STABLE VECTORS IN THE MOY-PRASAD FILTRATION

Jessica Fintzen (Harvard University)

LARGE GOAL / MOTIVATION
Understand and classify all complex representations of p-adic groups, i.e., Local Langlands correspondence.

WHAT ARE P-ADIC NUMBERS?
In number theory the study of congruences plays an important role, and hence we want to define a norm on the integers so that two numbers \(n \) and \(m \) are close iff \(n \equiv m \mod p^k \) for a large \(N \). This is achieved by \(|p^k \cdot r| = p^{-k} \) with \(r \) and \(p \) coprime.

The p-adic integers \(\mathbb{Z}_p \) are the completion of the integers by this norm \(| \cdot | \), i.e., a p-adic integer is of the form \(a_0 + a_1 \cdot p + a_2 \cdot p^2 + a_3 \cdot p^3 + \ldots \) for some integers \(a_i \).

The p-adic numbers \(\mathbb{Q}_p \) are the fraction field of the p-adic integers. They are a completion of the rational numbers \(\mathbb{Q} \).

We call a field \(\mathbb{F} \) that is a finite extension of the p-adic \(\mathbb{Q}_p \) a p-adic field.

WHAT ARE P-ADIC GROUPS?
P-adic groups, or more precisely, reductive groups over p-adic fields, are certain subgroups of the group of invertible \(n \times n \) matrices whose entries are elements of a p-adic field \(\mathbb{F} \), e.g., \(\text{GL}_n(\mathbb{F}), \text{SL}_n(\mathbb{F}), \text{SO}_n(\mathbb{F}), \text{Sp}_{2n}(\mathbb{F}). \) On this poster, we will restrict our attention to the simple factors of these groups, and we make the assumption that our group is split - a technical assumption that is always satisfied for reductive groups over algebraically closed fields. These split simple groups are classified up to a finite center in terms of a combinatorial object, the Dynkin diagram.

Moy-Prasad filtration

The Bruhat-Tits building \(\mathcal{B}(G,F) \)
- is a building associated to a given p-adic group \(G \) by Bruhat and Tits
- for \(\text{SL}_2(\mathbb{Q}_p) \) it is an infinite tree in which each vertex has \(p+1 \) neighbors, see Figure 1
- for every point \(x \) in the building, Bruhat and Tits define a compact subgroup \(G_x \) in \(G \), called the parahoric subgroup, which has finite index in the stabilizer \(\text{Stab}_x \).

\[\mathcal{B}(G,F) \]

Figure 1: The Bruhat-Tits building of \(\text{SL}_2(\mathbb{Q}_p) \); source: [Rab05].

Stable vectors and epipelagic representations

Supercuspidal representations
- are the building blocks for all representation of p-adic groups
- very mysterious, only few constructions known, see [Adl98] (special case) and [Yu01] (for large \(p \))

Epipelagic representations are supercuspidal representations of smallest positive depth.

Main theorem

Theorem 1 (in words). The existence of stable vectors in the Moy-Prasad filtration quotient does not depend on the prime \(p \).

Theorem 1 (details for experts). Let \(x \in \mathcal{B}(G,F) \) be a rational point of order \(m \). Then there exist stable vectors in \(G_x \) under the action of \(G_0/G_0 \) if and only if there exists an elliptic, \(\mathbb{Z} \)-regular element of order \(m \) in the Weyl group of \(G \) and \(x \) is conjugate to \(x_0 \) under the affine Weyl group for some hyperspecial point \(x_0 \). Here \(p \) is half of the sum of the positive co-roots.

This theorem was known for large primes \(p \) thanks to [RY14].

Applications
- We obtain supercuspidal (epipelagic) representations uniformly for all primes \(p \).
- As a corollary of the proof we obtain a different description of the Moy-Prasad filtration quotient as a representation of the reductive quotient for all primes \(p \) without restriction.
- The proof involves a construction of the filtration quotient representations over the integers. As a consequence we can compare the occurring representations of the reductive quotients at different primes.

References