values smaller than 1. Look for values of COVRATIO, therefore, that dif-
fer substantially from 1.

As was true of measures of influence on the regression coefficients, both
the hat value and the {studentized) residual figure in COVRATIO. A large hat

12 See Section 9.4.4 for a discussion of joint confidence regions.
13 Alternative, similar measures have been suggested by several authors. Chatterjee and Hadi
(1988, Chapter 4) provide a comparative discussion.
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value produces a large COVRATIO, however, even when—indeed, especially
when—the studentized residual is small, because a high-leverage in-line observa-
tion improves the precision of estimation. In contrast, a discrepant, low-leverage
observation might not change the coefficients much, but it decreases the preci-
sion of estimation by increasing the estimated error variance; such an observa-
tion, with small b; and large E7, produces a COVRATIO; substantially below 1.

For Davis’s regression of reported weight on measured weight, sex, and
their interaction, by far the most extreme value is COVRATIO,, = 0.0103. The
12th observation, therefore, decreases the precision of estimation by a factor of
1/0.0103 = 100. In this instance, a very large leverage, by, = 0.714, is more-
than offset by a massive residual, Ef, = ~24.3. :

11.4.2 Influence on Collinearity

Other characteristics of a regression analysis can also be influenced by indi-
vidual observations, including the degree of collinearity among the independent
variables.'* T shall not address this issue in any detail, but the following points
may prove helpful:'% '

¢ Influence on collinearity is one of the factors reflected in influence on coefficient
standard errors. Measures such as COVRATIO, however, also reflect influence
on the error variance and on the variation of the X’. Moreover, COVRATIO and
similar measures examine the sampling variances and covariances of all of the
regression coefficients, including the regression constant, while a consideration
of collinearity generally excludes the constant. Nevertheless, our concern for
collinearity reflects its impact on the precision of estimation, which is precisely
what is addressed by COVRATIO.

® Collinearity-influential points are those that either induce or weaken correlations
among the X’s. Such points usmally—but not always—have large hat values.
Conversely, points with large hat values often influence collinearity.

* Individual points that induce collinearity are obviously problematic. More subtly,
points that substantially weaken collinearity also merit examination, because
they may cause us to be overly confident in our results.

* It is frequently possible to detect collinearity-influential points by plotting in-
dependent variables against each other, as in a scatterplot matrix or a three-
dimensional rotating plot. This approach may fail, howeves, if the collinear re-
lations in question involve more than two or three independent variables at a
time.

11.5 Numerical Cutoffs for Diagnostic Statistics

I have deliberately refrained from suggesting specific numerical criteria for
identifying noteworthy observations on the basis of measures of leverage and
influence: I believe that it is generally more effective to examine the distributions
of these quantities directly to locate unusual values. For studentized residuals,
the hypothesis-testing and insurance approaches provide numerical cutoffs, but
even these criteria are no substitute for graphical examination of the residuals.

*See Chapter 13 for a general treatment of collinearity.
15 See Chatterjee and Hadi (1988, Chapter 4 and 5) for more information about influence on
collinearity.
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Nevertheless, numerical cutoffs can be of some use, as long as they are
not given too much weight, and especially when they are employed to enhance
graphical displays. A line can be drawn on a graph at the value of a numerical
cutoff, and observations that exceed the cutoff can be identified individually.16

Cutoffs for a diagnostic statistic may be derived from statistical theory,
or they may result from examination of the sample distribution of the statistic.
Cutoffs may be absolute, or they may be adjusted for sample size.l” For some
diagnostic statistics, such as measures of influence, absolute cutoffs are unlikely
to identify noteworthy observations in large samples. In part, this characteristic
reflects the ability of large samples to absorb discrepant data without chang-
ing the results substantially, but it is still often of interest to identify relatively
influential points, even if no observation has strong absolute influence.

The cutoffs presented below are, as explained briefly here, derived from sta-
tistical theory. An alternative, very simple, and universally applicable data-based
criterion is to examine the most extreme (e.g., 5% of) values of a diagnostic
statistic.

11.5.1 Hat Values

Belsley et al. (1980) suggest that hat values exceeding about twice the av-
erage b = (k + 1)/n are noteworthy. This size-adjusted cutoff was derived as
an approximation identifying the most extreme 5% of cases when the X’ are
multivariate normal, and the number of regressors k and degrees of freedom for
error # — k — 1 are relatively large. The cutoff is nevertheless recommended by
these authors as a rough general guide even when the regressors are not not-
mally distributed. In small samples, using 2 x & tends to nominate too many
points for examination, and 3 x / can be used instead.!®

11.5.2 Studentized Residuals

Beyond the issues of “statistical significance” and estimator robustness and
efficiency discussed above, it sometimes helps to call attention to residuals that
are relatively large. Recall that, under ideal conditions, about 5% of studentized
residuals are outside the range |E}| < 2. It is, therefore, reasonable, for example,
to draw lines at +2 on a display of studentized residuals to draw attention to
observations outside this range,

11.5.3 Measures of Influence

Many cutoffs have been suggested for different measures of influence. A
few are presented here:

® Siandardized change in regression coefficients. The Dj; are scaled by standard
errors, and, consequently, [Df| > 1 or 2 suggests itself as an absolute cutoff.
As explained above, however, this criterion is unlikely to nominate observations

'® An example appears in Figure 11.6 on page 285.

17 See Belsley et al. (1980, Chaprer 2) for further discussion of these distinctions.

'¥See Chatterjee and Hadi {1988, Chapter 4) for a discussion of alternative cutoffs for hat
values :

- i
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in large samples. Belsley et al. (1980) propose the size-adjusted cutoff Z/ﬁ for
identifying noteworthy D}’s.

® Cook’s D and DFFITS. Several numerical cutoffs have been recommended for
Cook’s D and for DFFITS—exploiting the analogy between D and an F-statistic,
for example. Chatterjee and Hadi (1988) suggest the size-adjusted cutoff'®

[ k+1

Because of the approximate relationship between DFFITS and Cook’s D, it is
simple to translate this criterion into

4
n—k—1

Di >
Absolute cutoffs for D, such as D; > 1, risk missing relatively influential data.

* COVRATIO. Belsley et al. (1980) suggest the size-adjusted cutoff

COVRATIO, -1/ > XX 1)

11.6 Joint Influence and Partial-Regression Plots

As illustrated in Figure 11.4, subsets of observations can be jointly influ-
ential or can offset each other’s influence. Influential subsets or multiple outliers
can often be identified by applying single-observation diagnostics, such as Cook’s
D and studentized residuals, sequentially. It can be important, however, to refit
the model after deleting each point, because the presence of a single influential
value can dramatically affect the fit at other pomts. Still, the sequential approach
is not always successful. '

Although it is possible to generalize deletion statistics to subsets of sev-
eral points, the very large number of subsets usually renders this approach
impractical.?® An attractive alternative is to employ graphical methods, and a
particularly useful influence graph is the partial-regression plot (also called a
partzal—regresszon leverage plot or an added-variable plot).

Let Y( ) represent the residuals from the least-squares regression of Y on
all of the X’s with the exception of X,—that is, the residuals from the fitted
regression equation

Y =AW 4 BOX, +-- 4+ BOX, + Y

t? Also see Cook (1977), Belsley et al. (1980), and Velleman and Welsch (1981).
20 Cook and Weisberg (1980), for example, extend the D-statistic to a subset of p observations
indexed by the vector subscript i = (i, i3, ..+, ,)
_ XX)d;
T (R +1)82
where d; = b—b,_ gives the impact on the regression cocfficients of deleting the subset . See Belsley
et al. (1980, Chapter 2) and Chatterjee and Hadi (1988) for further discussion of deletion diagnostics

based on subsets of observations. Note that there are #!/[p!(n — p)!] subsets of size p—typically a
prohibitively large number, even for modest values of p.
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(@) (b)

©

Figure 11.4. Jointly influential data in simple regression. In each graph, the heavy
solid line gives the least-squares regression for all of the data; the broken line gives the
regression with the asterisk deleted; and the light solid line gives the regression with
both the asterisk and the plus deleted. (a) Jointly influential observations located close
to one another: Deletion of both observations has a much greater impact than deletion
of only one. (b) Jointly influential observations located on opposite sides of the data.
{c¢) Observations that offset one another: The regression with both observations deleted
is the same as for the whole dataset (the two lines are separated slightly for visual

effect).

The parenthetical superscript (1) indicates the omission of X; from the right-

hand side of the regresmon equation. Likewise, X( ) is the residual from the
least-squares regression of X; on all the other X’s:

Xt'l = C(l) + Dgl)Xiz + "t + Dgl)Xik "i“" Xfl)

The notation emphasizes the interpretation of the residuals Y(1) and X as
the parts of Y and X that remain when the effects of X,, ..., X, are “removed.”
The residuals Y and X ™ have the following interesting propernes

1. The slope from the least-squares regression of Y on X{} is simply the least-
squares slope By from the full multiple regression.
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2. The residuals from the simple regression of Y() on X are the same as those
from the full regression; that is,

Y® =B, x? +E, . [11.6]

No constant is required here, because both Y and X are least-squares resid-
uals and therefore have means of 0.

3. The variation of X1 is the conditional variation of X; holding the other X’
constant and, as a consequence, the standard error of By in the auxiliary simple
regression (Equation 11.6),

Se

yZx

is the same?! as the multiple-regression standard error of B;. Unless X; is uncor-
related with the other X’s, its conditional variation is smaller than its marginal
variation~—much smaller, if X, is strongly collinear with the other X’s.

SE(‘EO =

Plotting Y against X permits us to examine leverage and influence on
B;. Because of properties 1--3, this plot also provides a visual impression of the
precision of the estimate B;. Similar partial-regression plots can be constructed

for the other regressors:2?

Plot Y& versus X foreachj=1,...,k

Subsets of observations can be jointly influential. Partial-regression
plots are useful for detecting joint influence on the regression coeffi-
cients. The partial-regression plot for the regressor X is formed using
the residuals from the least-squares regressions of X; and Y on all of
the other X’s.

Iustrative partial-regression plots are shown in Figure 11.5, using data
from Duncan’s regression of occupational prestige on the income and educa-
tional levels of 45 U.S. occupations. Recall (from Chapter 5) that Duncan’s re-
gression yields the following least squares fit:

Prég-t‘ige = —6.06 + 0.599 x Income + 0.546 x Education
(4.27) (0.120) (0.098)

R>=0.83 S;=134

The partial-regression plot for income [Figure 11.5(4)] reveals three obser-
vations that exert substantial leverage on the income coefficient. Two of these
observations serve to decrease the income slope: ministers, whose income is un-

21 There is slight slippage here with respect to the degrees of freedom for error: S; is from the
multiple regression, with # — & — 1 degrees of freedom for error. We need not subtract the mean of
X! to calculate the standard error of the slope since the mean is already 0.

22 We can also construct a partial-regression plot for the intercept A, by regressing the “con-
stant regressor” X, = 1 and ¥ on X, through X, with no constant in these regression equations.
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Figure 11.5. Partial-regression plots for Duncan’s regression of occupational prestige
on the income () and educational levels () of 45 U.S. occupations in 1950. Three
potentially influential observations (ministers, railroad conductors, and railroad
engineers) are identified on the plots. The partial-regression plot for the intercept A is
not shown.

usually low given the educational level of the occupation; and raifroad conduc-
tors, whose income is unusually high given education. The third occupation,
ratlroad engineers, is above the fitted regression, but is not as discrepant; it, too,
has relatively high income given education. Remember that the horizontal vari- -
able in this partial-regression plot is the residual from the regression of income
on education, and thus values far from 0 in this direction are for occupations
with incomes that are unusually high or low given their levels of education.
The partial-regression plot for education [Figure 11.5(5)] shows that the
same three observations have relatively high leverage on the education coeffl-
cient: Ministers and railroad conductors tend to increase the education slope,
while railroad engineers appear to be closer in line with the rest of the data,
Examining the single-observation deletion statistics for Duncan’s regression
reveals that ministers have the largest Cook’s D (Dg = 0.566) and the largest
studentized residual (Ef = 3.14). This studentized residual is not especially big,
however: The Bonferroni p-value for the outlier test is Pr(ty; > 3.14)x 2 x 45 =
0.14. Figure 11.6 displays a plot of studentized residuals versus hat values, with
the areas of the plotted circles proportional to values of Cook’s D. The lines
on the plot are at E* = %2 (on the vertical axis) and at = 2% and 35 {on the
horizontal axis). Four observations that exceed these cutoffs are identified on the
plot. Reporters have a relatively large residual but are at a low-leverage point,
while railroad engineers have high leverage but a small studentized residual.
Deleting ministers and conductors produces the fitted regression

Prestige = —6.41 + 0.867 x Income + 0.332 x Education
(3.65)  (0.122) (0.099)

R*=0.88 S;=114

which, as expected from the partial-regression plots, has a larger income slope
and smaller education slope than the original regression. The estimated standard
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Figure 11.6. “Bubble plot” of Cook’s D’s, studentized residuals, and hat values, for
Duncan’s regression of occupational prestige on income and education. Fach point is
plotted as a circle with area proportional to D. Horizontal reference lines are drawn at
studentized residuals of 0 and +2; vertical reference lines are drawn at hat values of 2b
and 3h. Several observations are identified on the plot: Ministers and conductors have
large hat values and relatively large residuals; reporters have a relatively large residual,
but a small hat value; railroad engineers have a large hat value, but a small residual.

errors are likely optimistic, however, because relative outliers have been trimmed
away. Deleting railroad engineers, along with ministers and conductors, further
increases the income slope and decreases the education slope, but the change is
not dramatic: Byyeome = 0.931, Briucation = 0.285.

Partial-regression plots can be straightforwardly extended to pairs of re-
gressors. We can, for example, regress each of X, X,, and Y on the remaining

regressors, X3, ..., X;, obtaining residuals Xfll 2), ,-(212), and Y,-(u) s YO2) g then
plotted against Xgu) and Xgu) to produce a dynamic three-dimensional scatter-
plot on which the partial-regression plane can be displayed.?

11.7 Should Unusual Data Be Discarded?

The discussion thus far in this chapter has implicitly assumed that outlying
and influential data are simply discarded. Although problematic data should not
be ignored, they also should not be deleted automatically and without reflection:

© It is important to investigate why an observation is unusual. Truly bad data
(e.g., an error in data entry as in Davis’s regression) can often be corrected
oy, if correction is not possible, thrown away. When a discrepant data point
is correct, we may be able to understand why the observation is unusual. For
Duncan’s regression, for example, it makes sense that ministers enjoy prestige
not accounted for by the income and educational levels of the occupation. In a
case like this, we may choose to deal separately with an outlying observation.

% See Cook and Weisberg (1989) for a discussion of three-dimensional partial-regression plots.
An alternative, two-dimensional extension of partial-regression plots to subsets of coefficients is
described in Section 11.8.4.
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® Alternatively, outliers or influential data may motivate model respecification. For
example, the pattern of outlying data may suggest the introduction of additional
independent variables, If, in Duncan’s regression, we can identify a variable that
produces the unusually high prestige of ministers (net of their income and ed-
ucation), and if we can measure that variable for other observations, then the
variable could be added to the regression. In some instances, transformation of
the dependent variable or of an independent variable may draw apparent outliers
toward the rest of the data, by rendering the error distribution more symmetric
or by eliminating nonlinearity. We must, however, be careful to avoid “over-
fiting” the data—permitting a small portion of the data to determine the form
of the model.?*

* Except in clear-cut cases, we are justifiably reluctant to delete observations or to
respecify the model to accommodate unusual data. Some researchers reasonably
adopt alternative estimation strategies, such as robust regression, which contin-
uously downwelghts outlying data rather than simply discarding them. Because
these methods assign zero or very small weight to highly discrepant data, how-
ever, the result is generally not very different from careful application of least
squares, and, indeed, robust-regression weights can be used to identify outliers.*

Outlying and influential data should not be ignored, but they also
should not simply be deleted without investigation. “Bad” data can
often be corrected. “Good” observations that are unusual may pro-
vide insight into the structure of the data, and may motivate respeci-
fication of the statistical model used to summarize the data.

EXERCISES

: 11.1  Employ the methods of this chapter to look for unusual data in each of the
following linear-model analyses. In each case, consider the impact of any .
unusual data that you discover on the results of the analysis, and—within LES!
the limits of your knowledge of the datasets—suggest how unusual data o
should be treated.

3 (a) Sahlins’s regression of acres tended per gardener on consumers per gardener for
the households of Mazulu village. (See Exercise 5.6; the data are in Table 2.1
° and sahlins.dat.)

(b} Angell’s dummy-variable regression of moral integration of U.S. cities on ethnic
heterogeneity, geographic mobility, and region. (See Exercise 7.3; the data are in
Table 2.3 and angell.dat.) Are partial-regression plots for dummy regressors
interpretable? If so, how?

2 See Chapter 12.
B See Sections 2.3 and 14.3.
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(6) Moore and Krupat’s two-way analysis of variance of conformity by author-
itarianism and partner’s status. (See Section 8.2; the data are in Table 8.3
and moore.dat.) Repeat your analysis for the analysis-of-covariance model
fit to Moore and Krupat’s data, treating authoritarianism as a covariate. (See
Section 8.4.) Are partial-regression plots for deviation-coded regressors inter-
pretable? If so, how?

(d) Anscombe’s regression of state education expenditures on income, proportion
under 18, and proportion urban. {See Exercise 5.14; the data are in Table 5.1
and anscombe.dat.)

11.2 In order to test two theories of peasant revolt, Chirot and Ragin (1975)
‘gathered data (in Table 11.1 and chirot.dat) on a 1907 rebellion in 32
counties of Romania.?® The dependent variable in their analysis was the
intensity of the rebellion (I), an index constructed from the reported level
of violence and the degree to which the rebellion spread within a county.
According to the “transitional society” theory of peasant rebellion, inten-
sity should be high when both the level of commercialization of agriculture
(C) and the level of traditionalism (T) are high. Commercialization—the
penetration of market forces—~was measured by the percentage of land in
the county devoted to cultivation of wheat, the major cash crop raised in
the region. Traditionalism was measured by the percentage of illiterates.
The “structural” theory of peasant revolt implies that the rebellion should
be intense where middle peasants (M) are relatively strong and where the
inequality of land tenure (G) is high. The strength of the middle peasantry
was assessed by the percentage of rural households owning between 7 and
50 hectares of land; inequality of land tenure was measured by a Gini co-
efficient. Chirot and Ragin tested the two theories by regressing I on C, T,
the product of C and T (i.e., C x T), M, and G. The first theory predicts
a positive coefficient for C x T, while the second predicts positive coeffi-
cients for M and G. Redo Chirot and Ragin’s linear-model analysis, using
the methods of this chapter to look for unusual data. Consider the impact
of any unusual observations that you discover on the results of the study.

11.8 Some Statistical Details*
11.8.1 Hat Values and the Hat Matrix

Recall, from Chapter 9, the matrix form of the general linear model,
y = XB + £. Recall, as well, that the fitted model is given by y = Xb + ¢,
in which the vector of least-squares estimates is b = (X'X)~1X'y.

The least-squares fitted values are therefore a linear function of the ob-
served dependent-variable values:

¥ =Xb = X(X'X) X'y = Hy

261 am grateful to Michael Gillespie of the Sociology Department, University of Alberta, for
bringing this dataset to my attention.
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TABLE 11.1 Data on the 1907 Romanian Peasant Rebellion:
I, Intensity of the Rebellion {Corrected from the original);
C, Commercialization of Agriculture; T, Traditionalism;
M, Market Forces; and G, Inequality of Land Tenure.

County I C T M G

1 -1.39 13.8 86.2 6.2 0.60

2 0.65 20.4 86.7 2.9 0.72

3 1.89 27.6 79.3 16.9 0.66

4 —0.15 18.6 90.1 34 0.74

5 —0.86 17.2 84.5 9.0 0.70

6 0.11 2135 815 5.2 0.60

7 —0.51 11.6 ‘82.6 51 0.52

8 —0.86 20.4 82.4 6.3 0.64

9 —0.24 19.5 87.5 4.8 0.68
10 -0.77 8.9 85.6 9.5 0.58
11 —0.24 25.8 82.2 10.9 0.68
12 -1.57 24.1 83.5 8.4 0.74
i3 —0.51 2.0 88.3 6.2 0.70
i4 -1.57 24.2 84.9 6.1 0.62
15 —0.51 30.6 76.1 1.3 0.76
16 -1.13 339 85.5 5.8 0.70
17 ~1.22 28.6 84.2 2.9 0.58
18 -1.22 36.5 78.1 4.3 0.72
19 —0.86 40.9 34.4 2.3 0.64
20 -1.39 6.8 76.3 36 0.58
21 2.81 41.9 89.7 6.6 0.66
22 —1.04 25.4 83.2 2.5 0.68
23 1.57 30.5 80.2 4.1 0.76
24 4.32 48.2 91.0 4.2 0.70
25 3.79 . 46.0 90.5 37 0.68
26 3.79 45.1 85.5 5.1 0.64
27 -1.75 12.5 83.8 7.2 0.50
28 0.82 39.3 85.6 4.9 0.60
29 2.59 47.7 87.6 5.2 0.58
30 —0.86 15.2 87.3 10.8 042
31 —1.84 11.7 82.3 81.7 0.42
32 —1.84 25.6 80.1 63.4 0.26

Source of Data: Chirot and Ragin (1973).

Here, H = X(X'X)~ X' is the hat matrix, so named because it transforms y
into y. The hat matrix is symmetric (H = H’) and idempotent (H? = H), as can
easily be verified.?” Consequently, the diagonal entries of the hat matrix b; = b;,
which we called the bat values, are

hi=hh =Y K=+ b [11.7)
j=1 joi '

where (because of symmetry) the elements of h; comprise both the ith row and
the ith column of H.

Equation 11.7 implies that 0 < b; < 1. If the model matrix X includes the
constant regressor, then 1/2 < b; . Because H is a projection matrix,’® projecting

7 See Exercise 11.4.
28 See Chapter 10, on the vector geometry of linear models.
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y orthogonally onto the (k+1)-dimensional subspace spanned by the columns of
X, it follows that 3" &, = k+1, and thus b = (k+1)/n (as stated in Section 11.2).
I mentioned as well that when there are several independent variables in
the model, the leverage 4; of the ith observation is directly related to the dis-
tance of this observation from the center of the independent-variable scatter.
To demonstrate this property of the hat-values, it is 'convenient to rewrite the
ﬁtted model with all variables in mean-deviation form: y* = X*b, + ¢, where
= {Y; — Y} is the “centered” dependent-variable vector; X* = {X; - X; i+
contalns the centered independent variables, but no constant regressor, wh;ch is
no longer required; and b, is the vector of least-squares slopes (suppressing the
regression intercept). Then the hat value for the ith observation is

‘ 1
bt =hh = xj"(X*’X*)"lx}" =bh— -

n
where x}' = [X;; — X1, ..., X; — X, ] is the ith row of X* (and x! is the ith row
of X* written as a column vector).

As Weisberg (1985, p. 112) has pomted out, (n 1)h} is the generalized or
Mahalanobis distance between x; and X/, where ¥ = [X, ..., X,] is the mean
vector or centroid of the mdependent vanables. The Mahalanobis distances, and
hence the hat values, do not change if the independent variables are rescaled.

Indeed, the Mahalanobis distances and hat values are invariant with respect to
any nonsingular linear transformation of X.

11.8.2 The Distribution of the Least-Squares Residuals

The least-squares residuals are given by

e=y-—y
=(XB + &) - X(X'X) X' (XB + &)
=(I—-H)e
Thus,
E(e) = (T1—H)E(e)=(I—H)0 =0
- and

V(e) = (I - H)V(e)(I— HY = (I - H)

because I — H, like H itself, is symmetric and idempotent. The matrix I — H is
not diagonal, and therefore the residuals are generally correlated, even when the
errors are (as assumed here) independent. The diagonal entries of I—H generally
differ from one another, and so the residuals generally have different variances
{as stated in Section 11.3):2° V(E,) = o2(1 - ,).

¥ Balanced ANOVA models are an exception: Here, all the hat values are equal. (Why?)
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11.8.3 Deletion Diagnostics

Let by_,, denote the vector of least-squares regression coefficients calculated
with the ith observation omitted. Then d; = b — b_;; represents the influence
of observation i on the regression coefficients. The influence vector d; can be
calculated efficiently as3°

E;
1-5

H

d, = (X'X) %,

[11.8]

where x; is the ith row of the model matrix X (and x; is the ith row written as
a column vector).

Cook’s D; is the F-statistic for testing the “hypothesis™ that B = b_;:

D — (b—b_y)YX'X(b~b._;)
! (k+1)8%
_ =YY F—¥s)
(k+1)SE

An alternative interpretation of D;, therefore, is that it measures the aggregate
influence of observation i on the fitted values §. This is why Belsley et al. (1980)
call their similar statistic “DFFITS.” Using Equation 11.8,

D E? y b
TSk +1) T (- k)
_E:  h
k417 1—p;

?

which is the formula for Cook’s D given in Section 11.4.

11.8.4 Partial-Regression Plots

In vector form, the fitted multiple-regression model is

¥y = A1n+lel +B2X2+“ . —!—kak—f-e {119]
=§7+e

where the fitted-value vector ¥ is the orthogonal projection of y onto the sub-
space spanned by the regressors3! 1,, x4, X5, ..., x;. Let y¢) and 3 be the
projections of y and x;, respectively, onto the orthogonal complement of the
subspace spanned by 1, and x,,...,x;, (i.e., the residual vectors from the
least-squares regressions of Y and X, on the other X’). Then, by the geometry
of projections, the orthogenal projection of y™ onto x(M is B,x(1, and

30 See Exercise 11.5.
31 See Chapter 10.
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¥y — Bix®) = e, the residual vector from the overall least-squares regression,
given in Equation 11.9.32

Sall (1990) suggests the following generalization of partial-regression plots,
which he terms leverage plots: Consider the general linear hypothesis®3

Hy: L. B =0 [11.10]
(axk+1)(k+1x1)  (gx1)

For example, in the regression of occupational prestige (Y) on education (X;),
income (X3), and type of occupation (represented by the dummy regressors D,
and D,),

Y=a+8X1+8X+vDi+v:Dy+¢

the hypothesis matrix

(000 1 0
=10 0 0 0 1

is used to test the hypothesis Hy: y; = v, = 0 that there is no effect of type of
occupation.’*
The residuals for the full model, unconstrained by the hypothesis (Equation

11.10), are the usual least-squares residuals, e = y—Xb. The estimated regression
coefficients under the hypothesis are3’

by =b—-(X'X)"L'u
and the residuals constrained i)y the hypothesis are given by

e =e+X(X'X) L'u
where

= [L(XX)"'L']'Lb
Thus, the incremental sum of squares for H, is*

lleo — e|> = PLL(X'X)~'L']"Lb
The leverage plot is a scatterplot with
v, = X(X'X) L'

on the horizontal axis, and

Vy =V, +¢

2 See Exercises 11.6 and 11.7.

33 See Section 9.4.3.

¥ See Exercise 11.9,

* For this and other results pertaining to leverage plots, see Sall (1990).
3 See Exercise 11.8.
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on the vertical axis. The leverage plot, so defined, has the following properties:

® The residuals around the horizontal line ar V, = 0 are the constrained least-
squares residuals Eg; under the hypothesis H,.

® The least-squares line fit to the leverage plot has an mtercept ofanda slope of
1; the residuals about this line are the unconstrained least-squares residuals, E;.
The incremental sum of squares for Hy is thus the regression sum of squares for

_ the line.

¢ When the hypothesis matrix L is formulated with a single row to test the coeffi-
cient of an individual regressor, the leverage plot specializes to the usual partial-
regression plot, with the horizontal axis rescaled so that the least-squares inter-
cept is 0 and the slope 1.

EXERCISES

113

11.4

115

11.6

Show that, in simple-regression analysis, the hat value is

Y. _ Vi
A
no X =Xy

[Hinz: Evaluate x{(X'X) 1x; for x} = (1, X;).]

Show that the hat matrix H = X(X'X) !X’ is symmetric (H = H’) and
idempotent (H* = H).

Using Duncan’s regression of occupational prestige on the educational and
income levels of occupations (the data are in Table 3.2 and duncan.dat},
verify that the influence vector for the deletion of ministers on the regres-
sion coefficients, d; =b —b_;,, can be written as

E.
.= ’ -1y !
d; = (XX)

i

where x; is the ith row of the model matrix X (i.e., the row for ministers)
written as a column. [A much more difficult problem is to show that this
formula works in general; see, e.g., Belsley, et al. {1980, pp. 69-83) or
Vellemnan and Welsch (1981).]

*Consider the two-independent-variable linear-regression model, with vari-
ables written as vectors in mean-deviation form (as in Section 10.2): y* =
Bixi + By} +e. Let x( and y) represent the residual vectors from
the regression (i.e., orthogonal projection) of x] and y*, respectively, on
x_,_ Drawmg the three—dlmensmnal diagram of the subspace spanned by
x}, x5, and y*, prove geometrically that the coefficient for the orthogonal
projection of y» onto x{!) is B;.
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1.7 *Now consider the more general model y* = Byx} + Byx5 +- - -+ Byx} +e.
Let x(} and y() represent the residual vectors from the projections of x}
and y*, respectively, onto the subspace spanned by x3, ..., x}. Prove that
the coefficient for the orthogonal projection of y) onto x(1) is B;.

118 *Show that the incremental sum of squares for the general linear hypothesis
Hy: LB = 0 can be written as

lleo — el? = BL/[L(X’X)"'L']"'Lb

[Hint: |jeg — ell? = (¢ — ) (eg —€).]

11.9 Using Duncan’s data on the prestige of 45 U.S. occupations, regress pres-
tige on education, income, and two dummy variables to represent the ef-
fects of three occupational types. (See Section 7.2; Duncan’s data are in
Table 3.2 and duncan.dat.)

(@) Construct partial-regression plots for education, income, and the two dummy
regressors for occupational type.

(b) Construct leverage plots for education, income, and occupational type. Con-
firm that the leverage plots for education and income are identical to the
partial-regression plots in part (a), except for the scaling of the horizontal axis.
Compare the information obtained from the leverage plot for occupational type
with the two partial-regression plots for the occupational type coefficients in
part {(a}.

11.9 Summary

¢ Unusual data are problematic in linear models fit by least squares because they
can substantially influence the results of the analysis, and because they may
indicate that the model fails to capture important features of the data.

® Observations with unusual combinations of independent-variable values have
high leverage in a least-squares regression. The hat values b; provide a measure
of leverage. A rough cutoff for noteworthy hat values is #; > 2b =2(k+ 1)/n.

® A regression outlier is an observation with an unusual dependent-variable value
given its combination of independent-variable values. The studentized residuals
E} can be used to identify outliers, through graphical examination, a Bonferroni
test for the largest absolute E}, or Anscombe’s insurance analogy. If the model
is correct (and there are no true outliers), then each studentized residual follows
a t-distribution with # — k — 2 degrees of freedom.

® QObservations that combine high leverage with a large studentized residual exert
substantial influence on the regression coefficients. Cook’s D-statistic provides a
summary index of influence on the coefficients. A rough cutoff for noteworthy
values of D is D; > 4/(n — k — 1).

* It is also possible to investigate the influence of individual observations on other
regression “outputs,” such as coefficient standard errors and collinearity.
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® Subsets of observations can be jointly influential. Partial-regression plots are
useful for detecting joint influence on the regression coefficients. The partial-
regression plot for the regressor X; is formed using the residuals from the least-
squares regressions of X; and Y on all of the other X’s.

* OQutlying and influential data should not be ignored, but they also should not
simply be deleted without investigation. “Bad” data can often be corrected.
“Good” observations that are unusual may provide insight into the structure
of the data, and may motivate respecification of the statistical model used to
summarize the data. .

11.10 Recommended Reading

There is a large journal literature on methods for identifying unusual and
influential data. Fortunately, there are several texts that present this literature in
a more digestible form:*”

¢ Although it is now more than a decade old, Cook and Weisberg (1982) is, in my
opinion, still the best book-length presentation of methods for assessing leverage,
outliers, and influence. There are also good discussions of others problems, such
as nonlinearity and transformations of the dependent and independent variables.

® Chatterjee and Hadi (1988) is a thorough and reasonably up-to-date text dealing
primarily with influential data and collinearity; other problems—such as nonlin-
earity and nonconstant error variance—are treated briefly.

® Belsley, et al. (1980) is a seminal text that discusses influential data and the
detection of collinearity.?®

¢ Barnett and Lewis (1994) present an encyclopedic survey of methods for outlier
detection, including methods for detecting outliers in linear models.

37 Also see the recommended readings given at the end of the following chapter.
31 believe that Belsley et al.’s (1980) approach to diagnosing collinearity is fundamentally
flawed—see the discussion of collinearity in Chapter 13,




‘Diagnosing Nonlinearity,
Nonconstant Error
Variance, and Nonnormality

Chapters 11, 12, and 13 show how to detect and correct problems with linear
models that have been fit to data. The previous chapter focused on problems
with specific observations. The current chapter and the next deal with more
general problems with the specification of the model.

The first three sections of this chapter take up the problems of nonnormally
distributed errors, nonconstant error variance, and nonlinearity. The treatment
here stresses simple graphical methods for detecting these problems, along with
transformations of the data to correct problems that are detected.

Subsequent sections describe tests of nonconstant error variance and non-
linearity for discrete independent variables; diagnostic methods based on embed-
ding the usual linear model in a more general nonlinear model that incorporates
transformations as parameters; and diagnostics that seek to detect the underlying
dimensionality of the regression.

12.1 Nonnormally Distributed Errors

The assumption of normally distributed errors is almost always arbitrary.
Nevertheless, the central-limit theorem assures that, under very broad conditions,
inference based on the least-squares estimator is approximately valid in all but
small samples. Why, then, should we be concerned about nonnormal errors?

® Although the validity of least-squares estimation is robust—the levels of tests
and confidence intervals are approximately correct in large samples even when
the assumption of normality is violated—the efficiency of least squares is not

295
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robust: Statistical theory assures us that the least-squares estimator is the most
efficient unbiased estimator only when the errors are normal. For some types
of error distributions, howevet, particularly those with heavy tails, the efficiency
of least-squares estimation decreases markedly. In these cases, the least-squares
estimator becomes much less efficient than robust estimators (or least-squares
augmented by diagnostics).! To a substantial extent, heavy-tailed error distribu-
tions are problematic because they give rise to outliers, a problem that I ad-
dressed in the previous chapter.

A commonly quoted justification of least-squares estimation—called the
Gauss-Markov theorem—states that the least-squares coefficients are the most
efficient unbiased estimators that are linear functions of the observations Y.
This result depends on the assumptions of linearity, constant error variance, and
independence, but does not require the assumption of normality.> Although the
restriction to linear estimators produces simple formulas for coefficient standard
errors, it is not compelling in the light of the vulnerability of least squares to
heavy-tailed error distributions.

* Highly skewed error distributions, aside from their propensity to generate out-
liers in the direction of the skew, compromise the interpretation of the least-
squares fit. This fit is a conditional mean (of Y given the X’s), and the mean is
not a good measure of the center of a highly skewed distribution. Consequently,
we may prefer to transform the data to produce a symmetric error distribution.

¢ A multimodal error distribution suggests the omission of one or more discrete
independent variables thar divide the data naturally into groups. An examination
of the distribution of the residuals may, therefore, motivate respecification of the
model.

Although there are tests for nonnormal errors, I shall instead describe
graphical methods for examining the distribution of the residuals, employing
univariate displays introduced in Chapter 3.3 These methods are more useful for
pinpointing the character of a problem and for suggesting solutions.

‘One such graphical display is the quantile comparison plot. We typically
compare the sample distribution of the studentized residuals, E}, with the quan-
tiles of the unit-normal distribution, N(0, 1), or with those of the ¢-distribution
tor n — k — 2 degrees of freedom. Unless # is small, of course, the normal and
t-distributions are nearly identical. We choose to plot studentized residuals be-
cause they have equal variances and are ¢-distributed, but, in larger samples,
standardized or raw residuals will convey much the same impression.

Even if the model is correct, however, the studentized residuals are not an
independent random sample from t,_u_»: Different residuals are correlated with
one another.* These correlations depend on the configuration of the X-values,
but they are generally negligible unless the sample size is small. Furthermore,
at the cost of some computation, it is possible to adjust for the dependencies
among the residuals in interpreting a quantile comparison plot.®

'Robust estimation is discussed in Section 14.3.

* A proof of the Gauss-Markov theorem appears in Section 9.3.2.

3 See the discussion of Box-Cox transformarions in Section 12.5.1, however.

* Different residuals are correlated because the off-diagonal entries of the hat-matrix (i.e., by
for i + j) are generally nonzero; see Section 11.8.

3 See Section 12.1.1.
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Figure 12.1. The distribution of the studentized residuals from Ornstein’s
interlocking-directorate regression. A normal quantile comparison plot is shown in ().
The 95% confidence envelope is based on the standard errors of the order statistics for
an independent normal sample. A nonparametric density estimate is shown in (b).

The quantile comparison plot is particularly effective in displaying the tail
behavior of the residuals: Qutliers, skewness, heavy tails, or light tails all show
up clearly. Other univariate graphical displays effectively supplement the quan-
tile comparison plot. In large samples, a histogram with many bars conveys a
good impression of the shape of the residual distribution, and generally reveals
multiple modes more clearly than the quantile comparison plot does. In smaller
samples, a more stable impression is formed by smoothing the histogram of the
residuals with a nonparametric density estimator.

Figure 12.1 shows plots of the studentized residuals for a regression model
fit to Ornstein’s interlocking-directorate data, first discussed in Chapter 3. The
dependent variable in the regression is the number of executive and director
interlocks maintained by ecach of 248 dominant Canadian firms with other com-
panies in this group. The independent variables are the assets of the firm (in mil-
lions of dollars}, the industrial sector in which the firm operates (10 categories),
and the nation in which the firm is controlled {four categories). The results of the
regression are shown on the left of Table 12.1.% Because the residual degrees of
freedom are relatively large (234), the studentized residuals are plotted against
the normal distribution in the quantile comparison plot of Figure 12.1(a). The
quantile comparison plot suggests that the distribution of the residuals has heavy
tails—particularly the upper tail. The density estimate [in Figure 12.1(b)] sug-
gests that there may be two groups of observations somewhat separated from
the others, one group at the low end of the residual distribution, another at the

high end.

¢ The square root of assets is used in place of assets to make the regression more nearly linear.
See Section 12.3 for a discussion of nonlinearity.
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TABLE 12.1 Regression of Number of Interlocking
Directorate and Executive Positions
Maintained by 248 Dominant Canadian
Corporations on Corporate Assets, Sector, and
Nation of Control. The baseline category for
Sector is Heavy Manufacturing; for Nation of
Control, Canada

Interlocks VInterlocks +1

Regressor B SE B SE
Constant 4.19 1.85 2.33 0.23
+/ Assets 0.252  0.019 0.0260  0.0023
Sector

Wood, paper 515 2.68 0.786 0.335

Mining, metals 0.342 201 0.356 0.252

Transport ~0.381 2.82 0.354 0.353

Merchandizing —0.867 2.63 0.148  (.329

Agriculwure, food,

Light industry —1.20  2.04 | —0.056¢7 0.255
Holding companies —2.43 4.01 —0.245 0.502
Construction —5.13 4.70 —0.740 0.588
Other financials —5.70 2.93 —0.0880 0.366
Banking —14.4 5.58 —2.25 0.697

Nation of Centrol
Other —-116  2.66 | —0.114 0.333
Britain —4.44 2.65 —-0.527 0.331
United States —8.09 1.48 —1.11 0.185
R? 655 580

A positive skew in the residuals can usually be corrected by moving the de-
pendent variable down the ladder of powers and roots. In the present case, both
tails of the residual distribution are heavy, but I decided to try power transfor-
mations because (1) the upper tail appears heavier than the lower tail; (2) the
distribution of number of interlocks (i.e., the dependent variable) is positively
skewed; and (3) transformations down the ladder of powers, particularly square
root and log, often are effective when the dependent variable is (as here) a count.
Because some of the firms maintained 0 interlocks, I used a start of 1 for the
transformations. Trial and error suggests that the square-root transformation of
number of interlocks+1 renders the distribution of the residuals close to normal,
as shown in Figure 12.2.

The results of Ornstein’s regression using +/interlocks + 1 as the dependent
variable is shown on the right of Table 12.1. Although we cannot compare
the coefficients directly across these two models—the scale of the dependent
variable is different in the two cases—the general character of the results does
not change much: In both models, assets has a substantial impact on intertocks;
the rankings of the nation-of-control categories are identical in the two models;
and the rankings of the sectors are nearly the same.”

7 Exercise 12.1 sugpests a more precise comparison of the two sets of resnits nsing “adjusted”
means,
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Figure 12.2, The distribution of the studentized residuals from Ornstein’s
interlocking-directorate regression, after transforming the dependent variable. A normal
quantile comparison plot is shown in (4), a nonparametric density estimate in ().

Heavy-tailed errors threaten the efficiency of least-squares estimation;
skewed and multimodal errors compromise the interpretation of the
least-squares fit. Nonnormality can often be detected by examining
the distribution of the least-squares residuals, and frequently can be
corrected by transforming the data.

12.1.1 Confidence Envelopes by Simulated Sampling*

Atkinson (1985) has suggested the following procedure for constructing
an approximate confidence “envelope” in a quantile comparison plot, taking
into account the correlational structure of the independent variables. Atkinson’s
procedure employs simulated sampling, and uses the assumption of normally
distributed errors.®

1. Fit the regression model as usual, obtaining fitted values ¥; and the estimated
standard error Sg.

2. Construct 7 samples, each consisting of # simulated Y-values; for the jth such
sample, the simulated value for observation 7 is

Y=Y, +8:Z;

# The notion of simulated sampling from a population constructed from the observed data is
the basis of “bootstrapping,” discussed in Section 16.1. Atkinson’s procedure described here is an
example of the parametric bootstrap.
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where Z;; is a random draw from the unit-normal distribution. In other words,
we sample from a “population” in which the expectation of Y; is ¥;; the true
standard deviation of the errors is Sg; and the errors are normally distributed.

3. Regress the # simulated observations for sample j on the X’s in the original
sample, obtaining simulated studentized residuals, El;s Ejfs - - - By Because this
regression employs the original X-values, the simulated studentized residuals
reflect the correlational structure of the X’.

4. Order the studentized residuals for sample 7 from smallest to largest, as required
by a quantile comparison plot: Efyyis Efyps -« -5 Efy,e

5. To construct an estimated (100—2)% confidence interval for EY;) (the ith ordered
studentized residual), find the 4/2 and 1 — 2/2 empirical quantiles of the m
simulated values Efyy,, Efy, ..., Ef;,,. For example, if m = 20 and a = .05,
then the smallest and largest® of the Ef;); provide a 95% confidence interval
for Efyy: (Efiyys E{1yz0))- The confidence limits for the »# ordered studentized
residuals are graphed as a confidence envelope on the quantile comparison plot,
along with the studentized residuals themselves.

A weakness of Atkinson’s procedure is that the probability of some studen-
tized residual straying outside of the confidence limits by chance is greater than
a, which is the probability that an individual studentized residual falls outside of
its confidence interval. Because the joint distribution of the studentized residuals
is complicated, however, to construct a correct joint-confidence envelope would
require even more calculation. As well, in small samples, where there are few
residual degrees of freedom, even radical departures from normally distributed
errors can give rise to apparently normally distributed residuals; Andrews (1979)
presents an example of this phenomenon, which is sometimes termed “supernor-
mality.”

e ———
EXERCISE

121 Use adjusted means (see Exercises 7.5, 7.10, 8.8, and 8.12) to compare the
two regressions for Ornstein’s interlocking-directorate data summarized in
Table 12.1. For the first regression, in which interlocks is the dependent
variable, calculate the adjusted mean number of interlocks for each sector
and nation of control. For the second regression, in which +/interlocks + 1
is the dependent variable, first calculate the adjusted dependent-variable
mean for each sector and nation of control, and then translate back to the
interlocks scale by squaring and subtracting 1 from each of these quanti-
ties. The partial relationship between interlocks and assets for each model

? Selecting the smallest and largest of the 20 simulated values corresponds to our simple
convention that the proportion of the data below the jth of m order statistics is (j — 1/2)/m. Here,
(1 —1/2)/20 = .025 and (20 ~ 1/2)/20 = .975, defining 95% confidence limits. Atkinson uses a
slightly different convention. To estimate the confidence limits more accurately, it would help to make
m larger, and perhaps to use a more sophisticated version of the bootstrap (see Section 16.1), but the
approximate nature of the entire enterprise makes it difficult to justify the additional computation
that would be required.
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can be displayed graphically by setting each dummy variable to its mean
(i.e., the proportion in the corresponding category of sector or nation
of control) and substituting these values into the regression equation.
Then, letting assets run over its range of values {roughly $50 million
to $150,000 million), substitute /assets into the regression equation to
calculate the corresponding fitted values for the dependent variable, con-
necting the fitted values by a smooth curve (as in Figure 12.7 on page
314). For the second regression, remember to translate back to the inter-
locks scale to facilitate the comparison of the two results. (Ornstein’s data
are in ornstein.dat.)

12.2 Nonconstant Error Variance

As we know, one of the assumptions of the regression model is that the
variation of the dependent variable around the regression surface—the error
variance—is everywhere the same: :

Vie)=V(Y[xq,...,x) = 07

Nonconstant error variance is sometimes termed “heteroscedasticity.” Although
the least-squares estimator is unbiased and consistent even when the error vari-
ance is not constant, the efficiency of the least-squares estimator is impaired,
and the usual formulas for coefficient standard errors are inaccurate—the de-
gree of the problem depending on the degree to which error variances differ: In
this section, I shall describe graphical methods for detecting nonconstant error
variances, and methods for dealing with the problem when it is detected.1®

12.2.1 Residual Plots

Because the regression surface is k-dimensional and embedded in a space of
k+1 dimensions, it is generally impractical to assess the assumption of constant
error variance by direct graphical examination’ of the data when k is larger
than 1 or 2. Nevertheless, it is common for error variance to increase as the
expectation of Y grows larger, or there may be a systematic relationship between
error variance and a particular X. The former situation can often be detected
by plotting residuals against fitted values, and the latter by plotting residuals
against each X.11 '

Plotting residuals against Y (as opposed to Y) is generally unsatisfactory,
because the plot is “tilted”; Because Y = Y +E, the linear correlation! berween
Y and E is /1 — R2. In contrast, the least-squares fit ensures that the correlation
between ¥ and E is precisely 0, producing a plot that is much easier to examine
for evidence of nonconstant spread.

""Tests for heteroscedasticity are discussed in Section 12.4 on discrete data, and in Sec-
tion 12.5 on maximum-likelihood methods.

'These displays are not infallible, however: See Cook (1994), and the discussion in Sec-
tion 12.6.

12 See Fxercise 12.2.
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Because the least-squares residuals have unequal variances even when the
assumption of constant error variance is correct, it is preferable to plot studen-
tized residuals against fitted values. A pattern of changing spread is often more
easily discerned in a plot of absolute studentized residuals, |EX], or squared stu-
dentized residuals, E}2, against V. Finally, if the values of ¥ are all positive,
then we can plot log | Ef| (log spread) against log ¥ (log level). A line, with slope
b fit to this plot, suggests the variance-stabilizing transformation'® Y®), with
p=1-b. ,

Recall Ornstein’s interlocking-directorate regression, described in the pre-
vious section. Figure 12.3(@) shows the plot of studentized residuals against
fitted values for this regression. Although the substantial positive skew in the fit-
ted values makes the plot difficult to examine, there appears to be a tendency
for the residual scatter to get wider at larger values! of Y. The log-spread
versus log-level plot for the regression, in Figure 12.3(b), is easier to exam-
ine. Because there are negative fitted values, I used log(¥ + 2) to construct the
plot.’® The least-squares line fit to the plot has slope b = 0.497, suggesting the
variance-stabilizing transformation p = 1 — 0.497 = 0.503. The positive trend
in the spread-versus-level plot translates into a transformation dowr the ladder
of powers and roots.

In the previous section, the transformation +/interlocks + I—that is, p =
0.5—made the distribution of the studentized residuals more nearly normal. The
same transformation nearly stabilizes the residual variance, as illustrated in the
spread-versus-level plot shown in Figure 12.4.16 This outcome is not surprising,
because the heavy right tail of the residual distribution and nonconstant spread
are both common consequences of the lower bound of 0 for the dependent
variable,

Transforming Y changes the shape of the error distribution, but it also
alters the shape of the regression of Y on the X’. At times, eliminating non-
constant spread also makes the relationship of Y to the X ’s more nearly linear,
but this is not a necessary consequence of stabilizing the error variance, and it is
important to check for nonlinearity following transformation of the dependent
variable. Of course, because there is generally no reason to suppose that the re-
gression is linear prior to transforming Y, we should check for nonlinearity in
any event.l”

Nonconstant residual spread sometimes is symptomatic of the omission of
important effects from the model. Suppose, for example, that there is an omitted

3 This is an application of Tukey’s rule, presented in Section 4.4. Other analytic methods for
choosing a variance-stabilizing transformation are discussed in Section 12.5. '

14 Part of the tendency for the residual spread to increase with Y is due to the lower bound
of 0 for Y: Because E = Y — ¥, the smallest possible residual corresponding to a particular ¥ is
E = 0-Y = —7; the boundary E = —V¥ is a line with slope —1 at the lower left of the residual versus
fitted-value plot. When there are many observations with 0 values, it may be more appropriate to
use a Poisson regression model, as described in Section 15.4.

B Several observations have negative fitted values, the smallest of which is —1.57.

' Figure 12.4 still shows some relationship between spread and level, but the log transforma-
tion substantially overcorrects the original problem, inducing a negative association between spread
and level. The start of 1 is not really required here, because the square-root transformation is de-
fined for ¥ = 0. In this dataset, using v/interlocks, which is a slightly more powerful transformation
than +/interlocks + 1, nearly perfectly stablilizes the variance of the residuals.

17 See Section 12.3.
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Figure 12.3. Detecting nonconstant spread in Ornstein’s interlocking-directorate
regression. (&) A plot of studentized residuals versus fitted values. (6) A plot of log
spread (log absolute studentized residuals) versus log level (log fitted values). The
least-squares line is shown on the plot.

categorical independent variable, such as regional location, that interacts with
assets in affecting interlocks; in particular, suppose that the assets slope, although
positive in every region, is steeper in some regions than in others. Then the
omission of region and its interaction with assets could produce a fan-shaped
residual plot even if the errors from the correct model have constant variance, 18
The detection of this type of specification error requires insight into the process
generating the data and cannot rely on diagnostics alone.

12.2.2 Weighted-Least-Squares Estimation*

Weighted-least-squares regression provides an alternative approach to es-
timation in the presence of nonconstant error variance. Suppose that the errors
from the linear regression model y = X + ¢ are independent and normally dis-
tributed, with zero means but different variances: &; ~ N(0, 7). Suppose further
that the variances of the errors are known up to a constant of proportionality
o7, so that V(&;) = 67 = o2 /w?. Then, the likelihood for the model is?

L(B: o) = gy 8| -3 ~ XB)'E(y - X))

where 2, is the covariance matrix of the errors,

3% = o x diag{1/w}, ..., 1/uw?} = o2 x W1

' See Exercise 12.3 for an illustration of this phenomenaon,
1 See Exercise 12.4 for this and other results pertaining to weighted-least-squares estimation.




304 M LINEAR-MODEL DIAGNOSTICS

o

logl0|S8tudantized Residualj
[ 1
(Y] [

|
W

oL

l } i } t }
0.2 0.4 0.6 0.8 1 1.2
logll (Fitted Value)

Figure 12.4. Plot of log spread versus log level for Ornstein’s interlocking-directorate
regression, after transforming the dependent variable. The least-squares line is shown on

the plot.

The maximum-likelihood estimators of B and o2 are

B = (X'WX)1X'Wy
2 (E;/ Wi_)2

#

A

" ba

where the residuals E; are defined in the usual manner. This procedure is equiv-
alent to minimizing the weighted sum of squares S w?E?, according greater
weight to observations with smaller variance—hence the term weighted least
squares (WLS). The estimated asymptotic covariance matrix of B is given by

7(B) = 62(X'WX)™!

In practice, we would need to estimate the weights w; or know that the
error variance is systematically related to some observable variable. In the first
instance, for example, we could usc the residuals from a preliminary ordinary-
least-squares (OLS) regression to obtain estimates of the error variance within
different categories of the data, partitioned by one or more categorical variables.
Basing the weights on a preliminary estimate of error variances can, however,
seriously bias the estimated covariance matrix %(8), because the sampling error
in the estimates should reflect the additional source of uncertainty.2° o

In the second instance, suppose that inspection of a residual plot for the
preliminary OLS fit suggests that the magpitude of the errors is proportional .
to the first independent variable, X;. We can then use 1/X;, as the weights ;.
Dividing both sides of the regression equation by X;; produces

Y; 1 Xy X | &
-+ —e— =2 ... L R 12.1
X aXi + B wHBin1 - +BkX,-1 + X [12.1]

*0In this case, it is probably better to obtain an honest estimate of the coefficient covariance
matrix from the bootstrap, described in Section 16.1.
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Because the standard deviations of the errors are proportional to X, the “new”
errors & = g;/X;; have constant variance, and Equation 12.1 can be estimated
by OLS regression of Y/X; on 1/X,, X,/X,, ..., X,/X;. Notice that the con-
stant from this regression estimates 8y, while the coefficient of 1/X, estimates
a; the remaining coefficients are straightforward.!

It is common for the variance of the errors to increase with the level
of the dependent variable. This pattern of nonconstant error vari-
ance (“heteroscedasticity”) can often be detected in a plot of residu-
als against fitted values. Strategies for dealing with nonconstant error
variance include transformation of the dependent variable to stabilize
the variance; the substitution of weighted-least-squares estimation for
ordinary least squares; and the correction of coefficient standard er-
rors for heteroscedasticity. A rough rule is that nonconstant error
variance seriously degrades the least-squares estimator only when the
ratio of the largest to smallest variance is about 10 or more.

12.2.3 Correcting OLS Standard Errors for Nonconstant Variance*

The covariance matrix of the ordinary-least-squares estimator is
V(b) = (X’X) IX'V(y)X(X'X)! [12.2]
Under the standard assumptions, including the assumption of constant error
variance, V(y) = ¢?I,, Equation 12.2 simplifies to the usual formula, V(b) =
o2(X’X)~". If, however, the errors are heteroscedastic but independent, then
2 = V(y) = diag{o?, ..., 02}, and
Vib) = X'X) ' X'ZX(X'X)™!

Because E(e;) = 0, the variance of the ith error is o7 = FE(g?), which
suggests the possibility of estimating V(b) by

V(b) = (X'X)"IX'EX(X'X)"! [12.3]
with 3 = diag{E3, ..., E2}, and where E; is the OLS residual for observa-

tion . White (1980) shows that Equation 12.3 provides a consistent estimator?2
of V(b).

*' An application of WLS regression to Ornstein”s interlocking-directorate data is given in
Exercise 12.6.

% See Exercise 12.7 for an application of White’s heteroscedasticity correction to Ornstein’s
interlocking-directorate regression.
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An advantage of White’s approach is that knowledge of the pattern of non- :
constant error variance (e.g., increased variance with the level of ¥ or with an
X) is not required. If, however, the heteroscedasticity problem is severe, and the
corrected coefficient standard errors therefore are substantially larger than those
produced by the usual formula, then discovering the pattern of nonconstant vari-
ance and correcting for it—by a transformation or WLS estimation—offers the
possibility of more efficient estimation. In any event, as the next section shows,
unequal error variance is worth correcting only when the problem is severe,

12.2.4 How Noncenstant Error Variange Affects the OLS Estimator*

The impact of nonconstant error variance on the efficiency of the ordinary
least-squares estimator and on the validity of least-squares inference depends on
several factors, including the sample size, the degree of variation in the o7, the
configuration of the X -values, and the relationship between the error variance
and the X’. It is therefore not possible to develop wholly general conclusions
concerning the harm produced by heteroscedasticity, but the following simple
case is nevertheless instructive.

Suppose that Y, = o 4 BX; + &;, where the errors are independent and
normally distributed, with zero means but with different standard deviations
proportional to X, so that o, = 0, X;. Then the OLS estimator B is less efficient
than the WLS estimator B, which, under these circumstances, is the most efficient
unbiased estimator?3 of g,

Formulas for the sampling variances of B and-B are easily derived.2* The
efficiency of the OLS estimaror relative to the optimal WLS estimator is given by
V(B)/ V(B), and the relative precision of the OLS estimator is the square root
of this ratio, that is, SE(B)/SE(B).

Now suppose that X is uniformly distributed over the interval [x0, axy] ,
where both x, and 4 are positive numbers, so that 4 is the ratio of the largest
to the smallest value of X {and, consequently, of the largest to the smallest o).
The relative precision of the OLS estimator stabilizes quickly as the sample size
grows, and exceeds 90% when g — 2, and 85% when 2 — 3, even when # is as
small as 20. For 4 = 10, the penalty for using OLS is greater, but even here the
relative precision of OLS exceeds 65 % for n > 20,

The validity of statistical inferences based on OLS estimation is even less
sensifive to common patterns of nonconstant error variance, Here, we need to

eIrors is proportional to X, and where X jg uniformly distributed, this ratio is

98% when a = 2; 97% when ¢ — 3; and 93% when g — 10; all for »# > 20.
The results in this section suggest that nonconstant error variance is a

L serious problem only when the magnitude (i.e., the standard deviation) of the

2

* This property of the WIS estimator requires the assumption of normality. Without normal
errors, the WLS estimator is st the most efficient finear unbiased estimator—an extension of the
Gauss-Markov theorem, Sce Exercise 12.5.

4 See Exercise 12.8 for this and other resules described in this section.
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errors varies by more than a factor of about 3—that is, when the largest error
variance is more than about 10 times the smallest.

EXERCISES

122 *Show that the correlation between the least-squares residuals E; and the

12.3

124

dependent-variable values Y, is +/1 — RZ. (Hint: Use the geometric vector

- representation of multiple regression, examining the plane in which the e,

y*, and §* vectors lie.)

Nonconstant variance and specification error: Generate 100 observations
according to the following model:

Y=10+(1xX)+(I1xD)+(2xXxD)+s

where & ~ N(0,10?); the values of X are 1,2,...,50,1,2,...,50; the
first 50 values of D are 0; and the last 50 values of D are 1. Then regress Y
on X alone (i.e., omitting D and XD), Y = A+ BX + E. Plot the residuals
E from this regression against the fitted values Y. Is the variance of the
residuals constant? How do you account for the pattern in the plot?

*Weighted-least-squares estimation: Suppose that the errors from the linear
regression model y = XB + £ are independent and normally distributed,
but with different variances, &; ~ N(0, 67), and that ¢? = o?/w}. Show
that:

(@) The likelihood for the model is
LB, o) = s 59| 50—~ X8 2y~ X))
s Ye (z,n.)n/ZIEIIIZ 2 ‘
where
% =0 x diag{l/w},..., 1/u?} = o2 x W1

() The maximum-likelihood estimators of B and o2 are

~

B = (X'WX) ' X'Wy
52 = 2(E fw;)

n

where e = {E;} =y — XB.
(¢) The MLE is equivalent to minimizing the weighted sum of squares wiE2.
{d) The estimated asymptotic covariance matrix of 8 is given by _

7(B) = 6H(X'WX)™!
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125 *Show that when the covariance matrix of the errors is

12.6

12.7

12.8

3 = o2 x diag{1/w},..., 1/w}} =2 x W
the weighted-least-squares estimator
B = (X'WX)"'X'Wy
=My

is the minimum-variance linear unbiased estimator of B. (Hin#: Adapt the
proof of the Gauss-Markov theorem for OLS estimation given in Sec-
tion 9.3.2.)

*Apply weighted-least-squares estimation to Ornstein’s regression of num-
ber of interlocking directorates on square-root assets, sector, and nation
of control, supposing that the standard deviation of the errors is propor-
tional to the square root of assets. {The OLS regression is reported in
Table 12.1; the data are in ornstein.dat.) How do the results of WLS
estimation compare with those of OLS estimation? With OLS following
the square-root transformation of number of interlocks (also shown in
Table 12.1)?

*Using White’s correction for nonconstant variance, recalculate coefficient
standard errors for Ornstein’s OLS regression of number of interlocking
directorates on square-root assets, sector, and nation of control (given in
Table 12.1). How do the corrected standard-error estimates compare with
those computed by the usual approach?

*The impact of nonconstant error variance on OLS estimation: Suppose
that Y; = @ 4 Bx; + &;, with independent errors, &; ~ N(0, ¢?), and o; =
o,.%;. Let B represent the OLS estimator and 8 the WLS estimator of S.
(@) Show that the sampling variance of the OLS estimator is

— X g?
V(B) = 2 (X )_f_) %
[206 -]
and that the sampling variance of the WLS estimator is
2
V(B) = ==t

Zwiz(xi __X)z

where X = (X w?X)/(Y" w?). (Hint: Write each slope estimator as a linear
function of the Y,.) '

() Now suppose that x is uniformly distributed over the interval [x,, ax,], where
xp > 0 and a > 0, so that z is the ratio of the largest to the smallest o,.
The efficiency of the OLS estimator relative to the optimal WLS estimator
is V(B)/V(B), and the relative precision of the OLS estimator is the square
root of this ratio, that is, SE(B)/SE(B). Calculate the relative precision of the
OLS estimator for all combinations of 4 = 2, 3, 5, 10, and # = 5, 10, 20,
50, 100. For example, when ¢ = 3 and # = 10, you can take the x-values as
1,1.222,1.444,...,2.778, 3. Under what circumstances is the OLS estimator
substantially less precise than the WLS estimator?
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(¢} The usual variance estimate for the OLS slope (assuming constant error vari-

ance) is
2(X; - X)?

where S} = " E2/(n — 2). Kmenta (1986, Section 8.2) shows that the expec-
tation of this variance estimator {(under nonconstant error variance a2} is

D 0. P9 Gt 2o
TG -XR (= 2)[L(X; - XPP

E[V(B)] =

where o2 = ¥ ¢?/n. (*Prove this result.) Kmenta also shows that the true
variance of the OLS slope estimator, V(B) [derived in part (a)], is generally
different from E[V(B)]. If E[V‘(E)]/V(B) is substantially below 1, then the
usual formula for the standard error of B will lead us to believe that the OLS
estimator is more precise than it really is. Calculate \/ E[ V(E)} /V(B) under the
conditions of part {b), for a = 5, 10, 20, 50, and n = 5, 10, 20, 50, 100, What

do you conclude about the robustness of validity of OLS inference with respect
to nonconstant error variance?

12.3 Nonlinearity

The assumption that the average error, E(&), is everywhere 0 implies that
the specified regression surface accurately reflects the dependency of the con-
ditional average value of ¥ on the X’s. Conversely, violating the assumption of
linearity implies that the model fails to capture the systematic pattern of relation-
ship between the dependent and independent variables. The term “nonlinearity,”
therefore, is not used in the narrow sense here, although it includes the possi-
bility that a partial relationship assumed to be linear is, in fact, nonlinear: If,
for example, two independent variables specified to have additive effects instead
interact, then the average error is not 0 for all combinations of X-values.

If nonlinearity, in the broad sense, is slight, then the fitted model can be
a useful approximation even though the regression surface E(Y|X;,...X,) is
not captured precisely. In other instinces, however, the model can be seriously
misleading. _

The regression surface is generally high dimensional, even after account-
ing for regressors (such as dummy variables, interactions, and polynomial terms)
that are functions of a smaller number of fundamental independent variables.2s
As in the case of nonconstant error variance, therefore, it is necessary to focus
on particular patterns of departure from linearity. The graphical diagnostics dis-
cussed In this section are two-dimensional (and three-dimensional) projections
of the (k + 1)-dimensional point cloud of observations {¥;, Xits -y Xin b

* Polynomial regression—for example, the model ¥ = o + 8, X + B, X* + e—is discussed in
Sections 12.4 and 14.2.1. In this simple quadratic model, there are two regressors, but only one
independent variable.
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12.3.1 Partial-Residual Plots

Although it is useful in multiple regression to plot Y against cach X (e.g., in
one row of a scatterplot matrix), these plots often do not tell the whole story—
and can be misleading—because our interest centers on the partial relationship
between Y and each X (controlling for the other X’s), not on the marginal
relationship between Y and an individual X (ignoring the other X7). Residual-
based plots are consequently more promising in the specific context of multiple
regression.

Plotting residuals or studentized residuals against each X, perhaps aug-
mented by a nonparametric-regression smooth, is frequently helpful for detect-
ing departures from linearity. As Figure 12.5 illustrates, however, simple residual
plots cannot distinguish between monotone and nonmonotone nonlinearity. This
distinction is lost in the residual plots because the least-squares fit ensures that
the residuals are linearly uncorrelated with each X. The distinction is impor-
tant because monotone nonlinearity frequently can be “corrected” by simple
transformations.?¢ In Figure 12.5, for example, case (b) might be modeled by
Y = a + BvX + &, while case (4) cannot be linearized by a power transfor-
mation of X, and might instead be dealt with by the quadratic regression,?’
Y=a+8X+8,X" +e.

In contrast to simple residual plots, partial-regression plots, introduced in
the previous chapter for detecting influential data, can reveal nonlinearity and
suggest whether a relationship is monotone. These plots are not always useful
for locating a transformation, however: The partial-regression plot adjusts X,
for the other Xs, but it is the unadjusted X; that is transformed in respecifying
the model. The similarly named partial-residual plots, also called component-
plus-residual plots, are often an effective alternative. Partial-residual plots are
not as suitable as partial-regression plots for revealing leverage and influence.28

Define the partial residual for the jth independent variable as.

In words, add back the linear component of the partial relationship between Y
and X; to the least-squares residuals, which may include an unmodeled nonlin-
ear component. Then plot E/) versus X;. By construction, the multiple-regression
coefficient B, is the slope of the simple linear regression of E() on X, but non-
linearity may be apparent in the plot as well. Again, a nonparametric regression
may help in interpreting the plot. ' .

The partial-residual plots in Figure 12.6 are for a regression of the rated
prestige (P) of 102 Canadian occupations on the average education (S—
“schooling”) in years, average income (I} in dollars, and percentage of women

2 Recall the material in Section 4.3 on linearizing transformations.

*7 Case (b) could, however, be accommodated by a more complex wransformation of X, of the
form Y = a+B(X — y)* +e&. In the illustration, y could be taken as X, and A as 2. More generally,
7 and A could be estimated from the data, for example, by nonlinear least squares {as described in
Section 14.2.3). T shall not pursue this approach here.

»The argument that partial-residual plots are more suitable than partial-regression plots
for diagnosing nonlinearity reflects common experience and advice, but it does not hold in every
instance. See Cook (1996).
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Figure 12.5. The residual plots of E versus X (in the lower panels) are identical, even
though the regression of Y on X in (4) is nonmonotone while that in (b) is monotone.

(W) in the occupations in 1971.2° A nonparametric-regression smooth is shown
on each of the plots. The results of the regression are as follows:

P=—-6.79 +4.195 + 0.00131 — 0.00891W
(3.24) (0.39) (0.00028) (0.0304)

R2=10.80 S§,=7.85

There is apparent monotone nonlinearity in the partial-residual plots for
education [Figure 12.6()] and, much more strongly, income [Figure 12.6(5)];
there is also a small apparent tendency [in Figure 12.6(c)] for occupations with

% This regression was first fit in Section 5.2.2.
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Figure 12.6. Partial-residual plots for the regression of occupational prestige on

() education, (b) income, and (c) percentage of women. The data are for 102
Canadian occupations in 1971. The least-squares line and a nonparametric-regression
smooth are shown on each plot.

intermediate percentages of women to have lower prestige, controlling for ed-
ucation and income, as if occupations with a gender mix pay a small penalty
in prestige. To my eye, the patterns in the partial-residual plots for education
and percentage of women are not easily discernible without the nonparametric-
= regression smooth: The departures from linearity in these plots are not great.

- The nonlinear pattern for income is simple as well as monotone, suggesting
. a power transformation; because the bulge points upward and toward the left,
: we can try to transform prestige #p the ladder of powers and roots or income
down. In multiple regression, we are generally loath to transform Y (as opposed
to an X), because the relationship between Y and every X would be affected—
unless, of course, there is a similar nonlinear pattern to the relationship between
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Y and all of the X’s. Some experimentation indicates that a log transformation
of income straightens its partial relationship to prestige.

The nonlinear pattern for education, in contrast, is monotone {or nearly
monotone) but not simple, making a power transformation of education
unpromising.’® The S-shaped pattern in Figure 12.6(4) can be captured, how-
ever, by a cubic regression in education. The nonlinear pattern for percentage
of women in Figure 12.6(c) is simple but not monotone, suggesting a quadratic
regression rather than a power transformation of percentage of women.

The revised fit is as follows:

P =20.8 +8.78log, I — 0.179W -+ 0.00250W>
(56.9) (1.27) (0.085)  (0.00092)

—29.98 + 2.915 — 0.08075°
(15.3) (1.41)  (0.042)

R*=086 S;=6.72

® The quadratic term for percentage of women is “statistically significant,” but
the partial effect of this independent variable is relatively small, ranging from
a minimum of —3.2 prestige points, for a hypothetical occupation with 32%
women, to a maximum of 7.1 points, for a hypothetical occupation consisting
entirely of women.3!

® The partial effect of education is substantial, in contrast, but the departure from
linearity is not great, except at very low levels of education {and the coefficient
for §% is not quite statistically significant at the 5% level, two tailed). Figure 12.7
traces the partial effect of education on prestige, setting the other two indepen-
dent variables to their average levels, illustrating how a nonlinear relationship
can be presented graphically. The curve plotted in the figure is

P =20.8 4+ 8.78 log, 6798 — 0.179 x 29.0 + 0.00250 x 29.02 [12.4]
—29.98 +2.915% — 0.08075§>

where 6798 and 29.0 are, respectively, the means of income and percentage of
women. The points in the plot are partial residuals from the cubic education fit,
obtained by adding the least-squares residuals to the fitted vatues determined by
Equation 12.4.

® Income also has a large partial effect: Doubling income is associated, on average,
with about a 9-point increment in prestige.

In summary, although the small quadratic effect of percentage of women is
substantively interesting, not much is gained by including percentage of women
in the model. Likewise, little is gained by modeling the effect of education as a
third-degree polynomial, even though the leveling off of prestige at low education
is potentially interesting. The transformation of income, however, is compelling.

3 Because, for most of the data, the “bulge” points down and to the right, the transformation
S -3 §% does help to straighten the regression.

*I These numbers are determined by finding the minimum and maximum of f(W) =
—0.179W + 0.00250W? for 0 < W < 100,
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Figure 12.7. The partial relationship between prestige and education, holding income
and percentage of women at their average levels. The curve shows the cubic fit for
education, The points are partial residuals, obtained by adding the least-squares
residuals to the education fit.

12.3.2 When Do Partial-Residual Plots Work?

Circumstances under which regression plots, including partial-residual
plots, are informative about the structure of data are an active area of statistical
research.> It is unreasonable to expect that lower-dimensional displays can al-
ways uncover structure in a higher-dimensional problem. We may, for example,
discern an interaction between two independent variables in a three-dimensional
scatterplot, but could not in two separate two-dimensional plots, one for each
independent variable.

It is important, therefore, to understand when graphical displays work and
why they sometimes fail: First, understanding the circumstances under which
a plot is effective may help us to produce those circumstances. Second, under-
standing why plots succeed and why they fail may help us to construct more
effective displays. Both of these aspects will be developed below.

To provide a point of departure for this discussion, imagine that the fol-
lowing model accurately describes the data:

Yi=a+f(Xu)+B X+ -+ B Xy + 5 [12.5]

That is, the partial relationship between Y and X, is (potentially) nonlinear,
characterized by the function f(X;), while the other independent variables,
X2y ++ ., X}, enter the model linearly.

We do not know in advance the shape of the function £(X;), and indeed
do not know that the partial relationship between Y and X is nonlinear. Instead

* Much of this work is due to Cook and his colleagues; see, in particular, Cook {1993),
on which the current section is based, and Cook {1994). Cook and Weisberg (1994) provide an
accessible summary.
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of fitting the true model (Equation 12.5) to the data, therefore, we fit the “work-
ing model”:

Yi= o'+ B1 X + By X+ + B X + €

The primes indicate that the estimated coefficients for this model do not, in
general, estimate the parameters of the true model (Equation 12.5), nor is the
“error” of the working model the same as the error of the true model.

Suppose, now, that we construct a partial-residual plot for the working
model. The partial residuals estimate

&) = B X;; + & | [12.6]

What we would really like to estimate, however, is f(X;;)+s;, which, apart from
random error, will tell us the partial relationship between Y and X ;- Cook (1993)

1 . . .
shows that e§ ) = f(X;1) + &;, as desired, under either of two circumstances:

1. The function f(X;) is linear after all, in which case the population analogs of
the partial residuals in Equation 12.6 are appropriately linedrly related to X;.

2. The other independent variables X,,..., X, are cach linearly related to X;.
That is,

E(X”) = ﬂfﬂ_ + Bleil fOl‘ i = 2., ceay k [12.7]

If, in contrast, there are nonlinear relationships between the other X’s and X,
then the partial-residual plot for X; may not reflect the true partial regres-
sion f(X,).3

The second result suggests a practical procedure for improving the chances
that partial-residual plots will provide accurate evidence of nonlinearity: If pos-
sible, transform the independent variables to linearize the relationships among
them. Evidence suggests that weak nonlinearity is not especially problematic,
but strong nonlinear relationships among the independent variables can invali-
date the partial-residual plot as a useful diagnostic display.34

Simple forms of nonlinearity can often be detected in partial-residual
plots. Once detected, nonlinearity can frequently be accommodated
by variable transformations or by altering the form of the model (to
include a quadratic term in an independent variable, for example).-
Partial-residual plots adequately reflect nonlinearity when the inde-
pendent variables are themselves linearly related.

% Notice that each of the other X’ is regressed on X,, not vice versa.
¥ See Exercise 12.12.
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Mallows (1986) has suggested a variation on the partial-residual plot that
sometimes reveals nonlinearity more clearly. [ shall focus on X, but the spirit of
Mallows’s suggestion is to construct a plot for each X in turn. First, construct a
working model with a quadratic term in X, along with the usual linear term:

Y, = + B X +nXi+ B X+ -+ B Xy + €
Then, after fitting the model, form the “augmented” partial residual
A1y v . 2
E;" =E;+ B X;1 + C, X}

Note that B generally differs from the regression coefficient for X, in the origi-
nal model, which does not include the squared term, Finally, plot E) versus X,.

The circumstances under which the augmented partial residuals accurately
capture the true partial-regression function f(X;) are closely analogous to the
linear case {see Cook, 1993); either

1. the function f(X,) is 2 quadratic in X, or
2. the regressions of the other independent variables on X, are quadratic:

E(Xz]) =0 + Bleil + ')’le;zi forj = 2, reay k [12.8]

This is a potentially useful result if we cannot transform away nonlinearity
among the independent variables—as is the case, for example, when the rela-
tionships among the independent variables are not monotone.

The premise of this discussion, expressed in Equation 12.5, is that Y is a
nonlinear function of X, but linearly related to the other X’s. In real applica- :
tions of partial-residual plots, however, it is quite possible that there is more than B
one nonlinear partial relationship, and we typically wish to examine each inde- o
pendent variable in turn. Suppose, for example, that the relationship between Y
and X is linear; that the relationship between Y and X, is nonlinear; and that
X; and X, are correlated. The partial-residual plot for X, can, in this situa-
tion, show apparent nonlinearity—sometimes termed a “leakage” effect. If more
than one partial-residual plot shows evidence of nonlinearity, it may, therefore,
be advisable to refit the model and reconstruct the partial-residual plots after
correcting the most dramatic instance of nonlinearity.3’.

* Exercise 12.9 applies this procedure to the Canadian occupational prestige regression. An
iterative formalization of the procedure provides the basis for nonparametric additive regression
models, discussed in Section 14.4.2.




Diagnosing Nonlinearity and other Ills B 317

CERES Plots*

Cook (1993) provides a still more general procedure, which he calls
CERES (for “Combining conditional Expectations and RESiduals”): Let

Xij = £1(Xi1)

represent the estimated regression of X:on Xy, for j =2,..., k. These regres-
sions may be linear (as in Equation 12.7), quadratic, (as in Equation 12.8), or
they may be nonparametric. Of course, the function £;1(X;) will generally be dif-
ferent for different Xs. Once the regression functions for the other independent
variables are found, form the working model

Vi=o"+BXp+- +BXp+vXn+ -+ vuXu +
The residuals from this model are then combined with the estimates of the ¥’s:
(1 & &
EV = B/ + CpoXp + - + CreXip

and plotted against X;.

D EE——
EXERCISES

129 The partial-residual plot for the Canadian occupational prestige data
showing the most severe nonlinearity is the plot for income (sece Figure
12.6). Reconstruct the three partial-residual plots after transforming in-
come. Do the resulting plots for education and percentage of women
differ substantially from those shown in Figure 12.6(a) and (c)? (The
data are in prestige.dat.)

1210 Apply Mallows’s procedure to construct augmented partial-residual plots
for the Canadian occupational prestige regression. (The data are in
prestige.dat.) *Then apply Cook’s CERES procedure to this regres-
sion. Compare the results of these two procedures with each other and
with the ordinary partial-residual plots shown in Figure 12.6. Do the
more complex procedures give clearer indications of nonlinearity in this
case?

1211 Consider the following alternative analysis of the Canadian occupa-
tional prestige data: Regress prestige on income, education, percentage of
‘women, and on dummy regressors for type of occupation (professional
and managerial, white collar, blue collar); include interactions between
type of occupation and each of income, education, and percentage of
women. Why is it that the interaction between income and type of occu-
pation can induce a nonlinear relationship between prestige and income
when the interaction is ignored? (Hint: Construct a scatterplot of pres-
tige versus income, labeling the points in the plot by occupational type,
and plotting the separate regression line for each occupational type.)
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1212 Experimenting with partial-residual plots: Generate random samples of
100 observations according to each of the following schemes. In each
case, construct the partial-residual plots for X; and X,. Do these plots
accurately capture the partial relationships between Y and each of X,
and X,? Whenever they appear, E and U are N(0, 1) and mdependent of
each other and of the other variables.

(3) Independent Xs and a linear regression: X; and X, independent and uni-
formly distributed on the interval [0, 1}; Y = X; + X, +0.1E.

{b) Linearly related X’s and a linear regression: X; uniformly distributed on the
interval [0, 1; X, = X, +0.1U; Y = X, + X, + 0.1E.

(¢) Independent X’s and a nonlinear regression on one X: X; and X, independent
and uniformly distributed on the interval [0, 1]; Y = 2(X,; —0.5)>+ X, +0.1E.

(d} Linearly related X’s and a nonlinear regression on one X: X, uniformly dis-
tributed on the interval [0, 1]; X, = X, +0.1U; ¥ =2(X, ~0.5)*+X, +0.1E.
(Note the “leakage” here from X, to X,.)

(€) Nonlinearly related X’s and a linear regression: X; uniformly distributed on
the interval [0, 1]; X, ={X; - 0.5|; Y = X, + X, + 0.02F.

{f) Nonlinearly related X’s and a linear regression on one X: X, uniformly dis-
tributed on the interval [0, 1}; X, = |X; —0.5}; ¥ = 2(X, —0.5)*+X,+0.02E.
{(Note how strong a nonlinear relationship between the X’s, and how small
an error variance in the regression, are required for the effects in this example
to be noticeable.)

12.4 Discrefe Data

As explained in Chapter 3, discrete independent and dependent variables
often lead to plots that are difficult to interpret, a problem that can be partially
rectified by “jittering™ the plotted points.3® A discrete dependent variable also vi-
olates the assumption that the errors in a linear model are normally distributed.
This problem, like that of a limited dependent variable (i.e., one that is bounded
below or above), is only serious in extreme cases—for example, when there are
very few response categories, or where a large proportion of the data is in a
small number of catego'ries, conditional on the values of the independent vari-
ables. In these cases, it is best to use statistical models for categorlcal dependent
variables.?”

Discrete independent variables, in contrast, are perfectly consistent with
the general linear model, which makes no distributional assumptions about the
X’s, other than independence between the X’s and the errors. Indeed, because it
partitions the data into groups, a discrete X (or combination of X’s) facilitates
straightforward tests of nonlinearity and nonconstant error variance.

12.4.1 Testing for Nonlinearity (“Lack of Fit")

Recall the data on vocabulary and education collected in the 1989 General
Social Survey.*® Years of education in this dataset range between 0 and 20.

3 See Section 3.2.
¥ See Chapter 15.
3 This dataset is described in Section 3.2.
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TABLE 12.2 Analysis of Variance for Vocabulary-Test Scores, Showing
the Incremental F-Test for Nonlinearity of the Relationship
Between Vocabulary and Education

Source [ df 58 F P
Education
(Model 12.10) 19 1261.7 18.1 <<.0001
Linear
{Model 12.9) 1 1175.1 320.0 <<.0001
Nounlinear
(“lack of fit”) 18 86.58 1.31 17
Error ,
(“pure error™) 948 3472.8
Total 967 4734.5

Suppose that we model the relationship between vocabulary score and education
In tWo ways:
A

1. Fit a linear regression of vocabulary on education:
Y;=a+BX; +s ' [12.9]

2. Model education with a set of dummy regressors. Although there are 21 con-
ceivable education scores, none of the individuals in the sample has 2 years of
education, yielding 20 categories and 19 dummy regressors {treating 0 years of
education as the baseline category):

Y, = o + 7Dy + 73D+ -+ 4 v20D; 5 + i 12.10)

Contrasting the two models produces a test for nonlinearity, because the
model in Equation 12.9, specifying a linear relationship between vocabulary
and education, is a special case of the model given in Equation 12.10, which
can capture gany pattern of relationship between E(Y) and X. The resulting
incremental F-test for nonlinearity appears in Table 12.2. There is, therefore,
very strong evidence of a linear relationship between vocabulary and education,
but little evidence of nonlinearity. '

The incremental F-test for nonlinearity can easily be extended to a discrete
independent variable—say X;—in a multiple-regression model. Here, we need
to contrast the general model:

Yi=a+yiDy+- 4+ Yu1Dj o + B2 X 4 - + B Xip + 5
with the model specifying a linear effect of X:
Yi=a +B1 Xy +BXnp+ - +BXp+s
where Dy, ..., D,,_; are dummy regressors constructed to represent the # dis-
tinct values of Xj.

Another approach to testing for nonlinearity exploits the fact that a poly-
nomial of degree m — 1 can perfectly capture the relationship between Y and a
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discrete X with # categories, regardless of the specific form of this relationship.
We remove one term at a time from the model

Yi = ak BuXi BoX o+ B X e

beginning with X™~1. If the decrement in the regression sum of squares is non-
significant (by an incremental F-test on 1 degree of freedom), then we proceed
to remove X™2, and so on.3’ This approach has the potential advantage of
parsimony, because we may well require more than one term (i.e., a linear rela-
tionship) but fewer than m—1 (i.e., a relationship of arbitrary form). High-degree
polynomials, however, are usually difficult to interpret.*®

12.4.2 Testing for Nonconstant Error Variance

A discrete X (or combination of X’s) partitions the data into m groups {as
in analysis of variance). Let Yj; denote the ith of #; dependent-variable scores in
group j. If the error variance 1s constant across groups then the within-group
sample variances

o Zim (Y =Y

i L
n; 1

should be similar. Tests that examine the SJ,2 directly, such as Bartlett’s (1937)
classic (and commonly employed) test, do not maintain their validity Well when
the distribution of the errors is nonnormal.

Many alternative tests have been proposed. In a large-scale simulation
study, Conover et al. (1981) found that the following simple F-test {called
“Levine’s test”) is both robust and powerful: Calculate the values

Zz] = IY:; - Y)‘!

where 171 is the median dependent-variable value in group j. Then perform a
one-way analysis of variance of the Z;; over the  groups. If the error variance
is not constant across the groups, then the group means Z will tend to differ,
producing a large value of the F-test statistic.*!

For the vocabulary data, for example, where education partitions the 968
observations into m = 20 groups, this test gives Fy = 1.48, with 19 and 948

% As usual, the estimate of error variance in the denominator of these F-tests is taken from
the full model with all #2 — 1 terms. _

4 *There is a further, technical difficulty with this procedure: The several powers of X are
usually highly correlated, sometimes to the point that least-squares calculations break down. A
solution is to orthogonalize the power regréssors prior to fitting the model: Let X?* represent the
residual from the regression (i.e., orthogonal projection} of X* on X; let X* represent the residual
from the regression of X* on X and X*; and so on. The set of regressors X, X%, ..., X" ™ is
orthogonal and spans the same subspace as the original set of powers. Because the new regressors
are orthogonal, it is no longer necessary to fit successively smaller models sequentially; ¢-tests for
the individual terms in the full model provide the same results as sequential incremental F-tests,

1 This test ironically exploits the robustness of the F-test in one-way ANOVA. (The irony lies
in the common use of tests of constant variance as a preliminary to tests of differences in means.)
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degrees of freedom; for which p = .08. There is, therefore, weak evidence of
nonconstant spread in vocabulary across the categories of education.

Discrete independent variables divide the data into groups. A sim-
ple incremental F-test for nonlinearity compares the sum of squares
accounted for by the linear regression of ¥ on X with the sum of
squares accounted for by differences in the group means. Likewise,
tests of nonconstant variance can be based on comparisons of spread
in the different groups.

A
EXERCISE

1213 Recall (from Section 8.2) Moore and Krupat’s analysis of variance of
conformity by authoritarianism and partner’s status. The data are in Table
8.3 and moore.dat.

(a) Treating the three categories of authoritarianism as evenly spaced, fit a model
to the data that incorporates the linear effect of this factor (e.g., coding the
categories as 1, 2, and 3). Include the interaction between authoritarianism
and partner’s status in the model. Compare this model with the standard
two-way ANOVA model to determine whether there is a significant departure
from linearity.

(b) Test for nonconstant variance across the six cells of Moore and Krupat’s
design, :

12.5 Maximum-Likelihood Methods*

A statistically sophisticated approach to selecting a transformation of Y or
an X is to embed the usual linear model in a more general nonlinear model that
contains a parameter for the transformation. If several variables are potentially
to be transformed, or if the transformation is complex, then there may be several
such parameters.*

Suppose that the transformation is indexed by a single parameter A (e.g.,
Y — Y*), and that we can write down the likelihood for the model as a
function of the transformation parameter and the usual regression parame-
ters: L(A, @, By, ..., By, 02). Maximizing the likelihood yields the maximum-
likelihood estimate of A along with the MLEs of the other parameters. Now

* Models of this type are fundamentally nonlineag, and can be treated by the general methods
of Section 14.2.3, as well as by the methods described in the present section.
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suppose that A = Ay represents 7o transformation (e.g., Ay = 1 for the power
transformation Y?*). A likelihood-ratio test, Wald test, or score test of Hy:
A = Ag assesses the evidence that a transformation is required.

A disadvantage of the likelihood-ratio and Wald tests in this context is
that they require finding the MLE, which usually necessitates iteration (i.e., a
repetitive process of successively closer approximations). In contrast, the slope
of the log likelihood at Ag—on which the score test depends—generally can be
assessed or approximated without iteration, and therefore is faster to compute.

Often, the score test can be formulated as the #-statistic for a new regres-
sor, called a constructed variable, to be added to the linear model. A partial-
regression plot for the constructed variable then can reveal whether one or a
small group of observations is unduly influential in determining the transforma-
tion, or, alternatively, whether evidence for the transformation is spread through-
out the data.

12.5.1 Box—Cox Transformation of Y

Box and Cox (1964) have suggested a power transformation of Y with the
object of normalizing the error distribution, stabilizing the error variance, and
straightening the relationship of Y to the X’s.*3 The general Box-Cox model is

YV =+ B X+ + BiXu t+ &
where the errors &; are independently N(0, ¢2), and

A'_.—
Yi}{ ! for A £ 0O

yW
log, Y, forA=0

Note that all of the Y; must be positive.*

For a particular ‘choice of ), the conditional maximized log likelihood is*
n
1Oge L(aa Bl: RRE Bks UglA) = _5(1 + loge 2’17)

n 0 2
— 35 log, G2(A) + (A - 1);10& Y,

where 62(A) = 3_ EZ(A)/n, and where the F;(A) are the residuals from the least-
squares regression of Y on the X’. The least-squares coefficients from this
regression are the maximum-likelihood estimates of o and the B, conditional
on the value of A.

“Subsequent work (Hernandez and Johnson, 1980) suggests that Box and Cox’s method
principally serves to normalize the error distribution.

# Stricily speaking, the requirement that the Y; are positive precludes the possibility that they
are normally distributed (because the normal distribution is unbounded), but this is not a serious
practical difficulty unless many Y-values stack up near 0.

* See Exercise 12.14.
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A simple procedure for finding the maximum-likelihood estimator A, then, -
is to evaluate the maximized log, I (called the “profile log likelihood”) for a
range of values of A, say between —2 and +2. If this range turns out not to
contain the maximum of the log likelihood, then the range can be expanded. To
test Hy: A = 1, calculate the likehhood~rat10 statistic

G§ = —2{log, L(A =1) — log, L(A = })]

which is asymptotically distributed as x> with 1 degree of freedom under H,.
Alternatively (but equivalently), a 95% confidence interval for A includes those
values for which

log, L(A) > log, L(A = A) ~— 1.92

The figure 1.92 comes from 1/2 x x7 o5 = 1/2 x 1.962.

Figure 12.8 shows a plot of the maximized log likelihood against A for
Ornstein’s interlocking-directorate regression. The maximum-likelihood estimate
of A is A = 0.31, and a 95% confidence interval, marked out by the intersection
of the line near the top of the graph with the log likelihood, runs from 0.20
to 0.41.4¢

Atkinson (1985) has proposed an approximate score test for the Box-Cox
model, based on the constructed variable

o= [m3)

where Y is the geometric mean of Y7
Y=(Y;x ¥ x---x Y )

This constructed variable is obtained by a linear approximation to the Box-Cox
transformation Y evaluated at A = 1. The augmented regression, including the
constructed variable, is then

Y—-—Cl! +B1 ;1"‘}"‘ +ﬁ’kX,k+¢G,+8:

The t-test of Hy: ¢ = 0, that is, £, = (ﬁ/gﬁ(d;), assesses the need for a trans-
formation. The quantities ¢ and §E((f>) are obtained from the least-squares re-
gresswn of Y on Xj,..., X, and G. An estimate of A {though not the MLE) is
given by A = 1 — ¢; and the partial- -regression plot for the constructed variable
G shows influence and leverage on &, and hence on the choice of A.

Atkinson’s constructed-variable plot for the interlocking-directorate regres-
sion is shown in Figure 12.9. Although the trend in the plot is not altogether

* Recall that we previously employed a square-root transformation for these data to make
the residual distribution more nearly normal and to stabilize the error variance.
71t is more practical to compute the geometric mean as ¥ = exp[(3_ log, Y;)/#].
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Figure 12.8. Box-Cox transformations for Ornstein’s interlocking-directorate regression.
The maximized log likelihood is plotted against the transformation parameter A. The
intersection of the line near the top of the graph with the log likelihood curve marks off
a 95% confidence interval for A. The maximum of the log likelihood corresponds to the
MLE of A.

linear, it appears that evidence for the transformation of Y is spread through-
out the data and does not depend unduly on a small number of observations.
The coefficient of the constructed variable in the regression is ¢ = 0.585, with
SE(¢) = 0.031, providing very strong evidence of the need to transform Y.
The suggested transformation, A = 1 — 0.585 = 0.415, is close to the MLE (but
just at the boundary of the narrow 95% confidence interval constructed around
the MLE).

Interlocks + 1

1 1 1 1 i
T F T T 13 L]

=50 -25 0 25 50 75
Congtructed Variable

Figure 12.9. Constructed-variable plot for the Box-Cox transformation of Ornstein’s
interlocking-directorate regression. The least-squares line is shown on the plot.




Diagnosing Nonlinearity and other Ills M 325

12.5.2 Box-Tidwell Transformation of the X's

Now, consider the model
Yi=a+ Xy + -+ Xy +

where the errors are independently distributed as g ~ N(0,02), and all of
the X;; are positive. The parameters of this model—ea, Bis-esBhs Yisvos Yoo
and o7—could be estimated by general nonlinear least squares, but Box and
Tidwell (1962) suggest instead a computationally more efficient procedure that
also yields a constructed-variable diagnostic:*3

1. Regress Y on X,,..., X;, obtaining A, B,,..., B,.

2. Regress Y on Xi,...,X, and the constructed variables X, log, Xy, ...,
Xy log, X,, obtaining A", B, ..., By and Dy,..., D,. Because of the presence
of the constructed variables in this second regression, in general A # A’ and
B; # Bi. As in the Box-Cox model, the constructed variables result from a
linear approximation® to X;’ evaluated at y; =1

3. The constructed variable X;log, X; can be used to assess the need for a trans-
formation of X; by testing the nuil hypothesis Hy: 8; = 0, where §; is the
population coefficient of X;log, X; in step 2. Partial-regression plots for the
constructed variables are useful for assessing leverage and influence on the de-
cision to transform the X’s.

4. A preliminary estimate of the transformation parameter v7; (not the MLE) is
given by

F=1+2
].

Recall that B; is from the initial (i.., step 1) regression (not from step 2).

This procedure can be iterated through steps 1, 2, and 4 until the estimates
of the transformation parameters stabilize, yielding the MLEs ;-

For the Canadian occupational prestige data, leaving the regressors for
percentage of women (W and W?) untransformed, the coefficients of Slog, S
(education) and Tlog,I {income) are, respectively, D¢ = 5.30 with SE(Dg) =
2.20, and D; = —0.00243 with SE(D;) = 0.00046. There is, consequently,
much stronger evidence of the need to transform income than education.

The first-step estimates of the transformation parameters are

) Dy 5.30
75—1+B—S—1+Egb2.2

i D, —0.00243
=l g =1t 5o = 091

The fully iterated MLEs of the transformation parameters are ¥¢ = 2.2 and
¥1 = —0.038. Compare these values with the square and log transformarions

* Nonlinear least-squares regression is described in Section 14.2.3.
* See Exercise 12.15.
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Figure 12.10. Constructed-variable plots for the Box-Tidwell transformation of
{a) income and (b) education in the regression of occupational prestige on income,
education, and percentage of women.

discovered following trial and error in Section 12.3.1.°° Constructed-variable
plots for the transformation of education and income, shown in Figure 12.10,
suggest that there is general evidence for these transformations, although there
are some high-leverage in-line observations in the income plot.

A statistically sophisticated general approach. to selecting a transfor-
mation of Y or an X is to embed the linear-regression model in a more
general model that contains a parameter for the transformation. The
Box-Cox procedure selects a power transformation of Y to normalize
the errors. The Box-Tidwell procedure selects power transformations
of the X’s to linearize the regression of Y on the X’. In both cases,
“constructed-variable” plots help us to decide whether individual ob-
servations are unduly influential in determining the transformation

parameters.

12.5.3 Nonconstant Error Variance Revisited
Breusch and Pagan (1979) develop a score test for heteroscedasticity based
on the specification:

ol =V(e)=glvo +11Zy+-+ YoZip)

* Recall from Section 12.3.1 that the power transformation of education is not wholly appro-
priate because the partial relationship between prestige and education did not appesr 1o be simple.
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where Zy,...,Z, are known variables, and where the function g(-) is quite
general (and need not be explicitly specified). The same test was independently
derwed by Cook and Weisberg {1983). The score statistic for the hypothesis that
the o7 are all the same, which is equivalent to Hy: y; = -+ = = ¥ = 0, can be
formulated as an auxiliary-regression problem.

Let U; = E}/62, where 62 = Y E?/n is the MLE of the error variance.5!
The U, are a type of standardlzed squared residual. Regress U on the Z’:

U, =ng+mZs +"‘+77pzip+wi [12.11]
Breusch and Pagan (1979) show that the score statistic

s _ D007

2
is asymptotically distributed as y* with p degrees of freedom under the null
hypothesis of constant error variance. Here, the U, are fitted values from the
regression of U on the Z’, and thus S is half the regression sum of squares
from fitting Equation 12.11.

To apply this resul, it is, of coursc, necessary to select Z’s, the choice of
which depends on the suspected pattern of nonconstant error variance. If several
patterns are suspected, then several score tests can be performed. Employing
X15 vy X in the auxiliary regression (Equation 12.11), for example, permits
detection of a tendency of the error variance to increase with the values of one
or more of the independent variables in the main regression.

Likewise, Cook and Weisberg (1983) suggest regressing U on the fitted
values from the main regression (i.e., fitting the auxiliary regression U; = 4 +
. Y; + @;), producing a 1-degree-of-freedom score test to detect the common
tendency of the error, variance to increase with the level of the dependent vari-
able. When the error variance follows this pattern, the auxiliary regresswn of
U on Y provides a more powerful test than the more general regression of U
on the X’s. A similar, but more complex, procedure is described by Anscombe
(1961), who suggests correctmg detected heteroscedasticity by transforming Y
to YO withX=1-— —nlY

Finally, White (1980) proposes a score test based on a comparison of his
heteroscedasticity-corrected estimator of coefficient sampling variance with the
usual estimator of coefficient variance.>? If the two estimators are sufficiently dif-
ferent, then doubt is cast on the assumption of constant error variance. White’s
test can be implemented as an auxiliary regression of the squared residuals from
the main regression, EZ, on all of the X’s together with all of the squares and
pairwise products of the X’s. Thus, for & = 2 independent variables in the main
regression, we would fit the model

E} = 8y + 6, X; + 8, X2 + 811 X5 + 800 X5% + 81, X1 X,y + v

*1 Note the division by # rather than by # — 1 in 62. See Section 9.3.3.
2 White’s coefficient-variance estimator is described in Section 12.2.3.
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In general, there will be p = k(k + 3)/2 terms in the auxiliary regression, plus
the constant.

The score statistic for testing the null hypothesis of constant error variance
is §§ = nR?, where R? is the squared multiple correlation from the auxiliary
regression. Under the null hypothesis, S5 follows an asymptotic y? distribution
with p degrees of freedom.

Because all of these score tests are potentially sensitive to violations of
model assumptions other than constant error variance, it is important, in prac- :
tice, to supplement the tests with graphical diagnostics, as suggested by Cook
and Weisberg (1983). When there are several Z%, a simple diagnostic is to plot
U; against U, the fitted values from the aux:hary regression. We can also con-
struct partial-regression plots for the Z’ in the auxiliary regression. When U; is
regressed on ¥;, these plots convey essentially the same information as the plot
of studentized residuals against fitted values proposed in Section 12.2. '

Simple score tests are available to determine the need for a transfor-
mation and to test for nonconstant error variance.

Applied to Ornstein’s 1nterlockmg-d1rectorate data, an auxiliary regression
of U on Y yields U = 0.134 + 0.0594Y, and $} = 147.6/2 = 73.8 on 1 degree
of freedom. There is, consequently, very strong evidence that the error vari-
ance increases with the level of the dependent variable. The suggested variance-
stabilizing transformation using Anscombe’s rule is A = 1— (0.0594)(14.58) =
0.57. Compare this value with those produced by the Box-Cox model (A = 0.3,
in Section 12.5.1) and by trial and error (A = 0.5, in Section 12.2).

An auxiliary regression of U on the independent variables in the main
regression yields S7 = 172.6/2 = 86.3 on k = 13 degrees of freedom, and
thus also provides strong evidence against constant error variance. Examination
of the coefficients from the auxiliary regression (not shown here) indicates, in
particular, a tendency of the error variance to increase with assets. The score
statistic for the more general test is not much larger than that for the regression
of U on Y, however, suggesting that the pattern of nonconstant error variance
is indeed for the spread of the errors to increase with the level of Y. Assets
are, of course, an important component of ¥. Because White’s test requires 104
regressors for this problem, it was not performed.

e S
EXERCISES

1214 *Box-Cox transformations of Y: In matrix form, the Box-Cox regression
model given in Section 12.5.1 can be written as

Yy =Xp+e
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() Show that the probability density for the observations is given by

T (VY — B2 |
p(y) = (27]_0_2)”/2 exp| — 1 = HY‘A 1

where x; is the ith row of X. (Hinz: Y1 is the Jacobian of the transformation
from ¥; to &;.)
{b) For a given value of A, the conditional maximum-likelihood estimator of
is the least-squares estimator
bA — (XJX)—leY(A)
(Why?) Show that the maximized log likelihood can be written as

loge L(as Bl: ey Bk: o—.gzlA)

" P e S+ (A— 1) S log. Y,
= 51+ log, 2m) — 5 log, 52(%) + (A 1)Zl§geY,

i=1

as stated in the text.

1215 *Box-Tidwell transformations of the X’s: Recall the Box-Tidwell model
Y=a+pB X'+ -+ B X} + ¢

and focus on the first regressor, X;. Show that the first-order Taylor series
approximation for X" aty, = 1 is

X{' =X+ (y — D)X, log, X,

providing the basis for the constructed variable X log, X,.

12.6 Structural Dimension*

In discussing the use and potential failure of partial-residual plots as a
diagnostic for nonlinearity, I explained that it is unreasonable to expect that a
collection of two- or three-dimensional graphs can, in every instance, adequately
capture the dependence of Y on the Xs: The surface representing this depen-
dence lies, after all, in a space of k + 1 dimensions. Relying primarily on Cook
(1994), I shall now briefly consider the geometric notion of dimension in regres-
sion analysis, along with the implications of this notion for diagnosing problems
with regression models that have been fit to data.’3 The structural dimension of
a regression problem corresponds to the dimensionality of the smallest subspace
of the X’s required to represent the dependency of Y on the X’s.

33 An extended discussion of structural dimension, at a much simpler level than Cook (1994),
may be found in Cook and Weisberg (1994).
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Let us initially suppose that the distribution of Y is-completely independent
of the independent variables Xl, . X;. Then, in Cook and Weisberg’s (1994)
terminology, an “ideal summary” of the data is simply the univariate, uncondi-
tional distribution of Y—represented, say, by the density p(y). In a sample, we
could compute a density estimate, a histogram, or some other univariate display.
In this case, the structural dimension of the data is 0.

Now suppose that Y depends on the X’s only through the regression equa-
tion :

Y=a+B X+ +BX te

where E(e) = 0 and the distribution of the error is independent of the X’s. Then
the expectation of Y conditional on the X’s is a linear function of the X’s:

E(Ylxg, ..., xp) = a+ Byxy + -+ + By

A plot of Y against a+8: X4+ - -+B,X,, therefore, constitutes an ideal summary
of the data. This two-dimensional plot shows the systematic component of Y in
an edge-on view of the regression hyperplane, and also shows the conditional
variation of Y around the hyperplane (i.e., the variation of the errors).

Because the subspace spanned by the linear combination o+ 8(X; +--- +
B X}, is one dimensional, the structural dimension of the data is 1. In a sample,
the ideal summary is a two-dimensional scatterplot of Y; against ¥; = A +
BiX;; + -+ + By X;;; the regression line in this plot is an edge-on view of the
fitted least -squares surface.

The structural dimension of the data can be 1 even if the regression is non-
linear or if the errors are not identically distributed, as long as the expectation
of Y and the distribution of the errors depend only on a single linear combina-
tion of the X’s—that is, a subspace of dimension 1. The structural dimension is
1, for example, if

E(Y|x1,...,xk) =f(a+51x1 + .- +kak) {1212]

and

V(lel, ceesy xk) —_ g(a + lel R kak) [1213]

where the mean function f(-) and the variance function g(-), though generally
different, depend on the same linear function of the X’s. In this case, a plot of Y
against a+ B1X; +- - -+ B X;, is still an ideal summary of the data, showing the
nonlinear dependency of the expectation of Y on the X’s, along with the pattern
of nonconstant error variance.

Similarly, we hope to see these features of the data in a sample plot of Y
against Y from the linear regression of Y on the X’s {even though the linear
regression does not itself capture the dependency of Y on the X’s). It turns out,
however, that the plot of Y against ¥ can fail to reflect the mean and variance
functions accurately if the X’s themselves are not linearly related—even when the
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true structural dimension is 1 (i.e., when Equations 12.12 and 12.13 hold).’*
This, then, is another context in which linearly related independent variables
are desirable.’> Linearly related independent variables are not required here if
the true regression is linear—something that, however, we are typically not in a
position to know prior to examining the data.

The structural dimension of a regression is the dimensionality of the
smallest subspace of the independent variables required, along with
the dependent variable, to represent the dependence of Y on the X’s.
When Y is completely independent of the X’s, the structural dimen-
sion is 0, and an ideal summary of the data is simply the uncondi-
tional distribution of Y. When the linear-regression model holds—or
- when the conditional expectation and variance of Y are a function of
a single linear combination of the X’s—the structural dimension is 1.

The structural dimension of the data exceeds 1 if Equations 12.12 and
12.13 do not both hold. If; for example, the mean function depends on one
linear combination of the X’s:

E(Y|xp, ..., x) = fla+ Byxy + -+ Bypxp)
and the variance function on a different linear combination
V(¥lxg, ..., %) = g(y + 8121 +--- + %)

then the structural dimension is 2.
Correspondingly, if the mean function depends on two different lmear com-
binations of the X’, implying interaction among the X’s,

E(Y|x1,...,x) =f(a+ Byxy + -+ Bpxp, ¥+ 612y + -+ + 8pxp)

while the errors are independent of the X’s, then the structural dimension is
‘also 2. When the structural dimension is 2, a plot of Y against Y (from the
linear regression of Y on the X’) is necessarily incomplete.

%% See Exercise 12.16. _

3 The requirement of linearity here is, in fact, stronger than pairwise linear relationships
among the X’s; The regression of any linear function of the X’s on any set of linear functions of
the X’s must be linear. If the X’s are multivariate normal, then this condition is necessarily satisfied
(although it may be satisfied even if the X’s are not normal). It is not possible to check for linearity in
this strict sense when there are more than two or three X’s, but there is some evidence that checking
pairs—and perhaps triples—of X’s is usually sufficient. See Cook and Weisberg (1994). Cf. Section
12.3.2 for the conditions under which partial-residual plots are informative.
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These observations are interesting, but their practical import—beyond the
advantage of linearly related regressors—is unclear: Short of modeling the re-
gression of Y on the X’s nonparametrically, we can never be sure that we have
captured all of the structure of the data in a lower-dimensional subspace of the
independent variables.

There is, however, a further result that does have direct practical applica-
tion: Suppose that the independent variables are linearly related and that there
is one-dimensional structure. Then the inverse regressions of each of the inde-
pendent variables on the dependent variable have the following character:3¢

E(X;ly) = p; + n;m(y) . - [12.14]
V(X;ly) ~ o7 + n7u(y)

Equation 12.14 has two special features that are useful in checking whether
one-dimensional structure is reasonable for a set of data:*’

1. Most important, the functions m(-) and v(-), through which the means and
variances of the X’s depend on Y, are the same for all of the X’s. Consequently,
if the scatterplot of X, against ¥ shows a linear relationship, for example,
then the scartterplots of each of X,,..., X, against Y must also show linear
relationships. If one of these relationships is quadratic, in contrast, then the
others must be quadraric. Likewise, if the variance of X, increases linearly with
the level of Y, then the variances of the other X’s must also be linearly related
to Y. There is only one exception: The constant #; can be 0, in which case the
mean and variance of the corresponding X; are unrelated to Y.

2. The constant 7, appears in the formula for the conditional mean of X, and nf
in the formula for its conditional variance, placing constraints on the patterns
of these relationships. If, for example, the mean of X, is unrelated to Y, then
s0 should the variance.

The sample inverse regressions of the X’ on Y can be conveniently exam-
ined in the first column of the scatterplot matrix for {Y, X;, ..., X,}.58

If the structural dimension is 1, and if the independent variables are
linearly related to one another, then the inverse regressions of the
independent variables on the dependent variable all have the same
general form.

5 See Exercise 12.17 for illustrative applications.

*”Equation 12.14 is the basis for formal dimension-testing methods, such as sliced inverse
regression {Duan and Li, 1991) and related techniques. See Cook and Weisberg (1994) for an intro-
ductory treatment of dimension testing and for additional references.

38 See, for example, Figure 3.15.
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EXERCISES

1216 Experimenting with structural dimension: Generate random samples of

12.17

‘100 observations according to each of the following schemes. In each

case, fit the linear regression of Y on X; and X,, and plot the values of
Y against the resulting fitted values Y. Do these plots accurately capture
the dependence of Y on X; and X, ? To decide this question in each case,
it may help (1} to draw graphs of E(Y|xy, x5} = f (e + B1x; + B2x;) and
V(Y|xq, x,) = g + By x; + B ) over the observed range of values for
a + B1Xq + B2X5; and (2) to plot a nonparametric-regression smooth in
the plot of Y against Y. Whenever they appear, E and U are N(0,1) and
independent of each other and of the other variables.

(2) Independent X’s, a linear regression and constant error variance: X, and X,
independent and uniformly distributed on the interval [0, 1]; E(Y]xy, x,) =
x1 + x5 V(Y|%y, x,) = 0.1E.

(B) Independent X’s, mean and variance of Y dependent on the same linear func-
tion of the X’s: X, and X, independent and. uniformly distributed on the in-
terval [0, 1}; E(Y)x,, x,) = (3 4%, ~1)%; V(¥ [xq, %) = 0.1x |x;4+x, — 1| x E.

(¢} Linearly related X’s, mean and variance of Y dependent on the same linear
function of the X’s: X; uniformly distributed on the interval [0, 1]; X, =
.X1 +0.1U; E(Y!xl, xz.) = (x1 +x2 — 1)2; V(lel, xz) = 0.1 X le +x2 —1I X E.

(d) Nonlinearly related X’, mean and variance of ¥ dependent on the same linear
function of the X’: X; uniformly distributed on the interval [0,1}; X, =
[X;—0.5); E(Y}xy, %) = (%1 + %, — 1)%; V(Yx;, %) = 0.1x |2 + 2, ~ 1 x E.

Dimension checking: Apply the dimension-checking conditions
E(X;|y) = j + nym(y)
V(X;ly) = of + n7v(y)

to each of the following regression analyses. In each case, construct the
scatterplot matrix for the independent variables and the dependent vari-
able. If the independent variables do not appear to be linearly related,
attempt to make their relationship more nearly linear by transforming
one or more of the X’s. Then examine the column of the scatterplot ma-
trix that shows the relationship of each X to Y. Are these relationships
qualitatively similar, as required for one-dimensional structure?

(a) Duncan’s regression of prestige on income and education, for 45 U.S. occu-
pations {Table 3.2 and duncan.dat).

(b} The regression of prestige on income, education, and percentage of women,
for the Canadian occupational prestige data (prestige.dat).

(¢} Angell’s regression of moral integration on’ ethnic heterogeneity and geo-
graphic mobility, for 43 U.S. cities (Table 2.3 and angell.dat).
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(d) Anscombe’s regression of state education expenditures on per-capita income,
proportion under 18 years of age, and proportion urban (Table 5.1 and
anscombe.dat),

12.7 Summary |

¢ Heavy-tailed errors threaten the efficiency of least-squares estimation; skewed
and multimodal errors compromise the interpretation of the least-squares fit,
Nonnormality can often be detected by examining the distribution of the least-
squares residuals, and frequently can be corrected by transforming the data.

¢ Itis common for the variance of the errors to increase with the level of the depen-
dent variable. This pattern of nonconstant error variance (“heteroscedastlary”)
can often be detected in a plot of residuals against fitted values. Strategies for
dealing with nonconstant error variance include transformation of the depen-
dent variable to stabilize the variance; the substitution of weighted-least-squares
estimation for ordinary least squares; and the correction of coefficient standard
errors for heteroscedasticity. A rough rule is that nonconstant error variance se-
riously degrades the least-squares estimator only when the ratio of the largest to
smallest variance is about 10 or more.

¢ Simple forms of nonlinearity can often be detected in partial-residual plots. Once
detected, nonlinearity can frequently be accommodated by variable transforma-
tions or by altering the form of the model (to include a quadratic term in an
independent variable, for example). Partial-residual plots adequately reflect non-
linearity when the independent variables are themselves linearly related. More
complex versions of these displays, such as augmented partial-residual plots and

- CERES plots, are more robust. :

* Discrete independent variables divide the data into groups. A simple incremental
F-test for nonlinearity compares the sum of squares accounted for by the linear
regression of Y on X with the sum of squares accounted for by differences
in the group means. Likewise, tests of nonconstant variance can be based on
comparisons of spread in the different groups. '

* A statistically sophisticated general approach to selecting a transformation of ¥
or an X is to embed the linear-regression model in a more general model that
contains a parameter for the transformation. The Box-Cox procedure selects a
power transformation of Y to normalize the errors. The Box-Tidwell procedure
selects power transformations of the X’s to linearize the regression of Y on
the X’s. In both cases, “constructed-variable” plots help us to decide whether
individual observations are unduly influential in determining the transformation
parameters.

® Simple score tests are available to determine the need for a transformation and
to test for nonconstant error variance.

* The structural dimension of a regression is the dimensionality of the smallest sub-
space of the independent variables required, along with the dependent variable,
to represent the dependence of Y on the X’s. When Y is completely indepen-
dent of the X’s, the structural dimension is 0, and an ideal summary of the data
is simply the unconditional distribution of Y. When the linear-regression model
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holds—or when the conditional expectation and variance of Y are ‘a function
of a.single linear combination of the X’s——the structural dimension is 1. If the
structural dimension is 1, and if the independent variables are linearly related
to one another, then the inverse regressions of the independent variables on the
dependent variable all have the same general form.

e
EXERCISES

1218 Use the methods of this chapter to check for nonnormality, nonconstant
error variance, and nonlinearity in each of the following regressions. In
each case, attempt to correct any problems that are detected. Because
many different methods are discussed in this chapter, you might find the
following strategy useful: Use relatively simple diagnostics to check for
problems and more sophisticated methods to follow up. To check for
nonnormality, construct a quantile comparison plot and a histogram of
the studentized residuals; to check for nonconstant error variance, plot
studentized residuals against fitted values; to check for nonlinearity, ex-

" amine partial-residual plots.

(a) Angell’s regression of moral integration of U.S. cities on ethnic heterogeneity
and geographic mobility {Table 2.3 and angell.dat).

(b} Anscombe’s regression of state education expenditures on income; proportion
under 18, and proportion urban (Table 5.1 and anscombe.dat).

1219 Using Leinhardt and Wasserman’s data on national infant mortality rates
(given in leinhard.dat), regress infant mortality on income and dummy
regressors for region. Using the methods of this chapter and the previ-
ous one, check the adequacy of the model and attempt to correct any
problems that you find.

12.8 Recommended Reading

Methods for diagnosing problems in regression analysis and for visualizing
regression data are an active area of research in statistics. The following texts
sumnarize the current state of the art and include extensive references to the
journal literature.

® Cook and Weisberg (1994} present a lucid and accessible treatment of many
of the topics discussed in this chapter. They also describe a computer program,
written in Lisp-Stat, that implements the graphical methods presented in their

~ book (and much more). A copy of the program, called R-Code, and many pro-
grammed demonstrations, are included with the book.

e Cleveland (1993) describes novel graphical methods for regression data, includ-
ing two-dimensional, three-dimensional, and higher-dimensional displays.
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® Atkinson (1985) has written an interesting, if somewhat idiosynératic, book
which stresses the author’s important contributions to regression diagnostics.
There is, therefore, an emphasis on diagnostics that yield constructed-variable
plots. This text includes a strong treatment of transformations, and a discussion
of the extension of least-squares diagnostics to generalized linear models (e.g.,
logistic regression, as described in Chapter 15).




Collinearity and Its
Purported Remedies

As I have explained,! when there is a perfect linear relationship among the re-
gressors in a linear model, the least-squares coefficients are not uniquely de-
fined. A strong, but less-than-perfect, linear relationship among the X’s causes
the least-squares coefficients to be unstable: Coefficient standard errors are large,
reflecting the imprecision of estimation of the B’s; consequently, confidence in-
tervals for the B’s are broad. Small changes in the data—even, in extreme cases,
due to rounding errors—can substantially alter the least-squares coefficients; and
relatively large changes in the coefficients from the least-squares values hardly
increase the sum of squared residuals from its minimum (i.e., the least-squares
coefficients are not sharply. defined).

This chapter describes methods for detecting collinearity and techniques
that are often employed for dealing with collinearity when it is present. I need
to make three important points at the outset, however:

1. Except in certain specific contexts—such as time series regression?——collinearity
is a comparatively rare problem in social science applications of linear models:
Insufficient variation in independent variables, small samples, and large error
variance (i.e., weak relationships} are much more frequently the source of im-
precision in estimation.

2. Methods that are commonly employed as cures for collinearity—in particular,
biased estimation and variable selection—can easily be worse than the disease.

1See Sections 5.2 and 9.2.
2 See Section 14.1.

337
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A principal goal of this chapter is to explain the substantial limitations of this
statistical snake oil.

It is not at all obvious that the detectlon of collinearity in data has practical
implications. There are, as mentioned in point 1, several sources of imprecision
in estimation, which can augment or partially offset each other. The standard
errors of the regression estimates are the bottom line: If these estimates are
sufficiently precise, then the degree of collinearity is itrelevant; if the estimates
are insufficiently precise, then knowing that the culprit is collinearity is of use
only if the study can be redesigned to decrease the correlations among the X’s.
In observational studies, where the X’s are sampled along with ¥, it is usually
impossible to influence their correlational structure, but it may very well be
possible to increase the precision of estimation by increasing the sample size or
by decreasing the error variance.?

13.1 Detecting Collinearity

We have encountered the notion of collinearity at several points, and it is
therefore useful to summarize what we know:

® When there is a perfect linear relationship among the X’s,

N [ ]

X+ aXp+-+aXy =c

1. the least-squares normal equations do not have a unique solution; and
2. the sampling variances of the regression coefficients are infinite.

*Points 1 and 2 follow from the observation that the matrix X’X of sums of
squares and products is singular. Moreover, because the columns of X are per-
fectly collinear, the regressor subspace is of deficient dimension.

Perfect collinearity is usually the product of some error in formulating the
linear model, such as failing to employ a baseline category in dummy regression.

When collinearity is less than perfect:

1. The sampling variance of the least-squares slope coefficient B; is

2
1 oy

2% = D)$?

V(B) = -

where R} is the squared multiple correlation for the regression of X;
on the other X’s, and 87 = 3 (X; — X;)?/(n — 1) is the variance of
X;. The term 1/(1 — RZ), called the variance inflation factor (VIF), di-
rectly and stralghtforwardly indicates the u‘npact of collinearity on the
precision of the estimate B;. Because the precision of estimation of ;
is most naturally expressed as the width of the confidence interval for
this parameter, and because the width of the confidence interval is pro-
portional to the standard error of B; {not its variance), I recommend
examining the square root of the VIF in preference to the VIF itself.

3 The error variance can sometimes be decreased by improving the procedures of the study or
by introducing additional independent variables. The latter remedy may, however, increase collinear-
ity, and may change the nature of the research. It may be possible, in some contexts, to increase
precision by increasing the variation of the X’s, but only if their values are under the control of the
researcher, in which case collinearity could also be reduced. Sometimes, however, researchers may be
able to exert indirect control over the variational and correlational structure of the X’s by selecting
a research setting judiciously or by designing an advantageous sampling procedure.
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VIF,

Figure 13.1. Precision of estimation {square root of the variance inflation. factor} of
B; as a function of the multiple correlation between X; and the other independent
variables. It is not until the multiple correlation gets very large that the precision of
estimation is seriously degraded.

Figure 13.1 reveals that the linear relationship among the X’s must be
very strong before collinearity seriously impairs the precision of esti-
mation: It is not until R; approaches .9 that the precision of estimation
is halved.

Because of its simplicity and direct interpretation, the VIF (or
its square root) is the principal diagnostic for collinearity. It is not,
however, applicable to sets of related regressors, such as sets of dummy-
variable coefficients, or coefficients for polynomial regressors.*

When X, is strongly collinear with the other regressors, the residuals
XM from the regression of X; on X,,..., X, show little variation—
most of the variation in X, is accounted for by its regression on the
other X’s. The partial-regression plot graphs the residuals from the re-
gression of Y on Xy, ..., X, against X, converting the multiple re-
gression into a simple regression.’ Because the independent variable in
this plot, X1, is nearly invariant, the slope B is subject to substantial
sampling variation.

*Confidence intervals for individual regression coefficients are projec-
tions. of the confidence interval generating ellipse. Because this ellipse

_is the inverse—that is, the rescaled, 90° rotation—of the data ellipse

for the independent variables, the individual confidence intervals for
the coefficients are wide, If the correlations among the X’s are positive,
however, then there is substantial information in the data about the
sum of the regression coefficients, if not about individual coefficients.”

4 Section 13.1.2 describes a generalization of variance inflation to sets of related regressors.
S More precisely, the multiple regression is converted into a sequence of simple regressions,
for each X in turn. Partial-regression plots are discussed in Section 11.6.
€ See Stine (1995) for a nice graphical interpretation of this point.
-7 See Section 9.4,
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\

When the regressors in a linear model are perfectly collinear, the
least-squares coefficients are not unique. Strong, but less-than-perfect,
collinearity substantially increases the sampling variances of the least-
squares coefficients and can render them useless as estimators. The
variance inflation factor VIF; = 1/(1 — er) indicates the deleterious
impact of collinearity on the precision of the estimate B;.

Figures 13.2 and 13.3 provide further insight into collinearity, illustrating
its effect on estimation when there are two independent variables in a regression.

@ () Altemative
least-squares
planes

X;

Figure 13.2, The impact of collinearity on the stability of the least-squares regression
plane. In (), the correlation between X; and X, is small, and the regression plane
therefore has a broad base of support. In (b), X; and X, are perfectly correlated; the
least-squares plane is not uniquely defined. In (¢), there is a strong, but less-than-perfect,
linear relationship between X and X,; the least-squares plane is uniquely defined, but it
is not well supported by the dara.
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The black and gray dots in Figure 13.2 represent the data points {the gray dots
are below the regression plane), while the white dots represent firted values lying
in the regression plane; the +’s show the projection of the data points onto the
X1, X, plane. Figure 13.3 shows the sum of squared residuals as a function of
the slope coefficients By and B,. The residual sum of squares is at a minimum,

(2) (b

Figure 13.3. The residual sum of squares as a function of the slope coefficients B; and -
B,. In each graph, the vertical axis is scaled so that the least-squares value of RSS is
at the bottom of the axis. When, as in (), the correlation between the independent
variables X, and X, is small, the residual sum of squares has a well-defined minimum,
much like a deep bowl. When there is a perfect linear relationship between X, and X,,
as in (b), the residual sum of squares is flat at its minimum, above a line in the By, By
plane: The least-squares values of B; and B, are not unique. When, as in (c), there is
a strong, but less-than-perfect, linear relationship between X, and X,, the residual
sum of squares is nearly flat at its minimum, so values of B, and B, quite different
from the least-squares values are associated with residual sums of squares near the
minimum. '
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of course, when the B’s are equal to the least-squares estimates; the vertical axis
is scaled so that the minimum is at the “floor” of the figures.®

In Figure 13.2{a), the correlation between the independent variables X,
and X, is slight, as indicated by the broad scatter of points in the X;, X, plane.
The least-squares regression plane, also shown in this figure, therefore has a firm
base of support. Correspondingly, Figure 13.3(4) shows that small changes in
the regression coefficients ‘are associated with relatively large increases in the
residual sum of squares—the sum-of-squares function is like a deep bowl, with
steep sides and a well-defined minimum.

In Figure 13.2(b), X; and X, are perfectly collinear Because the
independent-variable observations form a line in the X;, X, plane, the least-
squares regression plane, in effect, also reduces to a line. The plane can tip
about this line without changing the residual sum of squares, as Figure 13.3(5)
reveals: The sum-of-squares function is flat at its minimum along a line defining
pairs of values for B; and B,—rather like a sheet of paper with two corners
raised—and thus there are an infinite number of pairs of coefficients (B, B,)
that yield the minimum RSS.

Finally, in Figure 13.2(c), the linear relationship between X; and X, is

“strong, though not perfect. The support afforded to the least-squares plane is
tenuous, so that the plane can be tipped without causing large increases in the
residual sum of squares, as is apparent in Figure 13.3{(c)—the sum-of-squares
function is like a shallow bowl with a poorly defined minimum.

Consider the regression analysis reported in Table 13.1, from data pre-
sented by Ericksen et al. (1989).° The object here was to develop a prediction
equation to improve estimates of the 1980 U.S. Census undercount. It is well es-
tablished that the census fails to count all residents of the country, and that the
likelihood of being missed is greater for certain categories of individuals, such as
nonwhites, the poor, and residents of large cities. The dependent variable in the
regression is a preliminary estimate of the undercount for each of 66 areas into
which the authors divided the country. The 66 areas include 16 large cities, the
remaining portions of the 16 states in which the cities are located, and the other
34 states. The preliminary estimates are regressed on eight predlctors thought to
influence the undercount:

. the percentage black or Hispanic (“Minority” in Table 13.1);
. the rate of serious crimes per 1000 population (“Crime”);

the percentage poor {“Poverty”™);

the percentage having difficulty speaking or writing English {“Language”);

the percentage aged 25 or older who have not finished high school {(“High
School”);

the percentage of housing in small, multiunit buildings (“Housing™);

A

N

a dummy variable coded 1 for cities, 0 for states or state remainders (“City”);
and

¥ For each pair of slopes B; and B,, the intercept A is chosen to make the residual sum of
squares as small as possible,

?The authors employed a weighted-least-squares regression {see Section 12.2.2) to take ac-
count of differences in precision of initial estimates of the undercount in the 66 areas. The resules
reported here, in contrast, are for an ordinary-least-squares regression.
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TABLE 13.1 Regression of Estimated 1980 U.S. Census Undercount
on Area Characteristics, for 66 Central Cities, State
Remainders, and States

Predictor Coefficient Standard Error ~VIF
Constant : -1.77 1.38 —
Minority 0.0798 0.0226 2.24
Crime 0.0301 . 0.0130 1.83
Poverty —0.178 0.0849 2.15
Language 0.215 0.0922 1.28
High school 0.0613 0.0448 2.15
Housing —0.0350 0.0246 1.37
City 1.16 0.77 : 1.88
Conventional 0.0370 0.0093 1.30
R? 708

Sowurce of Data: Ericksen et al. {1989).

8. the percentage of households counted by “conventional” personal enumeration,
as opposed to mail-back questionnaire with follow-ups (“Conventional”).

Correlations among the eight predictors appear in Table 13.2. Although
some of the pairwise correlations are fairly large—the biggest are about .75—
none is close to 1. It is apparent from the square-root VIFs shown in Table 13.1,
however, that the precision of several of the regression estimates—in particular,
the coefficients for Minority, Poverty, and High School—suffer from moderate
collinearity, This result illustrates that collinearity in multiple regression is not
restricted to pairwise relationships between regressors; sometimes the term mul-
ticollinearity is employed to emphasize this point.

13.1.1 Principal Components*

The method of principal components, developed in the early part of the
20th century by K. Pearson and H. Hotelling, provides a useful representation
of the correlational structure of a set of variables. I shall develop the method
briefly here, with particular reference to its application to collinearity in re-
gression; more complete accounts can be obtained from texts on multivariate

TABLE 13.2 Correlations Among Eight Predictors of the 1980 U.S. Census

Undercount
High
Predictor Minority Crime Poverty Language School Housing  City
Crime 635
Poverty .738 369
Language 395 512 152
High school 535 067 751 -.11¢
Housing 357 532 335 340 235
City 758 729 538 480 315 566
Conventional | —.334  —233 —.157 -108  —414 —.086  -.269
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statistics {e.g., Morrison, 1976, Chapter 8). Because the material in this section
is relatively complex, the section includes a2 summary; you may, on first reading,
wish to pass lightly over most of the section and refer primarily to the summary,
and to the two-variable case, which is treated immediately prior to the surnrnary.
" We begin with the vectors of standardized regressors, z;, z,, .. . Be-
cause vectors have length eqgual to the square root of their sum of squared el
- ements, each z; has length +# — 1. As we shall see, the principal components
Wi, Wosurns Wp provide an orthogonal basis for the regressor subspace.!® The
first principal component, Wy, is oriented so as to account for maximum collec-
tive variation in the z;; the second principal component, w,, is orthogonal to w1,
and——under this restriction of orthogonality—is oriented to account for maxi-
mum remaining variation in the z;; the third component, wj, is orthogonal to
wy and w,; and so on. Each principal component is scaled so that its variance
is equal to the combined regressor variance for which it accounts.

There are as many principal components as there are linearly independent
regressors: p = rank(zy), where zy = [z4,2,,...,2z;]. Although the method of
principal components is more general, I shall assume throughout most of this
discussion that the regressors are not perfectly collinear and, consequently, that
P = k.

Because the principal components lie in the regressor subspace, each is a
linear combination of the regressors. Thus, the first principal component can be
written as

Wy = Az +Ann + -+ Apz
(nx1)
= Zx a
(nxk)kx1)

The variance of the first component is

1 1
2, = e W = —
Sw, X = o

! ! !
1 1 a;ZyZya; = a;Ryxa;

where Ryy =[1/(n — 1)]Z ZX is the correlanon matrix of the regressors.

We want to maximize SW , but, to make maximization meaningful, i
is necessary to constrain the coefficients a;. In the absence of a constraint, SW
can be made arbitrarily large simply by picking large coefficients. The normaliz-

ing constraint

aja; =1 [13.1]

proves convenient, but any constraint of this general form would do.!!

“It'is also possible ro find principal components of the unstandardized regressors x,,
X3, ..+ Xy, but these are not generally interpretable uniess all of the X’s are measured on the same
scale.

" Normalizing the coefficients so that aja, = 1 causes the variance of the first principal
component to be equal to the combined variance of the standardized regressors accounted for by
this component, as will become clear presently.




Collinearity and Its Purported Remedies M 345

We can maximize S%V, subject to the restriction of Equation 13.1 by em-
ploying a Lagrange multiplier L, defining!?

Fy = ajRyxay — Ly(aja; — 1)

Then, differentiating this equation with respect to a; and L ,

(?Fl o
2R - 2L
day “Xxa1 121
oF;

T, —(aja; — 1)

Setting the partial derivatives to 0 produces the equations

(RXX - Lllk)al =0 [13.2}

aja; =1

The first formula in Equation 13.2 has nontrivial solutions for a; only when
(Rxx—L,I;) is singular—that is, when |Ryx—L{I;| = 0. The multiplier L;, there-
fore, is an eigenvalue of Ryy, and a, is the corresponding eigenvector, scaled so
that aja; = 1. ,

There are, however, k solutions to Equation 13.2, corresponding to the
k eigenvalue-cigenvector pairs of Ryy, so we must decide which solution to
choose. From the first formula in Equation 13.2, we have Ryya; = La;.
Consequently, '

2 ! r :
SWI = alRXXal = L13131 = L'f.

Because our purpose is to maximize S%(;,1 {subject to the constraint on a;), we
must select the largest eigenvalue of Ryy to define the first principal component.

The second principal component is derived similarly, under the further re-
striction that it is orthogonal to the first; the third that it is orthogonal to the
first two; and so on.!® It turns out that the second principal component cor-
responds to the second-largest eigenvalue of Ryy, the third to the third-largest
eigenvalue, and so forth. We order the eigenvalues of Ryy so that!4

LlaLzzZLk}“'O

12 See Appendix C, Section C.2, for an explanation of the method of Lagrange multipliers for
constrained optimization.

3 See Exercise 13.1.

4 Recall that we are assuming that Ryy is of full rank, and hence none of its eigenvalues
is 0. Tt is possible, but unlikely, that two or more eigenvalues of Ryy are equal. In this event,
the orientation of the principal components corresponding to the equal eigenvalues is not unique,
although the subspace spanned by these components—and for which they constitute a basis—is
unique. :
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The matrix of principal-component coefficients

A =[aja,...,23]
(kxk)

contains normalized eigenvectors of Ryy. This matrix is, therefore, orthonormal:
A'A =AA' =1,.
The principal components

W =Zy A - [13.3]
(nxk) (nxk)(kxk)

have covariance matrix

1 2 1 i 44
—W'W = ——AZyZyA

= A’RxxA == A’AL — L
where L = diag[L;, L, ..., L] is the matrix of eigenvalues of Ryy; the covari-

: ance matrix W of the principal components is, therefore, orthogonal, as required.
Furthermore,

k
trace(L) = ZLI = fp o= !IaCC(RX}()
=1

and thus the principal components partition the combined variance of the stan-
dardized variables Z,, Z,, ..., Z,.
Solving Equation 13.3 for Zy produces

Zy =WA™! = wa’

and, consequently,

1 ’ . 1 r b AT
— ZiZyx = ——AW'WA' = ALA

RXX = n
Finally,
Rk = (A 'L71A1 = AL A’ [13.4]

We shall use this result presently in our investigation of collinearity.




Collinearity and Its Purported Remedies B 347

w2

Figure 13.4. Vector geometry of principal components for two, positively correlated,
standardized variables z; and z,.

Two Variables

The vector geometry of principal components is illustrated for two
variables in Figure 13.4. The symmetry of this figure is peculiar to the two-
dimensional case. The length of each principal-component vector is the square
root of the sum of squared orthogonal projections of z; and z, on the compo-
nent. The direction of w, is chosen to maximize the combined length of these
projections, and hence to maximize the length of wy. Because the subspace
spanned by z, and z, is two dimensional, w;, is simply chosen to be orthogonal
to wy. Note that® [lw;|> = L;(n —1). -

It is clear from the ﬁgure that ‘as the correlation between Z; and Z, in-
creases, the first principal component grows at the expense of the second; thus,
L, gets larger and L, smaller. If, alternatively, z; and z, are orthogonal, then
[will = [[woll = v —1,and Ly = Ly = 1.

The algebra of the two-variable case is also particularly simple. The eigen-
values of Ryy are the solutions of the characteristic equation

1—-L 12

12 1-L =0

that is,

! (A—LY -, =L"-2L+1-+,=0

5 There is a small subtlety here: The subspace spanned by each component is one dimen-
sional, and the length of each component is fixed by the corresponding eigenvalue, but these factors
determine the orientation of the component only up to a rotation of 180°—that is, a change in sign.

o
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Using the quadratic formula to find the roots of the characteristic equation yields

Ly=1+/7, | [13.5]

Lzz:l'— 1’%2

And so, consistent with the geometry of Figure 13.4, as the magnitude of the
correlation between the two variables increases; the variation attributed to the
first principal component also grows. If ry, is positive, then solving for A from
the relation Ry yA = LA under the restriction A’A =1, gives!¢

V22
2 7
A= |
' V22
2 2

The generalization to k standardized regressors is straightforward: If the
variables are orthogonal, then all L; =1 and all ”Wi | = vn~1. As collinear-
ities among the variables increase, some eigenvalues become large while others
grow small. Small eigenvalues and the corresponding short principal components
represent dimensions along which the regressor subspace has {nearly) collapsed.
Perfect collinearities are associated with eigenvalues of 0.

The Data Ellipsoid

The principal components have an interesting interpretation in terms of the
standard data ellipsoid for the Z’.17 The data ellipsoid is given by the equation

ZRyyz =1

where z = (Z,,...,Z;) is a vector of values for the k standardized regressors.
Because the variables are standardized, the data ellipsoid is centered at the origin,
and the shadow of the ellipsoid on each axis is of length 2 (i.e., 2 standard
deviations). It can be shown that the principal components correspond to the
principal axes of the data ellipsoid, and, further, that the half-length of each
axis is equal to the square root of the corresponding eigenvalue!® L, of Ryy.
These properties are depicted in Figure 13.5 for k = 2. When the variables
are uncorrelated, the data eilipse becomes circular, and each axis has a half-

length of 1.

' Exercise 13.2 derives the solution for r,, < 0.

7 The standard data ellipsoid was introduced in Section 9.4.

'® See Exercise 13.3. These relations also hold for wnstandardized variables. That is, the prin-
cipal components calculated from the covariance matrix S, give the principal axes of the standard
data ellipsoid (x —X)'Sz(x—X); and the half-length of the jth principal axis of this ellipsoid is equal
to the square root of the jth eigenvalue of Syy. :
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Figure 13.5. The principal components are the principal axes of the standard data
ellipse ZR3%z = 1. The first eigenvalue L, of Ryy gives the half-length of the major
axis of the ellipse; the second eigenvalue L, gives the half-length of the minor axis. In
this illustration, the two variables are highly correlated, so L, is large and L, is small.

Summary

® The principal components of the k standardized regressors Zy are a new set of
k variables derived from Zy by a linear transformation: W = Zy A, where A is
the (k x k) transformation matrix.

e The transformation A is selected so that the columns of W are orthogoual—that
is, the principal components are uncorrelated. In addition, A is constructed so
that the first component accounts for maximum variance in the Z’; the second
for maximum variance under the constraint that it is orthogonal to the first; and
so on. Each principal component is scaled so that its variance is équal to the
variance in the Z’ for which it accounts. The principal components therefore
partition the variance of the Z’.

® The transformation matrix A contains (by columns) normalized eigenvectors of
Ryy, the correlation matrix of the regressors. The columns of A are ordered
by their corresponding eigenvalues: The first column corresponds to the largest
eigenvalue, and the last column to the smallest. The eigenvalue L; associated
with the jth component represents the variance attributable to that component.

® If there are perfect collinearities in Zy, then some eigenvalues of Ryx will be 0,
and there will be fewer than k principal components, the number of components
corresponding to rank(Zy ) = rank(Ryy). Near collinearities are associated with
small eigenvalues and correspondingly short principal components.
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Principal components can be used to explicate the correlational struc-
ture of the independent variables in regression. The principal compo-
nents are a derived set of variables that form an orthogonal basis
for the subspace of the standardized X’s. The first principal compo-
" nent spans the one-dimensional subspace that accounts for maximum
variation in the standardized X’s. The second principal component
accounts for maximum variation in the standardized X’s, under the
constraint that it is orthogonal to the first. The other principal com-
ponents are similarly defined; unless the X’s are perfectly collinear,
‘there are as many principal components as there are X’s. Each prin-
cipal component is scaled to have variance equal to the collective
variance in the standardized X’s for which it accounts. Collinear rela-
tions among the independent variables, therefore, correspond to very
short principal components, which represent dimensions along which
the regressor subspace has nearly collapsed.

Diagnosing Collinearity
I explained earlier that the sampling variance of the regression coefficient

Bf i8

o? x- 1
(n—1)8  1-R}

V(B) =

It can be shown that VIF; = 1/(1 — R?) is the jth diagonal entry of Ryk (see
Theil, 1971, p. 166). Using Equation 13.4, the variance inflation factors can be
expressed as functions of the eigenvalues of Ryy and the principal components;

specifically,
kAL
VIF, =Y -2
i s
I=1 L[ ) ”F :

Thus, it is only the small eigenvalues that contribute to large sampling vari-
ance, but only for those regressors that have large coefficients associated ‘with
the corresponding short principal components. This result is sensible, for small
eigenvalues and their short components correspond to collinear relations among
the regressors; regressors with large coefficients for these components are the
regressors implicated in the collinearities (see below).

The relative size of the eigenvalues serves as an indicator of the degree of
collinearity present in the data. The square root of the ratio of the largest to
smallest eigenvalue, K = \/L,/L,, called the condition number, is a commonly ‘
employed standardized index of the globa] instability of the least-squares re-
gression coefficients: A large condition number (say, 10 or more) indicates that
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relatively small changes in the data tend to produce large changes in the least-
squares solution. In this event, Ryx is said to be ill conditioned.

It is instructive to examine the condition number in the simplified context
of the two-regressor model. From Equatlon 13.5,

and thus K = 10 corresponds to 72, = .9608, for which VIF = 26.

Belsley et al. (1980, Chapter 3) define a condition index K; = \/L,]L; for
each principal component!® of Ryy. Then, the number of large condmon 1nd1ces
points to the number of different collinear relations among the regressors.

Chatterjee and Price (1991, Chapter 7) employ the principal-component
coefficients to estimate these near collinearities: A component w; associated with
a very small eigenvalue L; ~ 0 is itself approxunately equal to the zero vector;
consequently, :

Auz1 + A2122 +---+ AHOk ~0

and we can use the large A’ to specify a linear combination of the Z’s that is
approximately equal to 0. :

13.1.2 Generalized Variance Inflation*

The methods for detecting collinearity described thus far are not fully appli-
cable to models that include related sets of regressors, such as dummy regressors
constructed from a polytomous categorical variable or polynomial regressors.
The reasoning underlying this qualification is subtle, but can be illuminated by
appealing to the vector representation of linear models.

The correlations among a set of dummy regressors are affected by the
choice of baseline category. Similarly, the correlations among a set of poly-
nomial regressors in an independent variable X are affected by adding a constant

' Primarily for computational accuracy, Belsley er al. (1980, Chapter 3) develop diagnostic
methods for collinearity in terms of the singular-value decomposition of the regressor matrix, scaled
so that each variable has a sum of squares of 1. I employ an equivalent eigenvalue-cigenvector
approach because of its conceptual simplicity and broader familiarity. The eigenvectors of Ryy, it
turns out, are the squares of the singular values of (1/v# — 1)Z,. Indeed, the condition number K
defined here s actnally the condition number of (1/+/n - 1)Zy (and hence of Zy). Information on
the singular-value decomposition and its role in lmearwmodel analysis can be found in Belsley et al.
{1980, Chapter 3} and in Mandel {1982).

A more substantial difference between my approach and that of Belsley et al. is that they
base their analysis not on the correlation matrix of the X’s, but rather on X’X, where X is the re-
gressor matrix, including the constant regressor, with columns normed to unit length. Consider an
independent variable that is uncorrelated with the others, but which has scores that are far from 0.
Belsley et al. would say that this independent variable is “collinear with the constant regressor.” This
seems to me a corruption of the notion of collinearity, which deals fundamentally with the inabil-
ity to separate the effects of highly correlated independent variables, and should not change with
linear -transformations of individual independent variables. See Belsley (1984), and the associated
commentary, for various points of view on this issue.
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to the X-values. Neither of these changes alters the fit of the model to the data,
however, so neither is fundamental. It is, indeed, always possible to select an or-
thogonal basis for the dummy-regressor or polynomial-regressor subspace (al-
though such a basis does not employ dummy variables or simple powers of X).
What is at issue is the subspace itself, and not the arbitrarily chosen basis for ir.20

We are not concerned, therefore, with the “artificial” collinearity among
dummy regressors or polynomial regressors in the same set. We are instead in-
terested in the relationships between the subspaces generated to represent the
effects of different independent variables. As a consequence, we can legitimately
employ variance inflation factors to examine the impact of collinearity on the
coefficients of numerical regressors, or on any single-degree-of-freedom effects,
even when sets of dummy regressors or polynomial regressors are present in the
model.

Fox and Monette (1992) generalize the notion of variance inflation to sets
of related regressors. Rewrite the linear model as

y=al +XB; +X,B, + ¢

where the p regressors of interest (e.g., a set of dummy regressors) are in X,
while the remaining k& — p regressors (with the exception of the constant) are
in X;. Fox and Monette (1992) show that the squared ratio of the size of the
joint confidence region for B; to the size of the same region for orthogonal but
otherwise similar data is

det Rli det R22

GVIF; = detR

Here, Ry, is the correlation matrix for X;; Ry, is the correlation matrix for X,;
and R is the matrix of correlations among all of the variables. The generalized
variance inflation factor (GVIF) is independent of the bases selected for the sub-
spaces spanned by the columns of X; and X,. If X; contains only one column,
then the GVIF reduces to the familiar variance inflation factor.

The notion of variance inflation can be extended to sets of related re-
gressors, such as dummy regressors and polynomial regressors, by
considering the size of the joint confidence region for the related

- coefficients.

%0 A particular basis may be a poor computational choice, however, if it produces numerically
unstable results. Consequently, researchers are sometimes advised to pick a category with many
cases to serve as the baseline for a set of dummy regressors, or to subtract the mean from X prior
to constructing polynomial regressors; the latter procedure is called “centering.” Neither of these
practices fundamentally alters the model, but may lead to more accurate computations.
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EXERCISES

131

13.2

13.3

13.4

*The second principal component is

wy =Apz+Apz +- -+ Api
(nx1)
=Zx 2
() (Ex1)

with variance
2 A .
Sw, = a3Rxxa

We need to maximize this variance subject to the normalizing constraint
aha, = 1 and the orthogonality constraint wiw, = 0. Show that the or-
thogonality constraint is equivalent to aja, = 0. Then, using two Lagrange
multipliers, one for the normalizing constraint and the other for the or-
thogonality constraint, show that a, is an eigenvector corresponding to
the second-largest eigenvalue of Ryy. Explain how this procedure can be
extended to derive the remaining k& — 2 principal components.

*Find the matrix A of principal-component coefficients when k& = 2 and
1y 1s negative.

*Show that when k& = 2, the principal components of Ry correspond to
the principal axes of the data ellipse for the standardized regressors Z;
and Z,; show that the half-length of each axis is equal to the square root
of the corresponding eigenvalue of Ryy. Now extend this réasoning to the
principal axes of the data ellipsoid for the standardized regressors when
k>2. ' A

*The data that follow were constructed by Mandel (1982) to illustrate the
problem of collinearity:

X, X, Y

16.85 1.46 | 41.38
24.81 | —4.61 | 31.01
18.85 | —0.21 | 37.41
12.63 4.93 | 50.05
21.38 | —1.36 | 39.17
18.78 | —0.08 | 38.86
15.58 2.98 | 46.14
16.30 1.73 | 4447

(a) Compute the mean and standard deviation of each variable. Find the correla-
tions among X;, X,, and Y, and use these correlations to calculate the stan-
dardized coefficients B} and Bj for the regression of Y on X; and X,,. Find the
unstandardized coefficients A, By, and B,.
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(b) Perform a principal-components analysis for X; and X,. Draw the geometric
vector representation of the principal-components analysis. Find the variance
inflation factors for the coefficients By and B,, and calculate the condition
number K for the regression.

(c) Use the second principal component to approximate the near-collinear relation
between the standardized regressors Z; and Z,. Express this relation as a linear
relationship between the unstandardized regressors X; and X,.

(d) Now regress X; on X,. How does the fitted regression equation compare with
the linear relationship found in part (c)?

(e} Draw the data ellipse for X; and X,, and the 95% joint confidence ellipse for
Bl and Bz.

13.5 Time series data on Canadian women’s labor-force participation in the first
three decades of the postwar period are given in Table 13.3 and bfox. dat.
B. Fox (1980) was interested in determining how women’s labor-force par-
ticipation rate (L, measured as the percentage of adult women in the work
force) responds to a variety of factors indicative of the supply of and de-
mand for women’s labor. The independent variables in the analysis include:

® the total fertility rate (F), the expected number of births to a hypothetical cohort
of 1000 women proceeding through their child-bearing years at current age-
specific fertility rates;

* men’s (M) and women’s (W) average weekly eammgs in constant 1935 dollars
and adjusted for current tax rates; _

s per-capita consumer debt (D), in constant dollars; and

® the availability of part-time work (P), measured as the percentage of the active
labor force working 34 hours 2 week or less.

Women’s earnings, consumer debt, and the availability of part-time work
were expected to affect women’s labor-force participation positively. Fertil-
ity and men’s earnings were expected to have negative effects. Because all
of the series, including that for the dependent variable, manifest strong lin-
ear trends over the 20-year period of the study, year (T), coded from 1946
to 1975, was also included as an independent variable in the regression.

(8) Regress L on T, F, M, W, D, and P. What do you find: Are the researcher’s
expectations borne out? Are the estimates sufficiently precise?

(h) Employ the methods of this section to diagnose collinearity in B. Fox’s data.

13.2 Coping With Collinearity: No Quick Fix

When X, and X, are strongly collinear, the data contain little information
about the impact of X; on Y holding X, constant statistically, because there is
little variation in X; when X, is fixed. Of course, the same is true for X, fixing
X,. Because B estimates the partial effect of X; controlling for X,, this estimate
is imprecise.

Although there are several strategies for dealing with collinear data, none
magically extracts nonexistent information from the data. Rather, the research
problem is redefined, often subtly and implicitly. Sometimes the redefinition is
reasonable; usually it is not. The ideal solution to the problem of collinearity is
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TABLE 13.3 B. Fox’s Canadian Women’s Labor-Force Participation
Data. T is year; L is women’s labor-force participation
rate, in percent; F is the total fertility rate, per 1000;
M is men’s average weekly wages in 1935 dollars;
W is women’s average weekly wages; D is per-capita
consumer debt; and P is the percentage of part-time
workers. '

T L F M W D P
1946 25.3 3748 25.35 14.05 18.18 10.28
1947 | 24.4 3996 26.14 14.61 28.33 9.28
1948 | 24.2 3725 25.11 14.23 30.55 9.51
1949 242 3750 2445 14.61 35.81 8.87
1950 23.7 . 3669 2679 15.26 38.39 8.534
1951 242 3682 26.33 14.58 26.52 8.84
1952 241 3845 27.89 15.66 45.65 8.60
1953 23.8 3905 29.15 16.30 5299 5.49
1954 236 4047 | 29.52 16.57 54.84 6.67
1955 | 243 4043 32.05 17.99 65.53 6.25
1956 251 4092 32.98 18.33 72.56 6.32
1957 26.2 4168 32.25 17.64 69.49 ©7.30
1958 26.6 4673 - 32.52 18.16 71.71 8.65
1959 26.9 4100 33.95 18.58 78.89 3.80
1960 | 27.9 4119 34.63 18.95° 84.99 9.3%
1961 | 251 4159 35.14 18.78 87.71 10.23

- 1962 259.9 4134 34.49 18.74 95.31 10.77
1963 29.8 4017 3599 19.71 104.40 10.84
1564 30.9 3886 '36.68 20.06 116.80 11.70
1965 321 3467 37.96 20.94 130.99 12.33
1966 33.2 3150 38.68 21.20 135.25 12.18
1967 34.5 2879 39.65 21.95 142,93 13.67
1968 351 2681 41.20 22.68 15547 13.82
1969 36.1 2563 42.44 23.75 165.04 14.91
1970 36.9 2571 42.02 25.63 164.53 15.52

11971 37.0 2503 45.32 26.79 169.63 1547
1972 37.9 2302 45.61 27.51 190.62 15.85
1973 40.1 2531 45.59 27.35 209.60 15.40
1974 40.6 1875 48.06 25.64 216.66 16.23
1975 42.2 1866 - 46.12 29.33 224.34 16.71

to collect new data in such a manner that the problem is avoided—for example,
by experimental manipulation of the X, or by a research setting (or sampling
procedure) in which the independent variables of interest are not strongly related.
Unfortunately, these solutions are rarely practical.

~ Several less adequate strategies for coping with collinear data are briefly
described in this section. I have devoted most space to variable selection, be-
cause selection techniques are commonly abused by social scientists, because the
rationale for variable selection is straightforward, and because variable selection
is a reasonable approach in certain {limited) circumstances. Variable selection
also has applications outside of the context of collinearity.

13.2.1 Model Respecification

Although collinearity is a data problem, not (necessarily) a deficiency of
the model, one approach to the problem is to respecify the model. Perhaps, after
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further thought, several regressors in the model can be conceptualized as alter-
native indicators of the same underlying construct. Then these measures can be
combined in some manner, or one can be chosen to represent the others. In this
context, high correlations among the X’s in question indicate high reliability—a
fact to be celebrated, not lamented. Imagine, for example, an international anal-
ysis of factors influencing infant mortality, in which gross national product per
capita, energy usc per capita; and televisions per capita are among the indepen-
dent variables and are highly correlated. A researcher may choose to treat these
variables as indicators of the general level of economic development.

_ Alternatively, we can reconsider whether we really need to control for X,
(for example) in examining the relationship of Y to X;. Generally, though, re-
specification of this variety is possible only where the original model was poorly
thought out, or where the researcher is willing to abandon some of the goals
of the research. For example, suppose that in a time series regression examining
determinants of married women’s labor-force participation, collinearity makes
it impossible to separate the effects of men’s and women’s wage levels.?! There
may be good theoretical reason to want to know the effect of women’s wage
level on their labor-force participation, holding men’s wage level constant, but
the data are simply uninformative about this question. It may still be of interest,
however, to determine the partial relationship between general wage level and
-women’s labor-force participation, controlling for other independent variables in
the analysis.

13.2.2 Variable Selection

A common, but usually misguided, approach to collinearity is variable se-
-lection, where some procedure is employed to reduce the regressors in the model

to a less highly correlated set. Forward selection methods add independent vari-
ables to the model one at a time. At each step, the variable that yields the
largest increment in R? is selected, The procedure stops, for example, when the
increment is smaller than a preset criterion.?2 Backward elimination methods
are similar, except that the procedure starts with the full model and delétes vari-
ables one at a time. Forward/backward—or stepwise—methods combine the two
approaches.

These methods frequently are abused by naive researchers who seek to in-
terpret the order of entry of variables into the regression equation as an index
of their “importance.” This practice is potentially misleading: For example, sup-
pose that there are two highly correlated independent variables that have nearly
identical large correlations with Y; only one of these independent variables will
enter the regression equation, because the other can contribute little additional
information. A small modification to the data, or a new sample, could easily
reverse the result.:

A technical objection to stepwise methods is that they can fail to turn
up the optimal subset of regressors of a given size (i.e., the subset that max-
imizes R?). Advances in computer power and in computing procedures make

21 See Exercises 13.5 and 13.9. )
# More commonly, the stopping criterion is calibrated by the incremental F for adding a
variable to the model.
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it feasible to examine all subsets of regressors even when k is quite large.?3
Aside from optimizing the selection criterion, subset techniques also have the
advantage of revealing alternative, nearly equivalent models, and thus avoid the
misleading appearance of producing a uniquely “correct” result.?*

One popular approach to subset selection is based on the total (normed)
mean-squared error of estimating E(Y) from Y—that is, estimating the popula-
tion regression surface over the observed X’ from the fitted regression surface:

IIt

Yo=Y IMSE(R) (136
= L3 V() + [E(S) - E)P)

& =1

where the fitted values ¥; are based on a model containing p < k -+ 1 regressors
{counting the constant, which is always included in the model). Using the error
in estimating E(Y) as a criterion for model quality is reasonable if the goal is
literally to predict Y from the X ’s, and if new observations on the X’s for which
predictions are required will be similar to those included in the data.

The term [E(Y;) — E(Y;)]? in Equation 13.6 represents the squared bias of
¥, as an estimator of the population regression surface E(Y;). When collinear
regressors are deleted from the model, generally V(Y;) will decrease, but—
depending on the configuration of data points and the true 8% for the deleted
regressors—bias may be introduced into the fitted values. Because the prediction
MSE is the sum of variance and squared bias, the essential question is whether
the decrease in variance offsets any increase in bias.

Mallows’s (1973) C,-statistic estimates y, as

EZ
C, = Z 4+2p—~n

8

=(k+1-p)E,-1)+p

where the residuals are from the subset model in question; the error variance
estimate 67 is S} for the full model containing all k independent variables; and F,,
is the incremental F-statistic for testing the hypothesis that the regressors omitted
from the current subset have population coefficients of 0.2* If this hypothesis is
true, then E(F,) ~ 1, and thus E(Cp) p. A good model, therefore, has C,, close
to or below p. As Well minimizing C, minimizes the sum of squared re51duals
and thus maximizes R2. For the full model, Cj,, necessarily equals &+ 1.
Because a good model has C, close to p, we can identify good models by
plotting C,, against p, labeling each point in the plot with a2 mnemonic repre-
senting the independent variables included in the model, and superimposing the

2 For k independent variables, the number of subsets, excluding the null subset with no
predictors, is 2% - 1. See Exercise 13.6.

24 Theré are algorithms available to find the optimal subset of a given size without examining
all possible subsets (see, e.g., Furnival and Wilson, 1974). When the data are highly collinear, how-
ever, the optimal subset of a given size may be only trivially “better” than many of its competitors.

 See Exercise 13.7.
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Figure 13.6. Plot of C, —p against p for the census-undercount regression. ‘Only subsets
for which C, —p < 10 are shown. The following capitalized letters are employed to
label the predictors in each subset: Minority, Crime, Poverty, Laniguage, High school,

. hOusing, clty, and coNventional. Ericksen et al. (1989) selected the predictor subset
MCN (i.e., Minority, Crime, and coNventional).

line C, = p on the plot: Good models are close to or below the reference line.
I find that the graph is easier to inspect if it is “detrended” by plotting C, —p
against p (i.c., subtracting the reference line from each point). Now we can look
for models WIth values of C, — # near or below 0.

An illustrative detrended C, plot for the census-undercount data is given
in Figure 13.6. Only models for which C, — p < 10 are shown, including 52 of
the 28 —1 = 255 predictor subsets. Emcksen et al. (1989) employed the subset la- .
beled MCN on the plot (with predictors Minority, Crime, and Conventional).2®
For this subset, p = 4 and C, = 12.7, suggesting that there is room for im-
provement by including more predictors. The regression equation for this sub-
set, and equations for the “best” subsets of four predictors {(MCLN, adding
Language: p = 5 and C, = 8.5) and five predictors (MCPLN, adding Poverty:
p = 6 and C, = 7.3) appear in Table 13.4. For this dataset, backward and
forward/backward stepwise procedures identify the “best” subsets of three, four,
and five predictors, but the forward method does not.?”

In applying variable selection, it is essential to keep the following caveats
in mind:

* Most important, variable selection results in a respecified model that usually does
not address the research questions that were originally posed. In particular, if the
original model is correctly specified, and if the included and omitted variables

% Recall, however, that Ericksen et al, {1989) adopted a more complex estimation strategy

than ordinary-least-squares regression.
¥ Sec Exercise 13.8.
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TABLE 13.4 “Best” Subset Regression Models for Ericksen et al.’s
Census-Undercount Data. Coefficient standard errors
are in parentheses. '

Coefficients
Predictor p=4 p=3 p=6
Constant —2.22 —1.98 —0.793
. (0.56) (0.55) {0.860)
Minority : 0.0786 0.0752 0.101
’ {0.0147) (0.0143) (0.020)
Crime 0.0363 0.6272 0.0243
(0.0100) (0.0104) {0.0103)
Conventional 0.0280 - 0.0273 0.0293
(0.0081) (0.0078) {0.0077)
Language o 0209 0.184
' ’ (0.087) {0.086)
Poverty ) -0.110
' ‘ {0.062)
R? 638 669 686
C, - 12.7 ‘ 8.51 7.32

are correlated, then coefficient estimates following variable selection are biased.?
Consequently, these methods are most useful for pure prediction problems, in
which the values of the regressors for the data to be predicted will be within the
configuration of X-values for which selection was employed—as in the census-
undercount example. In this case, it is possible to get good estimates of E(Y)
even though the regression coefficients themselves are biased. If, however, the
X-values for a new observation differ substantially from those used to obtain
the estimates, then the predicted Y can be badly biased.

® When regressors occur in sets {e.g., of dummy variables), then these sets should
generally be kept together during selection. Likewise, when there are hierarchical
relations among regressors, these relations should be respected: For example, an
interaction regressor should not appear in a model that does not contain the
main effects marginal to the interaction.

e Because variable selection optimizes the fit of the model to the sample data,
coefficient standard errors calculated following independent-variable selection—
and hence confidence intervals and hypothesis tests—almost surely overstate the
precision of results. There is, therefore, a very substantial risk of capitalizing on
chance characteristics of the sample.”

® Variable selection has applications to statistical modeling even when collinear-
ity is not an issue. It is generally not problematic to eliminate regressors that
have small, precisely estimated coefficients, thus producing a more parsimonious
model. Indeed, in a very large sample, we may feel justified in deleting regressors
with trivially small but “statistically significant” coefficients.

13.2.3 Biased Estimation

Still another general approach to collinear data is biased estimation. The
essential idea here is to trade a small amount of bias in the coefficient estimates

2 See Sections 6.3, 9.6, and 13.2.5. :
22 Gee Fxercise 13.10 and the discussion of cross-validation in Section 16.2.
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for a substantial reduction in coefficient sampling variance. The hoped-for result
is a smaller mean-squared error of estimation of the 8% than is provided by the
least-squares estimates. By far the most common biased estimation method is
ridge regression (due to Hoerl and Kennard, 1970a, 1970b).

Like variable selection, biased estimation is not a magical panacea for
collinearity. Ridge regression involves the arbitrary selection of a “ridge con-
stant,” which controls the extent to which ridge estimates differ from the least-
squares estimates: The larger the ridge constant, the greater the bias and the
smaller the variance of the ridge estimator. Unfortunately, but as one might ex-
pect, to pick an optimal ridge constant—or even a good one—generally requires
knowledge about the unknown B’s that we are trying to estimate. My principal
reason for mentioning biased estimation here is to caution against its routine use.

Ridge Regression™
The ridge-regression estimator for the standardized regression coefficients
is given by '

i = Ryx +dl) ey, [13.7]

where Ryy is the correlation matrix for the predictors; ry,, is the vector of cor-
relations between the predictors and the dependent variable; and d > 0 is a
scalar constant. When d = 0, the ridge and least-squares estimators coincide:
5 = b* = Ryxrx,. When the data are collinear, some off-diagonal entries of
Ryy are generally large, making this matrix ill conditioned. Heuristicaily, the
ridge-regression method improves the conditioning of Ryy by inflating its diag-
onal entries. . .
Although ‘the least-squares estimator b* is unbiased, its entries tend to be
too large in absolute value, a tendency that is magnified as collinearity increases.
In practice, researchers working with collinear data often compute wildly large
regression coefficients. The ridge estimator may be thought of as a “shrunken”
version of the least-squares estimator, correcting the tendency of the latter to
produce coefficients that are too far from 0. - :

The ridge estimator of Equation 13.7 can be rewritten as®

% = Ub* [13.8]

where U = (I, +dR5%)™'. As d increases, the entries of U tend to grow smaller,
and, therefore, b, is driven toward 0. Hoerl and Kennard (1970a) show that for .
any value of d > 0, the squared length of the ridge estimator is less than that of
the least-squares estimator: b/b}; < b*b*.

The expected value of the ridge estimator can be determined from its rela-
tion to the least-squares estimator, given in Equation 13.8; treating the X-values,
and hence Ryy and U, as fixed,

E(b;) = UE(b*) = UB"

30 See Fxercise 13.11.
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The bias of b}, is, therefore,

bias(b}) = E(bd) B = U-L)p

and because the departure of U from I, increases with d, the bias of the ridge
estimator is an increasing function of d.
The variance of the ridge estimator is also simply derived:3!

*2

V(b)) = (Rxx +dl)  Ryx(Ryy + L)~ [13.9]

where 02 is the error variance for the standardized regression. As d increases,
the inverted term (Ryy + dl,)~! is increasingly dominated by dI,. The sampling
variance of the ridge estimator, therefore, is a decreasing function of d. This
result Is intuitively reasonable, because the estimator itself is driven toward 0.

The mean-squared error of the ridge estimator is the sum of its squared
bias and sampling variance. Hoerl and Kennard (1970a) prove that it is always
possible to choose a positive value of the ridge constant d so that the mean-
squared error- of the ridge estimator is less than the mean-squared error of the
least-squares estimator. As mentioned, however, the optimal value of 4 depends
on the unknown population regression coefficients.

The central problem in applying ridge regression is to find a value of d
for which the trade-off of bias against variance is favorable. In deriving the
properties of the ridge estimator, I treated d as fixed. If 4 is determined from the
data, however, it becomes a random variable, casting doubt upon the conceptual
basis for the ridge estimator. A number of methods have been proposed for
selecting d. Some of these are rough and qualitative, while others incorporate
specific formulas or procedures for estimating the optimal value of d. All of
these methods, however, have only ad hoc justifications.*?

There have been many random-sampling simulation experiments explonng
the properties of ridge estimation along with other methods meant to cope with
collinear data. While these studies are by no means unanimous in their conclu-
sions, the ridge estimator often performs well in comparison with least-squares
estimation and in comparison with other biased estimation methods. On the
basis of evidence from simulation experiments, it would, however, be mislead-
ing to recommend a particular procedure for selecting the ridge constant d, and,
indeed, the dependence of the optimal value of d on the unknown regression pa-
rameters makes it unlikely that there is a generally best way of finding d. Several
authors critical of ridge regression (e.g., Draper and Smith, 1981, p. 324) have
noted that simulations supporting the method generally incorporate restrictions
on parameter values particularly suited to ridge regression.*

3 See Exercise 13.12.

32Exercise 13.13 describes a qualitative method proposed by Hoerl and Kennard in their
1970 papers. ‘

3% See Section 13.2.5. Simulation studies of ridge regression and other biased estimation meth-
ods are too numerous to cite individually here. References to and comments on this literature can
be found in many sources, including Draper and Van Nostrand (1979}, Vinod {1978), and Hock-
ing {1976). Vinod and Ullah (1981) present an extensive treatment of ridge regression and related
methods.
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Because the ridge estimator is biased, standard errors based on Equation
13.9 cannot be used in the normal manner for statistical inferences concerning
the population regression coefficients. Indeed, as Obenchain (1977) has pointed
out, under the assumptions of the linear model, confidence intervals centered
at the least-squares estimates paradoxically retain their optimal properties re-
gardless of the degree of collinearity: In particular, they are the shortest possible
intervals at the stated level of confidence (Scheffé, 1959, Chapter 2). An interval
centered at the ridge estimate of a regression coefficient is, therefore, wider than
the corresponding least-squares interval, even if the ridge estimator has smaller
mean-squared error than the least-squares estimator.

13.2.4 Prior Information about the Regression Coefficients

A final approach to estimation with collinear data is to introduce additional
‘prior information (i.e., relevant information external to the data at hand) that
reduces the ambiguity produced by collinearity. There are several different ways
that prior information can be brought to bear on a regression, including Bayesian
analysis, but I shall present a particularly simple case to illustrate the general
point. More complex methods are beyond the scope of this discussion and are,
in any event, difficult to apply in practice.?4

Suppose that we wish to estimate the model

Y=a+8 X1 +BX5+B3X5+¢

where Y is savings, X is income from wages and salaries, X, is dividend income
from stocks, and X is interest income. Imagine that we have trouble estimating
B, and B; because X, and X; are highly correlated in our data. Suppose further
that we have reason to believe that 8, = B3, and denote the common quantity
B.. If X, and X; were not so highly correlated, then we could reasonably test
this belief as a hypothesis. In the current situation, we can fit the model

Y=C!+BIX1 +B*(X2+X3)+€

incorporating our belief in the equality of 8, and B; in the specification of the
model, and thus eliminating the collinearity problem (along with the possibility
of testing the belief).3

13.2.5 Some Comparisons

Although 1 have presented them separately, the several approaches to
collinear data have much in common:

® Model respecification can involve variable selection, and variable selection, in
effect, respecifies the model.

3 See, for example, Belsley et al. (1980, pp. 193-204) and Theil {1971, pp. 346-352).

_ 3 To test Hy: B, = B, simply entails contrasting the rwo models (see Exercise 6.10). In the
present context, however, where X, and X; are very highly correlated, this test has virtually no
power: If the second model is wrong, then we cannot, as a practical matter, detect it. We need either
to accept the second model on theoretical grounds or to admit that we cannot estimate 8, and §,.
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® Variable selection implicitly constrains the coefficients of deleted regressors to 0.

® Variable selection produces biased coefficient estimates if the deleted variables
havé nonzero 8’ and are correlated with the included variables (as they will
be for collinear data).’® As in ridge regression and similar biased estimation
methods, we might hope that the trade-off of bias against variance is favorable,
and that, therefore, the mean-squared error of the regression estimates is smaller
following variable selection than before. Because the bias, and hence the mean-
squared error, depend on the unknown regression coefficients, however, we have
no assurance that this will be the case. Even if the coefficients obtained following
selection have smaller mean-squared error, their superiority can easily be due to
the very large variance of the least-squares estimates when collinearity is high
than to acceptably small bias.

® Certain types of prior information {as in the hypothetical example presented in
the previous section) result in a respecified model.

® It can be demonstrated that biased-estimation methods like ridge regression place
prior constraints on the values of the 8’s. Ridge regression imposes the restriction
Z;;l BY* < ¢, where ¢ is a decreasing function of the ridge constant d; the ridge
estimator finds least-squares coefficients subject to this constraint (Draper and
Smith, 1981, pp. 320-321). In effect, large absolute standardized coefficients are
ruled out a priori, but the specific constraint is imposed implicitly.

The primary lesson to be drawn from these remarks is that mechanical
model selection and modification procedures disguise the substantive implica-
tions of modeling decisions. Consequently, these methods generally cannot com-
pensate for weaknesses in the data and are no substitute for judgment and

_ thought.

Several methods have been proposed for dealing with collinear data.
Although these methods are sometimes useful, none can be recom-

- mended generally: When the X’s are highly collinear, the data contain’
little information about the partial relationship between each X and
Y, controlling for the other X’s. To resolve the intrinsic ambiguity
of collinear data it is necessary either to introduce information exter-
nal to the data or to redefine the research question asked of the'data.
Neither of these general approaches should be undertaken mechani-
cally. Methods that are commonly {and, more often than not, unjus-
tifiably) employed with collinear data include: model respecification;
variable selection (stepwise and subset methods); biased estimation
(e.g., ridge regression); and the introduction of additional prior in-
formation. Comparison of the several methods shows that they have
more in common than it appears at first sight.

36 Bias due to the omission of independent variables is discussed in a general context in Sec-
tions 6.3 and 9.6.
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EXERCISES

13.6  Why are there 2% —1 chstmct subsets of £ predictors? Evaluate this quantity
fork=2,3,...,15.

kR

13.7 *Prove that Mallows’s C,-statistic for a subset of p predictors

2 . :
C, = Z L+ 2p—m ‘

E

‘can also be written as
Cp=(k+1-p)}F,—-1)+p

Recall that 67 is the estimated error variance based on the model including
all k predictors, and that F, is the incremental F-statistic for testing the
hypothesis that the k—p omitted predictors all have zero coefficients. Why
is C, a reasonable estimator of the total normed mean-squared error of
predxctlonD g

I/

—-152 MSE(Y))
O¢ =1

[Hint: See Weisberg (1985, Appendix 8A.1).]

13.8  Apply the backward, forward, and forward/backward stepwise-regression
methods to Ericksen et al.’s census-undercount data (in ericksen.dat).
Compare the results of these procedures with those shown in Figure
13.6, based on the application of Mallows’s C,-statistic to all subsets of
predictors,

139 Apply the variable-selection methods of this section to B. Fox’s women’s
labor-force participation regression (described in Exercise 13.5). -

13.10 Cross-validation and variable selection (cf. Hurvich and Tsai, 1990): Per-
form the following computer-simulation experiment: Independently sam-
ple 51 variables, with 200 observations each, from the unit-normal distri-
bution. Call the first variable Y, and the remaining ones X1, X;, ..., X;o.

(@) Using all 200 observations, regress ¥ on X;, X,, ..., Xs. Calculate the om-
nibus F-statistic for the regression, along with the individual #-statistic for
each regressor. Construct a quantile comparison plot for the 50 #-statistics,
comparing the distribution of the #-values with the normal distribution (or
with ¢ for n — k. — 1 = 149 degrees of freedom). Is the omnibus F statisti-
cally significant {say at the 5% level)? How many of the individual B’s are
statistically significant?
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(b) Randomly divide the data in half—placing #/2 = 100 observations in each
subsample. Employing one or another method of variable selection, and using
the data from the first half-sample, find the “best” regression equation that
includes p = 5 of the k = 50 independent variables. Calculate the omnibus
F-test and the five individual ¢-tests for this regression equation. What do you
find?

{c} Now recalculate the F- and z-tests in part (b) using the same five independent
variables but employing the second half-sample. How do these tests compare
with those in part {b)? ‘ '

*Show that the ridge-regression estimator of the standardized regression
coefficients, :

b) = (Ryx +dly) 'rx,

can be written as a linear transformation b} = Ub* of the usual least-
squares estimator b* = Ryxry,, where the transformation matrix is U =

-1
(I + dR%%) -
*Show that the variance of the ridge estimator is

0_*2 3 _
— (Ryx +dl) Ryx(Ryx +dl) ™

V(b)) =

[Hint: Express the ridge estimator as a linear transformation of the stan-
dardized dependent-variable values, b} = (Ryx +dL) ' [1/(n—1)]Zxz, ]

*Finding the ridge constant d: Hoerl and Kennard suggest plotting the

entries in b} against values of d ranging between 0 and 1. The resulting

graph, called a ridge trace, both furnishes a visual representation of the in-
stability due to collinearity and (ostensibly) provides a basis for selecting

a value of d. When the data are collinear, we generally observe dramatic

changes in regression coefficients as d is gradually increased from 0. As

d is increased further, the coefficients eventually stabilize, and then are

driven slowly toward 0. The estimated error variance, 37, which is min-

imized at the least-squares solution (d = 0), rises slowly with increasing

d. Hoerl and Kennard recommend choosing d so that the regression coef-

ficients are stabilized and the error variance is not unreasonably inflated

from its minimum value. (A number of other methods have been sug-
gested for selecting d, but none avoids the fundamental difficulty of ridge

regression—that good values of d depend on the unknown g%.)

{a) Construct a ridge trace, including the standard error Si, for Ericksen et al’s
census-undercount regression {in ericksen.dat). Use this information to se-
lect a value of the ridge constant d, and compare the resulting ridge estimates
of the regression parameters with the least-squares estimates. Make this com-
parison for both standardized and unstandardized coefficients.

(b) Repeat part (a) for B. Fox’s women’s labor-force participation data (in Table
13.3 and bfox.dat; see Exercises 13.5 and 13.9). In applying ridge regression
to these data, B. Fox selected d = 0.05.
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‘ _

13.3 Summary

* When the regressors in a linear model are perfectly collinear, the least-squares co-

efficients are not unique. Strong, but less-than-perfect, collinearity substantially
increases the sampling variances of the least-squares coefficients, and can render

. them useless as estimators,

The sampling variance of the least-squares slope coefficient B is

1 a?
—R} 7 (n~1)$?

i

V(B) =

where R? is the squared multiple correlation for the regression of X; on the other
X’s, and S,-2 =3 (X; __3(‘,,)2 /(n—1) is the variance of X;. The variance inflation
factor VIF; = 1/(1 — R}) indicates the deleterious impact of collinearity on the
precision of the estimate B;. The notion of variance inflation can be extended to
sets of related regressors, such as dummy regressors and polynomial regressors,
by considering the size of the joint confidence region for the related coefficients.

Principal components can be used to explicate the correlational structure of the
independent variables in regression. The principal components are a derived set
of variables that form an orthogonal basis for the subspace of the standard-
ized X’s. The first principal component spans the one-dimensional subspace that
accounts for maximum variation in the standardized X’s. The second principal
component accounts for maximum variation in the standardized X’s, under the
constraint that it is orthogonal to the first. The other principal components are
similarly defined; unless the X’s are perfectly collinear, there are as many prin-
cipal components as are there are X’. Each principal component is scaled to
have variance equal to the collective variance in the standardized Xs for which
it accounts. Collinear relations among the independent variables, therefore, cor-
respond to very short principal components, which represent dimensions along
which the regressor subspace has nearly collapsed.

Several methods have been proposed for dealing with collinear data. Although
these methods are sometimes useful, none can be recommended generally: When
the X’ are highly collinear, the data contain little information about the par-
tial relationship between each X and Y, controlling for the other X’s. To resolve
the intrinsic ambiguity of collinear data, it is necessary either to introduce in-
formation external to the data or to redefine the research question asked of the
data. Neither of these general approaches should be undertaken mechanically.
Methods that are commonly {and, more often than not, unjustifiably) employed

" with collinear data include: model respecification; variable selection {stepwise

and subset methods); biased estimation (e.g., ridge regression); and the introduc-
tion of additional prior information. Comparison of the several methods shows
that they have more in common than it appears at first sight.




