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One can identify four modes, or purposes, of 
empirical analyses of positive1 political sci-
ence and international relations: measure-
ment and description, testing (of causal 
theory or ‘effects’), prediction or forecasting, 
and estimation (of causal models and causal 
responses or effects).2 These alternative aims 
or ends one might have in empirical analyses 
will place emphasis on different methodo-
logical challenges and properties over others 
and so demand different methodological 
approaches and tools. Econometric mode-
ling3 is an approach and set of tools that can 
be useful toward all four ends, but it plays an 
especially crucial role in the last: causal-
response estimation. Causal responses, as 
opposed to treatment ‘effects’, refer to how 
some outcomes of interest (dependent varia-
bles) respond to inputs of interest (independ-
ent variables or treatments). As such, causal 
responses are inclusive of the contextual 
conditioning and effect heterogeneity, of the 
temporal, spatial, and spatiotemporal dynam-
ics, and of the causal-simultaneity feedback 

that treatment ‘effects’ purposefully exclude 
(in order to cleanly identify tests for causal-
effect existence), and these heterogeneities, 
dynamics, and feedbacks cannot be estimated 
without modeling of the theoretical and sub-
stantive structure. Indeed, the specification 
and estimation of the empirical model, far 
from being an unfortunate unavoidable limi-
tation, is, from that perspective and for those 
aims, the very goal of the exercise. The pur-
pose of the analysis and the aim of the theo-
retically structured model is for its estimates 
to provide a ‘useful empirical summary’ of 
the actual substantive processes under study.

Measurement follows (as directly as pos-
sible) on operationalization – the translation 
from theoretical concepts, X and Y, to observ-
able empirical indicators of those concepts (see 
Munck et al., Chapter 19, this Handbook) – to 
assign quantitative values gauging the extent 
or presence of those indicators in some unit 
of observation. As an end-goal of empirical 
analysis, measurement is distinct from the 
other modes in its purely descriptive aims: 

Econometric Modeling:  
From Measurement, Prediction, 

and Causal Inference to  
Causal-Response Estimation
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scholars might conduct empirical analyses to 
offer measures of – i.e., to describe empirically –  
democracy (e.g., Coppedge et al., 2008; Treier 
and Jackman, 2008), the ideological placement 
of parties (Poole, 2019), and socioeconomic 
cleavage-structures (Selway, 2011), to name 
just three. Measurement is also distinct in being 
a fundamental prerequisite of any of the other 
modes of empirical analysis: causal inference, 
causal estimation, or prediction/forecasting. 
Econometric modeling is central to some meas-
urement analyses (for examples, see Fariss 
et  al., Chapter 20, this Handbook; Leemann 
and Wasserfallen, Chapter 21, this Handbook; 
and Treier, Chapter 48, this Handbook), but the 
focus of this overview remains the distinction 
between causal-effect testing and causal-effect 
estimation and the essential role of economet-
ric modeling in the latter.

Regarding testing of causal theory and 
‘effects’, the aim of the analysis is to evaluate 
empirically some causal-theoretical claim, 
i.e., to assess whether some posited causal 
relationship or causal effect exists empiri-
cally. Because the analyst’s central purpose 
is to test a particular theory, ideally as little 
as possible from beyond that theory will be 
brought into the empirical assessment, so as 
to isolate the ‘empirical existence proof’ of 
the hypothesized causal effect. An empirical 
implication is derived from the theoretical 
argument that some X⇒Y, and the empirical 
analysis aims to evaluate this argument, this 
causal proposition, this hypothesis; in other 
words, the researcher wants to verify empiri-
cally that dx→dy,4 which entails (a) demon-
strating that dx associates with dy empirically 
and (b) substantiating that the causal arrow 
goes from X to Y in the expressed direction. 
Notice that the adverb empirically applies 
only to component (a), empirical associa-
tion of x and y; it intentionally does not apply 
to establishing causality because causality 
is a theoretical and not an empirical con-
cept. Thus, the validity of ‘empirical tests of 
causal “effects”’ rests on the strength of the 
empirical association and, separately, on the 
strength of the arguments establishing that 

the causal arrow generating that empirical 
association goes in the theorized direction 
from X to Y. That is why the gold-standard 
ideal for causal inference5 (see Bowers and 
Leavitt, Chapter 41, this Handbook) is the 
randomized controlled trial (RCT).

The potential-outcomes framework (POF)6 
proposes as the estimand for causal infer-
ence, i.e., for testing the existence of a causal 
effect of X on Y:

= − =Y X Y XCausal Effect = ( 1) ( 0)it it  (1)

The fundamental problem of causal inference 
arises immediately: for a single observation 
on unit i at time t, denoted subscript it, the 
treatment or causal impetus, X, either is pre-
sent (X = 1) or is not (X = 0). The counterfac-
tual cannot be observed. Empirical designs 
for causal inference typically then proceed to 
establish conditions under which the differ-
ence in the empirical sample-means of y 
under x = 1 vs under x = 0 can be taken as an 
estimate of (1).7 In the POF, this involves 
designing an analysis in which the compari-
son treatment (X = 1) and control (X = 0) 
groups are identical in all ways except treat-
ment status (x value) and, potentially, the 
outcome (y value). The association of x and y, 
dx→dy, is measured or estimated, and it can 
be understood as indicating the causal rela-
tionship dx⇒dy if two alternative causal-
relationship possibilities can be ruled out as 
having instead generated that association: (a) 
that Y⇒X (i.e., endogeneity, for instance by 
simultaneity or reverse causality) and (b) that 
some Z⇒Y and Z↔X (spuriousness).8 Now 
we can see why the RCT is the gold standard 
for causal inference. Experimental control (of 
dx) assures that movements in x could not 
have been caused by y; the analysts know y 
did not move x because the analysts them-
selves moved or manipulated x.9 Experimental 
randomization in which unit-times receive dx 
rules out spuriousness because if the values 
of dx are successfully independently rand-
omized across a very large number of obser-
vational units, then dx will be unassociated 
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with any alternative causal-factor Z – observed 
or unobserved (or even unimagined!) – by 
definition of independent.

The validity of the estimated empirical 
associations as test statistics for causal infer-
ence rests on the strength of the argument 
that the causal arrow underlying those asso-
ciations runs as theoretically postulated. In 
some rare situations, Y⇒X may be ruled out 
a priori: e.g., few Y could logically possibly 
cause race or gender X, but experimentation –  
i.e., successful control and randomization 
(and large samples10) – usually offers the 
strongest possible argument. In these cases, 
so-called nonparametric causal inference – 
i.e., causal inference that does not rely upon 
a pre-specified structural model (no model 
beyond the additive and separable treatment 
effects inherent in the difference-in-means 
definition of causal ‘effect’ in (1)) – may be 
feasible. Even here, though, the validity of 
the causal-effect interpretation of any empiri-
cal estimate of (1) requires that Stable Unit 
Treatment Value Assumption (SUTVA) hold. 
The SUTVA conditions can be understood as 
the conditions under which the empirical dx 
is validly as-if experimental, i.e., controlled 
and randomized, and they amount practically 
to the following:

The probability of one unit receiving treatment, the 
homogenous magnitude of the treatment, and the 
homogenous effect of treatment are independent 
of each other and of any other unit(s) receiving 
treatment, the sizes of treatments in those others, 
or effects of treatments in those others.

As one of POF’s founding protagonists sug-
gests, ‘The two most common ways in which 
SUTVA can be violated [are] when (a) there 
are versions of each treatment varying in 
effectiveness or (b) there exists interference 
between units’ (Rubin, 1990: 282). If SUTVA 
is violated, for instance by treatment –‘effect’ 
heterogeneity or conditionality and/or by 
spillovers or contagion across units i and 
time periods t – and such heterogeneity and 
interdependence are ubiquitous in socio-
politico-economics – empirical estimates of 

(1) by the sample-mean difference of y given 
x = 0 or x = 1

 E(y | x 1) E(y | x 0) (2)

will not be valid or, speaking more precisely 
and generally, will be inadequate estimates of 
the causal effect of X on Y, or the expected 
empirical response of Y, dy, to an exogenous 
movement in X, i.e., treatment, dx. In general, 
reclaiming valid causal-effect (existence) 
inference, and a fortiori any hope to claim 
valid causal-effect (response) estimation, will 
require econometric modeling beyond that of 
estimating (1) by its empirical analog (2).

In sum to this point, for purposes of estab-
lishing causality and non-spuriousness in the 
experimental sample, i.e., for internal valid-
ity, the RCT is indeed the gold-standard ideal 
(see Morton and Vásquez-Cortés, Chapter 51,  
this Handbook). Of course, all scholars accept 
that practical and ethical considerations con-
strain what can or should be experimentally 
manipulated in the purview of social science. 
Even beyond those feasibility limitations, 
however, except for purely descriptive pur-
poses of determining what was true in the 
observed experimental unit-times, analysts 
are more concerned with inferring from that 
experimental sample to what would be true 
in new data, outside that observed sample, 
i.e., with external validity.11 And for that 
purpose, three significant challenges of rep-
resentativeness – of the experimental sample 
to the intended population of inference, of the 
experimental treatment to the causal variable 
of interest, and of the experimental context to 
that of the socio-politico-economic outcomes 
of interest12 – hinder what can usefully be 
inferred from these high-internal-validity 
RCT studies to target populations of inter-
est. As a practical, empirical, applied matter 
(see also note 11), it seems as though external 
validity dominates internal validity in mean-
squared-error terms, where potentially biased 
observational studies in proper context gen-
erally yield smaller mean-squared errors than 
do unbiased experimental studies conducted 
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in necessarily13 incorrect contexts (Pritchett 
and Sandefur, 2015). Moreover, even an ideal 
RCT is generally mute on other potential 
causes and says little about the magnitude of 
the treatment effects from the study relative 
to other effects14 and relative to variation in 
the outcome variable of interest in the actual 
(external) context of interest.

Experiment[s] will have nothing whatsoever to say 
about other causes. What it will do, and do well, is 
to determine whether […treatment…] had a posi-
tive or negative effect, or none at all. (Kellstedt and 
Whitten, 2009: 70; emphasis added)

Regarding external-validity concerns but 
staying within this causal inference or  
testing-for-causal-effects mode of empirical 
analysis, there has been much advancement 
in extra-laboratorial field- and survey- 
experimental research designs (see Sinclair 
et  al., Chapter 52, this Handbook) and  
observational-study research designs (see 
Bowers and Leavitt, Chapter 41, this 
Handbook; Nielsen, Chapter 42, this 
Handbook; Keele, Chapter 43, this Handbook; 
Cattaneo et al., Chapter 44, this Handbook) to 
yield pseudo-experimental conditions for this 
causal ‘effect’ as defined in the POF (equation 
(1)). Treatment uptake by subjects is necessar-
ily less strongly controlled in the field than in 
the lab, therefore, relative to the RCT labora-
tory experiment, field-experimental studies 
essentially trade some loss of purity in control 
and randomization for some enhancement of 
representativeness, perhaps of all three sorts 
(see note 12). Survey experiments, somewhat 
analogously, buy enhanced representativeness 
of subjects, given a scientific survey-design 
appropriate to the intended population, at the 
cost of representativeness of the treatment – 
mention or emphasis in a survey question, 
question ordering etc., are generally quite 
unlike the conceptual cause of interest in the 
theory – and of the context – answering a 
survey is usually very unlike the context to 
which the results are intended to be inferred.

For these reasons, social scientists some-
times must, and often choose, to work with 

observational data, especially for purposes 
of inference beyond sample, i.e., of inferring 
a causal relationship to exist in some target 
population of interest, and not only that a 
cause operated in some (specific, observed, 
and past) experimental sample. As shall be 
demonstrated below, the move to economet-
ric modeling of observational data becomes 
especially judicious as the aim of the analy-
sis moves beyond establishing that some 
causal effect exists (causal inference), to 
estimating causal responses, dy/dx (causal 
estimation). With these moves beyond 
internal causal inference to external causal 
inference and, especially, further beyond 
to causal estimation, empirical analyses in 
social-science observational studies confront 
not one, but at least four, fundamental chal-
lenges; namely, in socio-politico-economic 
reality (Franzese, 2007):

1 Multicausality: just about everything matters;
2 Causal heterogeneity and context conditionality: 

how everything that matters varies – how every-
thing matters depends on just about everything 
else, i.e., on context;

3 Dynamic causality: just about everything is tem-
porally, spatially, or spatiotemporally dynamic, 
not static;

4 Omnicausality: just about everything causes just 
about everything else.

Further exacerbating these four challenges is 
a fifth (or zero-th) challenge, which is that 
even with the enormous quantities of data 
now obtainable from internet, social-media, 
satellite/geospatial, and other big-data 
sources (Nyhuis, Chapter 22, this Handbook; 
Barberá and Steinert-Threlkeld, Chapter 23, 
this Handbook; Darmofal, Chapter 24, this 
Handbook), observational empirical analysts 
often find relatively little useful empirical 
variation with which to surmount these hur-
dles, even in those oceans of data. In the first 
instance, this is where econometric modeling 
becomes essential: given heterogeneity, 
dynamics, or simultaneity, without some 
structural model to reduce the parameteriza-
tion of the problem, the number of quantities 
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to estimate necessarily grows faster than  
the number of observations with which to 
estimate them.

Consider the following representation 
of empirical relations for one outcome of 
interest:

    
y f

i j N t s T n NT

x 0, , ; ~ ( , );

, 1.. , , 1.. ,

it it js js js itε εββ( )= Σ

= = =
 (3)

In this perhaps most-general possible 
model,15 there are k parameters, bit, linking 
right-hand-side variables, xjs,16 to the out-
come of interest, yit, plus a mean-zero sto-
chastic component, ɛ, characterized by an  
n × n variance–covariance matrix, itself pos-

sessing n n
1

2

1

2
2 +  (which is greater than n) 

parameters. In total, there are generally  

k n n
1

2

1

2
2+ +  parameters to estimate per 

function, per observation. This number of 
quantities to estimate grows exponentially 
faster than does the number of quantities 
observed (a k + 1 vector of y,xit). Thus, with-
out some extremely strong structural-mode-
ling assumptions, there could be no empirical 
analysis at all. From this perspective, we see 
that so-called nonparametric causal inference 
POF approaches applying (2) are actually 
highly structurally modeled: (a) empirical 
relations are assumed constant across all 
observations (within a bin if some heteroge-
neous effects are allowed) so there is only 
one function, f, to estimate; (b) random com-
ponents are assumed orthogonal and homog-
enous across observations (or assumed zero 
with deterministic relationships such that the 
only randomness enters through the experi-
mental manipulation); and (c) the parameters, 
b, are also assumed constant across all obser-
vations, it (within a bin).17 Notice that these 
are essentially identical to the assumptions of 
classical regression analysis. Indeed, the typ-
ical empirical model in POF-based studies, 
(2), is in many ways much more restrictive 
than the typical empirical model in regres-
sion-based studies: additive, separable, 

homogenous treatment effects (usually of a 
homogenous treatment: X = 1 or X = 0). The 
assumptions are the same because the logical 
necessity of some (radical) parameter reduc-
tion is the same. Therefore, the arguments or 
claims made about the research design, and 
not the estimation model, are the basis for 
POF causal-inference studies’ claims to have 
ruled out spuriousness and simultaneity (again 
reflecting that causality is theoretical, not 
empirical).

Much of the econometric modeling 
deployed in the service of causal-inference 
studies focuses on ruling out spuriousness, 
i.e., some Z related to X actually causes Y: 
Z↔X and Z⇒Y. Matching-based inference 
(see Nielsen, Chapter 42, this Handbook), 
for example, leverages the idea that, if the 
researcher can observe and measure all rel-
evant z, then comparing y|x = 1 to y|x = 0 for 
‘balanced’ groups of data – meaning data  
for which the empirical distributions (sam-
ple means, variances, etc.) of all z are equal 
(or statistically indistinguishable) – yields 
a difference in means between treated and 
untreated observations that could not pos-
sibly be due to those z. Note that matching, 
unlike the RCT, cannot control in this way 
for unobserved z. Notice also that matching 
control for z is exactly like regression control 
for z, except that the former is much more 
robust. Multiple regression controls effects 
of z that manifest in the manner modeled 
(e.g., linear effects only in linear regression), 
whereas matching controls effects of z in any 
manner they may manifest.18 One might thus 
say ‘Matching control is regression control 
on steroids’. Finally, also like regression, 
matching per se offers absolutely no address 
of simultaneity; like regression, claim for the 
matching-based estimation of (2) to be causal 
rests entirely on the adequacy of the controls.

Another causal-inference econometric- 
modeling approach that is focused on elimi-
nating the possibility of spuriousness is the 
difference-in-difference (DID) design (see 
Keele, Chapter 43, this Handbook), and, relat-
edly, the difference-in-difference-in-difference 
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(DIDID or 3D) design and fixed-effects (FE) 
designs. The key notion underlying DID 
econometric modeling is that differencing 
the data, yit − yit−1, removes any time-con-
stant factor in y, including any unobserved 
(time-constant) z. Observed z, including 
time-varying z, may be addressed by regres-
sion or matching control; scale-variation 
or other functional-form issues may like-
wise be addressed by (structural) economet-
ric modeling. Empirical implementation of 
the DID design is very simple. One needs 
observations on two groups, both in a pre-
treatment period in which the X of interest 
has not been applied and a post-treatment 
period in which X has been applied in one 
but not the other group. Regression analysis 
with an indicator for post-treatment period, 
an indicator for treatment status (x = 1 or  
x = 0), and the interaction of those two dum-
mies yields a coefficient on the interaction 
of the (treatment) difference in (time) differ-
ence, i.e., of the causal ‘effect’ in (2), under 
the maintained assumptions. Like matching 
and regression (after all, DID is commonly 
implemented by estimating a simple dummy-
variable-interaction regression model), DID 
per se offers no address to the possibility of 
endogeneity. Units may select the treatment 
because of values of y or expected values of y, 
for instance, invalidating the causal interpre-
tation of the DID estimate.

The (Regression) Discontinuity Design 
((R)DD) is also an econometric approach 
to causal inference (see Cattaneo et  al., 
Chapter 44, this Handbook) but one focused 
on addressing simultaneity bias as well 
as unobserved confounds, a.k.a. omitted- 
variable bias. The DD capitalizes on situa-
tions in which a treatment, x = 1, is triggered –  
a discontinuous jump in the probability of 
treatment suffices – as an observed continu-
ous index variable, v, crosses some thresh-
old value, vc. For instance, a candidate wins 
a plurality-election office when his/her vote 
share crosses the plurality threshold (e.g., 
Caughey and Sekhon, 2011) or a party’s prob-
ability of entering parliamentary government 

jumps discontinuously upward when its seat 
share crosses the plurality threshold (Hays 
et al., 2019). Provided (a) there are no system-
atic differences at the threshold in variables, 
z, other than the treatment variable (which 
can be evaluated empirically for observed z), 
and (b) no endogeneity in which observations 
fall near to either side of the threshold (called 
sorting, in this context), then exactly at, or at 
least near the threshold, it is completely ran-
dom, or mostly random, whether the observa-
tion receives treatment. The causal ‘effect’ as 
defined in (1) is thus identified at the thresh-
old as if by RCT: any observed or unobserved 
z should be equal on either side very near the 
threshold (and this can be verified for observed 
z), and treatment is ‘applied’ randomly. Of 
course, like the RCT it aims to mimic, the 
DD estimate lacks external validity of its esti-
mated treatment effect for conditions unlike 
those at the threshold (e.g., for not-close elec-
tions, which greatly limits the applicability 
of DD estimates of US Congressional incum-
bency advantage, e.g.). With some additional 
assumptions, one can estimate (2) by an RDD 
regressing y on a flexible polynomial in index, 
v, an indicator for treatment status, x = (0,1), 
and the interaction of the polynomial terms 
with x. The coefficient on the x is then the 
RDD-identified effect.

The more full-throated econometric- 
modeling approach to causal inference relies 
upon instrumental variables (IV) (see Carter 
and Dunning, Chapter 40, this Handbook; 
see also selection modeling in Böhmelt and 
Spilker, Chapter 37, this Handbook) and, more 
full-throated still, systems estimation (see, 
e.g., Jackson, 2008). The causal-identification 
strategy of instrumentation is well known: 
given a causal relation, y = f(xb,ɛ), about which 
there may be concerns that y⇒x as well, find 
some z that (a) covaries with x but (b) not with 
ɛ – alternatively, with more substantive appeal, 
this variable z, called an instrument, needs (a) 
to relate to x but (b) not to y, except through 
that relationship to x – and then estimate the 
relationship of y with z instead by indirect 
least-squares (ILS), for example:
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The ILS coefficient-estimates may be solved 
to retrieve estimates of b and the other coef-
ficients (once the residual correlation is 
accounted), but, for solely causal-inference 
testing purposes, the significance of the esti-
mated coefficient on zit

x may be evaluated 
directly. Note that instrumentation strategies, 
even in the causal-inference modality that 
aims to minimize modeling assumptions, 
must pre-specify enough about the causal 
process to at least offer a causal diagram 
(Pearl, 1995), if not a fully specified system of 
equations, to establish IV-identification condi-
tions (a) and (b).

Two-stage least-squares (2SLS) is a con-
venient implementation of IV-estimation. 
2SLS estimates equation (i) in (4), for 
example by regressing x on (any exogenous 
variables across the system as given by the 
model/graph and) z, or on z if more than 
one instrument is available (stage 1), and 
then regressing y on that fitted x (and any 
exogenous variables in equation (i)) (stage 
2). The 2SLS procedure puts the fitted-x 
regressor in the same scale as the endog-
enous x so the 2SLS estimated coefficient 
on instrumented-x estimates directly, and if 
there are multiple instruments, the regres-
sion of stage 1 is the optimal procedure for 
projecting multidimensional information z 
to unidimensional x and y. Single-equation 
three-stage least-squares (3SLS), which is 
asymptotically equivalent to limited-infor-
mation maximum-likelihood (LIML), gains 
efficiency relative to 2SLS by accounting 
the necessary non-sphericity in the stochas-
tic component of the model seen in the com-
pound error term in the last line of (4). For 

further efficiency gains, the full system of 
equations (i) and (ii) can be estimated jointly 
by multi-equation 3SLS or by (asymptotic 
equivalent) full-information maximum-like-
lihood (FIML).19 Systems approaches also 
facilitate the incorporation of cross-equation 
substantive/theoretical knowledge into the 
estimation, such as. e.g., that some coeffi-
cients are equal, proportionate, or oppositely 
signed across equations.

Strategies for addressing simultaneity and 
the other challenges for applied empirical 
social science can perhaps be enumerated 
from most to least structural (excepting item 
020) thusly:

0 Time (‘the poor man’s exogeneity’);
1 Full-system specification and estimation;
2 (Single-equation) instrumentation;
3 Matching;
4 Difference-in-difference;
5 Discontinuity designs;
6 Survey and field experimentation;
7 Laboratory experimentation.

For causal-inference testing purposes, the 
ordering also lists in generally increasing 
credibility, given their decreasing reliance on 
information beyond the theory to be tested 
and the empirical data. Indeed, given the 
tremendous advantages of controlled rand-
omization against spuriousness and reverse 
causality, what could possibly argue for 
econometric modeling, or model-based esti-
mation in general, over the RCT or nonpara-
metric causal-inference strategies in general? 
At broadest, and in general, the answer is: 
external validity.

Firstly, prior to any external-validity con-
cerns, note that for description, summariza-
tion, and measurement purposes, causality is 
simply irrelevant. Experimentation would be 
exceedingly cumbrous, and piles of nonpara-
metric estimates – being necessarily uncon-
nected by any formula – tend to offer only 
poor summary and poorer understanding.21 
The dominance of model-based approaches 
of diverse kinds for textual-data analy-
sis, scaling, or classification (see Benoit, 
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Chapter 26, this Handbook; Ergerod and 
Klemmensen, Chapter 27, this Handbook; 
Bouchat, Chapter 28, this Handbook), sen-
timent or network description (Curini and 
Fahey, Chapter 29, this Handbook; Calvo 
et al., Chapter 30, this Handbook), and latent-
concept recovery (Fariss et  al., Chapter 20, 
this Handbook; Leemann and Wasserfallen, 
Chapter 21, this Handbook; Treier, Chapter 
48, this Handbook) is therefore natural and 
optimal. Rather than the RCT, the gold 
standard for measurement exercises is use-
fulness in conveying summary description or 
in subsequent analyses.

Likewise, for purely predictive and fore-
casting purposes, the gold standard is not 
recovery of some ideal-experimental results; 
it is (obviously) out-of-sample prediction/
forecast error (see, e.g., Schrodt and Gerner, 
2000; for a similar view but comparing 
prediction to explanation instead of causal 
inference, see Ward, 2016). Again, internal 
validity is irrelevant insofar as the aim is 
to predict the value of some yjs≠it, full stop; 
external validity is the only relevant con-
sideration for pure prediction (see note 11). 
Here, too, econometric model-based strate-
gies dominate, but in this case it is perhaps 
due more to the inherent limitations of non-
parametrics than those of causal inference. 
Nonparametric estimates, by construction, 
offer no connection from E(y|x = x0) to  
E(y|x = x1); consequently, as the possible 
values that a potentially large number of use-
ful predictors, their interactions, and inter-
dependencies may take grows, the number 
of nonparametric estimates needed expands 
at least exponentially (and possibly combi-
natorically).22 The forecasting device must 
somehow dampen this meteoric prolifera-
tion of necessary estimands; the preferred 
methods, having proved most effective, i.e., 
performing best by the sole relevant cri-
terion, out-of-sample prediction/forecast 
error, include sophisticated econometric 
modeling with Bayesian methods (see Park 
and Shin, Chapter 47, this Handbook; Gill 
and Heuberger, Chapter 50, this Handbook), 

particularly Bayesian model-selection and  
model-averaging (see Hollenbach and 
Montgomery, Chapter 49, this Handbook), 
Bayesian structural vector autoregression 
(Kilian and Lütkepohl, 2017), and machine-
learning and artificial-intelligence methods 
(see Mikhaylov and Chatsiou, Chapter 55, 
this Handbook; Shoub and Olivella, Chapter 
56, this Handbook).

As analysts’ aims move beyond meas-
urement, prediction, and causal inference 
or testing for (existence of) causal effects 
to causal estimation or estimating causal 
responses, the limitations of the experimen-
tal paradigm in the face of the four funda-
mental challenges for empirical research in 
social science become more pronounced. 
Multicausality, that there tends to be many 
relevant causes of effects, is least prob-
lematic, being addressed by control and, 
in many respects – as just discussed – ide-
ally, by experimental control, at least for 
causal-inference purposes.23 The limitations 
with respect to that first fundamental chal-
lenge relate to representativeness and exter-
nal inference: comparing the treatment in 
the experimental sample and context to the 
intended treatments (causes) in their intended 
population and contexts. Effect heterogene-
ity raises more serious challenges. The struc-
ture of the Neyman–Holland–Rubin (NHR) 
causal model is of additive, constant, separa-
ble effects.24 Effect heterogeneity or condi-
tionality can, in principle (though see notes 
22 and 24), be managed by binning observa-
tions with effects that are assumed homog-
enous within bins. However, to see how 
limiting this can be given socio-politico- 
economic reality, consider the simple case 
of the sigmoidal non-linearity implied in 
binary-choice and other binary-outcome 
contexts simply by the nature of probabili-
ties or proportions. The essential substance 
of the matter dictates that for all binary out-
comes, probabilities, or proportions,

  
    

y p y f x

f f

Pr( 1) ( ) ( , , )

-being sigmoidal with 0 1

β ε= ≡ =
≤ ≤

 (5)
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A model of causal effects on probabilities 
that does not respect these first principles – 
the relationship between x and p(y) tapers 
toward its 0 and 1 bounds, (because it surely 
would not kink at those bounds) and so is 
steeper in some manner in between such as in 

Figure 31.1 (the NHR with =
dp

dx
c constant is 

one such non-respecting model) – is unlikely 
to yield very good estimates of those causal 
effects for external inference, especially for 
estimates traversing more curved portions of 
the S-curve and especially not beyond sup-
port. If nonlinearities like these are common, 
or more generally if effects in socio-politico-
economic reality are typically heterogeneous 
and context-conditional as contended here, 
then the NHR causal model is a poor basis 
for causal-effect estimation, although it may 
remain a strong model for causal inference 
(see, e.g., Imai and Ratkovic, 2013; Egami 
and Imai, 2015).

The limitations of nonparametric causal 
inference in confronting causal heterogene-
ity and context conditionality are debilitating 

for causal-effect estimation, for which pur-
pose econometric modeling is inescapably 
essential. Far from an unavoidable detrac-
tion, however, estimation of an econometric 
model reflecting the theory and substance 
of the context is the very goal of the causal- 
estimation exercise. In this Handbook, as 
examples, see Fukumoto, Chapter 35, for a 
discussion of appropriate modeling of dura-
tion or survival contexts, and see Steenbergen, 
Chapter 36, for effective empirical-modeling 
strategies for parameter heterogeneity in 
multilevel/hierarchical contexts. For a quick 
illustration of how substantively theoretically 
specified econometric-model estimation 
can yield interesting and useful empirical 
science beyond proofs of causal existence, 
consider the implications of principle-agent/
multi-actor bargaining for policy outcomes 
(Franzese, 2003, 2010). Equilibrium policy-
outcomes in principle-agent and other shared-
policy-control situations are some convex 
combinations of the two (or more) actors’ 
optimal policies, e.g., a linear-weighted aver-
age, such as:

Figure 31.1 The logically necessarily sigmoidal relation p(y) = f(x)
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In words, the effect on the outcome of any-
thing to which principal and agent (the bar-
gainers) would respond differently depends on 
the degree to which each of the players is in 
control, which depends in a typical principal- 
agent model, e.g., on monitoring and enforce-
ment conditions, represented in (6) by cp(z). 
Conversely, the effect of anything that shapes 
monitoring and enforcement costs and effi-
cacy, z∈z, depends on everything to which the 
players would respond (differently): x∈X. By 
virtue of the shared influence of the bargainers 
over the outcome, the effect of any x∈X to 
which they would respond differently depends 
on all z in cp(z), the weight of each actor in 
determining the outcome, and, vice versa,25 
the effect of any z∈z that influences the 
actors’ relative control depends on all x∈X to 
which the actors respond differently.

How can empirical researchers effectively 
estimate complexly context-conditional effects 
like these? One strategy is to impose the sub-
stantively known structure in the empirical 
model. Franzese (1999) estimates an empiri-
cal model like (6) to show how the anti-infla-
tionary effects of central bank independence 
(CBI) – a situation of shared monetary-policy 
control, agent central bank and principal gov-
ernment – depend on political-economic con-
ditions that would make governments more 
inflationary (bigger effect) or less inflationary 
(smaller effect). The convex-combinatorial 
form of (6) implies that only one additional 
parameter needs be estimated to capture all of 
these theoretically/substantively implied inter-
actions; namely, this parameter is the factor of 
proportionality by which the central bank inde-
pendence measure dampens inflation from the 
government’s to the bank’s preference as CBI 
increases. By a further nested pair of weighted 

averages, Franzese (2003) extends the central 
bank/government domestic-actors model of 
1999 to the open and institutionalized econ-
omy, wherein exchange-rate pegs effectively 
delegate from these two domestic actors to 
the peg-currency policy, and infinitesimally 
small capital-open economies, which effec-
tively constrain domestic policy to the global 
average. Notice from the estimation model 
and results in Figure 31.2 that the ‘theory- 
informed’ model requires just two more 
parameter estimates than the linear-additive 
model, which completely lacks interactions, 
and 50 fewer than the linear-interactive model 
requires to generate comparable interactivity. 
And yet the coefficient estimates on small cap-
ital-openness, E, on single- and multi-currency 
pegs, SP and MP, and on CBI, C, are easily 
interpretable as the proportionate constraint 
each of those measures places on the opposite 
actors in its convex combination (see model 
(14) in Figure 31.2). The graphs illustrate two 
of the (many) rich substantive insights yielded 
about the context-conditional amplitude of 
partisan inflation-cycles at the top-right and 
about the generally declining anti-inflationary 
bite of CBI since about the 1970s, coinciding 
with the acceleration of the postwar and cur-
rent great globalization.26

Next, consider how temporal and spatial 
dynamics highlight the inadequacy of the NHR 
model to causal-response estimation. Notice 
that the NHR estimand (1) and its typical 
empirical estimate (2) yield a scalar estimate, a 
single number, as the causal ‘effect’ of x on y. 
In a temporally dynamic context, in contrast, 
taking the simplest example to illustrate:

(i) yt = ρyt−1 + βxt + ε t

(ii)⇒ dyt
dxt

= β

(iii)⇒ dyLT
LRSS

response

! = βdx
period 0
! + ρβdx

period 1
! + ρ 2βdx

period 2
!"# + ρ 3βdx

period 3
!"# + ...

= ρ s

s=0

∞

∑ βdx

assuming |ρ|<1⇒
! "# $#

= 1

1− ρ
LR multiplier
!

× β × dx
perm.
shock

!

(7)
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Figure 31.2 ‘Multiple Hands on the Wheel’ model of complex context-conditionality in monetary 
policymaking

A causal-inference study designed to test 
whether x causes y will estimate b, which the 
second line of (7) demonstrates is only the 
contemporaneous response, dyt, to a shock 
(treatment), dxt, in that same period. As the 
lines (iii) show, if the shock persists (and 
nothing else occurs), the subsequent period 
experiences an additional ρb and the period 
after that an additional ρ2b, and so on. If the 
shock persists infinitely, the long-run steady-
state (LRSS) response equals the long-run or 
temporal steady-state multiplier of 1/(1−ρ) 
times the initial response, b (for further 
development and discussion, see Linn and 
Webb, Chapter 32, this Handbook; for fullest 
textbook treatment, Hendry, 1995).  
The single scalar27 in (2) is obviously an 
inadequate-answer to the question, ‘what is 
the effect of x on y?’, in the temporally 
dynamic context. In fact, the question is 
underspecified in the dynamic context: ‘the 
effect of (a movement in) x, when?, on 
(movements in) y, when?’28

Temporal dynamics matter greatly for sub-
stantive conclusions about causal-effect size. 

Consider, e.g., the many well designed causal-
inference studies on the effects of voter-reg-
istration hurdles, which typically find ‘very 
small effects’ on turnout (e.g., Hershey, 2009, 
reviews), but these are impulses, b, not effects, 
dy/dx. The considerable evidence that vot-
ing is a habit slowly acquired over repeated 
elections (e.g., Gerber et  al., 2003) implies  
that voter turnout evolves dynamically, as in 
(7), so the response of voter turnout to reg-
istration-easing legislation is not a snapshot-
in-time scalar but a vector over time, and, 
with ρ being large, the long-run cumulative 
effects, b/(1−ρ), are many times those previ-
ously estimated ‘very small’ causal param-
eters. Another illuminating example, from 
Franzese (2002), shows (in Figure 31.3) 
dynamic estimates from an econometric 
model of responses of public debt in devel-
oped democracies, counterfactually (a) to 
the actual OECD average real interest-rate 
(net growth) series 1954 to 1995 and (b) to 
hypothetical permanent a plus-one standard-
deviation shock in real interest-rates pro-
ceeding indefinitely into the future, both 
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starting from different initial debt-to-GDP 
ratios. Substantively, these dynamic estimates 
demonstrate that interest rates, i.e., monetary 
policy, could have enormous effects on the 
long-term accumulation of public debt and 
that, in fact, much of the post-1970s emer-
gence of public-debt crises owed to that stag-
flationary era’s adverse shocks to growth and 
unemployment, inducing deficits which were 
followed by tight monetary-policy that spiked 
interest rates on those newly accumulating 
debts.

The inadequacies of the NHR model 
and estimand are highlighted further and 
amplified in the time-series cross-section 
(TSCS) and spatially/spatiotemporally 
dynamic contexts (see Troeger, Chapter 33, 
this Handbook; Cook et  al., Chapter 39, 
this Handbook; relatedly, for dyadic-data 
and network analyses, see Neumayer and 
Plümper, Chapter 38, this Handbook; Victor 
and Khwaja, Chapter 45, this Handbook; 
Schoeneman and Desmarais, Chapter 46, 

this Handbook). A very low-dimensional 
example, an n = 3-units cross-section with 
simultaneous first-order spatial-autoregressive 
interdependence (i.e., outcome contagion), 
suffices to demonstrate:
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Figure 31.3 Substantive dynamic-effect estimates of real interest-rate net of growth 
impacts on public debt

Source: Franzese (2002).

BK-SAGE-CURINI_FRANZESE-190202-V2_Chp31.indd   588 6/19/20   9:39 PM



EconomEtric modEling 589

Again, the NHR estimand (1) and its empiri-
cal estimate (2), which a well designed and 
conducted experiment would produce, cor-
respond to b, which we can call the ‘pre-
dynamic impulse’ from x to y, and not ‘the 
effect of x on y’, understood as how Y 
responds to movements in X, which is instead 
given by line (iv) of (8). Once again, the 
NHR estimand (1) and estimate (2) are in the 
wrong dimensionality, and the question is ill 
posed. Neither treatment nor effect are sca-
lars: both are vectors/matrices and the effect 
statement is underspecified. In spatial/spati-
otemporal contexts, the fully specified state-
ment is ‘the effect of movements in x, where 
(and when)? on movements in y, where (and 
when)?’. In fact, in this case, the impulse is 
not even observable: the response in unit 1 
– e.g., to some dx in, say, unit 1 itself – 
begins with the impulse, b × dx, but that 
instantaneously induces proportionate move-
ments ρw1j in units 2 and 3, which instanta-
neously induces proportionately smaller30 
movements (ρw1j)2 in units 1 and 3, and so 
on, reverberating through the units across 
space analogously to the temporal-dynamics 
case, but omnidirectionally and all simulta-
neously. Thus, the pre-dynamic impulse, b, 
never manifests observably at all, only its 
steady-state implications in (iii) and (iv) 
show empirically. Figure 31.4 maps the esti-
mated responses in a spatiotemporal econo-
metric model from Franzese and Hays 
(2006), regarding active labor-market (ALM) 
spending to a hypothetical 1€ (per unem-
ployed worker) spending increase in 
Germany. The left panel shows the estimated 
response across all EU countries31 in the time 
period contemporaneous to the shock (inclu-
sive of that period’s spatial feedback but 
exclusive of any time dynamics); the right 
panel shows the LRSS accumulated response, 
inclusive of all spatiotemporal feedback. The 
econometric model uncovered free-riding 
behavior, i.e., negative spatial interdepend-
ence; the characteristic oscillating pattern of 
negative autoregression is apparent in the 
right panel.

The case of spatial interdependence also 
underscores the radically limited scope for 
nonparametric causal inference, even with 
regard only to testing, in a socio-politico-
economic reality characterized by omnidi-
rectional causality (fundamental challenge 
number four). Notice from (8) that the 
effects of X on Y, i.e., dy/dx in line (iv), 
impinge in general on all units, dy, and vary 
– the vector of effects differs – depending 
on (a) which units are treated, i.e., the spe-
cific allocation of treatments across units, 
dx, and (b) on W, the relative connectivity 
among units, i.e., the specific set of {wij} 
connecting units according to which the 
contagion diffuses. Thus, proceeding non-
parametrically, each possible allocation of 
1s and 0s across the n units – there are 2n 
such permutations – corresponds to a differ-
ent treatment; the effect of each such vector 
of treatments depends further on W, which 
in general has n(n−1) potentially unique 
elements (yielding 2n(n−1) possible W if con-
nectivity is binary and ∞ if continuous). 
Thus, there are minimally 2n × 2n(n−1)»n 
treatment effects to estimate nonpara-
metrically: obviously impossible without 
considerable structure (which can be pro-
ductively imposed in the form of Bayesian 
hyperpriors in this context, see, e.g., Best 
et  al., 2005). Because at ρ = 0 the alloca-
tion of treatments and contents of W are 
irrelevant, a sharp null hypothesis may be 
formed to test whether spatial interdepend-
ence is present, but that is the extent of the 
possible nonparametrically: ρ and dy/dx are 
inestimable without considerable structure. 
Indeed, notice that spatial association, i.e., 
correlation, leaving aside causality entirely, 
cannot even be measured until the elements 
of W are specified and thereby proximity 
defined.

Simultaneous spatial interdependence is 
also illustrative as a special case of causal- 
systems simultaneity, with line (i) of (8)  
giving a system of equations with three 
endogenous variables: y1,y2,y3. Thus the dis-
cussion from the spatial-interdependence 
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Figure 31.4 Maps depicting the initial (left panel) and LRSS (right panel) spatial ALM-
spending responses to +1 shock in Germany

Source: Franzese and Hays (2006).

case applies also, mutatis mutandis, to causal 
systems of simultaneous equations more 
generally. Socio-politico-economic contexts 
with cross-unit contagion, yi⇔yj, or other 
simultaneous causality, yi⇔xi, imply pro-
cesses like:
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A well designed experiment, or a valid dis-
continuity or instrumentation design, will 
identify and estimate α1, which is indeed 
sufficient to test whether X affects Y, since 

that effect, 
dy

dx 1
1

1 1

α
α β

=
−

, is zero if α1 = 0, 

but it is clearly insufficient to estimate the 
effect, i.e., the causal response. This is 
because experiments work to identify the 
existence of causal effects precisely by pre-
venting estimation of causal responses in the 
actual simultaneous system of interest. 
Specifically, causal-inference designs aim to 
block, internally, the feedback from y to x 
that actually occurs externally in the infer-
ence population. In the contexts of actual 
interest and intended application, if one 
‘moved’ x, this would create impulse α1 to y, 
but that in turn would spur b1 further move-
ment in x, which would move y some more, 
which in turn would move x, and so on.32 
Thus, ironically, experiments and non- 
parametric causal-inference designs estimate 

causal parameters, like 
y

x 1α=∂

∂
, not causal 

effects, like 
dy

dx 1
1

1 1

α
α β

=
−

.
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In other words, notwithstanding that the 
NHR labels the estimand (1) and its empiri-
cal estimate (2) ‘the causal effect’, the  
aim of studies deploying them is actually 
causal inference, i.e., to establish whether 
a particular causal relation exists and not 
causal-effect estimation. The latter is to 
estimate how (not whether) outcomes of 
interest respond to inputs of interest, i.e., to 

estimate 
dy
dx , where those are expressly total 

rather than partial derivatives or differences, 
and the response, dy, and/or the treatment, 
dx, may actually be vectors or matrices of 
counterfactuals. 

As already discussed, causal inference 
naturally emphasizes internal validity, 
whereas description and prediction instead 
stress external validity. Causal-response esti-
mation, for its part, is similar to prediction in 
that its gold-standard ideal is an out-of-sam-
ple performance of the response estimate, 
emphasizing external validity; but, it is also 
similar to causal inference in that the exter-
nal responses it aims to estimate are causal 
effects, not merely to predict E(yit|xjs), but to 
predict how yit would respond (conjunctive 
tense) causally to hypothetical movements 
in xjs: predictive (counterfactual) causal-
response estimation. Internal causal validity 
is also crucial.

Given that the NHR model is inadequate, 
for causal-response-estimation purposes, 
|to meet the challenge of ubiquitous sim-
ultaneity, progress under omnicausality  
(‘just about everything causes just about 
everything else’) will rely on substantively/
theoretically informed econometric mod-
eling, as it did also in fruitfully addressing 
effect heterogeneity and context condi-
tionality, and spatial, temporal, and spati-
otemporal dynamics.33 To begin, consider  
the general case of (linear) systems sim-
ultaneity, noticing the similarity to the  
spatial simultaneity in (8) and the bivariate 
case in (9):
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Thus, the translation from the causal-parameter  
estimates yielded by a well-designed experi-
ment or single-equation causal-inference 
strategy like discontinuity or instrumental-
variable designs to causal-response estimates 
involves a systems steady-state multiplier, 
(I−G*)−1, analogous to the temporal multiplier 
in (7), spatial multiplier in (8), and bivariate-
system multiplier in (9). Thus, causal-effect 
estimation requires systems estimation 
(Jackson, 2008, is an excellent exposition35), 
or at least somehow an estimation of all the 
parameters of the properly modeled system 
relevant to some desired out-of-sample 
causal-response estimation. Unfortunately, 
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political science and international relations 
rarely focus attention on system estimation, 
despite strategic interdependence being defi-
nitionally core to both. The emphasis on 
theory testing and its consequent idealization 
of nonparametric causal inference likely 
bears some blame for this, notwithstanding 
that systems interdependence greatly compli-
cates even hypothesis testing and makes 
econometric modeling inescapably essential 
to causal-effect estimation.36

One econometric-modeling approach that 
does focus squarely on dynamic systems 
of endogenous equations is the Bayesian 

Structural Vector Autoregression (BSVAR) 
framework. In one illustrative application, 
Brandt et  al. (2008) uncover the reciprocity 
and other reactions between the Israeli govern-
ment and military, Palestinian groups, and US 
official diplomatic and foreign-policy actions 
(Figure 31.5).37 The discussions above prove 
that these rich substantive interrelations could 
not be estimated in a nonparametric causal-
inference approach and that, in fact, even test-
ing for the existence of causal effects related 
to the alternative reciprocity, accountability, 
and credibility theories of these actors’ strate-
gically interdependent behavior would likely 

Figure 31.5 BSVAR Estimated responses from a system of Israel↔ Palestinian, US→Israel, 
US→Palestinian actions

Source: Brandt et al. (2008).
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fail using such a framework due to ubiquitous 
‘heterogeneity and spillovers’ (see Rubin 
(1990: 282) again).

ConCLUSIon

Empirical analyses in political science and 
international relations have at least one of 
four different goals: description, prediction, 
causal inference, and causal estimation.38 
The different aims carry with them different 
sets of weights on desiderata like internal and 
external validity, robustness, flexibility, effi-
ciency, and richness. For causal-inference 
theory-testing purposes, the aim is to estab-
lish empirically the existence of a causal 
relationship as credibly as possible. For these 
purposes, the (a) randomized (b) controlled 
trial, being the strongest-possible guard 
against spuriousness and reverse causality 
and with the greatest possible nonparametric 
purity against ‘model dependence’, repre-
sents the gold-standard ideal. However, these 
causal internal-validity strengths generally 
come at some costs in terms of representa-
tiveness of experimental sample, treatment, 
or context, thereby limiting the utility of the 
causal inferences in practical applications, 
which necessarily require extra-sample infer-
ence and therefore external validity, which 
are not strengths of laboratory experimenta-
tion. Accordingly, social-science experimen-
tation moves into the field and the survey to 
enhance representativeness, and from there 
into econometric-modeling techniques like 
matching, difference-in-difference, disconti-
nuity, and instrumentation designs in obser-
vational data, which tend to maximize 
representativeness of the sample to the popu-
lation and context of intended inference. 
From this perspective, the remaining threats 
to valid causal inference are effect heteroge-
neity and spillovers, violations of SUTVA 
that would bias causal hypothesis tests. In 
fact, the challenges of multicausality – effect 
heterogeneity and context-conditionality, 

temporal, spatial, spatiotemporal dynamics 
and interdependence (spillovers), and omni-
causality (spillovers) – are ubiquitous, indeed 
virtually definitionally central, in social-sci-
ence and in socio-politico-economic reality. 
From a causal-inference perspective, econo-
metric modeling is aimed to address these 
challenges to valid designed-based testing of 
positive social-science theory. Beyond causal 
inference, however, this chapter has noted 
that, in the first instance, causality is irrele-
vant for measurement and prediction empiri-
cal purposes. The gold-standard ideal for 
measurement is neither internal nor external 
validity, but rather usefulness,39 toward pro-
viding summary descriptions and conveying 
information and understanding thereof. For 
prediction, the ideal is out-of-sample perfor-
mance, i.e., prediction or forecast error. 
Whether the prediction input-output algo-
rithm involves causal relationships or simply 
associations is irrelevant; external rather than 
internal validity is crucial. Econometric 
modeling can play central roles in both pre-
diction and measurement, but its essential 
and most important role lies in causal-
response estimation. As this chapter has 
demonstrated, valid causal-inference studies 
can at best provide estimates of causal 
parameters, not causal effects. Given the 
complex causal heterogeneity and context 
conditionality that characterizes socio-polit-
ico-economic reality, in fact, even causal-
parameter estimation is impossible without 
considerable ‘structure’, ideally via theoreti-
cally/substantively informed econometric-
model specification. The limitations of 
(so-called) nonparametric causal inference, 
even solely for testing theories, and the 
necessity and virtues of econometric mode-
ling become even more pronounced given the 
temporal, spatial, spatiotemporal, and sys-
tems causal interdependence of socio- 
politico-economics. Careful theoretically/
substantively informed specification of 
econometric models is the essential heart of 
empirical analysis for purposes of estimating 
causal effects, and the aim of and gold 

BK-SAGE-CURINI_FRANZESE-190202-V2_Chp31.indd   593 6/19/20   9:39 PM



The SAGe hAndbook of ReSeARch MeThodS in PoliTicAl Science And iR594

standard for empirical modeling is to provide 
useful empirical simplifications of the actual, 
empirical causal processes of interest.40 From 
this perspective, far from an unavoidable 
detraction, estimation of an econometric 
model reflecting the theory and substance of 
the context is the very goal of the causal-
estimation exercise.

Notes

  1  Positive here opposes normative, positive theory 
being about how the world works in actuality as 
opposed to how the world ought to work norma-
tively or would work in some fictional ideal.

  2  One can also distinguish two types of empirical 
questions: factual questions (‘what happened 
or will happen?’) and causal questions (‘why did 
or will something happen?’). The former have 
empirically extant, finite populations and deter-
ministically true answers – ‘what percentage of 
the citizens of certain country approve of the 
government’s performance?’ – and the latter 
have hypothetical populations and uncertainly 
estimated answers (of theoretical becauses): 
‘what characteristics of citizens, governments, 
and performance affect citizens’ approval of 
 governments?’.

  3  To offer a definition, (the purpose and evalua-
tive standard of) an econometric model, analo-
gously to a theoretical model in Clarke and Primo 
(2012), is (to be) a useful empirical simplification.

  4  The variables x and y are empirical measures, 
here assumed to be wholly unproblematic, of 
the theoretical concepts, X and Y; dx⇒dy is the 
empirical implication derived from the theoretical 
argument, X⇒Y.

  5  Notice the word used in this testing context is 
inference, and not estimation; this is because the 
central aim is to infer the existence of a causal 
effect, i.e., to establish that dY/dX≠0, rather than 
to estimate it. The empirical estimand from a 
causal-inference design is most usually but not 
necessarily, a difference in means, E(y|x = 1)-E(y|x 
= 0) (see Bowers and Leavitt, Chapter 41, this 
Handbook), which will only in very specific (and 
likely exceedingly rare in social science) conditions 
equate to an empirical estimate of the true causal 
effect of x on y, understood as dy/dx, i.e., how y 
responds to a causal impetus from dx.

  6  The POF, also called the Neyman–Rubin or  
Holland–Neyman–Rubin causal model, is indeed 
a model: the causal effects described in (1) are 

discrete, static, additive, and separable. Indeed, 
precisely these characteristics of the POF/(H)NR 
causal model simultaneously make it so power-
ful for causal inference (testing theorized causal-
effect existence) and yet so limited for causal 
estimation (estimating empirical causal effects or 
responses). See also note 17 and the discussion 
throughout the rest of this chapter.

  7  Other counterfactually defined estimates have 
been proposed for causal inference/testing (in 
political methodology, e.g., see Bowers, 2013), 
but by far the most common practice is to define 
the causal quantity of interest as in (2).

  8  Double-lined arrows indicate causal relationships 
and single-lined arrows empirical ones, i.e., asso-
ciations.

  9  Some scholars go so far as to suggest that if x 
cannot be manipulated, race for example, then 
it cannot be causal, but this confuses the empiri-
cally implementable with the logically possible. 
Causality, being a theoretical and not empirical 
concept, involves only the latter; the former is 
irrelevant (see, e.g., Woodward, 2016 for a fuller 
discussion).

 10  If empirical outcomes, y, are less than perfectly 
fully determined by the experimentally con-
trolled x, such that there remains some residual 
component in dy, even if orthogonally random 
but especially if possibly systematically caused or 
related to alternative causes Z, then a large sam-
ple, successful randomization, and some reliance 
upon some form of central limit theorem are also 
essential to proper interpretation of test statistics 
from a RCT.

 11  Some scholars contend oppositely, that internal 
validity has lexical priority over external validity, 
that internal is more important and without it 
external has no value. Imbens (2010), e.g., sug-
gests that instances where one could conduct 
the appropriate experiments and would choose 
observational data instead are inconceivable. To 
debate whether internal or external validity is 
more important or, especially, which is lexically 
prior is obviously inane: of course, one wants 
both, the aim being to infer (a) validly and (b) 
from the observed and already known to new 
contexts. If we must debate priority though, 
clearly the more defensible position is the reverse: 
external validity without internal validity (i.e., non-
causal empirical associations within sample that 
obtain also beyond sample) is still useful, e.g., 
for prediction, whereas an internally  validated 
causal relationship with no external validity has 
only descriptive value within the already observed 
and known sample and zero use in any context 
beyond the study, i.e., for inference.
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 12  The representativeness of an experimental 
sample to the intended population of inference 
refers to the equivalence of the subjects in the 
 experimental sample and the external units to 
which the results of the study are to be inferred: 
college sophomores in a certain class compared 
to voters in actual democracies, for example. 
Representativeness of treatment analogously 
refers to the equivalence of the experimentally 
manipulated treatment to the concept theoreti-
cally understood as causal in the population of 
inferential interest, e.g., mention of party affili-
ation in a paragraph that trial subjects are given 
to read compared to the actual partisanship of 
actual bill sponsors in actual political contexts. 
Representativeness of context refers to the equiv-
alence of the situation of the experimental sub-
jects and treatments relative to each other and 
relative to the relevant socio-politico-economic 
reality outside the experiment compared with 
the situations in these regards of the intended 
inference population: randomized application of 
a campaign strategy that subjects read about or 
experience in a media lab in an experiment’s con-
trived campaign compared to campaign strate-
gies (by definition) strategically (which means 
interdependently) chosen by competing parties 
in actual campaigns where publics are going 
about their lives, not engaging in a social-science 
experiment.

 13  The RCT obtains its strong causal-inference prop-
erties precisely by designing an unnatural con-
text: feedback, which exists in nature, is severed 
by experimental control, and experimentally ran-
domly independently assigned treatments are in 
nature likely non-randomly and often even stra-
tegically assigned. See also note 12.

 14  Conjoint experiments offer some advances in 
this specific regard (see, e.g., Hainmueller et al., 
2014).

 15  The i,j,s,t subscripts are intended to signify that yit 
may be a function of x, b, ε in any units i or j and 
periods s or t.

 16  To be as fully general as possible, xjs may include 
yjs and/or temporal and/or spatial lags of xit as 
well.

 17  To elaborate these points more precisely, the 
POF estimand can be conceived as nonparamet-
ric estimate of some average treatment ‘effect’ 
(ATE), regardless of what functions, f, may have 
generated that average difference in means, 
and this may be adequate for purposes of test-
ing whether this ATE is non-zero (the orthogo-
nality of unobserved random components still 
seems necessary). However, to interpret this ATE 
as an effect, i.e., as an estimate of how y would 

respond to some exogenous dx outside of the 
observed sample, is to treat it as a model.

 18  In fact, the similarity of matching and regression 
control extends further: regression controls z 
to the degree its effects manifest as modeled; 
matching controls any manifestation of effects 
of z provided, or to the degree, the appropriate 
form of z is included in the matching balancing.

 19  Jackson (2008) offers a more complete intro-
duction to instrumental-variable and systems  
estimation.

 20  Time here refers to arguments that ‘it happened 
yesterday, therefore it’s exogenous’, which is not 
guaranteed in socio-politico-economic applica-
tions, where human foresight can give causal 
weight to current expectations of futures. More-
over, exclusive reliance on temporal precedence 
for identification is highly susceptible to specifica-
tion error.

 21  Nonparametric here references methods that 
yield large numbers of discrete, unconnected val-
ues as distinct from methods explicitly intended 
to produce (likely graphical) descriptions that are 
not a priori structured but are smoothed descrip-
tions (see Pagan and Ullah, 1999, for far fuller 
coverage of nonparametric econometrics).

 22  Again, see Pagan and Ullah (1999) for a much 
fuller view of nonparametric analyses; here, we 
intend nonparametric causal inference or causal 
estimation specifically, which necessarily entail 
distinct causal ‘effect’ estimates for each and 
every context, there being allowed no functional 
smoothing connections between ‘effects’ in dif-
ferent conditions. A paradigm labeled evidence-
based medicine, which carries considerable 
weight in the biomedical sciences, is illustrative 
here. The notion is that, if a well and credibly 
designed RCT yields reliable results that treat-
ments of certain medicines in certain doses to 
patients with certain conditions, characteristics, 
and histories produces some estimated net- 
benefits, then, regardless of whether that RCT-
estimated effect has some theoretical explana-
tion, the treatment is to be applied. This is a 
purely predictive approach but one that attempts 
to retain the nonparametric foundations of the 
RCT. As such, the model on which it relies for 
external validity, i.e., the predictive basis on 
which to prescribe the treatment, is like that 
of matching: matching treatments applied to 
patients with matching conditions will have the 
same effect. No basis is provided for applying 
only similar treatments to only similar patients; 
that would require more of a model.

 23  Chapter 2 of the classic text Statistics (Freedman 
et  al., 2007 [1978]) extols the two great vir-
tues of experimentation. Even in the examples  
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mooted there, though, some doubts of universal 
unmitigated virtue may be raised. For instance, 
when double-blind randomization is assumed 
vindicated because surgeons who know the 
health of their patients and the nature and 
severity of their ills yielded significantly benefi-
cial results of an experimental surgery whereas 
blinded ones insignificantly so, this could, 
instead of suggesting pernicious bias, suggest 
effect heterogeneity, about which the non-
blinded surgeons in the study know, as would 
– crucially – surgeons in actual practice. Chapter 
3 then warns severely of the dangers of obser-
vational studies, lacking those two great experi-
mental virtues. An interesting pattern develops, 
however: each example observational study’s 
conclusion is overturned later by …another 
observational study, plus arguments that  
the latter was better designed…because  
causality is ultimately a theoretical, not an 
empirical, matter. Finally, the examples have 
also shifted from primarily clinical-medical in 
Chapter 2 to primarily epidemiological in Chap-
ter 3, and epidemiology, like ‘[macro]econom-
ics [and most political science and international 
relations] is not an experimental science’ (Sims, 
2010).

 24  In practice, treatments are also nominal,  
x = (0,1). Although claim is often made to 
straightforward extensions for continuous treat-
ments, in fact the extension is generally com-
plicated and incompatible with nonparametric 
causal inference, as explained in the surrounding 
text (see also note 22).

 25  All interactions are symmetric in this way: how 
z moderates the effect of x on y, d(dy/dx)/dz, is 
identical to how x moderates the effect of z on 
y, d(dy/dz)/dx, because interactive effects, i.e., 
effects on effects, are cross derivatives, and the 
order of differentiation in a cross derivative is 
irrelevant.

 26  In ‘The multiple effects of multiple policymakers’; 
Franzese (2010) shows how one can leverage the 
distinct aspects of multiple policymakers – effec-
tive (common pool) vs raw numbers (veto actors) 
of parties, variance (common pool) vs range (veto 
actors) polarization of parties, and the ideological 
distribution of parties (bargaining compromise) –  
along with the different ways these different 
aspects of multiparty government affect policy 
outcomes (common pool: proportionate over/
under-action; veto actor: adjustment-rate retar-
dation; bargaining-compromise: convex combi-
nations) to separately model, and so to separately 
identify and estimate, the veto-actor, common-
pool, and bargaining-compromise effects of mul-
tiple policymakers.

 27  So-called ‘dynamic’ nonparametric-causal-effect 
estimates are either estimates of b from the 
static (2) in moving-windows of data, or esti-
mates using static (2) of the period effects in (7) 
(iii), without the model, i.e., not estimates of the 
model and its parameters ρ and b separately, 
without which they are incapable of generating 
dynamic response-path or LRSS estimates.

 28  Indeed, we could expand here to note that all 
data, all outcomes of interest, occur in some 
(space and) time, and so these issues actually 
arise universally, ubiquitously in all applied empir-
ical analysis, experimental or observational.

 29  The elements wij of the spatial–weights matrix, 
W, give the relative connectivity from j to i, and 
ρ the strength of interdependence (contagion) 
operating in that predetermined pattern.

 30  Assuming ρW is the matrix equivalent of ‘less 
than 1’, such that |I−ρW|≠0 so the inverse spatial-
multiplier exists. Note that the spatial multiplier 
derives from an infinite sum of the reverberat-
ing spatial feedback analogously to the temporal 
case (of forward-propagating-only ‘feedback’): 
(I−ρW)−1 = I+ρW+ρ2W2+ρ3W3+…+ρ∞W∞.

 31  Franzese and Hays (2006) use a modified  
border-contiguity W to define proximity in this 
application.

 32  These feedback reverberations are dampening 
provided α1b1<1, so the system is not explosive 
(see also note 30).

 33  Semi- and flexible parametric designs offer a 
promising way forward for the (likely ubiquitous) 
combination of causal heterogeneity and causal 
simultaneity (see, e.g., Marra and Radice, 2011).

 34  Γ in line (ii) has 1 on its diagonal; Γ* in line (iii) 
has 0 on its diagonal and reverses sign of all off-
diagonal elements from Γ.

 35  Also in this context, see methods specifically 
designed for complex or high-dimensional sys-
tems of endogenous dynamic equations, such as 
structural vector-autoregression (e.g., Kilian and 
Lütkepohl, 2017, for textbook exposition, and 
Pickup, Chapter 34 in this Handbook).

 36  In this regard, empirical-methodological practices 
in physics could serve as better exemplar for social 
science than biomedicine (see note 23). In phys-
ics, experimental statistics often yield not only 
tests of causal theoretical hypotheses but also 
estimates of the parameters in well-specified the-
oretical models, and it is the empirical-estimate-
calibrated model rather than the experiment’s 
test statistics that are used for causal-response 
estimates and prediction.

 37  The model assumes the United States influences 
but is not influenced by the other two actors.

 38  Furthermore, their empirical questions can be fac-
tual – ‘who voted for Hitler?’ – and so pertain to 
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defined, finite, and extant populations or theoret-
ical – ‘what characteristics of voters and contexts 
contribute to right-wing populist support?’ – and 
so have populations of intended inference that 
are hypothetical and unlimited.

 39  The analogy to Clarke and Primo’s (2012) declara-
tion of usefulness as the aim of theoretical mod-
eling is intentional and perfect.

 40  Again, the analogy to Clarke and Primo’s (2012) 
declaration that theoretical models are to be use-
ful simplifications is intentional and perfect.
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