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Spatial- and Spatiotemporal-Autoregressive Probit Models
of Interdependent Binary Outcomes*

ROBERT J. FRANZESE, JR., JUDE C. HAYS AND SCOTT J. COOK

S patial/spatiotemporal interdependence—that is, that outcomes, actions or choices of some
unit-times depend on those of other unit-times—is substantively important and empirically
ubiquitous in binary outcomes of interest across the social sciences. Estimating and inter-

preting binary-outcome models that incorporate such spatial/spatiotemporal dynamics directly
is difficult and rarely attempted, however. This article explains the inferential challenges posed
by spatiotemporal interdependence in binary-outcome models and recent advances in their
estimation. Monte Carlo simulations compare the performance of one of these consistent and
asymptotically efficient methods (maximum simulated likelihood, using recursive importance
sampling) to estimation strategies naïve about (inter-) dependence. Finally, it shows how to
calculate, in terms of probabilities of outcomes, the estimated spatial/spatiotemporal effects of
(and response paths to) hypotheticals of substantive interest. It illustrates with an application to
civil war in Sub-Saharan Africa.

SPATIAL, TEMPORAL AND SPATIOTEMPORAL INTERDEPENDENCE IN BINARY-OUTCOME

MODELS

Many phenomena that social scientists study are inherently, or by measurement,
discrete choices. Canonical political science examples include citizens’ vote and
turnout choices, legislators’ votes, governments’ policy enactments, wars among or

within nations, and regime type or transition. In all these contexts, and widely across the
political and social sciences, the outcomes in some units depend substantively and theoretically
importantly on those of other units.1 Scholars argue, for example, that whether and for whom
citizens vote depend on whether and how their neighbors or social networks vote; that each
legislator’s vote depends on how s/he expects or observes others to vote; that governments’
policy choices depend on others’ policies via competition and learning; that states’ entry to and
involvement in external wars, international organizations, and treaties are heavily conditioned
by whether and which ones other states join; and that regime change at home or, as in our own
empirical application below, nations’ internal wars are often spurred by example, fomentation
or otherwise from abroad. Nevertheless, in most research areas, spatial (that is, cross-unit)
interdependence in discrete outcomes receives very little direct empirical attention.2 Even when
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1 Appendix I is an extensive topically organized bibliography of interdependence studies across the social sciences.
2 Perhaps the most notable exceptions are work on (1) diffusion of state policy/institutions and (2) micro-
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researchers have attempted to explicitly account interdependence empirically, the inappropriate
estimation strategies usually employed have rendered their estimates unreliable. Unlike
cross-unit interdependence, the over-time dependence of binary outcomes has received con-
siderable attention—and, consequently, has seen more-effective indirect empirical-modeling
strategies developed—yet modeling temporal auto-dependence directly raises these same
methodological challenges. Auto-dependence in binary outcomes, across space and/or over
time, requires strategies for modeling simultaneous spatial and/or temporal lags of the latent
outcomes (that is, the underlying propensities toward the binary outcome), which is metho-
dologically challenging to do. This article discusses a simulation-based strategy for estimating
these auto-dependence parameters directly in spatiotemporally autoregressive binary-outcome
models and, we believe for the first time, for calculating substantively meaningful conditional
spatiotemporal effects and response paths in terms of outcome probabilities.

While efforts to model spatial interdependence directly in binary outcomes have recently
expanded in some contexts, the strategies employed often fail to account for the endogeneity
induced by including spatial lags. Using our example application from below to illustrate:
Senegal is on Guinea-Bissau’s right-hand side, the former affecting the probability of internal
conflict in the latter, but, simultaneously, Guinea-Bissau is on Senegal’s right-hand side,
affecting its probability of civil war. Moreover, placing the actual binary outcomes of other
units (or weighted sums or averages of actual outcomes) simultaneously on the right-hand side
is not algebraically consistent (Heckman 1978). Such simultaneity can only logically operate
through the latent variables or errors, which raises additional econometric and computational
challenges. Diffusion researchers often time lag these spatial lags in an attempt to bypass these
issues. While this can suffice to evade the simultaneity bias (Beck, Gleditsch and Beardsley
2006), its efficacy in doing so rests on the assumptions (we believe frequently untenable) that:
(1) the interdependence does not occur instantaneously, that is, within an observational period,
(2) the actual periodicity and lag structure match that of the empirical observations and
specification and (3) the empirical model of spatiotemporal dynamics is adequate to prevent the
past bleeding into the present through mismeasurement and/or misspecification.3 Should any of
these conditions fail, time lagging spatial lags will be technically inappropriate and practically
insufficient to redress the spatial-lag endogeneity.

That outcomes will auto-correlate over time requires no parallel introduction or argument. No
one would argue or pretend that time-serial observations were temporally independent in almost
any context. Yet because temporal auto-dependence affords some simple evasions that spatial
interdependence does not, empirical applications that model temporal auto-dependence directly
are rarer still. Instead, researchers mostly follow Beck, Katz and Tucker’s (1998) or Carter and
Signorino’s (2010) advice to sidestep the estimation challenges by modeling temporal trends
with flexible functions of time-since-event instead. Such time dependence is not quite
auto-dependence of a unit’s current propensity on its previous propensities, so while these
approaches may adequately correct the biases and exaggerated certainty estimates that stem
from falsely pretending that time-serial binary observations are independent, they do not offer a
direct model of temporal-autoregressive processes.4 Some researchers have instead shifted

3 As Beck, Gleditsch and Beardsley (2006), e.g., note, adequacy of the spatiotemporal-dynamic model can
and should be tested. However, we have not seen such tests applied in the diffusion literature, and there are few
signs that researchers are aware of the issue.

4 Common (across units) time dependence—such as polynomials in, counters of or dummies for time
(as opposed to time-since event)—would miss units’ temporal auto-dependence more completely. More crucially
in our view, none of these alternative approaches yields the theoretically interesting and substantively likely
dynamic responses that autoregressive processes do (at least not directly or easily).
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strategy and focus to model, not the outcomes directly, but transition matrices of state-switching
probabilities (that is, probabilities of switching or staying in states 0 or 1) conditional on the
previous observed state (for example, Jackman 2000; Przeworski et al. 2000; Beck et al. 2001).5

This is autoregression in the binary outcome (and therefore a fuller strategy for temporal
auto-dependence) but modeling interdependence directly in the latent propensities may be more
appealing substantively in some contexts, and affords estimation of models in more-familiar
standard binary-outcome format, without shifting strategy and focus.

Working under the incorrect assumption of spatial, temporal or spatiotemporal independence
yields overconfidence and inefficiency at best, and usually bias and inconsistency too.
Moreover, while including spatial and/or temporal lags to reflect (inter)dependence directly is
advisable, simultaneous spatial lags are endogenous, and thus introduce biases if entered as
right-hand-side variables in estimation procedures, like standard logit/probit, that assume their
exogeneity (for example, Franzese and Hays 2004, 2007, 2008).6 Therefore, we suggest a
simulation-based approach for estimating models with simultaneous spatial and temporal lags
(STP) of the latent outcomes using maximum simulated likelihood (MSL) by recursive-
importance sampling (RIS), stated together as STP-MSL-by-RIS. This strategy enables us to
recover not only accurate parameter estimates but also, more importantly, estimates of
substantive conditional spatiotemporal effects, response paths and long-run-steady-state
responses. Ultimately, we are interested in how probabilities of outcomes in this and other
units and times respond to hypothetical changes in explanatory factors (X’s), propensities (y*),
or outcomes (y) in this and other units and times. Yet extant empirical studies, even those few
works that attempt to model spatial interdependence directly and, within those, even those rarer
ones that apply appropriate estimation strategies to do so, tend to ignore such substantive
effects, instead simply relying on parameter estimates (and significance) as evidence of spatial-
effect existence, which, even when properly estimated, offer little sense of effect magnitude
given the non-linearities of the spatial multiplier and the binary-outcome probability. Likewise,
current strategies for modeling time dependence do not (or at least do not easily) enable us to
calculate response paths over time or long-run effects in substantive terms. Simulation-based
strategies like STP-MSL-by-RIS enable direct estimation of spatiotemporal autoregressive pro-
cesses and of substantive spatiotemporal effects, response paths and steady states, all in terms of
(conditional) probabilities of outcomes. We can calculate, for example, how a hypothetical increase
in the propensity toward internal conflict or change in the realized outcome itself in Senegal (and/or
elsewhere) affects the probability of civil war in Guinea-Bissau (and/or elsewhere) simultaneously,
over time, and in the long run, including all spatiotemporal feedback between each other and
around the Sub-Saharan state system in all time periods.

The article proceeds as follows: first, we briefly explain (with technical details and
elaboration relegated to web appendices): (1) the severe inferential challenges posed by spatial,
temporal or spatiotemporal interdependence in binary outcomes and (2) recent spatial-econometric

5 Jackman (2000) and Beck et al. (2001) describe the lagged-latent binary-outcome model and a Bayesian
Markov-Chain-Monte-Carlo (MCMC) estimator for it. They correctly identify the final distribution in their
sampler as a T-dimensional truncated normal, and they offer the same Gibbs-within-Gibbs solution to that
challenge as LeSage and Pace (2009). We use a classical simulated-likelihood strategy that is also computa-
tionally feasible and does at least as well in mean-squared error.

6 Including other units’ outcomes also creates measurement error insofar as the interdependence truly works
through propensities or expectations of other units’ outcomes. Alternative mechanisms may suggest inter-
dependence of outcomes or of expected or latent outcomes, but only the latter are algebraically consistent in a
simultaneous autoregressive framework for binary outcomes (as explained further below and, originally, in
Heckman 1978).
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advances using simulation-based methods to surmount the analytical challenges that arise in such
problems. Next, Monte Carlo simulations compare the performance of one such consistent and
asymptotically efficient method (STP-MSL-by-RIS) to estimation strategies naïve about (inter)
dependence—that is, including lags but treating them as exogenous regressors in standard
probit estimation. Penultimately, we show—we believe for the first time—how to calculate
spatiotemporal response paths in outcome probabilities (with associated uncertainty estimates) for
some units from hypothetical changes to outcomes in other units. Finally, we illustrate with an
application to civil war in Sub-Saharan Africa and conclude.

THE ECONOMETRIC PROBLEM

Methods for properly estimating and analyzing models of interdependent binary outcomes have
received significant attention in the spatial-econometric literature recently. Most of this research
considers the spatial-probit model with interdependence in the latent variable—that is, in the
unobserved argument to the probit-modeled probability of a binary outcome.7 Several
estimation strategies have been suggested. We focus on simulated-likelihood strategies and, in
particular, the RIS estimator advanced by Beron, Murdoch and Vijverberg (2003) and Beron
and Vijverberg (2004).8 In brief, interdependence in binary outcomes necessitates simulation-
based estimation strategies, STP-MSL or MCMC, because the dependence across observations
invalidates the typical process of deriving the overall likelihood (posterior) to be maximized by
multiplying the probabilities (adding the log-likelihoods) of each observation; independence is
required for that step. Interdependence instead leaves one n-dimensional distribution in the
likelihood (posterior)—in the spatial-probit case, a truncated cumulative multivariate normal
distribution—to maximize, which is difficult and computationally intense. We now review the
spatial-probit model closely and then show how probit with temporal or spatiotemporal
dependence in the latent variable is very similar in form, indicating that the same empirical
strategies can apply there.

The structural model for the latent variable of the spatial probit takes the form:

y* ¼ ρWy* +Xβ + ε; (1)

where Wy* is the spatial lag, and W the all-important spatial-connectivity matrix, with element
wij giving the relative connectivity from unit j to i. The ρ, which is to be estimated, is the
strength of interdependence by that pattern given in W. The model (1) can be rewritten in
reduced form as:

y* ¼ ðI�ρWÞ�1Xβ +u;with u ¼ ðI�ρWÞ�1ε: (2)

Latent-variable y* links to the observed binary outcome, y, through the measurement equation:

yi ¼ f1 if yi* > 0 ; 0 if yi*≤ 0g: (3)

7 Appendices II and III elaborate this introduction of the issues, methods and models, including a broader
literature review, closer tracing of the technical details of the RIS and MCMC estimators, and a brief description
of several alternative, less comprehensive, strategies: McMillen’s original (1992) EM, Pinkse and Slade’s (1998)
and Klier and McMillen’s (2005) GMM, and Fleming’s (2004) NLS and GLM estimation strategies.

8 The other main strategy currently in use is Bayesian MCMC by Metropolis-Hastings-within-Gibbs
sampling, introduced by LeSage (1999, 2000; with LeSage and Pace 2009 correcting a crucial error in these
earlier formulations) and separately, correctly, by Jackman (2000) and Beck et al. (2001).
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The probability that the ith observation equals 1 is calculated as follows:

pðyi ¼ 1 jXÞ ¼ p ðI�ρWÞ�1Xβ
h i

i
+ ðI�ρWÞ�1ε
h i

i
> 0

� �

¼ p ui< ðI�ρWÞ�1Xβ
h i

i

� �
¼ Φ ðI�ρWÞ�1Xβ

h i
i

.
σui

n o
: ð4Þ9

Thus, as in the standard probit, a cumulative-normal distribution, Φfg, gives the probability that
the systematic component, [(I− ρW)−1XP]i, exceeds the stochastic component, ui. (The
division by σ2ui occurs here because u, unlike ε, is heteroskedastic.) The interdependence of the
yi* in spatial probit induces a nonsphericity of the reduced-form stochastic components,
u. Specifically, u is distributed n-dimensional multivariate normal with mean 0 and variance-
covariance [(I− ρW)′(I − ρW)]−1. Intuitively, start with the standard (nonspatial) probit:
ε is multivariate normal with mean 0 and spherical variance-covariance σ2I, and σ2 is
normalized to 1. Then:

V ½u� � Σ ¼ V ½ðI�ρWÞ�1ε� ¼½ðI�ρWÞ�1�0VðεÞ½ðI�ρWÞ�1�

¼½ðI�ρWÞ�1�0I½ðI�ρWÞ�1� ¼ ½ðI�ρWÞ0ðI�ρWÞ��1: ð5Þ
Thus the σ2ui in (4) is the iith element of variance-covariance (5), which is not a constant (such as
1 in standard probit). That is, interdependence also induces heteroskedasticity. This hetero-
skedasticity and, more crucially, the interdependence (that is, the non-independence) of the
ui render standard probit inappropriate and create the computational intensity. With the
outcomes interdependent, their joint likelihood to be maximized is not the product (sum) of
n independent univariate marginal (log) distributions; instead, one must maximize the log of
one non-separable n-dimensional distribution. Finally, notice also that the ith observation
probability depends on the entire matrix X and vector ε. The probability of Civil War in Senegal
depends on the propensities toward internal conflict, and thus the full set of systematic and
stochastic features in the entire Sub-Saharan state system. This follows from the nonlinearity of
the sigmoidal probit function, which implies that effects depend on where along the S-shape
they occur, and where on that S-curve one lies depends on all of X and all of ε, given the
dependence of y*i on Wy*.10

Consider now the similarity of a probit model with temporal auto-dependence, say an AR(1)
process, in the latent variable. Start with the structural model in matrix notation:

y* ¼ ϕLy* +Xβ + ε: (6)

With y* a T × 1 vector of latent variables, L a matrix of 0’s except for all 1’s on the lower
first-minor diagonal (the diagonal just below the prime diagonal) and dropping the

9 In the middle step, note that the symmetry about 0 of ε, and so of u, implies that p(−ui< x) = p(ui< x) ∀ x.
In the last line, σui is the standard deviation of heteroskedastic u, of ui, not of homoskedastic ε, for which
σui ¼ σu ¼ σε ¼ 1.

10 The spatial-error-probit model is only slightly simpler (see Appendix II.) (Mixed spatial-lag/spatial-error
models are also possible, but have received little attention.) The same cumulative n-dimensional heteroskedastic
normal issues arise, although the position of the ith observation on the sigmoidal probit function depends only on
xi and not X, because the interdependence operates only through ε and not all of y*. Special circumstances might
allow standard-probit estimation of spatial-lag-y models, but these are highly implausible in most cases.
Essentially, the interdependence pattern must not involve indirect feedback from outcome yi to latent-variable yi*
(see Heckman 1978; Anselin 2006, and Appendix II). The unidirectionality of time prevents these indirect paths
from yt to latent-variable yt* via the time-lagged outcome, which is what allows state-switching models to be
properly identified, for instance, yet identification of even just temporally dynamic binary-outcome models
remains less than straightforward (see, e.g., Chamberlain 1993; Honore and Kyriazidou 2000).
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first observation,11 this gives a standard first-order temporal autoregressive model, with
reduced form:

y* ¼ ðI�ϕLÞ�1Xβ + u;with u ¼ ðI�ϕLÞ�1ε: (7)

Again, this implies a nonspherical variance-covariance of the form:

V ½u� � Σ ¼ V ½ðI�ϕLÞ�1ε� ¼ ½ðI�ϕLÞ�1�0VðεÞ½ðI�ϕLÞ�1� ¼ ½ðI�ϕLÞ0ðI�ϕLÞ��1; (8)

and the rest of the discussion regarding the estimation and interpretation complications that
come with this nonseparable T-dimensional cumulative nonspherical normal distributions apply
mutatis mutandis. For the panel or time-series-cross-section case with spatial and temporal lag,
we could write:

y* ¼ ρWy* +ϕLy* +Xβ + ε: (9)

Ordering the data by period, units 1 to N in time 1 through to units 1 to N in time T, and
dropping period 0, W is now an NT ×NT matrix with N ×N submatrices Wt with elements wij

giving relative connectivity from unit j to unit i, period by period down the block diagonal, and
L is an NT ×NT matrix of 0’s except with 1’s on the diagonal of the lower block first-minor
(that is, with N×N identity matrices along the blocks just below the prime block-diagonal),
making Ly* the within-unit one-period time lag of y*. The reduced form is now:

y* ¼ ðI�ρW�ϕLÞ�1Xβ + u;with u ¼ ðI�ρW�ϕLÞ�1ε; (10)

which again implies a nonspherical variance-covariance for u, similar in form:

V ½u� � Σ ¼ V ½ðI�ρW�ϕLÞ�1ε� ¼ ½ðI�ρW�ϕLÞ0ðI�ρW�ϕLÞ��1: (11)

We will focus on this simultaneous spatiotemporal-lag model (dropping the first time periods)
next because it raises the estimation and interpretation issues fully, and the reduction to the
simple cross-section or time-series is a straightforward.

THE MAXIMUM SIMULATED-LIKELIHOOD (STP-MSL) BY RECURSIVE IMPORTANCE

SAMPLER (RIS) ESTIMATOR FOR SIMULTANEOUS SPATIAL, TEMPORAL OR

SPATIOTEMPORAL PROBIT

We discuss STP-MSL strategies, and in particular the RIS estimator for spatial probit advanced
by Beron, Murdoch and Vijverberg (2003) and Beron and Vijverberg (2004).12 The same
equations and procedures apply for the spatial-, temporal- and spatiotemporal-autoregressive
cases, simply using (I− ρW)−1, (I−ϕL)−1 or (I−ϕL− ρW)−1 as appropriate for the multipliers,
as seen in Equations 2–11 above.

RIS uses simulation to approximate probabilities that are difficult to calculate analytically,
such as those from the cumulative multivariate normal distributions unavoidably introduced

11 In effect, this takes the process to have begun with the first observation. In this case, matrix pre-
multiplication by L is identical to the backshift operator, L(·). Taking the first observation as given or fixed,
however, leaves estimates of ϕ susceptible to Hurwicz bias, a small-sample attenuation bias of order 1/T in the
linear case, because Ly* includes observations’ dependence only back to the first observation (assuming that the
true process extends back indefinitely). From this perspective, we are using the conditional (on the first period)
likelihood, which has this familiar small-sample (in T) bias (and a related small-sample inefficiency), rather than
the unconditional likelihood, which would treat the first observation as stochastic and be unbiased as well as
consistent and asymptotically efficient.

12 The other comprehensive strategy currently in use is Bayesian MCMC by Metropolis-Hastings-within-
Gibbs sampling. Appendix III briefly introduces and explains that estimation strategy.
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by the interdependence in spatial, temporal or spatiotemporal probit.13 To approximate a
cumulative multivariate-normal distribution such as the following, for example,

p ¼
ðx0

�1
fnðxÞdx; (12)

where fn xð Þ is the density and �1; x0½ � the interval over which we want to integrate, we
first choose an n-dimensional sampling distribution with well-known properties and label
a truncation of this sampling distribution with support over �1; x0½ � the importance
distribution. Multiplying and dividing the right-hand side of the integral we wish to
calculate, Equation 12, by the density of this importance distribution, gcn xð Þ, simply restates
Equation 12 as:

p ¼
ðx0

�1

fnðxÞ
gcnðxÞ

gcnðxÞdx: (13)

By definition, because gcn xð Þ is a valid pdf over the integral’s range, this integral is a mean.
Thus Equation 13 gives the probability sought, p, as the mean of fnðxÞ

�
gcnðxÞ, which we can

estimate using a sample of R draws of the n × 1 vector x from the importance distribution.
Formally:

p ¼ E
fnðxÞ
gcnðxÞ

� �
� 1

R

XR
r¼1

fnð~xrÞ
gcnð~xrÞ

� p̂: (14)

To implement the RIS estimator, we draw x from the importance distribution, for which
we will use a truncated multivariate normal14 R times and calculate the mean as fnðxÞ

�
gcnðxÞ.

Given that the densities for fnðxÞ and gcnðxÞ are ϕnðxÞ and ϕnðxÞ=ΦnðxÞ, where ϕnð�Þ and Φnð�Þ
are the density and distribution functions for the multivariate normal, the ratio simplifies
to ΦnðxÞ.

Again, in the standard probit model with independence, the log-likelihood would
simply sum the log of n univariate cumulative-standard-normal distributions, which is
manageable. In spatial probit, with its interdependence, however, the likelihood is one
n-dimensional cumulative normal. To calculate this integral, we first define Q as a diagonal
matrix with qii = 1 − 2yi, υ = Qu and v = −Q(I −ϕL − ρW)−1.15 Specifically, we want to
calculate

pðυ< vÞ; (15)

where υ�MVNð0;ΩÞ is the n× 1 vector of reduced-form spatiotemporally interdependent
errors, with Ω ¼ QΣQ0, and v is the vector of spatially interdependent cutpoints. The RIS
estimator exploits that Ω, as a variance-covariance matrix, is positive definite, and so has a
Cholesky decomposition, Ω�1 ¼ C0C, with C being upper triangular and η≡Cυ giving

13 We introduce RIS following Vijverberg’s (1997) and Beron and Vijverberg’s (2004) notation.
14 Other importance distributions, such as a t or a uniform, may be used. With a normal importance dis-

tribution, RIS is equivalent to the better-known GHK (Geweke-Hajivassiliou-Keane) simulation estimator.
15 Note that qii = 1− 2yi is −1 for yi = 1 and 1 for yi = 0; thus, pre-multiplying Xβ by −Q serves merely to

correctly sign the systematic component up to which to integrate the distribution of the stochastic component;
pre-multiplying u by Q ensures that the covariances of the stochastic component are correctly signed.
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n independent standard normals, η. (This is familiar, as the same exploitation also applied in
GLS.) Then, letting B≡C−1 and substituting υ = C −1η≡Bη into Equation 15 gives:

Pr Bη< vð Þ ¼ Pr

b1;1 b1;2 � � � � � � b1;n

0 b2;2
. .
. . .

. ..
.

0 . .
. . .

. . .
. ..

.

..

. . .
. . .

.
bn�1;n�1 bn�1;n

0 � � � 0 0 bn;n

2
666666666664

3
777777777775

η1

..

.

..

.

ηn�1

ηn

2
6666666664

3
7777777775
<

v1

..

.

..

.

vn�1

vn

2
6666666664

3
7777777775

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: (16)

The n elements of η are independent, so the probability in Equation 16 can be calculated by
evaluating the univariate cumulative-normal distributions row by row at the implied upper
bounds, which are determined recursively starting with the last row, and then multiplying
these probabilities.16 To determine these upper bounds, start by solving the inequalities in
Equation 16 for the vector η:

Pr

Pn
i¼1

b1;iηi

..

.

bn�1;n�1ηn�1 + bn�1;nηn

bn;nηn

2
666666664

3
777777775
<

v1

..

.

vn�1

vn

2
6666664

3
7777775

0
BBBBBBBB@

1
CCCCCCCCA

¼ Pr

η1

..

.

ηn�1

ηn

2
6666664

3
7777775
<

b�1
1;1 v1�

Pn
i¼2

b1;iηi

� �

..

.

..

.

b�1
n�1;n�1 vn�1�bn�1;nηn

	 

b�1
n;nvn

2
6666666666664

3
7777777777775

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: (17)

First, calculate the upper bound for the truncated-normal distribution of the nth row, which is
b�1
n;nvn. Call the cumulative standard normal evaluated at this upper bound pn. Then take a

draw from the standard-normal distribution truncated at b�1
n;nvn; call that draw ~ηn and use it to

calculate the upper bound for the truncated-normal distribution for the (n− 1) th row conditional
on the nth as b�1

n�1;n�1 vn�1�bn�1;n~ηn
� �

. Evaluate the cumulative standard normal at this upper
bound and call it pn− 1. Use the first two draws to calculate the (n − 2)th upper bound, and
calculate pn− 2 and proceed analogously through all n rows. Formally, this recursive process can
be depicted as:

ηn<b
�1
n;nvn � ψn

ηn�1<b
�1
n�1;n�1 vn�1�bn�1;n~ηn

� � � ψn�1

ηn�2<b
�1
n�2;n�1 vn�2�bn�2;n�1~ηn�1�bn�2;n~ηn

� � � ψn�2

..

.

9>>>>>>>=
>>>>>>>;

) ηj<b
�1
j;j vj�

Xn
i¼j + 1

bj;i~ηi

" #
� ψ j: (18)

The likelihood of observing a given sample of 1’s and 0’s can now be found by evaluating the
univariate cumulative-normal distribution at each of these bounds, pj, and multiplying

16 Importantly, the marginal probabilities in these rows do not correspond to those of the corresponding
observations; the RIS procedure relies only on the fact that their product is the correct joint probability.

158 FRANZESE, HAYS AND COOK



those probabilities:
Qn

j¼1 pj ¼
Qn

j¼1 Φ ψ j

	 

.17 Repeating the entire process R times and averaging

gives the RIS estimate of the joint probability (that is, the simulated likelihood, l̂ ) as this simple mean:

l̂ ¼ 1=Rð Þ
XR
r¼1

Yn
j¼1

Φ ψ j;r

	 
" #
: (19)

One can then maximize this simulated likelihood by any standard optimization routine to estimate
parameters and apply the standard maximum likelihood (ML) estimator for the variance covariance
(�½Hð̂lÞ��1).18 Like ML, STP-MSL is BANC: best (asymptotically efficient) asymptotically normal
and consistent.

ESTIMATED SPATIAL/SPATIOTEMPORAL EFFECTS AND RESPONSE PATHS WITH CERTAINTY

ESTIMATES

Properly estimating parameters like coefficients and their certainties is an essential start to valid
inference, but the ultimate aim is to estimate and draw inferences regarding effects (ideally:
causal ones), that is, outcome responses associated with (ideally: caused by) changes in
explanatory factors or other counterfactual shocks. We estimate coefficients like ρ, ϕ and β for
the purposes of estimating effects like Δy*i

Δxi , that is, effects of changes in some xi on the latent
variable, yi* or, better, on the outcome probability, Δpðyi¼1Þ

Δxi .19 Given interdependence, even these
sorts of within-unit counterfactuals (effects of xi on yi) involve feedback from i through
other units j back to i. The effect of economic development in Senegal on its own probability
of internal conflict, for instance, includes the reverberating feedback from Senegal to its
neighbors and back. In contexts involving interdependence, however, interest usually focuses
on cross-unit feedback effects, like

Δy*j
Δxi or Δpðyj¼1Þ

Δxi (the reverberating effects of Senegalese
development across Sub-Saharan Africa).20 For interdependent binary outcomes, perhaps most
interesting of all would be effects on outcome probabilities in some unit(s) i of hypothetical
outcomes in other units, j (yj = 1 or yj = 0), which we denote Δpðyi¼1Þ

Δyj
: the effect on the

probability of a Senegalese civil war on internal conflict versus peace in Guinea-Bissau, for
instance. In spatiotemporal contexts, finally, we will want to estimate the response paths and
long-run-steady-state effects of all of these sorts of hypotheticals.

Because they involve spatial, temporal or spatiotemporal feedback dynamics, none of these
substantive effects or response paths is simple to estimate. The feedback multipliers (I−ρW−ϕL)−1

17 The italicized is possible because the Cholesky-transformed η are independent, and subscript j substituted
for subscript i to emphasize that these are probabilities for the rows j = 1…N and not the observations i = 1…N.

18 When estimating temporal or spatiotemporal models, we drop the first observation, thereby omitting the
first period from the likelihood and treating it as deterministic. This is similar to using the conditional likelihood
in the continuous outcome case, except that, since y* is unobserved, we condition the joint likelihood for
observations 2…T on the first period’s vector of binary outcomes. If the true autoregressive process extends back
indefinitely, this likelihood treating the first observation as deterministic is misspecified. However, given that
observations 2…T are correctly incorporated into the likelihood, the importance of this first-period mis-
specification for estimation declines as T increases. Our Monte Carlo experiments below, which condition on the
first period’s outcomes in this way, yield estimates broadly consistent with small-sample bias of order 1/T as just
described.

19 Actually, more fully and precisely, the aims are/should be to estimate the structural model from which we
can, among other things, calculate such estimated responses to substantive hypotheticals of all sorts, carrying
around the empirically estimated parameterized model as useful analytical understanding of the empirical data-
generation process.

20 For responses to underlying propensities, yi*, instead of specific explanators, xi, imagine shocking the
intercept.
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imply that these various spatiotemporal effects and responses involve (nonlinear) combinations
of coefficients and variables, so we could not read effects directly from a table of
coefficients even if we confined discussion to responses in latent variables, ŷ* , rather than to the
probabilities of actual interest, p̂. Since the latent-variable model is a spatial linear regression,
estimated effects in terms of ŷ* and their certainties would derive exactly as in that case, which
we have discussed elsewhere (Franzese and Hays 2004, 2007, 2008a, 2008b; Hays et al. 2010;
Appendix IV).

Beron and Vijverberg (2004) cover the effect of changes in xi on the outcome probability in
unit i. Simply applying the chain rule, the immediate effect, including all spatial feedback, is:21

∂pðyi ¼ 1 jX;WÞ
∂xi

¼ ϕpdf I�ρWð Þ�1Xβ
h i

i

.
σui

� �
I�ρWð Þ�1

ii β
h i.

σui ; (20)

where ϕpdf is the univariate standard-normal density function. This calculation can be
extended straightforwardly to include steady-state effects and response paths as well as cross-
unit effects.

We focus below on perhaps the most substantively interesting type of effect, which, to the
best of our knowledge, has not been considered elsewhere: the response path in outcome
probabilities for some unit(s) i from hypothetical changes to outcomes in other unit(s) j. We start
with the response path in outcome probabilities for a single unit i to a change at time t in the
outcome for a single unit j. Using the definition of conditional probability, these effects are
calculated as:

p½yi;t + s¼1 jyj;t¼1;X;W;L��p½yi;t + s¼1 jyj;t¼0;X;W;L�

¼ p½yi;t + s¼1; yj;t¼1 jX;W;L�
p½yj;t¼1 jX;W;L� � p½yi;t + s¼1; yj;t¼0 jX;W;L�

p½yj;t¼0 jX;W;L� ; for s¼0; ¼ : ð21Þ22

Thus, given estimates of ρ, ϕ and β, we calculate the cumulative distribution functions for two
univariate and two multivariate-normal distributions, one for each side of the counterfactual, to
produce an estimated spatiotemporal response path (or spatial or spatiotemporal long-run
steady-state effect).23 The joint probabilities in the numerators depend on the strength of the

21 For ∂xj, for example, we have: ∂pðyi¼1 jX;WÞ
∂xj ¼ ϕpdf I�ρWð Þ�1Xβ

h i
i

.
σui

� �
´ I�ρWð Þ�1

ij β
.
σui

h i
, and first-

difference effects could be calculated in the usual fashion by P I�ρWð Þ�1X1β
n o

�P I�ρWð Þ�1X0β
n o

, where P
is the cumulative nonstandard normal (having variance-covariance as in Equations 5, 8 or 11 as appropriate, and
X1 and X0 indicating the two sides of the hypothetical of interest).

22 Notice that X and W and L are taken as data (exogenously given and nonstochastic) in the usual manner.
23 A more general statement from which we could, in principle, calculate the outcome-probability responses

across all units over time to counterfactual outcomes across all units and histories, y1j≠ iversus y
0
j≠ i and

y1i;t�rversus y
0
i;t�r , would be:

p½yi;t + s ¼ 1 j ðyj≠ i;t ¼ y1j≠ i;t ; yi;t�r ¼ y1i;t�rÞ;X;W;L��p½yi;t + s ¼ 1 j ðyj≠ i;t ¼ y0j≠ i;t; yi;t�r ¼ y0i;t�rÞ;X;W;L�

¼ p½yi;t + s ¼ 1; ðyj≠ i;t ¼ y1j≠ i;t; yi;t�r ¼ y1i;t�rÞ;X;W;L�
p½ðyj≠ i;t ¼ y1j≠ i;t; yi;t�r ¼ y1i;t�rÞ;X;W;L� � p½yi;t + s ¼ 1; ðyj≠ i;t ¼ y0j≠ i;t ; yi;t�r ¼ y0i;t�rÞ;X;W;L�

p½ðyj≠ i;t ¼ y0j≠ i;t; yi;t�r ¼ y0i;t�rÞ;X;W;L� :

for s¼ 0; ¼ and r¼ 1; ¼ ; ðT�1Þ; and 8i:
Both numerators and denominators of these conditional probabilities would be computed by multivariate non-
standard normal (with the estimated V(u)) cumulative distribution functions at the estimated spatiotemporally
transformed cutpoints. As the number of units in yj≠ i;t and yi;t�r grows, the joint probabilities become more
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spatiotemporal connections between yi,t+ s and yj,t. When s is small, the spatial connection
largely determines the size of the effect. As s gets large, the time between events grows and
p[yi,t+ s = 1,0 j yj,t = 1,0] converges to p[yi,t+ s = 1,0] × p[yj,t = 1,0], driving the effect to 0. We
estimate uncertainties for these estimated spatiotemporal responses by parametric simulation:
repeat the procedure for each of many draws of parameter estimates from their estimated joint
distribution, and the average and standard deviation across draws give the estimate and its
standard error.24 For those who study interdependence in binary outcomes, these and related
quantities are substantively important. In the Monte Carlo experiments and illustration that
follow, we evaluate our ability to estimate this conditional effect accurately and then use this
calculation for analytical purposes.

MONTE CARLO ANALYSES

We explore the small-sample properties of the STP-MSL estimator for the spatiotemporal-lag
probit model using a data-generation process that follows as closely as possible Beron and
Vijverberg’s (2004) purely cross-sectional spatial-probit Monte Carlo experiments.25 We
evaluate the quality of the STP-MSL parameter estimates, and of the spatial and spatiotemporal
effect estimates described in the Estimated Spatial/Spatiotemporal Effects and Response Paths
with Certainty Estimates section. Regarding the effect estimates, we compare the small-sample
performance of our suggested strategy for calculating first differences in probabilities for
yi conditional on outcomes yj≠i with effect estimates from naïve spatiotemporal-probit models
that include spatial lags (but treat them as exogenous regressors) and that address temporal
dynamics using either a first-order Markov regime-switching or discrete-time hazard
framework. The former includes time-lagged observed outcome, Ly, not Ly*, as a regressor,
and the latter a polynomial in time-since-event, s, (we use s, s2 and s3). With all regressors
assumed to be exogenous, both naïve models apply simple ML as the estimator. Our spatio-
temporal data-generating process takes the form:

y* ¼ In�ρW�ϕLð Þ�1 β0 + β1x + εð Þ; ε � N 0; 1ð Þ: (22)

We apply Equation 3 to generate y from these y*. For W, we use a row-standardized
binary-contiguity matrix with the 50 US states as in Beron and Vivjerberg (2004). Data for each
unit are generated for 20 periods, giving us a sample size of 1,000 in each of our Monte Carlo
experiments.26 In each of our experiments we set β0 = −1.5, and β1 = 3.0, yet vary ρ = {0.10,
0.25} and ϕ = {0.30, 0.5}, giving us four experiments with different levels of spatial and
temporal dependence. Finally, x is drawn from a standard uniform distribution on the interval

(F’note continued)

complicated to calculate. At the limit, this effect estimate is as difficult to compute as the likelihood itself,
although the task is simpler since the unknown parameters have already been estimated. Either brute-force or
importance sampling could be used for this purpose. Alternatively, these types of conditional counterfactual
effects can be estimated via brute-force simulation as in Hays (2009). We include a brief explanation of this
technique in Appendix IV as it produces accurate results and can be easily generalized to higher dimensions, up
to and including those for which computing cumulative multivariate normal probabilities as shown here is either
computationally inefficient or unachievable (due to from limits within existing commands/packages).

24 MSL, like ML, is BANC, so this asymptotically normal with the mean of the estimated parameter vector
and variance/covariance of the parameter estimates’ estimated variance/covariance.

25 Appendix V gives simulation results for the Bayesian MCMC estimator and for experiments with varying ρ.
26 This is similar to that found in many political science applications in both American and Comparative

politics.
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[−1, 2], resulting in an expected value of 0.5 and a variance of roughly 2. These choices
produce, on average, a balanced sample of 0’s and 1’s. Table 1 presents results for 100 trials
using the STP-MSL-RIS spatiotemporal-probit estimator (with R = 100).27 We do not compare
these parameter estimates with those of the naïve spatiotemporal-probit, because the forms of
temporal dependence they assume (regime-switching, discrete-time hazard) do not generate the
same parameters as Equation 22. Comparing the implied first/same-period spatial effects is
appropriate, though, and we do so below.

We begin by noting that our estimates are reasonably accurate across all of the experiments.
The mean coefficient estimates are always within 10 percent of the true parameter values. This
performance compares favorably to the results in Beron and Vijverberg (2004) and can be
explained by our sample sizes, which are larger than theirs, as well as by the fact that the
covariate, x, in our data-generating process has a larger variance. Despite this accuracy, our
results exhibit the well-known small-sample bias in ML estimates of autoregressive-lag models:
a tendency to underestimate, on average, both the spatial coefficient ρ as well as the time-
dependence coefficient ϕ. The bias in the mean estimate for ρ seems to grow slightly in
percentage terms as we increase its true value from 0.10 to 0.25, whereas the bias in the mean
estimate for ϕ drops in percentage terms as we increase the degree of temporal dependence from
0.30 to 0.50. However, given the relatively small number of trials in our experiments and the
small changes observed in the biases, we do not want to attach too much significance to these

TABLE 1 Simulation Results for STP-MSL by RIS Parameter Estimates (100 Trials)

β0 = −1.5 β1 = 3.0 ρ ϕ

Experiment #1: ρ = 0.10, ϕ = 0.30
Mean coefficient estimate −1.467 2.962 0.092 0.276
Root mean-squared error 0.104 0.173 0.043 0.032
Actual SD of estimates 0.101 0.169 0.042 0.021
Mean of reported SE 0.129 0.231 0.045 0.025
Overconfidence 0.784 0.730 0.938 0.840

Experiment #2: ρ = 0.10, ϕ = 0.50
Mean coefficient estimate −1.385 2.797 0.097 0.464
Root mean-squared error 0.150 0.273 0.034 0.042
Actual SD of estimates 0.095 0.183 0.034 0.021
Mean of reported SE 0.105 0.199 0.042 0.020
Overconfidence 0.906 0.920 0.802 1.022

Experiment #3: ρ = 0.25, ϕ = 0.30
Mean coefficient estimate −1.450 2.922 0.224 0.280
Root mean-squared error 0.117 0.197 0.047 0.028
Actual SD of estimates 0.106 0.181 0.038 0.020
Mean of reported SE 0.119 0.212 0.046 0.024
Overconfidence 0.884 0.854 0.834 0.833

Experiment #4: ρ = 0.25, ϕ = 0.50
Mean coefficient estimate −1.363 2.752 0.241 0.471
Root mean-squared error 0.172 0.322 0.034 0.035
Actual SD of estimates 0.104 0.205 0.033 0.019
Mean of reported SE 0.107 0.202 0.031 0.020
Overconfidence 0.969 1.013 1.043 0.946

Note: N = 50 and T = 20 for all experiments reported in text.

27 Given the computational time to estimate the model, 100 is common for Monte Carlo trials in spatial latent-
variable contexts (e.g., Beron and Vijverberg 2004).
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patterns. We also see attenuation biases in the mean estimates for β0 and β1. These biases are
quite small when the degree of spatiotemporal dependence is low, approximately 2 percent, but
increase to around 8–10 percent when both ϕ and ρ are large.

Ultimately, we are not interested in the parameter estimates per se, but rather in the effects
that they imply. We start with the first difference Pr½yi ¼ 1 jx; W; L; yj ¼ 1�� Pr½yi ¼ 1 j
x; W; L; yj ¼ 0� for the immediate (first/same-period) spatial effect (that is, the effect of a time
t change in the outcome for unit j on the time t probability that we observe a particular outcome
for unit i). In Table 2, we compare the first/same-period spatial effect estimates implied by the
spatiotemporal-lag model with comparable estimates from two naïve spatial models that address
temporal dependence alternatively via regime switching (RS) or discrete-time hazard
(DTH) functions. To illustrate, we select a specific pair of units i and j directly connected in
the spatial-weights matrix (Alabama and Mississippi) and calculate the true effect,
Pr½yi ¼ 1 jx; W; L; yj ¼ 1�� Pr½yi ¼ 1 jx; W; L; yj ¼ 0�, assuming x equals its last sample
values. In our example, the true effect size ranges from 0.055 to 0.151 given different levels of
spatial and temporal dependence (as indicated in Table 2). To calculate these effects using the
spatiotemporal-lag probit model, we use the parameter estimates noted above and the method
outlined in the Estimated Spatial/Spatiotemporal Effects and Response Paths with Certainty
Estimates section. The naïve spatial models replace the spatial-lag latent variable in Equation 22
with a spatial lag in observed outcomes, Wy, treating it as exogenous. The temporal-lag latent
variable is replaced with a temporally lagged observed outcome in the RS model and with the
last sample value of the peace years counter in the DTH model. To estimate the first/
same-period spatial effect, we set yj = 0 and calculate Pr[yi = 1], change to yj = 1 and recal-
culate Pr[yi = 1], and then difference these probabilities.

It is possible that the naïve alternatives do well enough in terms of effect estimates that they
provide reasonable substitutes for the more complicated STP-MSL estimator, even when the
spatiotemporal-lag probit model is the true data-generating process. In Table 2, we show that
this is not the case. As noted in Table 1, STP-MSL slightly underestimates, on average, all of
the model’s parameters. Consequently, it will also underestimate the first difference
Pr½yi ¼ 1 jx; W; L; yj ¼ 1�� Pr½yi ¼ 1 jx; W; L; yj ¼ 0�. Across the four experiments, the

TABLE 2 Simulation Results for Effect Estimates (100 Trials)

STP-MSL RS-ML DTH-ML

Experiment #1: ρ = 0.10, ϕ = 0.30, TrueEffect = 0.055
Mean effect estimate 0.049 0.034 0.038
Actual SD of estimates 0.023 0.022 0.022
Root mean-squared error 0.024 0.030 0.028

Experiment #2: ρ = 0.10, ϕ = 0.50, TrueEffect = 0.063
Mean effect estimate 0.056 0.030 0.040
Actual SD of estimates 0.019 0.019 0.022
Root mean-squared error 0.020 0.038 0.032

Experiment #3: ρ = 0.25, ϕ = 0.30, TrueEffect = 0.135
Mean effect estimate 0.117 0.087 0.095
Actual SD of estimates 0.022 0.037 0.024
Root mean-squared error 0.028 0.061 0.047

Experiment #4: ρ = 0.25, ϕ = 0.50, TrueEffect = 0.151
Mean effect estimate 0.136 0.076 0.107
Actual SD of estimates 0.018 0.038 0.023
Root mean-squared error 0.027 0.084 0.050
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effect estimate by STP-MSL is ~89 percent of the true first difference. This compares with
average effect estimates across the experiments of 68 and 56 percent for the DTH-ML and
RS-ML models, respectively. In our experiments, the performance gap in terms of bias is largest
when the degree of temporal dependence is high. This is true when performance is gauged in
root-mean-square error (RMSE) terms as well. When ρ is 0.25 and ϕ is 0.5, the RMSE for the
DTH-ML effect estimate is 85 percent larger than the STP-MSL estimator, and the RMSE for
the RS-ML effect estimate is 211 percent larger. Thus, we do not find evidence to suggest that
the simpler DTH-ML and RS-ML models provide reasonably approximate effect estimates
when the spatiotemporal-lag probit is the true data-generating process.

Moreover, note that the consequences of the naïve models’ misspecifications, both assuming
the spatial lag is exogenous and getting the temporal dynamics wrong, are minimized in these
first/same-period spatial-effect estimates. Misspecifying temporal dynamics has relatively little
impact on immediate-effect estimates, and the coefficient-estimate bias from assuming that the
spatial-lag is exogenous arises in part because it accounts for both direct and indirect effects,
both of which these spatial-effect estimates incorporate to some degree. Thus Table 2 represents
the best case for the naïve spatial models. Most other effect estimates of interest would exhibit
larger, likely much larger, performance gaps.

Figure 1 graphs the spatiotemporal response paths for these Monte Carlo experiments, using
the spatially and temporally lagged latent variable probit model.28 The graph provides infor-
mation about (1) the bias in our response-path estimates, comparing the truth triangles and
average-estimate diamonds, (2) the efficiency of these estimates, by the 95-percentile range
across trials in the estimates and (3) the accuracy of our uncertainty estimates, by the horizontal

Fig. 1. Accuracy of STP-MSL estimates of spatiotemporal response-path estimates.
Note: horizontal bars indicate 95 percent confidence intervals using the estimated standard errors (within
trials); vertical lines indicate 95 percent intervals using the actual standard deviation of the effect estimates
(across trials). ♦ = estimated response paths; ▲ = true response paths

28 The naïve models assume different temporal-dynamic processes, complicating direct comparisons of the
implied response-path estimates.
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check marks giving the average 95 percent confidence interval estimates.29 As expected, these
estimated response paths, which begin with the first/same-period spatial effects from Tables 1
and 2, decay over time, and we tend to slightly underestimate their magnitudes due to the
underestimation of ρ and ϕ. Certainty estimates tend to be quite accurate as well, marginally
under-confident in (many of) the first periods, and occasionally over-confident thereafter. In
totality, the estimated response paths reflect the true paths accurately.

ILLUSTRATION: CONTAGION OF CONFLICT IN AFRICA

To illustrate, we model the (inter)dependence in civil conflict episodes, estimating spatial and
spatiotemporal-lag models of civil war incidences in Sub-Saharan Africa, covering all countries
from 1966 to 2001.30 Anecdotally, signs of spatiotemporal dependence in the region’s civil
conflict dynamics seem strong. Several countries in the Great Lakes region of (East) Africa (for
example, DRC, Uganda, Rwanda, Burundi, Tanzania) have seen numerous civil wars that
appear related. O’Loughlin and Raleigh (2008, 10) argue that these conflicts “highlight how
many current civil wars are not state-specific, but related and supported by a host of external
conditions.”31 The West Africa region (for example, Sierra Leone, Liberia, Guinea, Senegal)
seems to exhibit similar conflict dynamics. In 2003, The Economist reported: “West Africa’s
civil wars are usually reported as tragedies befalling individual states…In fact, all these wars are
intertwined, and it is impossible to understand one without reference to the others.” These
accounts highlight the need to explicitly account for spatial interdependence in analyses of
civil war.

Theoretically, conflict studies recognizing spatial dependence in civil wars are hardly new.
A large and long-standing literature concludes that civil conflicts diffuse across international
borders, with violence in one country making civil war more likely in adjacent ones (for
example, Most and Starr 1980; Starr and Most 1983; Diehl 1991; Lake and Rothchild 1998;
Gleditsch 2002; Ward and Gleditsch 2002).32 Refinements have attempted to discern and
distinguish the specific mechanisms by which civil war diffusion occurs (Murdoch and Sandler
2002; Saleyhan and Gleditsch 2006; Buhaug and Gleditsch 2008), to understand the ability of
some states to resist transmission (Raleigh 2004; Braithwaite 2010) and to explore how
expectations of diffusion may influence third-party intervention (Kathman 2010). This research
has generally inferred support for such neighborhood effects from the significance of some
spatial-parameter estimate, usually the coefficient on a spatial lag of conflict (occasionally,
time-lagged spatial lag) entered in a standard logit or probit estimation. Usually the simultaneity
of these spatial lags goes unaddressed, and the likely high levels of interdependence suggest the
resultant biases may be substantial.33 Moreover, to our knowledge, no work has interpreted the
effects of the estimated interdependence in terms of the spatial or spatiotemporal responses in

29 Alternatively, the numeric values for all information reported in Figure 1 are available in tabular form in
Appendix VI.

30 The panel is unbalanced, given the emergence of new countries during the sample period, ranging from 31
countries in the earliest period to 42 in the final year.

31 Additionally, see O’Loughlin and Raleigh (2008) for an example of how a particular conflict (in this case
Uganda) draws in other actors in surrounding states and, in turn, increases the risk of civil conflict in adjacent
countries.

32 That contagion is the cause is not entirely consensual, however; inter alia, Hegre et al. (2001) contend that,
instead, the spatial clustering of domestic correlates of civil war causes the observed clustering of conflicts.

33 As noted, time lagging the spatial lag is a possible, though often inadequate, redress. Most current research
has preferred to include the spatial lag simultaneously, however (e.g., Salehyan and Gleditsch 2006; Buhaug and
Gleditsch 2008).
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civil conflict probabilities across countries to hypothetical shocks to civil conflict risks in some
country or countries, as we suggest here.

Therefore, we apply the STP-MSL estimator to a spatial-probit model of civil war incidence.
In Models 1 and 2, we focus exclusively on (cross-sectional) spatial dependence, modeled by a
simultaneous spatial lag (See Table 3). The spatial relationships between states are given by a
row-standardized binary-contiguity W matrix, with the sample countries averaging 4.0167
neighbors (ranging from 1 to 8).34 Our data come from Buhaug and Gleditsch (2008), who
explore the extent to which regional conflict clustering stems from the spatial clustering of
country-specific characteristics (that is, in X’s) rather than direct contagion or spillover of
conflict. As they do, we measure conflict incidence using the UCDP/PRIO Armed Conflict
Database, which codes civil conflicts as occurring if violent incidents between a state gov-
ernment and organized opposition result in at least 25 deaths.35 Our models include all of the
regressors in Buhaug and Gleditsch’s full models, including measures for the most common
predictors of civil war in peace studies (for example, GDP, Population, Regime Type).36

Though both models estimate a significant spatial-lag coefficient, the estimates from the naïve
model would seem to radically overstate the extent of interdependence, as the estimate is nearly
seven times what the STP-MSL estimates seem to indicate. However, as noted above, parameter
estimates may belie the ability of either model to recover accurate estimates of spatial effects,
which are of greater importance. That is, we are ultimately concerned about the extent to which
neighboring conflict (peace) makes conflict more (less) likely in various interesting counter-
factual questions we could pose regarding conflict spatial and/or spatiotemporal dynamics in
Sub-Saharan Africa. Even just a cursory review of recent political coverage uncovers the tragic
frequency with which such questions are (implicitly) posed: “Fears mount that Côte d’Ivoire
conflict could spill to Liberia,”37 “Zambia Concerned About DRC conflict spillover,”38

TABLE 3 Spatial-Autoregressive Models of Conflict in Africa

Model 1 (Naive Spatial) Model 2 (STP-MSL)

Constant −4.5713 (1.0619)*** −4.0136 (1.063)***
Spatial Lag 0.7801 (0.1620)*** 0.1294 (0.0489)***
Neighborhood Dem −0.0298 (0.0208) −0.0309 (0.0207)
Neighborhood Dem sq.’d 0.0015 (0.0031) −0.0009 (0.0031)
Neighborhood GDP 0.0248 (0.1181) 0.0326 (0.1250)
GDP per capita (ln) 0.0543 (0.0755) 0.0325 (0.0725)
Population (ln) 0.3678 (0.0380)*** 0.3546 (0.0353)***
Democracy 0.0042 (0.0103) −0.0007 (0.0098)
Democracy sq.’d −0.0103 (0.0020)*** −0.0094 (0.0018)***
Post-Cold War 0.1116 (0.0991) 0.0946 (0.0953)
N (states) 1403 (42) 1403 (42)

Note: dependent variable: civil-war incidence (0 = No, 1 = Yes). All spatial lags use row-standardized binary-
contiguity spatial-weights matrices. Significant at ***1, **5, *10%.

34 A table summarizing the information contained in the weights matrix is available in Appendix VII.
35 This occurs in 307 observations, roughly 22 percent of our sample.
36 Our estimation models differ greatly from those in Buhaug and Gleditsch (2008)—notably, they estimate

logistic models in a global sample, whereas ours are probit models in an African sample—making direct
comparisons of parameter estimates inappropriate.

37 http://www.unhcr.org/4d8b61839.html.
38 http://www.voanews.com/content/zambia-concerned-about-drc-conflict-spillover/1553526.html.
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“The conflict in Mali could be creating a ‘ticking time bomb’ for neighbouring Western
Sahara,”39 etc. Such hypotheticals are examples of the conditional effects discussed in the
Estimated Spatial/Spatiotemporal Effects and Response Paths with Certainty Estimates section.
To illustrate how we can answer such substantively meaningful conditional probabilities, we
explore the extent to which the outbreak of conflict in Guinea-Bissau in 1998 was a con-
sequence of the ongoing conflict in neighboring Senegal, subject to the important caveat that we
have not yet accounted for temporal dependence in conflict propensities.

Historically, the border between Guinea-Bissau and Senegal has been a breeding ground for
instability. Guinea-Bissau served as the training ground for Mouvement des Forces Demo-
cratiques de Casamance (MFDC) fighters and a conduit to funnel arms into the decades-long
Casamance conflict. Most view the 1998–99 civil war in Guinea-Bissau as an outgrowth of
these same tensions, with Senegalese forces ultimately fighting on both sides of the conflict
(Humphreys and Mohamed 2005).40 We explore the extent to which the conflict in Senegal
affected the onset of civil war in Guinea-Bissau, or, stated differently to highlight the condi-
tional probability of the counterfactual: in the absence of the Casamance conflict, how likely
was conflict in Guinea-Bissau? Utilizing simulations as described in the Estimated Spatial/
Spatiotemporal Effects and Response Paths with Certainty Estimates and Monte Carlo Analyses
sections, Guinea-Bissau has a civil war 8.5 percent of the time when Senegal is peaceful and
11.14 percent of the time when Senegal is at war. Thus the model estimates suggest that
Senegal’s conflict increased the risk of war in Guinea-Bissau by 2.64 percent. To calculate our
uncertainty about these effects estimates, we sample parameter estimates from their estimated
sampling distribution; doing so reveals that the effect sizes at the 5th and 95th percentiles are
0.90 and 4.89 percent, respectively.

Next, using the time-series cross-section of these data, we estimate models accounting for
both spatial and temporal dependence in conflict episodes (Table 4). The naïve model again
appears to overstate the extent of spatial dependence, as both the RS-ML (Model 3) and DTH-
ML (Model 4) models using an exogenous spatial lag indicate a significant spatial effect. When
we estimate the spatiotemporal-lag probit model, however, we find a smaller and non-significant
spatial-lag coefficient. What, then, causes the discrepancy between the insignificant spatial
effect found here and the significant finding in all other models? We know that naïve estimation
strategies (Models 3 and 4) that treat the spatial lag as exogenous will tend to overstate the
degree of spatial dependence. Similarly, even if we account for the endogeneity of the spatial
lag, failure to allow for the possibility of temporal dependence (Model 2) could lead us to infer
incorrectly from our models that spatial dependence is present when it is not.41

This can be the case when the observable and unobservable determinants of an event cluster
in both space and time, making it difficult for misspecified models to distinguish between spatial
and temporal dependence. For example, if the level of democracy in Guinea-Bissau at time t− 1
correlates with the level of democracy in Senegal at t− 1 (spatial clustering)—which, in turn,
correlates with the level of democracy in Senegal at time t (temporal clustering)—the latent
propensity for civil war in Guinea-Bissau at time t− 1 will correlate with the latent propensity

39 http://www.theguardian.com/world/2013/apr/09/mali-conflict-spread-western-sahara.
40 Specifically, the Senegalese government sent troops to support the Vieira regime, while the MFDC sent

forces to support the revolutionary Ansoumane Mané.
41 We should also note that direct comparison of the spatial coefficients produced by Models 2 and 5 would be

inappropriate. To make these estimates more comparable with the purely spatial Model 2, we would decompose
the spatial dynamics here into a short-run component, given by the coefficient on the spatial lag, ρ, and the long-
run accumulation of those dynamic feedbacks, given by that spatial-lag coefficient times the temporal long-run
multiplier, 1/(1−ϕ), so: ρ/(1−ϕ).
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for civil war in Senegal at time t. If there is only temporal dependence in the true
data-generating process for a country’s latent propensity to experience civil war (and no spatial
dependence), and we put Senegal’s latent propensity for civil war at time t on the right-hand
side of Guinea-Bissau’s latent propensity at time t and exclude Guinea-Bissau’s latent pro-
pensity at time t− 1, omitted-variable bias will erroneously make it seem as though there are
spatial spillovers.42

This appears to be what we observe with respect to civil conflict. While we do not want to
make sweeping claims on the basis of our admittedly limited illustration, we do want to
emphasize that it is possible to mistake spatial dependence for temporal dependence and vice
versa. Given that much of the scholarly quantitative literature finds spatial dependence in civil
war and the popular press treats these spillovers as a nearly undeniable reality, this is important
to know. Our analysis suggests that the evidence of such a relationship may not be as strong as
currently believed.

We do, however, find that temporal dependence is, unsurprisingly, high and highly sig-
nificant, indicating great persistence in conflict behavior. To analyze these temporal dynamics
more explicitly, we again turn from estimated coefficients to estimated effects. Continuing with
the Casamance conflict in Senegal as an example, but shifting focus to the temporal dynamics,
this time we ask: What effect did Senegal’s prior conflict history have on the realization of
conflict in 1998? In particular, beginning with 1992—when the conflict in Senegal escalated—
we explore the extent to which fighting (or peace) from that point onward influenced the
likelihood of conflict in 1998.

As before, we can use our simulation strategy to condition on a single counterfactual out-
come, finding that conflict as opposed to peace in 1992 made Senegal 51.9 percent more likely
to experience conflict in 1993.43 To estimate counterfactual response paths for various

TABLE 4 Spatiotemporal Models of Conflict in Africa (Buhaug and Gleditsch 2008)

Model 3 (Naïve Spatial
w/RS)

Model 4 (Naïve Spatial
w/DTH)

Model 5 (STP-MSL
w/lagged-y*)

Constant −2.4153 (1.3764)* −0.4272 (1.1352) −1.2411 (0.7953)
Spatial Lag 0.4881 (0.2110)** 0.4599 (0.2203)** 0.0072 (0.0316)
Temporal Dependence 2.456 (0.1126)*** −0.5373 (0.0383)*** 0.7217 (0.0247)***
Time-since-event2 — 0.0294 (0.0029)*** —
Time-since-event3 — −0.0004 (0.0001)*** —
Neighborhood Dem −0.0054 (0.0254) 0.0009 (0.0244) −0.0261 (0.0169)
Neighborhood Dem sq.’d 0.0050 (0.0038) 0.0054 (0.0037) 0.0018 (0.0025)
Neighborhood GDP −0.1670 (0.1559) −0.2350 (0.1562) −0.0829 (0.0929)
GDP per capita (ln) 0.0540 (0.0989) 0.0999 (0.0956) 0.0472 (0.0545)
Population (ln) 0.1731 (0.0483)*** 0.2153 (0.0463)*** 0.1403 (0.0272)***
Democracy 0.0222 (0.0131)* 0.0107 (0.0134) 0.0150 (0.0081)*
Democracy sq.’d −0.0032 (0.0026) −0.0038 (0.0026) −0.0043 (0.0016)***
Post-Cold War 0.1346 (0.1295) 0.0082 (0.1290) 0.1738 (0.0811)**
N (states) 1403 (42) 1403 (42) 1403 (42)

Note: dependent variable: civil-war incidence (0 = No, 1 = Yes). All spatial lags use row-standardized binary-
contiguity spatial-weights matrices. Significant at ***1, **5, *10%.

42 Using a similar logic, Cook (2015) shows how neglecting spatial dependence limits our understanding of
how, and how much, civil conflicts persist over time.

43 As before, we can calculate our uncertainty about these estimates by sampling parameter estimates from
their estimated distribution and repeating this whole procedure for each parameter-vector draw.
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alternative conflict histories, we simply increase the number of outcomes that are conditioned
upon (that is, the number of dimensions in our cumulative probability). Figure 2 illustrates,
depicting six (of the possible 64) conflict histories since 1992 that could have preceded 1998 in
Senegal. We compare each of these histories—lengths of sustained conflict since 1992 of 0 to 5
years—against one in which Senegal was peaceful for all those years, which is given by the
thick-black x-axis.

The results suggest some interesting features of conflict dynamics. First, the effects of conflict
persistence (auto-dependence) are quite large immediately following a conflict, but dissipate
rapidly once peace emerges. For instance, we estimate that, if the Senegalese conflict had ended
after 1992, no discernible effect of previous conflict on future conflict probabilities would have
persisted by 1998. (The thin solid line converges quickly to the steady state.) We also see how
histories full of conflict can mire states in so-called conflict traps, as years of fighting produce
high probabilities that conflict will persist into subsequent years. Notice, for instance, that at the
end of the all-conflict counterfactual history, the likelihood of fighting in 1998 is 62 percent
higher than it would be following the all-peace history.

Lastly, we compare the predictive accuracy of the spatiotemporal-lag probit model estimated by
maximum simulated likelihood (STP-MSL), the regime-switching model estimated by maximum
likelihood (RS-ML) and the discrete-time hazard model estimated by maximum likelihood
(DTH-ML). We begin by focusing on the overall ability of the respective models to predict conflict
and peace outcomes using the area under the receiver-operating characteristic (ROC) curve. In our
illustration, ROC curves gauge the ability of each model to correctly predict instances of conflict or
true positives without making false positive predictions across all possible prediction rules.44 Area
under the curve (AUC) scores are portions of the area of the unit square and therefore range
between 0 and 1, with higher scores indicating a better job of predicting peace and conflict
outcomes. (A random model-free prediction strategy generates an AUC score of 0.5.) In terms of
overall predictive performance, there is not much separation between the models. STP-MSL has
the highest score (0.9318), but the difference in comparison with DTH-ML is minimal (0.9316).
The performance gap with RS-ML is larger (0.9254), but remains minor.

Fig. 2. Estimated response-paths to alternative counterfactual conflict histories in Senegal

44 A prediction rule in our example is a probability threshold that is used for predicting conflict. This rule
reflects one’s relative sensitivity to making false-positive and false-negative predictions. On the one hand, if
sensitivity to false positives is high, one would set the probability threshold for predicting conflict close to 1. On
the other hand, if sensitivity to false negatives (predicting peace when there is conflict) is high, one would set the
probability threshold close to 0.
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In Figure 3, we divide the data into two sub-samples based on whether conflict was observed
in the prior period, thereby allowing us to break down the ability of the models to accurately
predict conflict onset (or peace duration) and conflict persistence (or peace onset). The AUC
scores from the ROC curves indicate that DTH-ML (0.7342) and STP-MSL (0.7222) are more
or less equivalent at predicting conflict onset (plot to the left in Figure 3), with DTH-ML
offering a 1.7 percent improvement over STP-MSL and both besting RS-ML (0.6988). A clearer
performance gap emerges when we focus on the prior conflict sub-sample (plot to the right in
Figure 3), with STP-MSL outperforming both DTH-ML and RS-ML at most of the evaluated
thresholds. Comparing AUC scores, STP-MSL (0.7090) offers a 9.6 percent improvement over
RS-ML (0.6469) and a 4.2 percent improvement over DTH-ML (0.6801).

In sum, STP-MSL has a slight advantage over DTH-ML and RS-ML in overall predictive
performance. When we separate the data based on the prior outcome, we see that the superior
performance of STP-MSL is due to its ability to better predict conflict duration (peace onset),
with no estimator offering as clear an advantage in predicting conflict onset. While the pre-
dictive advantages offered by STP-MSL are relatively minor here, we expect that the benefits
would be clearer in applications exhibiting significant spatial dependence.45 Furthermore, our
unified autoregressive framework for spatial and temporal dependence is much more elegant
than the alternatives. For this reason, and despite the added complexity surrounding parameter
estimation, the spatiotemporal probit simplifies effect calculations both conceptually and
computationally.

CONCLUSION

Spatial/spatiotemporal (inter)dependence is substantively and theoretically ubiquitous and
important across social science binary outcomes. Standard ML estimation of binary-outcome
models in the presence of spatial interdependence and/or temporal auto-dependence are badly
misspecified if that (inter)dependence is ignored, and are also misspecified if that

Fig. 3. ROC curves for onset and duration subsamples

45 Estimated ROC curves from the Monte Carlo experiments showed clearer support for our estimator, with
MSL-RIS strictly dominating in each of the four possible outcome predictions (peace-peace, peace-conflict,
conflict-conflict, conflict-peace).
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interdependence is modeled by including endogenous spatial lags and/or temporally lagged
outcomes (as opposed to lags of latent variables), treating these as exogenous regressors.
Implementing consistent and efficient estimators for spatial- and spatiotemporal-lag probit
models, such as MSL-by-RIS, can be challenging and is computationally demanding, but the
benefits seem to outweigh these costs when latent propensities are autoregressive in time and
space. The more-easily implemented naïve spatiotemporal alternatives yield inefficient and
sometimes badly biased estimates of important effects when data are generated by spatial,
temporal or spatiotemporal autoregressive processes (in latent variables). And latent propen-
sities are likely autoregressive in time and space in many, if not most, substantive areas of
research in the social sciences. In the civil conflict example pursued here, a country’s latent
propensity for civil conflict seems likely persistent over time and may spill across borders even
if conflict does not actually erupt.46 Most importantly, we have shown how to provide sub-
stantively important counterfactual effect estimates from spatial/spatiotemporal-autoregressive
binary-outcome models, including spatiotemporal response paths, and naïve alternatives will
not generally produce these naturally or estimate them accurately. In our view, these estimated
substantive spatiotemporal effects and response paths alone more than justify the computational
costs of estimating models that directly reflect the spatiotemporal autoregressive processes
generating our data.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit http://dx.doi.org/10.1017/
psrm.2015.14

REFERENCES

Beck, Nathaniel, David Epstein, Simon Jackman, and Sharyn O’Halloran. 2001. ‘Alternative Models of
Dynamics in Binary Time-Series–Cross-Section Models: The Example of State Failure’. 2001
Annual Meeting of the Society for Political Methodology, Emory University, Atlanta, GA.

Beck, Nathaniel, Johnathan Katz, and Richard Tucker. 1998. ‘Taking Time Seriously: Time-Series–
Cross-Section Analysis with a Binary Dependent Variables’. American Journal of Political Science
42(4):1260–88.

Beck, Nathaniel, Kristian S. Gleditsch, and Kyle Beardsley. 2006. ‘Space is More than Geography:
Using Spatial Econometrics in the Study of Political Economy’. International Studies Quarterly
50(1):27–44.

Beron, Kurt J., James C. Murdoch, and Wim P.M. Vijverberg. 2003. ‘Why Cooperate? Public Goods,
Economic Power, and the Montreal Protocol’. Review of Economics and Statistics 85(2):286–97.

Beron, Kurt J., and Wim P.M. Vijverberg. 2004. ‘Probit in a Spatial Context: A Monte Carlo Analysis’.
In Luc Anselin, Raymond Florax and Sergio J. Rey (eds), Advances in Spatial Econometrics:
Methodology, Tools and Applications. Berlin: Springer-Verlag, 169–96.

Braithwaite, Alex. 2010. ‘Resisting Infection: How State Capacity Conditions Conflict Contagion’.
Journal of Peace Research 47(3):311–9.

Buhaug, Halvard, and Kristian S. Gleditsch. 2008. ‘Contagion or Confusion? Why Conflicts Cluster
in Space’. International Studies Quarterly 52(2):215–33.

Carter, David B., and Curt S. Signorino. 2010. ‘Back to the Future: Modeling Time Dependence in
Binary Data’. Political Analysis 18(3):271–92.

46 Given that this finding contrasts with the conventional wisdom (and expanding literature) on conflict
contagion, we revisit this question in greater detail in additional substantive work (Cook 2015).

Probit Models of Interdependent Binary Outcomes 171

http://dx.doi.org/10.1017/psrm.2015.14
http://dx.doi.org/10.1017/psrm.2015.14


Chamberlain, Gary. 1993. ‘Feedback in Panel Data Models’. Working Paper No. 1656. Cambridge, MA:
Harvard Institute of Economic Research.

Cook, Scott J. 2015. ‘The Echo of Conflict: Modeling the Dependence of Civil Conflict in Space and
Time’. Working Paper, Texas A&M University.

Diehl, Paul F. 1991. ‘Geography and War: A Review and Assessment of the Empirical Literature’.
International Interactions 17:11–27.

Fleming, Mark M. 2004. ‘Techniques for Estimating Spatially Dependent Discrete-Choice Models’.
In Luc Anselin, Raymond Florax and Sergio J. Rey (eds), Advances in Spatial Econometrics:
Methodology, Tools and Applications. Berlin: Springer-Verlag, 145–68.

Franzese, Robert J., and Jude C. Hays. 2004. ‘Empirical Modeling Strategies for Spatial Interdependence:
Omitted-Variable Vs. Simultaneity Biases’. Presented at the 2004 Summer Meeting of the Society
for Political Methodology, Stanford University, Stanford, CA. Available at http://www.umich.edu/
~franzese/FranzeseHays.PolMeth.2004.pdf.

Franzese, Robert J., and Jude C. Hays. 2007. ‘Spatial-Econometric Models of Cross-Sectional Inter-
dependence in Political-Science Panel & Time-Series-Cross-Section Data’. Political Analysis 15
(2):140–64.

Franzese, Robert J., and Jude C. Hays. 2008a. ‘Empirical Models of Spatial Interdependence’. In
J. Box-Steffensmeier, H. Brady and D. Collier (eds), Oxford Handbook of Political Methodology,
570–604. Oxford: Oxford University Press.

Franzese, Robert J., and Jude C. Hays. 2008b. ‘Interdependence in Comparative Politics: Substance,
Theory, Empirics, Substance’. Comparative Political Studies 41(4/5):742–80.

Franzese, Robert J., Jude C. Hays, and Scott J. Cook. 2012. ‘Spatial-, Temporal-, and Spatiotemporal-
Autoregressive Probit Models of Interdependent Binary Outcomes: Estimation and Interpretation’.
Presented at the 2012 Annual European Political Science Association, Berlin.

Hays, Jude C. 2009. ‘Bucking the System: Using Simulation Methods to Estimate and Analyze Systems of
Equations with Qualitative and Limited Dependent Variables’. Presented at the 2009 Annual
St. Louis Area Methods Meeting (SLAMM), Washington University in St. Louis.

Heckman, James J. 1978. ‘Dummy Endogenous Variables in a Simultaneous Equation System’.
Econometrica 46:931–59.

Hegre, Havard, Tanja Ellingsen, Scott Gates, and Nils Petter Gleditsch. 2001. ‘Towards a Democratic Civil
Peace? Democracy, Political Change, and Civil War, 1816-1992’. American Political Science
Review 95(1):33–48.

Honore, Bo E., and Ekaterini Kyriazidou. 2000. ‘Panel Data Discrete Choice Models with Lagged
Dependent Variables’. Econometrica 68(4):839–74.

Jackman, Simon. 2000. ‘In and Out of War and Peace: Transitional Models of International Conflict’.
Working paper. Stanford, CA: Stanford University. Available at http://jackman.stanford.edu/papers/
inandout.pdf.

Kathman, Jacob D. 2010. ‘Civil War Contagion and Neighborhood Interventions’. International Studies
Quarterly 54:989–1012.

Klier, Thomas, and Daniel P. McMillen. 2005. ‘Clustering of Auto Supplier Plants in the US: GMM
Spatial Logit for Large Samples’. Working Paper Series No. WP-O5-18, Federal Reserve Bank of
Chicago.

Lake, David A., and Donald Rothchild, eds. 1998. The International Spread of Ethnic Conflict. Princeton,
NJ: Princeton University Press.

LeSage, James P. 1999. Spatial Econometrics. http://www.rri.wvu.edu/WebBook/LeSage/spatial/wbook.
pdf, accessed 22 May 2015.

LeSage, James P. 2000. ‘Bayesian Estimation of Limited Dependent Variable Spatial
Autoregressive Models’.
Geographical Analysis 32(1):19–35.

LeSage, James P., and Robert K. Pace. 2009. Introduction to Spatial Econometrics. Boca Rotan, FL: CRC
Press.

172 FRANZESE, HAYS AND COOK

http://www.umich.edu/&#x007E;franzese/FranzeseHays.PolMeth.2004.pdf
http://www.umich.edu/&#x007E;franzese/FranzeseHays.PolMeth.2004.pdf
http://jackman.stanford.edu/papers/inandout.pdf
http://jackman.stanford.edu/papers/inandout.pdf
http://www.rri.wvu.edu/WebBook/LeSage/spatial/wbook.pdf
http://www.rri.wvu.edu/WebBook/LeSage/spatial/wbook.pdf


McMillen, Daniel P. 1992. ‘Probit with Spatial Autocorrelation’. Journal of Regional Science
32:335–48.

McMillen, Daniel P. 1995. ‘Selection Bias in Spatial Econometric Models’. Journal of Regional Science
35(3):417–36.

Most, Benjamin, and Harvey Starr. 1980. ‘Diffusion, Reinforcement, and Geopolitics and the Spread of
War’. The American Political Science Review 74(4):932–46.

Murdoch, James, and Todd Sandler. 2002. ‘Economic Growth, Civil Wars, and Spatial Spillovers’.
Journal of Conflict Resolution 46(1):91–110.

O’Loughlin, John, and Clionadh Raleigh. 2008. ‘Spatial Analysis of Civil War Violence’. In Kevin R.
Cox, Murray M. Low and Jennifer Robinson (eds), The Sage Handbook of Political Geography.
Thousand Oaks, CA: Sage, 493–508.

Pinkse, Joris, and Margaret E. Slade. 1998. ‘Contracting in Space: An Application of Spatial Statistics to
Discrete-Choice Models’. Journal of Econometrics 85:125–54.

Raleigh, Clionadh. 2004. ‘Neighbours and Neighbourhoods: Understanding the Role of Context in Civil
War’. Presented at the 5th Pan-European International Relations Conference. The Hague, The
Netherlands, 9–11 September.

Salehyan, Idean, and Kristina S. Gledistch. 2006. ‘Refugees and the Spread of Civil War’. International
Organization 60(2):335–66.

Starr, Harvey, and Benjamin A. Most. 1983. ‘Contagion and Border Effects on Contemporary African
Conflict’. Comparative Political Studies 16(1):92–117.

Vijverberg, Wim P.M. 1997. ‘Monte Carlo Evaluation of Multivariate Normal Probabilities’. Journal of
Econometrics 76:281–307.

Ward, Michael, and Kristian S. Gledistch. 2002. ‘Location, Location, Location: An MCMC Approach to
Modeling the Spatial Context of War and Peace’. Political Analysis 10(3):244–60.

Probit Models of Interdependent Binary Outcomes 173


	Spatial- and Spatiotemporal-Autoregressive Probit Models of Interdependent Binary Outcomes&#x002A;
	�&#x002A;Robert J. Franzese, Jr. is a Professor of Political Science, University of Michigan, Ann Arbor, MI 48109 (franzese&!QJ;@umich.edu). Jude C. Hays is an Associate Professor of Political Science, University of Pittsburgh, Pittsburgh, PA 15260 (jch61
	SPATIAL, TEMPORAL AND SPATIOTEMPORAL INTERDEPENDENCE IN BINARY-OUTCOME MODELS
	THE ECONOMETRIC PROBLEM
	THE MAXIMUM SIMULATED-LIKELIHOOD (STP-MSL) BY RECURSIVE IMPORTANCE SAMPLER (RIS) ESTIMATOR FOR SIMULTANEOUS SPATIAL, TEMPORAL OR SPATIOTEMPORAL PROBIT
	ESTIMATED SPATIAL&#x002F;SPATIOTEMPORAL EFFECTS AND RESPONSE PATHS WITH CERTAINTY ESTIMATES
	MONTE CARLO ANALYSES
	Table 1Simulation Results for STP-MSL by RIS Parameter Estimates (100 Trials)
	Table 2Simulation Results for Effect Estimates (100 Trials)
	Fig. 1Accuracy of STP-MSL estimates of spatiotemporal response-path estimates.Note: horizontal bars indicate 95 percent confidence intervals using the estimated standard errors (within trials); vertical lines indicate 95 percent intervals using the actual
	ILLUSTRATION: CONTAGION OF CONFLICT IN AFRICA
	Table 3Spatial-Autoregressive Models of Conflict in�Africa
	Table 4Spatiotemporal Models of Conflict in Africa (Buhaug and Gleditsch 2008) 
	Fig. 2Estimated response-paths to alternative counterfactual conflict histories in Senegal
	CONCLUSION
	Fig. 3ROC curves for onset and duration subsamples
	References
	References
	A11


