Think Globally, Act Locally: On the Optimal Seeding for Nonsubmodular Influence Maximization

Grant Schoenebeck, Biaoshuai Tao, Fang-Yi Yu
Contagions, Diffusion, Cascade...

- Ideas, beliefs, behaviors, and technology adoption spread through networks
- Why do we need to study this phenomena?
 - Better Understanding
 - Promoting good behaviors/beliefs
 - Stopping bad behavior
Influence Maximization

Find the best K nodes to maximize adoptions [KKT03]

• Input
 – Social network G
 – Model of contagions
 – Total number of seeds K, budget
Influence Maximization

Find the best K nodes to maximize adoptions [KKT03]

- **Input**
 - Social network G
 - Model of contagions
 - Total number of seeds K, budget

- **Output**
 - Seed set I, s.t. $|I| = K$
Find the best K nodes to maximize adoptions

- **Input**
 - Stochastic hierarchical blockmodel (SHBM)
 - r-complex contagion
 - Total number of seeds K, budget

- **Output**
 - Seed set I, s.t. $|I| = K$
Motivation

Can we promote good behaviors/beliefs on a social network if we only know the community structure of the network?
Outline

• Stochastic Hierarchical Blockmodel
• r-complex contagions
• Main result
Outline

• Stochastic Hierarchical Blockmodel
• r-complex contagions
• Main result
Possible information about Networks

• Full information
Possible information about Networks

• Full information
Possible information about Networks

• Full information
• Query
 – Edge query, node query, ...
Possible information about Networks

- Full information
- Query
 - Edge query, node query, ...
Possible information about Networks

• Full information
• Query
 – Edge query, node query, ...
• Coarser information
 – Community structure,
 – Centrality,
 – Betweenness
Community Structure

- Social networks often can be easily divided into communities densely connected internally.
Hierarchical Community Structure

- Social networks often can be easily divided into communities densely connected internally.
- A community can be easily divided into many sub-communities.
Hierarchical Community Structure

USA

- East coast
 - Boston
 - NYC
- West coast
 - Seattle
 - San Francisco
- Great Lake
 - Ann Arbor

West coast

- Seattle
- San Francisco

East coast

- Boston
- NYC

Great Lake

- Ann Arbor
Stochastic Hierarchical Blockmodel \((V_T, E_T, w, \nu)\)

Connectivity matrix \(w\)

- \(w(R) = 0.1\)
- \(w(F) = 0.5\)
- \(w(G) = 0.6\)
- \(w(H) = 0.4\)

Relative population \(\nu\)

- \(\nu(A) = 30\%\)
- \(\nu(B) = 0.9\)
- \(\nu(C) = 0.85\)
- \(\nu(D) = 0.88\)
- \(\nu(E) = 0.87\)
- \(\nu(F) = 0.87\)
- \(\nu(G) = 0.6\)
Outline

• Stochastic Hierarchical Blockmodel (SHBM)
• r-complex contagions
• Main result
\(r\)-Complex Contagions [CLR 79; GEG13]

- Given an initial seed set \(I = \{u, v\}\), and a graph \(G\)
Given an initial seed set \(I = \{u, v\} \), and a graph \(G \)

Node becomes infected if it has at least \(r(= 2) \) infected neighbor
\(r\)-Complex Contagions

- Given an initial seed set \(I = \{u, v\}\), and a graph \(G\)
- Node becomes infected if it has at least \(r\) infected neighbor
Given an initial seed set $I = \{u, v\}$, and a graph G.

Node becomes infected if it has at least r infected neighbors.

Local activation function $f_v(x) = \mathbb{I}[x \geq r]$
r-Complex Contagions

- Given an initial seed set $I = \{u, v\}$, and a graph G.
- Node becomes infected if it has at least r infected neighbor.
- The total number of infected vertices $\sigma_{r,G}(I)$

$$f_v(x) = \mathbb{I}[x \geq r]$$
$$\sigma_{r,G}(I)$$
Given an initial seed set $I = \{u, v\}$, and a distribution over graphs, \mathcal{G}, e.g., SHBM.

Node becomes infected if it has at least r infected neighbor

The total number of infected vertices $\sigma_{r,G}(I) = \mathbb{E}_G[\sigma_{r,G}(I)]$
Nonsubmodular vs Submodular InfMax

Submodular InfMax

- linear threshold, independent cascade
- Complexity:
 - $(1 - 1/e)$-approximation

For all $A \subset B \subseteq V$, and $x \in V$

$$f_v(A \cup \{x\}) - f_v(A) \geq f_v(B \cup \{x\}) - f_v(B)$$
Nonsubmodular vs Submodular InfMax

Submodular InfMax

- **linear threshold**, independent cascade
- **Complexity:**
 - $(1 - 1/e)$-approximation

For all $A \subset B \subseteq V$, and $x \in V$

$$f_v(A \cup \{x\}) - f_v(A) \geq f_v(B \cup \{x\}) - f_v(B)$$
Nonsubmodular vs Submodular InfMax

Submodular InfMax
- **linear threshold, independent cascade**
- Complexity:
 - $(1 - 1/e)$-approximation

Nonsubmodular InfMax
- **r-complex contagions, general threshold model**
- Complexity:
 - NP-hard to approximate within $n^{1-\epsilon}$
 - [KKT03]
 - NP-hard to approximate within $n^{1-\epsilon}$ on SHBM if nodes can have different thresholds r [ST17]
Outline

• Stochastic Hierarchical Blockmodel
• r-complex contagions
• Main result
Find the best K nodes to maximize adoptions

- **Input**
 - stochastic hierarchical blockmodel, $\mathcal{G} = (V_T, E_T, w, v)$
 - r-complex contagion
 - Total number of seeds K, budget

- **Output**
 - Seed set I to maximize $\sigma_{r,G}(I)$ s.t. $|I| = K$.
Research Question

Find the best K nodes to maximize adoptions

- **Input**
 - stochastic hierarchical blockmodel, $\mathcal{G} = (V_T, E_T, w, v)$
 - r-complex contagion
 - Total number of seeds K, budget

- **Output**
 - Seed set I to maximize $\sigma_{r,\mathcal{G}}(I) \approx \max_{|I'|\leq K} \sigma_{r,\mathcal{G}}(I')$.

- Parameters:
 - $w(R) = 0.1$
 - $w(F) = 0.5$
 - $w(G) = 0.6$
 - $w(H) = 0.4$
 - $w(A) = 0.8$, $v(A) = 30%$
 - $w(B) = 0.9$, $v(B) = 10%$
 - $w(C) = 0.85$, $v(C) = 20%$
 - $w(D) = 0.88$, $v(D) = 20%$
 - $w(E) = 0.87$, $v(E) = 10%$
Main result

Given r, budget K, and a SHBM (V_T, E_T, w, v) with $n \to \infty$, we should put all seed into a community

$$t^* = \arg \max v(t)n \cdot w(t)^r$$

– Large communities
– Proper separation
– Dense tree

<table>
<thead>
<tr>
<th>Community</th>
<th>w</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.8</td>
<td>30%</td>
</tr>
<tr>
<td>B</td>
<td>0.9</td>
<td>10%</td>
</tr>
<tr>
<td>C</td>
<td>0.85</td>
<td>20%</td>
</tr>
<tr>
<td>D</td>
<td>0.88</td>
<td>20%</td>
</tr>
<tr>
<td>E</td>
<td>0.87</td>
<td>10%</td>
</tr>
</tbody>
</table>

$w(R) = 0.1$
Observation 1

- Does r-complex contagion spread with constant number on Erdős-Rényi Graph $G(n, p)$? [JLT'12]

<table>
<thead>
<tr>
<th>Condition</th>
<th>p equality</th>
<th>Spread Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcritical</td>
<td>$p = o\left(\frac{1}{n^r}\right)$</td>
<td>doesn’t spread</td>
</tr>
<tr>
<td>Critical</td>
<td>$p = \frac{c}{n^r}$</td>
<td>spread with constant probability</td>
</tr>
<tr>
<td>Supercritical</td>
<td>$p = \omega\left(\frac{1}{n^r}\right)$</td>
<td>spread with high probability</td>
</tr>
</tbody>
</table>
Main Result

Given r, budget K, and a SHBM (V_T, E_T, w, v) with $n \to \infty$, we should put all seed into a community

$$t^* = \arg \max v(t)n \cdot w(t)^r$$
Main Result

Given r, budget K, and a SHBM (V_T, E_T, w, v) with $n \to \infty$, we should put all seed into a community

$$t^* = \arg \max v(t)n \cdot w(t)^r$$
Observation 2

Given two isolated $G(n, p)$ with $p = cn^{-1/r}$, and budget K, to maximize the infection you should:

1) Go all in $(K, 0)$
2) Hedge your bet: $(K/2, K/2)$
Take-Home Messages

• For nonsubmodular influence maximization (e.g., r-complex contagion), putting seeds together to create synergy is more beneficial.

• In sharp contrast to submodular influence maximization (e.g., Linear Threshold, Independent Cascade) where we should spread the seeds to avoid waste of seeds’ power.
Open Problems on Influence Maximization

• Information about graphs
 – Community structure, Centrality, Betweenness
 – Node query, Edge query

• Beyond submodular contagions models
 – r-complex contagions
 – general threshold [GGSY16]
 – 2-quasi-submodular [ST17]
Technical Lemma

Let E_k^n: the event that k seeds do not infected the graph $G(n, p)$ with $p = cn^{-1/r}$. For all $k \geq r - 1$

\[
\Pr(E_{k+2}^n) \Pr(E_k^n) < \Pr(E_{k+1}^n) \Pr(E_{k+1}^n)
\]

as $n \to \infty$.

Both graphs are not infected

$k + 2$ k $<$ $k + 1$ $k + 1$
Erdős-Rényi Graphs $\mathcal{G}(n, p)$ with $p = cn^{-1/r}$

Equivalent (when $n \to \infty$) inhomogeneous random walk on \mathbb{R}:

• Start at $x = k$;
• In each iteration i:
 – move to the left by 1 unit;
 – sample $\xi_i \sim \text{Poisson}\left(\left(\frac{i-1}{r-1}\right) \cdot cn^{-1/r}\right)$, move to right by ξ_i units;
• Terminate if hits $x = 0$;

Two cases:
• Hit $x = 0$: not infected, E_k^n
• Go to infinity: infected
Let E^n_k: the event that k seeds do not infected the graph $G(n, p)$ with $p = cn^{-1/r}$. For all $k \geq r - 1$
\begin{align*}
\Pr(E^n_{k+2}) \Pr(E^n_k) &< \Pr(E^n_{k+1}) \Pr(E^n_{k+1})
\end{align*}
Both graphs are not infected as $n \to \infty$.

![Diagram](attachment://diagram.png)
A coupling argument

We couple the two walks A, B in the same way until...

A, B are symmetric, \mathcal{E}_{symm}

A hits the x-axis, \mathcal{E}_{skew}
When A, B are symmetric to $y = x$, \mathcal{E}_{symm}
When A hits the x-axis, \mathcal{E}_{skew}

- Both needs to move $S + 1$ units to reach $(0, 0)$.
 - A: $S + 1$ steps *sequentially*.
 - B: S steps in x-direction and 1 step in y-direction *in parallel*.
- B is easier to reach $(0, 0)$, as the Poisson mean is increasing.

$$\xi_i \sim \text{Poisson}\left(\frac{(i-1) \cdot c^r}{r-1}\right)$$
When \(A \) hits the \(x \)-axis, \(\mathcal{E}_{\text{skew}} \)

- Both needs to move \(S + 1 \) units to reach \((0, 0)\).
 - \(A \): \(S + 1 \) steps \textit{sequentially}.
 - \(B \): \(S \) steps in \(x \)-direction and 1 step in \(y \)-direction \textit{in parallel}.
- \(B \) is easier to reach \((0, 0)\), as the Poisson mean is increasing.
Beyond Dense Tree

• Find the densest community
Beyond Dense Tree

- Decompose into dense subtree
 - Find the densest community
 - Dynamic programming