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Spatial interdependence—the dependence of outcomes in some units on those in others—is substantively
and theoretically ubiquitous and central across the social sciences. Spatial association is also omnipresent
empirically. However, spatial association may arise from three importantly distinct processes: common ex-
posureof actors to exogenous external and internal stimuli, interdependence of outcomes/behaviors across
actors (contagion), and/or the putative outcomes may affect the dimensions along which the clustering oc-
curs (selection). Accurate inference about any of these processes generally requires an empirical strat-
egy that addresses all three well. From a spatial-econometric perspective, this suggests spatiotemporal
empirical models with exogenous covariates (common exposure) and spatial lags (contagion), with the
spatial weights being endogenous (selection). From a longitudinal network-analytic perspective, the same
three processes are identified as potential sources of network effects and network formation. From that
perspective, actors’ self-selection into networks (by, e.g., behavioral homophily) and actors’ behavior that
is contagious through those network connections likewise demands theoretical and empirical models in
which networks and behavior coevolveover time. This paper begins building such models by, on theoretical
side, extending a Markov type-interaction model to allow endogenous tie-formation, and, on empirical side,
merging a simple spatial-laglogit model of contagious behavior with a simple p∗-logit model of network for-
mation. One interesting consequence of network-behavior coevolution—identically, endogenous patterns
of spatial interdependence—emphasized here is how it can produce history-dependent political dynamics,
including equilibrium phatand path dependence (Page 2006). The paper concludes with an illustrative ap-
plication to alliance formation and conflict behavior among the great powers in the first half of the twentieth
century.

1 Intr oduction

Networks—whether speaking of friendship or other relations among individuals, trade or conflict re-
lations among states, predator–prey relations in ecosystems, or any other relations (ties, connections,
edges, etc.) among units (nodes, agents, actors, etc.)—are everywhere. And these ubiquitous networks
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matter. Network effects, arising from structural aspects of the network, or from actors’ positions in the
network, or from other actors via the network of connections importantly impinge upon the behaviors,
opinions, outcomes, or other characteristics of units. Networks are also often endogenous. Units typically
choose or affect their ties, that is, the edges that structure their network. A major challenge empirically for
researchers interested in the theory and substance of network effects andnetwork formationis that net-
work effects on nodes and the formation of ties between nodes tend to be mutually endogenous and,
at the same time, both may be caused by outside factors, that is, by a third mechanism, we callcom-
mon exposure. Archetypically from social-network analysis, for example, we may observe clusters of
(non)smokers because (non)smoking is contagious—one acquires or avoids the habit from friends who
smoke or abstain—or because (non)smokers choose to hang with (non)smokers: homophilic selection by
behavior type—or we may observe clustering of (non)smokers because both the behavior of (non)smoking
and the connections between mutually (non)smoking behavior types are caused by actors’ common expo-
sure to outside conditions, such as shared sociodemographics, that affect both the propensities to smoke
and to become/stay friends. Or, expanding a more political example fromKoger, Masket, and Noel(2009,
2010): Representatives who sit together may vote similarly because, sitting by party, they have similar
constituencies (common exposure), or because they talk and influence each other (contagion), or they
may choose to sit together because they like each other maybe for some of the same reasons they vote
similarly (selection). Or, as in our empirical application, international conflict may be contagious through
alliance connections, but nations with similar conflict behavior patterns may also be more likely to ally
(selection), and some exogenous conditions to which particular nation-state dyads are exposed, a natural
resource, for example, may affect both alliance and conflict patterns.

From spatial-econometric perspective also, asTobler’s Law(Tobler 1970) aptly sums: “Everything
is related to everything else, but near things are more related than distant things.” Furthermore, as the
pithy title by Beck, Gleditsch, and Beardsley(2006) reminds in corollary: “Space is More than Geogra-
phy.” That is, the substantive content of Tobler’snearness, so the pathways along which interdependence
between units may operate, extends well beyond physical distance, contact, and contiguity. Long liter-
atures in regional science, geography, and sociology elaborate from those disciplinary perspectives the
multifarious mechanisms by which contagion may arise.1 In fact, asBrueckner(2003) showed, strategic
interdependence (contagion) arises any time, some unit(s)’s actions affect the marginal utility of other(s)’s
actions. Given such externalities,i’s utility depends on both its policy and that ofj. Theoretically, sub-
stantively, then, spatial interdependence is ubiquitous. Empirically, clustering or correlation of outcomes
on some dimension(s) of proximity (spatial association) is also obvious across a vast array of substantive
contexts. However, and this is the crux of the great empirical challenge/opportunity represented by the
substantive and theoretical ubiquity of interdependence, outcomes may evidence spatial association for at
least these three distinct reasons. First, units may be responding relatedly to similar exposure to exogenous
internal/domestic or external/foreign stimuli (common exposure) or second unit(s)’s responses may de-
pend on others’ responses (contagion, one sort of network effect). States’ adoptions of some economic
treaty, for example, may cluster geographically or along other dimensions of proximity, for example, bilat-
eral trade volume, because proximate states experience similar exogenous domestic or foreign political-
economic stimuli or because each state’s decision to sign depends on whether proximate others sign.
A third possibility arises when the putative outcome affects the variable along which clustering occurs
(selectionor network formation). Treaty signatories might also cluster by some variable on which we
observe their proximity (bilateral trade volume) because being cosignatories affects that variable (spurs
trade between them).

From either network-analytic or spatial-econometric perspective, accurate empirical distinction and
gauge of the role and strength of these alternative processes—common exposure, contagion, and se-
lection; that is, node effects, network effects, and network formation—are difficult because the pro-
cesses manifest empirically similarly, but also crucial because the theories and policy-intervention advice
supported by any observed spatial-cum-network phenomena hinge critically on whether, or the relative
degrees to which, they arise from contagion/network effects, selection/network formation, or common ex-
posure/node effects. The situations’ substance and how policies might best intervene depend critically on

1Simmons,Dobbin, and Garrett(2006) offer a list for international politics:coercion, competition,learning, andemulation(to
which addrelocation diffusion, Hägerstrand 1967, such as migration).
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whetherstate signatories cluster in pockets of dense trade because those states tend to experience similar
exogenous conditions that favor signing, or because some states’ signing spurs trading partners to sign,
or because the treaty fosters trade among cosignatories. Moreover, as we have elsewhere demonstrated
analytically, by simulation, and in applications (Franzese and Hays 2006,2007a,2007b,2008a,2008b;
Franzese, Hays, and Schaffer 2010; Hays, Kachi, and Franzese 2010), drawing effective distinctions and
obtaining accurate estimates empirically of any of these processes requires careful attention to specifica-
tion (including measurement) of all three. Regardless of whether interest centers on network effects like
the contagiousness of smoking, or on network formation like what determines trade or conflict patterns,
one must model well both the network effects/contagion and the network formation/selection and also
whatever exogenous factors important to either process.

This article develops a framework for theoretical and empirical modeling of social phenomena with
(common exposure and) simultaneous contagion and selection, that is, of mutually endogenous network
effects and network selection, that is, of the coevolution of actors’ behavior and network ties. Identically
from spatial-econometric perspective, this means models with exogenous covariates reflecting common
exposure, with spatial-lag contagion, and with patterns of spatial connectivity (spatial weights), that is,
networks, which are endogenous to behavior. Our theoretical model of such processes builds from extant
Markov type-interaction models, which explain evolving and steady-state profiles of actor types based
on probabilities of type switching that depend on the previous period distribution of actor types accord-
ing to some set of exogenously given (possibly exogenously varying) connections between actors. These
models parallel from the theoretical side extant empirical spatial-lag models of spatial econometrics, no-
tably in the exogeneity of the connectivity matrix, that is, of the network of connections between actors,
which thereby expressly disallows network formation/selection. Accordingly, we extend such Markov
type-interaction models to incorporate endogenous determination of the ties between units, ties made or
broken endogenously (to an extent model parameters can vary) by the previous behavior types of those
units. Likewise, empirically, we merge extant spatial-lag models of interdependent behavior—specifically,
the simplest time-laggedspatial-lag logitmodel —which have typically maintained exogenous connec-
tions between units, with extent models of network formation,p∗ models—specifically, the simplestp∗

modelof independent ties—which have typically maintained exogenous unit characteristics, including
behaviors, as explanators of network ties. Theoretically and empirically, the emergent models are ones of
network-behaviorcoevolution.

The combination of network effects, specifically of behavioral contagion,2 and of network forma-
tion with self-selection of actors into networks, specifically of actors’ choosing their ties according to
some (dis)similarity or other function of the actors’ behaviors or types (heterophily/homophily), implies
that networks and behavior coevolve over time. This paper emphasizes one interesting consequence of
such network-behavior coevolution, showing how it can produce history-dependent political dynamics,
including Page’s (2006)phat, path, and/or equilibrium dependence (Jackson and Kollman 2007; Jack-
son 2008;Page 2006, 2007;Walker 2007). Using our Markov type-interaction model extended to allow
endogenous tie formation, we establish that, and derive the conditions under which, coevolutionary sys-
tems generate multiple steady-state equilibria, and we show the connection of this multiple steady-state
generation to the various forms of history dependence. Our proposed combination of the simplest spatial-
lag logit andp∗-logit models yields a discrete-time Markov model that can estimate the empirical mag-
nitude and substantive and statistical significance of such coevolutionary dynamics. A strength of this
empirical approach is its direct connection with the theoretical Markov type-interaction model, which,
inter alia, provides strong foundation for statistical tests of history dependence generated by coevolution.
We give one such test below. The most developed (perhaps only) extant alternative approach to network-
behavior coevolution is Snijders and colleagues’ (Snijders 1997, 2001,2005;Steglich, Snijders, and West
2006;Snijders, Steglich, and Schweinberger 2007) stochastic actor-oriented modelsfor longitudinal so-
cial network-analysis: (simulation investigation for empirical network analysis(Siena). The paper briefly
introduces the Siena coevolutionary model and estimation technique and summarizes our Monte Carlo

2Network effects subsume effects on nodes of the network (e.g., itsdensityor hub & spokestructure), of the nodes’ positions within
the network (e.g.,centralityor betweenness), and of other nodes’ characteristics through their network connections (i.e., of alter
onego). We focus for now on this last commonly labeled contagion in the relevant literatures.
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evaluations and comparisons of the two strategies.3 Materialspublished on the journal Web site online
elaborate this introduction and details these simulation results.

The rest of the paper proceeds thus. Section2 presents the theoretical Markov type-interaction model,
modified to allow endogenous tie formation. We propose our statistical model, specified to reflect that
proposed theoretical model, and compare it to Siena in Section3. Section4 offers an illustrative appli-
cation examining the coevolution of the great powers’ military alliances and conflict behavior in the first
half of the twentieth century, again comparing our proposed simple logistic strategy with Snijders and
colleagues’ Siena. Section5 concludes summarily.

2 A Discrete-Time Markov-Chain Theoretical Model of Network-Behavior Coevolution

This section gives a theoretical model of network-behavior shaping (contagion) and tie-formation (se-
lection) effects comprised of two sets of Markov chains. In this model, a group of actors are of certain
behavior types, types which change over time as actors are influenced by others (and exogenous factors).
Such behavior type contagion occurs only if the actors areconnected, where the explicit notion of net-
works (or spatial weights) characterizes suchconnectedness. Simultaneously, the connectivity of actors
also changes over time, not only due to exogenous factors but also as a function of types taken by actors
in the previous period. We particularly highlight behavior typeheterophily/homophily, where network
ties more likely form and persist among actors whose behavior types are less/more similar the previous
period. The key features of, and the additional sources of complexity due to, this extension of extant
type-interaction models are: (1) it introduces the details of which actor interacts with which to represent
network effects on actors’ behavior, specifically, contagion effects, and (2) it describes how those inter-
action patterns, that is, the networks cum spatial-weights matrice, evolve endogenously based on actors’
types in the previous period, which reflects homophily by behavior type.4

We then demonstrate that this model can produce long-run steady-state (LRSS) equilibria5 thatdepend
on starting values and history. With coevolution, multiple steady-state distributions of types are consistent
with a single behavior-switching rule. The type/behavioral-rule combination that emerges at a given point
in time depends on actors’ prior types, so the evolution of behavioral types is history dependent and may
be specifically path,phat, or initial-conditions equilibrium dependent (Page 2006).

2.1 A Minimal Coevolutionary Model

We offer a theoretical model minimally sufficient to incorporate both contagion in node behavior and
behavioral homophily in network-tie formation and show that and how this suffices to generate steady-
state path dependence. Consider a discrete-time process with actorsi ∈ {1, . . . , N} and time periods
t ∈ {1,2, . . .}. Distinguish an actor’sbehavior from her behavior type, with type being the actors’
probability of taking behavior 1. Let behavior be observed and dichotomous, whereas type is contin-
uous and unobserved by analysts but observed by actors, with contagion and selection occurring by
type. Actorsi choose behavior 1 or 0 (whether to smoke, vote, take an aggressive interstate behav-
ior, democratize, etc.) each periodt , denotedsi t ∈ {0,1}. Denote the behavior type ofi in t , that is,
pr(si t = 1), by σi t ∈ [0, . . . , 1]. The state of the system at the end of periodt , which actors observe,
is thus anN-dimensional vector of typesσt = (σ1t, . . . , σNt ), a corresponding vector of behaviors,
ssst = (s1t, . . . , sNt ), and a matrix of latent and observed ties between actors to be described.

The system incorporating both contagion and selection comprises two sets of Markov chains,N ex-
plaining type and1

2 N(N − 1) explaining tie formation. We focus first on the behavior-type Markov
chains that incorporate network contagion effects among theN actors. Equation (1) describes actori ’s

3Thesemay be the first Monte Carlo evaluations of Siena and more certainly the first comparisons to an alternative (Leenders 1997
did evaluate his precursor models).

4Homophily refers to phenomena where ties more likely form/persist between actors similar in some characteristic(s).The
homophilic-selection bases could be exogenous or endogenous.Behavioral homophily, network selection by similarity of the
endogenous behavior (types), plus behavior being contagious by those enodgenously selected ties, equals coevolution.

5Equilibrium heremeans consistency between actors’ behavioral types and their behavior-switching rules:system steady stateor
fixed-point; Nash strategic equilibrium is not implied.
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probabilitiesof transitioning type from periodt to t + 1:

(
σi,t+1

1 − σi,t+1

)′

=

(
σi t

1 − σi t

)′



c0i σi t + (1 − c0i )

∑
j 6=i (δi j σ j )

N−1 1 − Left

1 − Right c1i (1 − σi t ) + (1 − c1i )

∑
j 6=i (δi j (1−σ j ))

N−1



 .(1)

The left-hand side (LHS) is a row vector of next period’s types,σi,t+1 = Pr(si,t+1 = 1|σi t , δi j ,t ) and
1 − σi,t+1 = Pr(si,t+1 = 0|σi t , δi j ,t ), where 06 δi j ,t 6 1 indicates the probability (or, isomorphically
in this model and perhaps more substantively appealing, the strength) of dyadi j connection last period.
At far, right-hand side (RHS) is the transition probability matrix, which, premultiplied byt ’s types, yields
t + 1’s types. For example, cell(1,1) gives the probabilityi chooses behavior 1 given her propensity
toward 1 last period, Pr(si,t+1 = 1|σi t ). Because each new state arises from one of the two possible
previous states, this matrix isrow (or right) stochastic: its rows sum to 1. Therefore, defining any one
element of each row, for example, the “staying probabilities” in cells(1,1) and(2,2), suffices to complete
the transition matrix.

We separate each transition probability in two components. A temporal-autoregressive aspect first: an
actor is more likely to maintain behavior 1 att +1 the nearer her latent type att is to 1. The probability of
“staying” in si = 1 is higher the greater wasσi t , the propensity toward action 1 last period. The transition
matrix’s first-row (second-row) elements—giving the respective staying and “switching” probabilities
from behavior 1 (behavior 0)—capture this temporal-dependence component byc0i σi t andc1i (1 − σi t ),
respectively. Second, a contagion component: each actor’s behavioral decisions are also influenced by
others’ types. Actors in a given dyad ({i, j }, i 6= j ) influence each other’s behavior type only insofar
as they are connected. Let 06 δi j ,t 6 1 denote the probability that a tie exists or, isomorphically in
this model, the strength of the tie betweeni and j in period t , that is, Pr(di j ,t = 1).6 We express this
probability/strength of connection as

∑
j 6=i (δi j σ j t )/(N − 1), which normalizes thej ’s tied to i by (N −

1)−1 to bound this to the 0–1 interval.7 The second terms in the transition probabilities from behavior

1, (1 − c0i )

∑
j 6=i (δi j σ j t )

N−1 , relate to contagion effects. By this term,i ’s probability of staying in behavior 1

increases with the weighted sum of the others’ propensities to take action 1,
∑

j 6=i (δi j σ j t )

N−1 . The analogous

contagion component of the probabilityi stays in behavior 0 is seen in cell (2,2) as(1−c1i )

∑
j 6=i (δi j (1−σ j t ))

N−1 .
Thus,the behavior is contagious, and contagion effects operate via actors’ propensities toward action 1 or
0, σ j t or 1 − σ j t , and strengthen with the latent dyadic tie strengths,δi j .

Notice how the parameterc ∈ [0, 1] captures the extent to whichi ’s own behavior type in time
t influences her behavior int +1 and 1−c indicates the remaining relative role of contagion, that is, ofj ’s
time-t type in determiningi ’s t +1 behavior. The parametersc thus gauge the strength of contagion versus
exogenous internal or external (here, autoregressive) factors. At one extreme wherec0i = 1, for example,
i ’s time-t + 1 behavior choice remains, as her time-t choice was, solely determined by her behavior type,
σi,t andnot at all affected by any others’ to whom she is connected: that is, the strength of contagion is 0.8

Thebehavior choice being dichotomous, one conditional probability suffices to describe those Markov
chains, Pr(si,t+1 = 1|σi t ) = σi,t+1 (theother is just 1− σi,t+1):

Pr(si,t+1 = 1|si t ) = σi,t+1 = σi t

[

c0i σi t + (1 − c0i )

∑
j 6=i (δi j σ j )

N − 1

]

+ (1 − σi t )

[

1 −

{

c1i (1 − σi t ) + (1 − c1i )

∑
j 6=i (δi j (1 − σ j ))

N − 1

}]

. (2)

6The model assumes undirected ties/symmetric spatial-weights matrices and one basis for connection between units. Extension
to directed networks/asymmetric weightsand multiple ties remains (very importantly, if perhaps not very easily) for future work
(Franzese and Hays 2006andHays, Kachi, and Franzese 2010have made such extensions in linear model systems).

7The row standardization common in spatial econometrics or the recommended spectral normalization ofKelejian and Prucha
(2010) would also bound 06

∑
i 6= j (δi j σ j t ) 6 1; our less orthodox 1/(N − 1) weighting is equally functional and greatly

facilitates the model’s accounting.
8Thesetwo components enter in convex combination and the actor’s types,σ , are probabilities (that they chooses = 1). This
properly bounds all transition probabilities to [0, . . . , 1].
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Equation(3) gives the tie formation Markov chains. The unit of analysis is now a dyad(i, j ). The proba-
bility that i and j are connected in periodt + 1 is denotedδi j ,t+1 ∈ [0, . . . , 1]:

(
δi j ,t+1

1 − δi j ,t+1

)′

=

(
δi j ,t

1 − δi j ,t

)′ (
δi j ,t 1 − Left

1 − Right c2,i j (1 − δi j ,t ) + (1 − c2,i j )(σi − σ j )
2

)

. (3)

Extanttype-interaction models assume tie formation probabilities exogenous (in fact, often fixed and uni-
form), but the potential for endogenous ties is core to coevolution. We allow actors to prefer ties to others
who behave (dis)similarly,behavioral (heterophily) homophily. To simplify, we build this behavioral se-
lection component directly into the transition probabilities only in the time-t , di j ,t = 0.9

Thesecond term of transition matrix element(2,2), (1−c2,i j )(σi −σ j )
2 gives this behavioral selection

effect: for homophily (heterophily), 0< c2 < 1 (−1 < c2 < 0), as the distance between two actors’
behavior types increases, the dyad is less (more) likely to connect. So, with 0< c2 < 1, our model
exhibits homophilic tie formation by behavior type: two (non) smokers are more likely to be friends, two
countries of similar conflict behaviors more likely to ally, two representatives of closer ideologies more
likely to cosponsor bills, etc.

As before, the other terms,δi j ,t andc2,i j (1− δi j ,t ) in (1,1) and (2,2), reflect temporal autoregression—
again: standing in for all common exposure factors that affect tie formation. Analogously toc1, c2 reflects
the strength of temporal autoregression (common exposure) relative to behavioral selection effects in
the transition probabilities, and(1 − c2,i j ) reflectsthe remaining extent to which hetero- or homophilic
selection determines tie formation. The combinatorial forms of the various weights again serve to bound
probabilities properly [0, . . . ,1].

A single conditional probability again suffices to specify the tie formation chains:

Pr(di j ,t+1 = 1|di j ,t ) = δi j ,t+1 = δ2
i j ,t + (1 − δi j ,t )[1 − {c2,i j (1 − δi j ,t ) + (1 − c2,i j )(σi − σ j )

2}]. (4)

The systems of difference equations (1) and (3) complete our theoretical model of network-behavior
coevolution, that is, of jointly endogenous contagion and selection. The steady-state equilibrium of this
system consists of a vector of each actor’s type and each dyad’s tie forming probability,(σ, δ). This
steady state solves equations (1) and (3) for σ for σi,t+1 = σi,t andδi j ,t+1 = δi j ,t , ∀i, j ∈ {1, . . . , N}. In
particular contexts, our interests may lie primarily in the steady states and/or the intertemporal dynamics of
actors’ types or of dyads’ ties,σ or δ; regardless, either can only be characterized deriving vectors of types
and tie probabilities both due to the endogeneity generated by homophily and contagion (Our exposition
will highlight behavior type and network-tie steady states, suppressing dynamics for compactness.)

To illustrate the multiple steady states of this coevolutionary system, consider a two actor,i = {1,2},
one undirected edge,δ12, example. This gives a system of three equations of motion, two for the actors’
behavior type and one for their dyad’s tie formation processes:






σ1t = σ1,t−1[c01σ1,t−1 + (1 − c01)δ12,t−1σ2,t−1]

+ (1 − σ1,t−1)[1 − {c11(1 − σ1,t−1) + (1 − c11)δ12,t−1(1 − σ2,t−1)}]

σ2t = σ2,t−1[c02σ2,t−1 + (1 − c02)δ12,t−1σ1,t−1]

+ (1 − σ2,t−1)[1 − {c12(1 − σ2,t−1) + (1 − c12))δ12,t−1(1 − σ1,t−1)}]

δ12,t = δ12,t−1δ12,t−1 + (1 − δ12,t−1)[1 − {c2(1 − δ12,t−1) + (1 − c2)(σ1,t−1 − σ2,t−1)
2}].

(5)

Solving this system for its LRSSσσσ and δ yields: {σ1 = σ2, δ12 = 1}. Any σ1 = σ2 and δ12 = 1 is
a candidate steady state; in the LRSS, 1 will be tied to 2 but at differentσ1 = σ2 depending(at least)
on initial conditions.Page(2006)’s rigorous definitions of history dependence distinguish sensitivity to
initial conditions, to the set or sequence of past conditions, or to immediate past conditions in shaping
equilibria (that is, steady states) and, distinctly, outcomes along the path. As we shall illustrate, at which
type the actors in this model will settle (equilibrium) depends on where they start (initial conditions) and
the immediate past but also on the set (phat) and sequence of past conditions (path).

9Indirect,time-lagged network selection effects nonetheless manifest in both states, and the qualitative conclusions of the model do
not depend on the simplification.
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2.2 Illustrations of History Dependence in Coevolutionary Models

History dependencerefers to phenomena where past conditions alter a system’s future course. This broad
notion is often conflated with the much narrower concept,path dependence, but followingPage(2006)
we define history dependence most broadly and differentiate three increasingly restrictive cases within
it: state,phat, andpath dependence. The most restrictive path dependence means that a system’s future
history depends on the path, that is, thesequenceor order, of past conditions, and not merely on the
set, which is the less-restrictivephator setdependence. The least-restrictive state dependence is where a
system’s trajectories can be partitioned into a finite number of states that contain all relevant information
for the future of the system regardless of events outside that partition (meaning that the system’s future
depends on its current state not the path or set of earlier conditions). We also distinguishoutcomefrom
equilibrium history dependence. In the former, each period’s outcome (e.g.,st ) depends somehow on
outcome(s) in past period(s) (e.g.,st−v) or on the time index. Equations (1) and (3) show that our model,
like any temporal-autoregressive model, is outcome history dependent. More interesting here is steady-
state dependence: whether the LRSS of behavioral types,σσσ , and strength-of-ties,δδδ, depend on their history
(sequence, set, or state). We illustrate the forms of history dependence our model may exhibit by a series
of numerical exercises in a two-actor system with given sets of initial and/or sequences of behavior type
and tie probability values,σσσ andδ, and/or exogenous parameters,c.

Figure1 shows the sequence of actor 1’s behavior type (σ1t) over the first 11 periods, with the Markov
chains (equation (5)) solved recursively from two sets of initial conditions (starting values),{σ11 = σ21 =
δ12,1 = 0.4}or {σ11 = σ21 = δ12,1 = 0.7}, but with all parameter values fixed in both cases atc01 = c11 =
0.9,c02 = 0.1,c12 = 0.9,c2 = 0.5. The LRSS behavior types are∼0.6173 and 0.6244, respectively
(with σ2 = σ1 in both, as concluded above). The LRSS types depend on starting values of the endogenous
variables,σσσ and δ, even with the exogenous parameters (c’s) fixed; that is, inPage(2006) terms, the
system exhibitsinitial conditions equilibrium dependence. This does not necessarily indicate either of the
stricter forms of history dependence, phat or path, but conventional type-interaction models do not exhibit
even this weakest initial conditions, dependence.

To analyze stricter forms of history dependence, we consider changes in parametersc over the system’s
history. As mentioned above, the temporal-autoregressive parameters, being the only exogenous noncon-
tagion or nonselection terms in the respective equations of the theoretical model, serve also as placeholders
for all the exogenous conditions to which the actors may be exposed (i.e., analogously to the exogenous
Xβββ of a regression model). As such, history dependence on thesec may be substantively more interesting
and practically more important than dependence on type starting values because one could more easily
imagine intervention on and relate substantively to variation in some actor/dyad-specific attributes,x, that
is, theoretical-model conditionsc, than manipulating or varying initial states.10

Fig. 1 Initial-conditions steady-state sensitivity in a coevolutionary system.

10Our emphasis on history dependence relating to the parameters of a nonlinear system of equations resonates with results inJackson
and Kollman(2007).
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Fig. 2 Early conditions steady-state sensitivity (Phat dependence).

We start with the simplest form of phat dependence,early conditions sensitivity. Figure2 plots the
path of actor 1’s LRSS behavior type under two different sets of parameters. Condition 1 remains at
{c01 = 0.9,c11 = 0.1,c02 = 0.1,c12 = 0.9,c2 = 0.1} for all 11 periods. Condition 2 instead starts with
parameters{c01 = 0.1,c11 = 0.6,c02 = 0.1,c12 = 0.1,c2 = 0.3}, but some intervention changes the
parameters to{c01 = 0.9,c11 = 0.1,c02 = 0.1,c12 = 0.9,c2 = 0.1} from t = 2 onward. Starting values
for the endogenous behaviors and ties,σσσ andδ, are the same in both scenarios; the only differences lie
in their sets ofc. Conclusion: the set of past conditions, specifically early conditions, of the exogenous
parameters,c, matter; the system with behavioral contagion and homophily is (at least) phat dependent.

Finally, the top-left graph of Fig.3 shows that, with both behavior-type contagion and behavior-
homophilic selection (coevolution), our model exhibits true equilibrium path dependence (Page 2006):
the LRSS behavior typesσσσ and tie strengthδ depend on the order, not just set, of past events. The graph
plots the dynamics and LRSS of actor 2’s behavior type under alternative Path 1 and 2 scenarios that differ
only by the sequence of exogenous values,c01, c11, c02, c12, c2, with the first two vectorsc order reversed.
The history is constant within and equal across scenarios fromt = 3, and both paths share endogenous
variable starting values:{σ1 = 0.6, σ2 = δi j = 0.4}. The LRSS behavior types areσ1 = σ2 ≈ 0.5141
under Path 1 andσ1 = σ2 ≈ 0.5008 under Path 2 (δ12 = 1 in both). The two paths differ only in the
sequence of past conditions but generate different LRSS: true path dependence.

Figure3 reveals a core result from our model. The coevolutionary system exhibiting path dependence
plotted at top-left has both behavioral contagion and behavior-homophilic section. We can setc0 and
c1 to 1, eliminating contagion, and/orc2 to 1, eliminating selection, and compare responses the same
alternative paths of conditions. At top-right, with contagion but without homophilic selection, 1’s LRSS
behavior type isσ1 = 0.6429 regardless of path, and at bottom-left, with homophilic selection but without
contagion, 1’s behavior type remains as initially assigned:σ1 = 0.6. Path dependence is also eliminated
with no contagion and no homophilic selection of course. The crucial upshot is that behavioral contagion
and behavioral-homophilic selection are both required to generate path dependence; this suggests a direct
empirical test for path dependence in the empirical model below.

Table1 summarizes the crucial conclusions of the proposed discrete-time Markov chain type-switching
model of coevolutionary dynamics: endogenous coevolution of network (spatial) connections, which de-
pend in part on the behaviors of the connected nodes, and of node behaviors shaped in part by others’
behaviors through that network generates systems of nonlinear difference equations that can easily pro-
duce initial condition, state, phat, and path steady-state history dependence.11 We specified the transition
probabilities of an example system with parameters reflecting temporal autoregression and, implicitly,
other exogenous (or predetermined) covariates on the one hand (embodying common exposure factors),
and on the other hand, contagion through network connections in the behavioral model and homophily

11To appreciate how easily coevolution introduces complexity, note how minimally Page’sRule of Six(2007)—systems must have
numbers of actors plus choices of six or more to have multiple equilibria—is met here: 2 actors plus 3 dichotomous equations, 2
behaviors and 1 tie, suffice because thesymmetricnetwork-tie choices,i j and j i contribute just 1 equation.
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Fig. 3 Equilibrium (steady-state) path dependence in a coevolutionary system.

by behavior type in the network-tie formation model (selection). Our analysis indicated that the existence
of steady-state history dependence depended on thejoint presence of contagion and selection. Dynamic
models of ties and/or behavior without one or both processes do not exhibit steady-state path dependence.
This will suggest the form of a test for path dependence in the empirical model to come.

3 Empirical Strategies

This section uses our theoretical model, which expresses two kinds of transition probabilities, one in be-
havior and one in network ties, as functions of three kinds of conditions—exposure to exogenous factors,
contagion, and selection—to suggest a simple empirical strategy for estimating models of social phe-
nomena that can distinguish these inputs as sources of network-cum-spatial association, correlation, or
clustering. Our logistic discrete-time Markov model for empirical analysis of coevolutionary processes
combines the simplest (time-lagged)spatial-lag models of behavioral contagion from spatial econo-
metrics with the simplest (independent)p∗ models of behavior-homophilic selection in tie formation

Table 1 Path dependence in type-interactionmodels

No contagion(c1 = 1) Contagion(c1 6= 1)

Exogenous tie formation
(c2 = 1)

No contagion of behavior types. Tie
formation is also exogenous to behavior
type

Behavior type is contagious, but tie
formation is exogenous to behavior
type

LRSS:σ∗
i t = σi 0, ∀i , δ∗

i j ,t = δi j ,0, ∀i, j
Path independent

LRSS:σ∗
i t = 1,∀i , δ∗

i j ,t = δi j ,0, ∀i, j
Path independent

Endogenous tie formation:
homophily(c2 6= 1)

No contagion in actors’ behavior types,
but tie formation is endogenous to
behavior types, with actors more likely
to form ties with similar behaviortypes
(homophily)

Behavior type is contagious, and tie
formation is endogenous to behavior
type, with actors more likely to form
ties with similar behavior types
(homophily)

LRSS:σ∗
i t = σi 0, ∀i , δ∗

i j ,t = 1,∀i, j Path
independent

LRSS:σ∗
i t = σ∗

j t , ∀i, j , δ∗
i j ,t = 1,∀i, j

Pathdependent

Note.LRSS, long-run steady state. Time index “0” inσi 0 andδi j ,0 indicate starting values.
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from network analysis. The section also briefly introduces the extant alternative, Snijders’actor-oriented
continuous-time coevolution model, Siena (Snijders 1997, 2001,2005;Snijders, Steglich, and Schwein-
berger 2007;Ripley and Snijders 2010) and summarizes our Monte Carlo evaluations of Siena’s sMoM
and our simple-logistic estimators’ performances.12

3.1 A Simple Logistic Discrete-Time Markov Model Strategy

Our discrete-time Markov empirical model has contagion in behavior (not behavior type) and selection by
observed ties (not latent tie strengths). We give the behavior-shaping probabilities asN simple spatial-lag
logit models, with only time-lagged (and not simultaneous) spatial-lags, and tie formation probabilities
as the simplestp∗ model,one with independent dyads (similarly reducing tie formation toN(N − 1)
conditionally independent logits):13

{
Pr(si,t = 1|st−1, dt−1) = logit(β0 + β1si,t−1 + β2di,t−1st−1),

Pr(di j ,t = 1|st−1, dt−1) = logit(γ0 + γ1di j ,t−1 + γ2 ∙ I (si,t−1 = sj,t−1)),
(6)

wheredi,t−1 is a row vector of sizeN containing the(N − 1) binary tie formation indicators between
i and each other actor at the end of periodt − 1 (and 0 in elementi for dyadi i ), and I (si,t−1 = sj,t−1)
indicateswhether given dyad’s behaviors were the same in the previous period, capturing homophily. As
noted, this model’s contagion and selection, that is, network effects and formation, both operate through
observed behaviors, not latent behavior type.

Estimating equation (6) is straightforward; behavior and tie formation can be estimated separately
or as a seemingly unrelated system of logit equations. If the disturbances—that is, the extreme-value
disturbances from the underlying choice models—are correlated across equations, separate estimation
would produce consistent, though inefficient, estimates of parameter values, and standard error estimates
would be inaccurate. The standard error inaccuracy issue can be redressed by robust (i.e., consistent)
standard errors using a systems sandwich estimator of the variance-covariance matrix. The sandwich
matrix in this formulation, the outer product of the gradients of the likelihoods, provides estimates of the
parameter covariances across equations, which are incorporated into the variance estimates.14

3.2 Siena’s sMoM Continuous-Time Markov Model

In the network-analytic tradition, Snijders and colleagues (op. cit.) have advanced furthest in empirical
modeling of dynamic, endogenous contagion, and selection.15 In Siena,N actors are connected by an
observed, binary, potentially endogenous, and time-variant matrix,x, of ties,xi j ,t . A vector ofN observed,
binary behaviors,z, at timet has elementszi,t . Additional exogenous explanators may exist at unit or
dyadic level,vi,t or wi j ,t . Opportunities arise for actors to change their network ties, switching at most 1 tie
on or off, at continuous-time fixed rate,ρnet

i,t , according to an exponential model. Likewise, opportunities

to switch or leave unchanged the dichotomous behavior arise at rateρbeh
i,t .16Whenan opportunity to change

network ties arrives for somei , she may choose to switchonor off any one of herN −1 ties by comparing
the values of her objective function,f net

i (x, x′, z) + εnet
i (x, x′, z), under the existing behaviors,z, and

network,x, to the existing behaviors and the network under the considered tie change,x′. The weights
on the various network statistics in these objectives are the coefficients,βnet

h , to be estimated. Assuming
εnet

i extreme value distributed, independently acrossi andt , yields a multinomial-logit categorical choice
model. Similarly, when a chance to change behavior arrives,i compares values of an analogous objective

12Materialspublished on the journal Web site online elaborate and detail the introduction and comparisons.
13Lazer (2001) takes similar approach to modeling network-behavior coevolution. Important future extensions include enriching

these models to simultaneous spatial-dependence and nonindependencep∗ cases(feasibly, computational demands of both can be
very high).

14Statagives these system sandwich estimates at one postestimation command:suest.
15Wasserman(1980a,1980b),Leenders(1997) presage. Bayesian latent-space longitudinal networks (Hoff, Raftery, and Handcock

2002;Hoff and Ward 2004; Hoff and Westveld 2007) may also relate.
16AlthoughSiena can accommodate richer parameterizations, bothρ are held constant acrossi but allowed to differ arbitrarily by

t here. These rates of intraobservational event occurrence can vary freely, so the assumption of onei making one 1-unit change at
a time is inconsequential. The strong assumption (we also make) of conditional independence of the choices does remain though.
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function under alternative actions (here, binary): switch to 1 or 0 or leave unchanged. Again assuming
i.i.d. extreme value stochastic components (εεεbeh

i ), the logistic form emerges.
The behavior and network objective functions (and also the rate functions if desired) can include any of

a number of commonly supposed social-network phenomena. For instance, importantly for our purposes,
covariate-related dissimilarity, which is “defined by the sum of absolute covariate differences betweeni
and the others to whom he is related” (371):

covariate-related dissimilarity:si (x) =
∑

j

xi j |νi − ν j |. (7)

Enteringsi (x) in the tie formation equation with covariatesνi andν j beingi ’s and j ’s behaviors gives a
behavioral homophilic (or, rather, heterophilic) selection term. RSiena estimates such models by sMoM.
That is, it simulates network-behavior outcomes according to the processes of the proposed model and
estimates the parameters of that model (along with estimated variance-covariances for those parameter
estimates by the delta method) by optimizing fit of simulated to observed sample statistics.17

As a theoretical model and estimation strategy for simultaneous tie formation and behavioral choices,
Siena is the state of the art. Yet, notice also the many caveats stressed:

• “Although in our experience, these equations mostly seem to have exactly one solution, they do not
always have a solution” (Snijders 2001, 374).

• “[The moment-conditions stated are] far from implying the statistical efficiency of the resulting
estimator, but it confers a basic credibility to [. . . it and. . . ] ensures the convergence of the stochastic
approximation algorithm. . . ” (Snijders 2001, 373).

• “. . . the method proposed here is not suitable for observations. . . too far apart in [. . . the number of
intraobservational changes]. For such [. . . cases, dependence of one observation on the previous. . . ]
is practically extinguished, and it may be more relevant to estimate the parameters of the process
[. . . separately]” (Snijders 2001, 374).

• “It is plausible that these estimators have approximately normal distributions, although a proof is
not yet available” (Snijders 2001, 375).

This is a small subset of the statements acknowledging various aspects of the estimation strategy perfor-
mance as unknown or maybe problematic, but we do not highlight them as criticism. Siena seems the
currently best developed tool capable of addressing coevolution, which we think is common and impor-
tant in social science, and its approach to modeling network formation and behavioral choice shares our
emphasis on affording address of a theoretically and substantively central empirical challenge of distin-
guishing and distinctly estimating the common exposure, contagion, and selection effects in generating
social outcomes that ubiquitously exhibit network/spatial association. Our point is instead to underscore
how little is known regarding Siena’s performance as an estimator. Understandably given its complexity,
little has been proven analytically about its properties; nor, also understandably given its computational
demands and its specialized implementing software until RSiena’s recent advent, has its performance been
explored much in Monte Carlo analysis.

3.3 EstimationStrategy Evaluation and Comparison

Next, we summarize our evaluation and comparison of the simple time-lagged spatial-lag logistic-
regression strategy proposed here and Siena’s sMoM strategy for estimating models of network-behavior
coevolution, that is, with contagion and selection. These evaluations and comparisons are elaborated and
detailed in the web materials.

Our simulations followed (Snijders 2001) to specify a data-generating process (DGP) exactly replicat-
ing a Siena model of coevolution with the behaviors ofN actors contagious through a network of ties

17Theonline appendix elaborates; see alsoSnijders(2001) andRipley and Snijders(2010) for further estimation procedure details
and options.
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generatedby behavioral homophily. Using this DGP, we generated 100 trials each of eight different sce-
narios: varying the number of actorsN ∈ {30,50}, the number of observed periods,T ∈ {5,11}, and the
rates of event occurrence,ρnet = ρbeh ∈ {1,5}. The coefficient magnitudes are not directly comparable;
nevertheless, we can conclude already from the raw parameter estimates on several points. First, in con-
texts with higher event rates, that is, where intraobservational changes in networks and behavior are likely
to have been great reliable estimation of coevolutionary processes by either strategy seems impossible.
For both strategies, statistical power to discern behavioral contagion or behavioral homophilic selection
was negligible at the higher rates, and parameter estimates exhibited very large biases and/or mammoth
inefficiency. Standard error accuracy was also problematic. At lower rates, either estimator reports reason-
ably honestly about the certainty of its parameter estimates. Siena seems essentially unbiased in lower-T
samples but suffers some downward or deflationary bias in its estimates at largerT (oddly). The spatial-
logistic parameter estimates seemed roughly to parallel Siena’s in magnitude, although bias could not be
gauged since the “true” parameters of this incorrect model under the Siena DGP were unknown. At these
lower rates, the simpler spatial-logistic strategy seemed to have some edge in efficiency and, thereby, in
power, with this advantage growing more noticeable with lowerT and smaller samples. Judging by the
parameter estimates, therefore, one could summarize: at low event rates, both strategies work generally
acceptably and roughly comparably well, with an efficiency advantage and simplicity perhaps favoring
the logistic strategy; at higher event rates, neither strategy managed to gain any appreciable traction on
contagion or selection.

To evaluate the performance of Siena and our simple logit more effectively, we should calculate esti-
mated effects on behavior or tie formation by each estimator of some common hypothetical. We consider
the following hypothetical regarding contagion. If alli ’s network partners behave in one way (all 0 or 1),
what are the odds thati will choose the network consistent over the network inconsistent behavior? In
the Siena DGP, we can get these odds thus: if alli ’s ties are initially to dissimilar behavior types (so her
average similarity score is 0) andi switches her behavior to match her network partners, her average simi-
larity will go to 1, and the corresponding odds of going from inconsistent to consistent behavior, assuming
i is chosen to act, are exp(β beh) to 1 (≈ 2.714). In the simple-logit model, ifi ’s network partners switch
their behavior from all-0 to all-1, then fori , behavior 1 likewise goes from being network inconsistent to
network consistent, and the odds of choosing behavior 1 gives the equivalent contagion effect, here as the
spatial-lag variable goes from 0 to 1. For a comparable homophilic-selection effect of behavioral similar-
ity on network ties, we ask: what are the odds thati will choose to connect to another actor who behaves
similarly over to one who behaves dissimilarly? In the Siena model, if alli ’s ties are between dissimilar
behavioral types (average similarity 0), choosing to connect to a similar behavior type increases covariate-
(behavior)-related similarity from 0 to 1, and the odds of forming such a tie (relative to choosing a tie with
a dissimilarly behaving actor) are exp(β net) to 1. In the simple logit model, an indicator variable turns on
(off) when a potential network partner behaves similarly (dissimilarly), so the relevant odds calculation is
straightforward.

Several issues remain. First, the Siena effects described above assume thati is chosen to make a behav-
ioral or network change, but not all actors will be selected in that DGP. With rate of event occurrence set
to 1, the probability an actori is selected during an interobservational period is about .63 (the negative ex-
ponential cumulative distribution evaluated at 1). The selection-adjusted odds ratio is.63×2.714= 1.71.
Second, the logit models are dynamic in a way the Siena DGP is not. Specifically, the logit parameter
estimates determine transition probabilities for a first-order Markov chain. Accordingly, the comparable
odds ratios would derive from the steady-state (stationary) distribution of the Markov chain. Finally, even
with these adjustments, the logit models are still misspecified, especially the network model because the
true DGP only allows actors to make one change at a time, a restriction the simple logits do not impose.
Consequently, the logit model will likely underestimate the size of the relevant selection effects. Many
ties that would have formed among similarly behaving actors absent this restriction, will not be formed in
the Siena DGP.

Table2 compares these behavioral homophilic selection and behavioral contagion effects using the
estimates from the lower event rate scenarios. We provide the mean effect estimate and the standard
deviation and root mean squared errors (RMSE) for these estimates. The relative bias and efficiency
we summarized regarding the structural parameter estimates transfer to the effects estimates. While the
mean Siena effect estimates frequently exhibit less bias, the simple logistic strategy outperforms the Siena
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Table 2 MonteCarlo simulation results for comparable effects (true effect= 1.72)

Sample:N = 30,T = 5 Sample: N= 30,T = 11

Parameter Result SIENA Simple logit Parameter Result SIENA Simple logit

Network Mean 2.068 1.512 Network Mean 1.580 1.410
Selection CF SD 1.836 0.320 Selection CF SD 0.491 0.172
(0 → 1) RMSE 1.869 0.381 (0→ 1) RMSE 0.510 0.353

Behavior Mean 1.763 1.800 Behavior Mean 1.732 1.735
Contagion CF SD 1.621 0.922 Contagion CF SD 0.740 0.577
(0 → 1) RMSE 1.622 0.926 (0→ 1) RMSE 0.740 0.577

Sample:N = 50,T = 5 Sample: N= 50,T = 11

Parameter Result SIENA Simple logit Parameter Result SIENA Simple logit

Network Mean 1.865 1.539 Network Mean 1.598 1.462
Selection CF SD 0.874 0.268 Selection CF SD 0.392 0.145
(0 → 1) RMSE 0.886 0.323 (0→ 1) RMSE 0.410 0.294

Behavior Mean 1.951 1.761 Behavior Mean 1.778 1.716
Contagion CF SD 1.353 0.598 Contagion CF SD 0.854 0.438
(0 → 1) RMSE 1.373 0.600 (0→ 1) RMSE 0.856 0.438

estimatesacross the board in RMSE terms, often by large margins. In the small sample case (N = 30,
T = 5), for example, the RMSE from the simple logit model for behavior homophilic selection effect is a
little over 1

5 thesize of corresponding RMSE calculated from the Siena estimates.
The summary upshot seems to be: neither strategy can offer much hope of learning anything reliable

about coevolution when event rates are high—which may be discernable by high amounts of change in
networks and/or behaviors between observational periods that seem substantively far apart in that actors
could have undertaken many interim actions. At low event rates, conversely, both strategies work generally
acceptably and roughly comparably well, with an efficiency advantage and simplicity perhaps favoring the
logistic strategy.

4 Illustration: Military Alliances and Conflict Behavior

We illustrate with an analysis of the alliance formation and conflict behavior of great powers during the
first half of the twentieth century (Levy 1981), a period of much variation in conflict behavior (hardly
unique to that period) and of multipolarity during which military alliances were in flux (rarer). We sus-
pect alliance ties and conflict behavior coevolve. States self-select into alliances, and these decisions are
plausibly driven by homophilic or heterophilic preferences. More aggressive/pacific states may seek like-
wise aggressive/pacific allies, or the opposite may hold. At the same time, conflict behavior is contagious
through alliances. Indeed, that states would be drawn into their allies’ conflicts is key to most alliances
(e.g.,Kimball 2006).

Table3 presents our estimates. Model 1, columns 1A and 1B, applies our estimator with contagion of
dichotomous behaviors, with connection and selection occurring through observed dichotomous ties; that
is, the system of equation (6) above. Model 2 adds covariates. Specifically, the conflict behavior model
includes regime type (Polity score) and national capabilities (Correlates of War [COW] Composite Index
of National Capability [CINC] score). The alliance ties model includes regime similarity, given as one
minus the absolute value of the difference in polity scores divided by the maximum difference (20), and the
absolute value of the CINC differences, measuring power asymmetry. These are alsocovariate similarity
measures, but in an exogenous regressor (as assumed here anyway), unlike our behavioral homophily
regressor. The CINC scores are scaled to sum to one across all countries, so both our regime similarity
and power asymmetry measures lie between 0 and 1. We suspect the disturbances (from the underlying
choice models) correlate across equations in this application (unlike in our simulation DGP), so equation-
by-equation estimation would produce consistent, if inefficient, parameter estimates, while conventional
standard error estimates would be inaccurate. Accordingly, we will report robust standard errors using a
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Table 3 Estimationresults: military-alliance ties and conflict behavior

Discrete-time Continous-time
ours Snijders et al. (bySiena)

(1A) (1B) (2A) (2B) (3A) (3B)
(Markov Alliance MIDs Alliance MIDs Alliance MIDs
models>>) networks behavior networks behavior networks behavior

Temp lag 4.99∗∗ 1.45∗∗ 5.04∗∗ 1.33∗∗ — —
(0.14) (0.27) (0.14) (0.28)

Dyad-specific
Previous MIDs −0.39∗∗ — −0.42∗∗ — −4.67
similarity (behavior) (0.15) — (0.15) — (5.14)
Regime similarity — — 0.45 — — —

(0.28)
Power asymmetry — — 6.56∗∗ — — —

(1.51)
State-specific

Previous alliance tie — 0.85∗∗ — 0.74∗ 1.71
(Network) (0.31) (0.33) (4.06)
Polity — — — −0.05 —

(0.03)
National capability — — — 10.96∗ —

(4.69)
Loglikelihood −225.08 −179.50 −223.05 −175.34

Note. Models (1) and (2) report Seemingly Unrelated Regressions-robust standard errors. These models also include unit fixed
effects (not reported).
∗ .05 level of significance;∗∗ .01 level of significance.

systemssandwich estimator of the variance-covariance matrix. Models 1 and 2 also contain country or
dyad unit indicators. Model 3 (3A and 3B) applies the Siena continuous-time Markov model/estimator to
“snapshots” at 5-year intervals (1900, 1905, . . . ,1950) of the great powers’ alliance networks and conflict
behavior. For the network statistic, we used covariate (behavior)-related similarity, and for the behavior
statistic, we used the average similarity effect. The former is defined assnet

i =
∑

j xi j (simz
i j − ŝimz),

wherethe similarity scores are simzi j =
Δ−|zi −zj |

Δ , Δ beingthe maximum sample difference, and̂simz is

themean of all similarity scores. The latter behavior statistic is defined assbeh
i =

∑
j xi j (simz

i j −ŝimz)
∑

j xi j
. (The

same statistics as in the Monte Carlo simulations.18)
With the first two models, we find evidence (1) of heterophily—pacific powers are more likely to

ally/maintain alliances with aggressive powers—and (2) that conflict behavior is (positively) contagious
through alliances. The Model 1 estimates, for example, imply that the average probability of a great power
engaging in a militarized dispute given no involvement in the previous period rises from .55 to .74 when
one’s allies change from pacific to aggressive behavior in the previous period. The heterophily effects
are smaller. The average probability that an alliance of great powers will persist period-to-period is about
.92 when the alliance partners behaved dissimilarly. With both parties pacific or both aggressive, this
probability drops to below .89. Note that the sustaining influence of asymmetry extends beyond behavior
to include capabilities (see Model 2A); relatively, weak countries are more likely to ally and stay allied
with relatively powerful partners. This supports theoretical expectations from the alliance formation liter-
ature regarding power asymmetry and alliance formation (Morrow 1991). The signs of our Siena-model
estimates also suggest behavioral contagion and heterophilic selection, but these estimates are not sta-
tistically significant. Model 3’s small Wald statistics seem to confirm the finding from our Monte Carlo
analysis that Siena is relatively less efficient and powerful than our simpler spatial-logistic strategy.19

18Snijders(2001)andRipley and Snijders(2010) offer many alternatives and much further discussion.
19We also tried a Siena model with the same covariates as in column 2, but we do not report it because the estimator failed to produce

a positive-definite covariance matrix.
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Overall, our empirical results suggest that the conflict behavior of great powers and their military
alliance networks coevolve. One significant implication of this is that great power relations may be path
dependent. As noted above, our theoretical models suggested that the test of endogenous coevolution, that
is, of contagion in behavior and selection by behavior jointly, was also a test of path dependence. Namely,
we test whetherH0: βcontagion× βhomophily = 0. Using a Wald strategy, and the Delta method asymptotic
linear approximation for the estimated variance ofβ̂c × β̂h, theχ2 statisticsand associated probabilities
are 3.56 and 0.0591 for Model 1, 3.25 and 0.0713 for Model 2: suggestive, if not overwhelming, evidence
for path dependence.

5 Conclusion

Theoretically, this paper built a discrete-time Markov type-interaction model in which the behaviors of
actors and the networks that connect them coevolve. One interesting implication of the model is that it pro-
duces history-dependent behavior possibly including path dependence. We suspect such network-behavior
coevolution, and with it the possibility of path dependency, manifests importantly in many areas of social
science inquiry. To evaluate this possibility empirically, we built from the theoretical model a spatial-lag
logistic model of coevolution that combines a simple time-lagged spatial-lag model of contagious behav-
ior with a simplep∗-logit model of behavioral homophilic network formation (which is also a time-lagged
spatial-lag model). We evaluated and compared the performance of this proposed simple estimation strat-
egy and/with the extant alternative from social-network analysis, Snijder’s Siena model of node behavior
and tie formation. Neither strategy seemed capable of gaining traction in environments where a great deal
of change in connectivity and behavior occurs within periods between observations, but either seemed at
least somewhat capable of doing so in more favorable scenarios. There, our analyses suggested the simple
spatial-logistic strategy had simplicity, efficiency, and power advantages making it an attractive alternative
to the more sophisticated Siena. Finally, we demonstrated the feasibility and utility of this theoretical and
statistical framework by applying it to analyze the patterns of alliance formation and conflict behavior
among the great powers during the first half of the twentieth century. A test for path dependence that we
derived from these theoretical and empirical efforts suggests that conflict alliance formation patterns in
that period were likely coevolutionary and so path dependent.
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