Subspace Differential Privacy

Jie Gao, Ruobin Gong, Fang-Yi Yu
Data collection and release

• Examples
 – 2020 Census data by U.S. Census Bureau
 – Personal data in iOS or Chrome
 – Survey

• utility and privacy
Utility of data release

• Error magnitude
 – Mean-squared loss, zero-one loss

• Transparency and interpretability
 – Statistical inference

• External invariant constraint
 – For census data
 • population totals
 • counts of total housing units
 • group quarter and facilities
Utility and differential privacy
Utility and differential privacy

- Utility
 - Interpretability
 - Invariants
 - e.g., linearity
- Induced subspace
- Differential privacy
 - e.g., accuracy
 - e.g., simplicity
Outline

• Setting and challenges
 – Linear invariants
 – Differential privacy and induced subspace differential privacy (ISDP)
• Two approaches for DP to ISDP
 – Projection
 – Extension
• Discussion
 – Optimality
 – Statistical Considerations and Implementation
Outline

• Setting and challenges
 – Linear invariants
 – Differential privacy and induced subspace differential privacy (ISDP)

• Two approaches for DP to ISDP
 – Projection
 – Extension

• Discussion
 – Optimality
 – Statistical Considerations and Implementation
Invariants and differential privacy

- Setting
 - histogram \(x \in \mathbb{N}^x \),
 - a counting query \(A: \mathbb{N}^x \rightarrow \mathbb{N}^d \),
 - random mechanism \(M: \mathbb{N}^x \rightarrow \mathbb{N}^d \)

- \(\epsilon \)-DP: for all adjacent histograms \(x \) and \(x' \) and outcome \(y \)
 \[
 \Pr[M(x) = y] \leq e^\epsilon \Pr[M(x') = y]
 \]

- Linear invariant with a linear function \(C: \mathbb{N}^d \rightarrow \mathbb{N}^{dc} \)
 \[
 CM(x) = CA(x), \forall x \in \mathbb{N}^x
 \]
DP and invariants are incompatible.

- Let the set of database be \mathbb{N}^4, A be the histogram, and C be the sum of the first two coordinate.
- Two adjacent databases $x = (1,2,3,4)$ and $x' = (2,2,3,4)$.
- If M is invariant with C, then
 \[\Pr[C M(x) = 3] = 1 \] but \[\Pr[C M(x') = 3] = 0 \]

\[M \text{ cannot be differentially private} \]
``Post-processing'' on DP for invariants

• A common method to impose invariants is via “post-processing” using optimization/distance minimization, e.g. Census TopDown (Abowd et al., 2019).

• Issues
 – Not differentially private anymore
 – Systematic bias and obscurity
Systematic bias of "post-processing"
Induced subspace differential privacy

Relax differential privacy for linear invariant

• Given \(M : \mathbb{N}^x \rightarrow \mathbb{N}^d \) and a linear function \(C : \mathbb{N}^d \rightarrow \mathbb{N}^{dc} \)

\[
M(x) = M_{\parallel}(x) + M_{\perp}(x)
\]

where \(M_{\parallel}(x) \in \text{row}(C) \) and \(M_{\perp}(x) \in \text{null}(C) = N \)

– Linear invariant \(C \) implies \(CM_{\parallel}(x) = CM(x) = CA(x) \) is fixed.
– Subspace DP asks \(M_{\perp}(x) = \Pi_N M(x) \) is differentially private
Induced subspace differential privacy

Given $\epsilon, \delta \geq 0$, a query $A : \mathcal{X}^* \rightarrow \mathbb{R}^n$ and a linear equality invariant $C : \mathbb{R}^n \rightarrow \mathbb{R}^{nc}$ with null space $\mathcal{N} := \{v \in \mathbb{R}^n : Cv = 0\}$, a mechanism $M : \mathcal{X}^* \rightarrow \mathbb{R}^n$ is (ϵ, δ)-induced subspace differentially private for query A and an invariant C if

1. M is \mathcal{N}-subspace (ϵ, δ)-differentially private, i.e.

$$\Pr[\prod_{\mathcal{N}} M(x) \in S] \leq e^\epsilon \Pr[\prod_{\mathcal{N}} M(x') \in S] + \delta$$

for all $x \sim x'$ and $S \subseteq \mathcal{V}$, and

2. M satisfies the linear equality invariant C, i.e.

$$Pr[CM(x) = CA(x)] = 1.$$
Outline

• Setting and challenges
 – Linear invariants
 – Differential privacy and subspace differential privacy

• Two approaches for DP to ISDP
 – Projection
 – Extension

• Discussion
 – Optimality
 – Statistical Considerations and Implementation
Two approaches for DP to ISDP

Projection framework
- Converting an existing DP mechanism M to ISDP
 $\mathcal{M}(x) := A(x) + \Pi_N(M(x) - A(x))$
- Project the noise into null space
- Projected Gaussian $A(x) + \Pi_N e$
 the variance of e is of order $\Delta_2(A)$

Extension framework
- Choose a DP mechanism \hat{M} for query
 $\Pi_N A(x)$
 $\mathcal{M}(x) := \Pi_R A(x) + \hat{M}(x)$
- Augmenting a smaller private query invariant-compatibly
- Extended Gaussian $A(x) + Q_N e$
 - Q_N is a rotation matrix of N
 - the variance of e is of order $\Delta_2(Q_N^T A)$
Outline

• Setting and challenges
 – Linear invariants
 – Differential privacy and subspace differential privacy

• Two approaches for DP to ISDP
 – Projection
 – Extension

• Discussion
 – Optimality
 – Statistical Considerations and Implementation
Discussion

• Optimality
 – optimal DP for query $\Pi_N A = \text{optimal ISDP for } A$ and invariant C
 – Optimal ISDP from the correlated Gaussian mechanism (Nikolov et al 13)

• Unbiasedness
 – Projected and extended Gaussian/Laplace mechanism are unbiased

• Transparency and statistical intelligibility
Future directions

• General invariants
 – Inequality
 – Discrete output space

• Trade off between utility and privacy