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Abstract

We study a large family of stochastic processes captured by the fact that they update a
limited amount in each step, e.g. agent-based models where one agent at a time updates their
state or stochastic gradient descent where the step size is not too large. A key question is how
this family of stochastic processes are approximated by their mean-field approximations. Prior
work shows that the stochastic processed escapes repelling fixed points and saddle points in
polynomial time.

We provide a tight analysis: for any non-attracting fixed point in any stochastic process
in this family, we show that for a sufficiently small constant ε > 0, the process will be ε-far
away from the fixed point in O(n log n) time with high probability. We also show that it takes
time Ω(n log n) to escape such a fixed point with constant probability. This shows our result is
optimal up to a multiplicative constant.

We leverage the above result to show that with high probability these stochastic processes
are arbitrarily close to an attracting fixed point in O(n log n) time.

We show the power of our results by applying them to several settings: evolutionary game
theory, opinion formation dynamics, and stochastic gradient descent.
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1 Introduction

Many agent-based models are discrete time stochastic processes (SP) in Euclidean spaces, e.g.,
interacting particle systems, social learning, and evolutionary game theory. Of particular interest
is the temporal behavior of these process: does such a process converge? What is the limit of the
process? How fast does the process reach its limit? An example of such a process would be n
agents, each faced with a binary set of choices, that evolves in rounds where in each round one
agent updates its choice. These processes can be written:

X(k + 1) = X(k) +
1

n
(f(X(k)) +U(k + 1)) (SP)

where X(k) represents the state at time k, n the number of agents, f the drift of the process, and
U is the unbiased noise.1

However, such stochastic processes are hard to analyze in general. A popular simplification
of such a model is hypothesizing an infinitely large population of interacting agents, n → ∞,
and approximating them as a deterministic continuous process modelled as a time homogeneous
ordinary differential equation(ODE):

d

dt
x = f(x). (ODE)

Note that the function f is the same in Equations (ODE) and (SP). This approach, often called
the mean-field approximation, encodes the process at each time as a point in Euclidean space (e.g.,
the fraction of agents with the blue opinion), and models the expected change as the average over
a large population.

An important question is how the solutions to the mean-field approximation (ODE) relate to
the stochastic process (SP), and, in particular, how fast the stochastic process (SP) can diverge
from the solution to the differential equation (ODE). Such knowledge requires understanding how
the two processes relate around the fixed points of the differential equation due to the following
intuition: Starting at a non-attracting fixed point of the ODE, the solution to the ODE will stay
at the point forever. If the deterministic process starts near but not at the same fixed point, the
process can escape. However, the stochastic process (SP), due to its noisy behavior, should behave
identically whether it starts exactly on a fixed point, or sufficiently close to it.

Several prior works also study this difference between a particular stochastic process (SP) and
its mean-field approximation (ODE), they also show that the stochastic process escapes repelling
or saddle point, but only in polynomial time. [39, 31]

Our results In contrast, we provide a tight analysis of the time for a general family of stochastic
processes (SP) to escape non-attracting fixed points. Informally, given a stochastic process in the
family starting at a non-attracting fixed point, there exists a constant ε > 0 independent of the
number of agents n such that a stochastic process will be ε-far away from the fixed point in time
O(n log n) with high probability. On the other hand, we further show it takes Ω(n log n) time to
escape fixed points with a constant probability.

We leverage the above result to show that with high probability these stochastic processes are
arbitrarily close to an attracting fixed point in O(n log n) time. That is, they not only locally escape
fixed points quickly, but globally converge quickly.

With we apply these results on the behavior of this family of stochastic processes to three
different situations: evolutionary game theory, opinion formation, and stochastic gradient descent.

1See preliminaries for a more precise formalism.
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Evolutionary game theory: As a warm-up example, we consider the Logit dynamics [48,
10, 27], which is a well-studied smooth best response dynamic in evolutionary game theory. We
study the symmetric coordination game with binary actions (blue and red) where half of the agents
playing blue and the other half playing red is a Nash equilibrium but not a “stable” equilibrium.
As a corollary of our main result, we show the Logit dynamics escape the equilibrium in O(n log n)
time with high probability.

Opinion formation dynamics: We study how two mutually exclusive competing opinions
evolve in networks with community structure. We model networks using a planted community
model which has a long history in the sociology literature [63]. We consider a large family of
dynamics called majority-like Node dynamics [61, 62]. In Node dynamics, in each round a
random node updates its opinion based on the fraction of red and blue neighbors it has. The
majority-like node dynamics intuitively can be thought of as in between the voter model and the
iterative majority dynamics:

We prove a dichotomy theorem: for any pair of “majority-like” node dynamics and planted
community model we show that either: the system quickly converges to consensus with high prob-
ability in time Θ(n log(n)); or, the system can get “stuck” and take time 2Θ(n) to reach consensus.
We note that O(n log(n)) is optimal because it takes this long for each node to even update its
opinion.

Stochastic gradient descent: Our escaping non-attracting point result also adds to the
recent literature on saddle-point analysis of stochastic gradient descent on a non-convex objective
function. In particular, our result shows a general family of stochastic gradient descent, bounded
stochastic gradient descent with a constant step size 1/n, converges to a local minimal in Θ(n log n)
when n is sufficiently large, the noise is well-behaved, and the objective function has a continuous
third derivative. The bounded stochastic gradient descent contains models of Ge et al. [31], Jin
et al. [39] as a special case, and our analysis provides a tight convergence time to a local minima.
Our analysis only applies to the case where the dimension is bounded.

2 Related Work

Mean-field and stochastic processes: There is a long line of work considering the relationship
between (SP) and (ODE) which consider (SP) and (SP) short-term behavior k = O(n) or limit-
behavior k → ∞ with fixed n [70, 7, 56]. Started by Robbins and Monro [58], another related
area is called (constant step size) stochastic approximation algorithms [6, 11, 45] which use local
search to find zeroes of an objective function. Several works study if the limit of (SP) with fixed n
converges to a non-attracting fixed point [7, 55].

One important special cases is stochastic gradient descent on non-convex objective functions [39,
31]. These works focus on the convergence time to a local minimal of the objective function
(attracting fixed point of its gradient). Informally, they consider long-term behavior of (SP) where
k is a polynomial of n, and provide non-asymptotic analysis of convergence time with respect to
the properties of the objective function (Lipschitz, smoothness, and dimension).

Instead of discrete time stochastic process, the convergence of stochastic differential equations
are studied [45, 49] which do not have a clear analogue to long-term behavior. In particular,
Mertikopoulos and Staudigl [49] also focus on Gradient-like systems.

In the literature of Markov chains, a large volume of work is devoted to bounding the hitting
time of different Markov process and achieving fast convergence. The techniques typically employed
are (1) showing the Markov chain has fast mixing time [50, 53], (2) reducing the dimension of the
process into small set of parameters (e.g., the frequency of each opinion) and using a mean field
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approximation and concentration property to control the behavior of the process [4], or (3) using
handcrafted potential functions [52]. Our results extend the second approach. However, the mean-
field of our dynamics has unstable fixed points and does necessarily not have a nice potential
function. We circumvent these challenges by exploiting the literature of dynamical systems [59, 14]
and showing the existence of a potential function by analyzing the phase portrait of the flow.
Additionally, we show the process leaves unstable fixed points by using the stochastic nature of our
process.

Evolutionary Game theory Stability of equilibrium is one central topic in evolutionary game
theory [60, 54]. One approach is showing that the limit-behavior (also called infinite-horizon) of
stochastic processes does not concentrate around such fixed points. One popular notion of stability
is evolutionarily stable strategy [33], which says a strategy is stable if any small enough deterministic
deviation cannot push the population away from such an equilibrium [7]. Our result provides an
example showing that the smooth best response dynamics can escape an equilibrium which is not
an evolutionarily stable strategy.

Opinion formation Our node dynamics model extends several previously studied dynamics
including the voter model, iterative majority, iterative k-majority. The voter model has been
extensively studied in mathematics [17, 36, 46, 47], physics [5, 13], and even in social networks [12,
64, 66, 67, 16]. A major theme of this work is how long it takes the dynamics to reach consensus
on different network topologies. Work about iterative majority dynamics [44, 9, 41, 52, 68, 71]
often study when the dynamics converge and how long it takes them to do so. Doerr et al. [22]
prove 3-majority reaches “stabilizing almost” consensus on the complete graph in the presence of
O(
√
n)-dynamic adversaries. Many works extend this result beyond binary opinions [18, 15, 4, 1].

Another line of related literature is about designing and analyzing algorithms for consensus on
social networks. When dealing with binary opinions, these works typically study more elaborate
dynamics which, in particular, include nodes having memory beyond their opinion [42, 57, 8, 51].
Another line of work deals with agents selecting an opinion from among a large (or infinite) set
of options [3, 29]. There are also myriad models where the opinions space is continuous instead
of discrete. Typically agents either average their neighbors’ opinions [20], or a subset of their
neighbors’ opinions which are sufficiently aligned [35, 19]. Finally, models involving the coevolution
of the opinions and the network [37, 23, 30] have been studied using simulations and heuristic
arguments.

Stochastic Gradient descent Recently, there is a long line of research of stochastic gradient
descent on non-convex functions, see [31, 39] and the reference therein. Searching for the minimum
value of a non-convex function is in general unfeasible, and those work focus on finding local minimal
efficiently which is achieved by showing that stochastic gradient decent leaves non-minimal singular
points (repelling and saddle fixed points) efficiently.

3 Preliminaries

Several models capture the behavior of a large population of agents in a phase space, X—a compact
space—and that update in accord to some function f : X → X .2 We will always use X = Rd,
which, technically, must be compactified by adding infinity. We will say f ∈ Cr(Rd,Rd) if the r-th
derivative of f is continuous.

2Here because we only consider the set X is Rd, the image of f is equal to its domain. Otherwise, if X is a
manifold, we need to consider f maps x ∈ X to the tangent space, TX (x)
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A function f : X → X defines a ordinary differential equation on X via

d

dt
x = f(x). (1)

Equation (1) has a unique solution through every point x ∈ X (when f satisfies some smoothness
condition). Hence (1) defines a flow ϕ : X×R→ X such that ϕ(x, 0) = x and d

dtϕ(x, t) = f(ϕ(x, t))
for all t ∈ R,x ∈ X . We call ϕ the flow induced by f if ϕ(x, t) is the position of the solution of
(1) at time t starting at x.

On the other hand, we consider a discrete time stochastic process with values in X , (X(k))k∈N
where N is the set of non-negative integers. We will drop the dummy index k later and use X to
simplify the notation. Given n ∈ R>0, we call the process X a 1/n-step D-bounded stochastic
process associated with f if the following assumptions are satisfied: first, for each k ∈ N, define
U(k + 1) as U(k + 1) = n (X(k + 1)−X(k))− f(X(k)), and let F(k) be the generated filtration
on the process X. Then it must be the case that, for all k, E[U(k+1) | F(k)] = 0 and ‖U(k)‖ ≤ D
with probability 1. Alternatively, the stochastic process X admits the representation

X(k + 1) = X(k) +
1

n
(f(X(k)) +U(k + 1)) (2)

where U is a zero-mean martingale i.e. the conditional expectation of U(k + 1) given the history
F(k) is equal to zero.

3.1 Dynamical systems

In this section, we introduce some basic notions to understand the behavior of dynamical systems
(1), which are mostly from Robinson [59]. To understand the local behavior of flows, we define fixed
points and the notion of hyperbolicity. Then to help us to study global and long term behavior
of flows, we define potential functions (global Lyapunov functions). We restrict our analysis to
gradient-like flows, which are the family of flows with potential functions. Gradient-like flows
contain gradient flows as a special case.

3.1.1 Local behavior of flows— hyperbolic fixed points

Given a flow ϕ with f and a point x ∈ X , the trajectory or orbit of x is the set Ox = {ϕ(x, t) : t ∈
R}. A point x ∈ X is a fixed point if Ox = {x} that is f(x) = 0, and we use Fixf to denote the
set of fixed points. We call a set E ⊆ X positive invariant if for all x ∈ E and t ≥ 0, ϕ(x, t) ∈ E,
negative invariant if it’s true for all t ≤ 0, and invariant if it’s true for all t ∈ R.

Here we introduce some important properties of linear flow in X . Given a matrix A ∈ Rd×d,
the linear equation

d

dt
x(t) = Ax(t)

has a closed form solution ϕ(x, t) = exp(At)x, and 0 is a fixed point.
The long term behavior (e.g., convergence to 0, divergence to infinite, or rotation) of the above

system depends on the real part of eigenvalues of A. Formally, we denote the set of eigenvalues for
the (real) matrix A by

eig(A) = {λ1, λ2, . . . , λs, λs+1, . . . , λs+u, λs+u+1, . . . , λs+u+c},
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where <(λi) < 0 for all 1 ≤ i ≤ s, <(λs+i) > 0 for all 1 ≤ i ≤ u, and <(λs+u+i) = 0 for all 1 ≤ i ≤ c.
We define the stable, unstable, and center subspaces of A as follows:

Es ={v : v is a generalized eigenvector for an eigenvalue λi,<(λi) < 0};
Eu ={v : v is a generalized eigenvector for an eigenvalue λs+i,<(λs+i) > 0};
Ec ={v : v is a generalized eigenvector for an eigenvalue λs+u+i,<(λs+u+i) = 0}.

Definition 3.1. We say A ∈ Rd×d is hyperbolic if Ec = ∅, i.e. for all λ ∈ eig(A)

<(λ) 6= 0.

If A is hyperbolic, we further call A attracting (or repelling) if for all λ ∈ eig(A),<(λ) < 0, (or
<(λ) > 0) respectively. Finally, if A is not attracting nor repelling, we call it saddle.

We can extend the notion of hyperbolic to fixed points of nonlinear dynamics by its local
properties:

Definition 3.2 (Attracting, repelling, and saddle points). Given a flow ϕ induced by f and a fixed
point β we call β hyperbolic if the matrix ∇f(x)|x=β is hyperbolic (Definition 3.1). Similarly, β
is respectively an attracting, repelling or saddle fixed point if ∇f(x)|x=β is attracting, repelling or
saddle. We further call a fixed point non-attracting if it’s either repelling or saddle.

3.1.2 Global behavior of flows— Lyapunov functions and gradient-like flows

However, general nonlinear flows can have complicated behavior beyond fixed points (c.f. Strogatz
[65]). Here we consider a family of flows which have a relative easy global behavior and also general
enough to contain several interesting dynamics.

A flow with f is called a gradient-flow if there exists a real value function F : Rd → R such
that f = −∇F . That is the flow is a solution to:

d

dt
x = −∇F (x) (3)

However there is a more general family of dynamics called gradient-like flows that contain
gradient flows. Intuitively, a dynamics is a gradient-like flows if there exists a potential (Lyapunov)
function for the induced flow.

Definition 3.3. A C1 function V : X → R is called a weak global Lyapunov function for a flow ϕ
with f if

d

dt
V (ϕ(x, t))|t=0≤ 0

We use Lie derivative to simply the notion, LfV (x) , d
dtV (ϕ(x, t))|t=0.

A gradient-like flows is not necessary a gradient flow but it has a strict global Lyapunov function
V which is decreasing off the fixed points. Formally,

Definition 3.4. A flow ϕ is called gradient-like if there is a strict global Lyapunov function V ∈ C1

which is strictly decreasing off the fixed points:

LfV (x) < 0 for all x /∈ Fixf .

We further call the function f gradient-like.

A gradient flow is also a gradient-like flow as the function F : Rd → R can serve as the Lyapunov
function. In this paper we only consider gradient-like flows with a finite number of fixed points,
and all the fixed points are hyperbolic.
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3.2 Notations

Analysis Here we define some common notions to characterize the function f : Rd → Rd. Given
rreg ∈ R>0, we denote by B(0, rreg) = {x : ‖x‖ < rreg} an open d-sphere center at 0 with radius
rreg, and denote by B̄ the closed sphere. We use ‖ · ‖ to denote the 2-norm in Rd and ‖ · ‖∞ for the
∞-norm.

Given a compact set E (a bounded and closed subset Rd), we say f is Bf -bounded in E if
‖f(x)‖ ≤ Bf for all x ∈ E. We say f is Lf -Lipschitz if ‖f(x)− f(x′)‖ ≤ Lf‖x− x′‖ for all x and
x′ in E. We say f is Sf -smooth in E if ‖∇f(x)−∇f(x′)‖ ≤ Sf‖x−x′‖ for all x and x′ ∈ E where
we use Frobenius norm on the left hand side. We further say f is bounded (Lipschitz or smooth)
if there exists a constant M ∈ R>0 such that f is M -bounded (M -Lipschitz or M -smooth). Note
that if f ∈ C1 and E is compact set, f is automatically bounded and Lipschitz.

Stochastic process Let X be a discrete time stochastic process. A stopping time with respect
to X is a random time such that for each k ∈ N, the event {T = k} is completely determined by
(at most) the total information known up to time k, F(k). Given a set B ∈ X , we denote (first)
exit time of B as Te(B) , min{k ≥ 0 : X(k) /∈ B}. We also consider the hitting time of B as
Th(B) , min{k ≥ 0 : X(k) ∈ B}.

Linear algebra Given a hyperbolic matrix A we define σmax(A) = max{‖Av‖ : ‖v‖ = 1} to
be the induced norm of A, and µmax(A) = maxλ∈eig(A) |<(λ)|. Therefore, for all v ∈ Rd, ‖Av‖ ≤
σmax(A)‖v‖, and v>Av ≤ µmax(A)‖v‖2 (Theorem 4.3.50 in Horn et al. [38]). Furthermore, we set
µs(A) = minλi:i≤s |<(λi)| to denote the smallest absolute value of the real part of stable eigenvalues,
and µu(A) = minλs+i:i≤u |<(λs+i)| to denote the smallest absolute value of the real part of unstable
eigenvalues.

Given two linear subspaces E1 and E2 in Rd, we can define the angle between E1 and E2

arc(E1, E2) = min {arccos(|〈v1,v2〉|) : v1 ∈ E1, ‖v1‖ = 1,v2 ∈ E2, ‖v2‖ = 1} . (4)

If E1 ∩ E2 = {0}, the angle arc(E1, E2) is greater than 0. As a result, if E1 ⊕ E2 = Rd, for all
v ∈ Rd, we have

‖P1v‖ ≤
1

sin arc(E1, E2)
‖v‖ (5)

We use Id to denote the d-dimensional identity matrix. For two symmetric matrices A and B we
use A ≺ B to denote B −A is a positive definite matrix.

4 Main results

The relationship between (1) and (2) has be studied extensively and the analysis can be classified
as two types: short-term and long term behavior. We illustrate the intuitive difference between
short-term and long-term behavior with a thought experiment: Suppose U(k) is zero for all k and
X(0) = x. Then the 1/n-step D-bounded stochastic process with f reduces to a deterministic
sequence. By standard theory in numerical methods, for all t ∈ R and sufficiently large n, X(nt) ≈
ϕ(x, t). In many cases, this can be shown to be true if t is bounded, but n → ∞. However, if

we exchange the roles of t and n so that n is bounded, but t → ∞ this relation tends not to hold
anymore. The first case describes the regime of short-term behavior where t = O(n), and the later
cases describes the limit-behavior with t→∞ with a fixed n.
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In this section, we provide a more refined characterization of (2) around fixed points when both
t → ∞ and n → ∞. However, first show that in the short term regime, Equations (1) and (2)
behave similarly. This provides a basis for our lower bound, that it takes time Ω(n log n) to escape a
non-attracting fixed point. We then show our main result, that it takes time O(n log n) to escape a
non-attracting fixed point. Finally, we show that when dynamics are started close to an attracting
fixed point, the dynamics quickly converge to the attracting fixed (with high probability), and take
exponential time to escape.

4.1 Short term behavior

In this section, we show that if the time is bounded by Cn, then (1) and (2) remain within ε with
probability roughly exp(−cε2n). Several variations of Theorem 4.1 are proven in the literature [70,
7]. Here we provide an explicit dependency of the constant c in the exponent in terms of the process
(2). This will be important for the proof of our lower bound.

Theorem 4.1. Let E ⊆ X = Rd be a compact space which is positive invariant for a flow induced
by f defined in (1) and a 1/n-step D bounded stochastic process with f defined in (2). Suppose
f is Lf -Lipschitz and Bf -bounded (maxx∈E ‖f(x)‖ ≤ Bf ). For all C > 0, there exists a constant

c =
2 exp(−2LfC)
C(Bf+D) such that for all ε > 0 and n large enough:

Pr

[
max
k≤Cn

‖X(k)− ϕ(x, k/n)‖∞ > ε |X(0) = x

]
≤ 2d exp(−cε2n)

for all x ∈ E.

We give the proof in the appendix. This result can be seen as a stochastic version of the
Euler forward method—the discrete-time stochastic process (2) is very close to the solution of the
ordinary differential equation (1). Because the noise at each step in (2) is a bounded martingale,
we can use concentration bounds to show the aggregated deviation from its expectation is small.

4.2 Escaping non-attracting points

In this section we want to study how (2) behaves near the non-attracting points of f . Specifically,
if 0 is a saddle point of f , we know ϕ(0, t) = 0 for all t ∈ R>0. For large enough n does (2) stay
at 0 forever as well? If not when will it escape the saddle point 0?

Theorem 4.1 easily yields a lower bound on the time required to escape a saddle point (or general
fixed point). Formally, given ε > 0 and a neighborhood of a saddle point B(0, ε) (a d-sphere centered
at 0 with radius ε), the time to escape B(0, ε) with constant probability is Ω(n log n).

Corollary 4.2 (Lower bound for fixed points). Let 0 be a fixed point of (1). If E is a compact set
where 0 is in the interior of E and f is bounded and Lipschitz in E, for all 0 < ε where B̄(0, ε) ⊂ E,
there exists τ = Ω(n log n), such that with high probability the exit time is greater than τ

Pr [Te(B(0, ε)) ≤ τ |X(0) = 0] = o(1).

Note that the asymptotic notion is taken with respect to n.3

3Note that in contrast to Theorem 4.1, here we only provide asymptotic analysis for n, so the parameter of f
(Lipschitz and bound), diameter of E, and dimension of space d are hidden in the big-O notation.
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Now we show an upper bound: a large family of 1/n-step D-bounded stochastic processes with
f can escape saddle points or unstable fixed points in O(n log n) steps with high probability as long
as the second moment of the noise is large.

Theorem 4.3 (Escaping non-attracting fixed points). Let f be defined on X = Rd. Let 0 be a
hyperbolic saddle point (or repelling point) of (1). Suppose there is a compact set E such that 1) 0
is in the interior of E 2) f ∈ C1 and smooth in E, 3) There exists α > 0 such that

∀x ∈ E, α
d
Id ≺ Cov[U(k + 1) |X(k) = x].4

Then, there exist τ = O(n log n) and positive constant rexit > 0 such that B(0, rexit) ⊂ E, and

Pr [Te(B(0, rexit)) ≤ τ ] = 1− o(1).

The main idea of the proof is to use the linear approximation of f at 0, and then use induction
to show the process will have a large magnitude in the unstable subspace Eu in O(n log n) steps
with high probability. Formally, let A = ∇f(0) defined in Section 3, and define the remainder term
of f as

R(x) , f(x)−Ax. (6)

Because f is smooth in E, by Taylor’s theorem there exists a constant H ∈ R>0 such that for all
x in E, ‖R(x)‖ ≤ H‖x‖2, and we can rewrite the process in E as,

X(k + 1)−X(k) =
1

n
(AX(k) +R(X(k)) +U(k + 1)). (7)

Since 0 is hyperbolic, the process is expanding in the unstable subspace Eu, and contracting
in stable subspace Es with respect to A defined in Section 3. Let P u and P s be the projection
operators for Es and Eu respectively. We can decompose the process X, from Equation (2), into the
unstable component Xu(k) = P uX(k) and the stable component Xs(k) = P sX(k) for all k ∈ N,

Xu(k + 1)−Xu(k) =
1

n
(AXu(k) +Ru(X(k)) +Uu(k + 1)) ∈ Eu

Xs(k + 1)−Xs(k) =
1

n
(AXs(k) +Rs(X(k)) +U s(k + 1)) ∈ Es

(8)

where functions Ru , P uR and Rs , P sR, and the random processes U s(k+1) , P sU(k+1) ∈ Es,
and Uu(k + 1) , P uU(k + 1) ∈ Eu.

For the unstable component, if we can approximate the expected movement of Xu by the first
term AXu, ‖Xu‖ increases exponentially fast. To this end, we need to show the remainder Ru

(and noise) are small. However, the magnitudes of Ru depends on X, and can be much larger than
AXu if Xs is much larger than Xu. The same issue holds for the stable component. To handle
this, we partition the process into O(log n) phases illustrated in Figure 1 such that in each phases
the difference between ‖Xu(k)‖ and ‖Xs(k)‖ is not too large. Finally we use induction to show
the unstable component gets larger as the process proceeds in phases.

The proof has three parts. Lemma 4.4 shows the magnitude in Es decreases rapidly after the
process enter B(0, rin). Lemma 4.5 shows if the process is very close to or at 0, the noise of the
process ensures the unstable part of the process will be Ω((log n)1/3/

√
n) in O(n log n) time with

high probability. Finally, Lemma 4.6 shows if the unstable part of the process is Ω((log n)1/3/
√
n),

the unstable part doubles in O(n) time with probability 1− exp
(
−Ω

(√
log n

))
= 1− o(1/ log n).

4Note that if the noise is uniform spherical distribution, the covariance matrix is 1
d
Id.
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Figure 1: Here we consider the case 0 is a saddle point where the x-axis is the unstable subspace
(the drift pushes outward in the x-direction), and the y-axis is the stable subspace (the drift
pushes inward in the y-direction). For Theorem 4.3, we partition the process around the saddle
point 0 into O(log n) phases. In phase 0 (the white region) by Lemma 4.4 the process either hits
phase 1 (the lightest gray region which is the union of the ball B(0, l1 sin θus) and the region
‖xu‖ < l1 and ‖xs‖ ≤ ‖xu‖/8) or later phases. Lemma 4.5 shows the process hits phase 2 (the
second lightest region) or later, in O(n log n) with probability 1− o(1). The Lemma 4.6 shows if
the process is in phase j, it phase j + 1 or the later (the next darker region) in additional O(n)
times.

Proof for Theorem 4.3. Here we only prove the case of saddle point; the case of repelling point is
simpler. Let µu > 0 be the minimum real part of the eigenvalues of A in Eu defined in Section 3.1.1.
We set rreg > 0 sufficiently small (which will be specified later), and τ = O(n log n). We show there
exists T ≤ τ such that after T steps both ‖Xs(T )‖ ≤ rreg/16 and ‖Xu(T )‖ ≥ rreg/2, we have
‖X(T )‖ ≥ ‖Xu(T )‖ − ‖Xs(T )‖ > rreg/4. The proof is completed by taking rexit = rreg/4.

We define a length J =
⌈
log
(
(rreg
√
n)/((log n)1/3)

)⌉
= O(log n) sequence, (lj),

lJ = rreg, lj−1 =
1

2
lj for j = 2, 3, . . . , J, and l1 ∈

[
(log n)1/3

2
√
n

,
(log n)1/3

√
n

]
. (9)

With the sequence (lj), we can partition the processes in B(0, rreg) into J + 1 = O(log n) phases:
We say the process is in the phase 1 if ‖X(k)‖ ≤ l1 sin θus where θus > 0 is the angle between Eu
and Es defined in (4) or if ‖Xu(k)‖ < l1 and ‖Xs(k)‖ ≤ ‖Xu(k)‖/8. The process is in phases
j > 1 if lj−1 ≤ ‖Xu(k)‖ < lj and ‖Xs(k)‖ ≤ ‖Xu(k)‖/8, and otherwise we call it in phase 0. 5

First in Lemma 4.4, we show in O(n log n) time with high probability either the stable com-
ponent ‖Xs‖ is smaller than the unstable component ‖Xu‖ and enters some phase j > 0, or
‖X‖ ≤ l1 sin θus and enters the phase 1.

Secondly, by Lemma 4.5, suppose the process is at phase 1, the process reaches phase 2 or later
phases within O(n log n) steps with probability 1− o(1).

Finally, by Lemma 4.6, starting at phase j > 1, the process reach phase j + 1 or later phases
within τj = O(n) steps with probability 1 − exp

(
−Ω

(√
log n

))
= 1 − o(1/ log n). Taking union

bound on these J = O(log n) phases completes the proof.

5Note that by (5) phase 1 is disjoint with phase j > 1, because ‖Xu‖ ≤ ‖X‖/ sin θus.
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We put the proofs of the following lemmas in the appendix. To simplify the notion, we reset
the index of X to 0 in each lemma.

Lemma 4.4 (Escaping Phase 0). If X(0) ∈ B(0, rreg), in time τ0 = O(n log n), there exists T0 ≤ τ0

such that ‖Xu(T0)‖ ≥ 8‖Xs(T0)‖ or ‖X(T0)‖ ≤ l1 sin θus with probability 1− o(1).

Lemma 4.4 is proven using the optional stopping time theorem.

Lemma 4.5 (From Phase 1 to 2). If X(0) is in phase 1, there are τ1 = O(n log n) and T1 ≤ τ1

such that ‖Xu(T1)‖ ≥ l2 and ‖Xs(T1)‖ ≤ ‖Xu(T1)‖/8 with probability at least 1− o(1).

For Lemma 4.5, because the drift of the process in phase 1 is small, we use the anti-concentration
of the noise to show in expectation it can reach phase 2 after O(n(log n)2/3) steps. By Markov’s
inequality, we show it will happen in O(n log n) with probability 1− o(1).

Lemma 4.6 (Phase j > 1). If the process is in phase j > 1, ‖Xs(0)‖ ≤ 1
8‖X

u(0)‖ and lj ≤
‖Xu(0)‖ ≤ lj+1, there is τj = O(n) such that ‖Xs(τj)‖ ≤ 1

8 lj+1 and ‖Xu(τj)‖ > lj+1 with
probability 1− exp

(
−Ω

(√
log n

))
.

We want to show ‖Xu(k)‖ in (8) increases rapidly by linear approximation which depends on
two things: 1) the remainder term Ru(X(k)) being small, and 2) the noise, Uu(k), being small.
The remainder term Ru(X(k)), however, depends both on Xu(k) and Xs(k), so we need to upper
bound the value of ‖Xs(k)‖ as well. By (6), it is sufficient to upper bound the quadratic ‖X(k)‖2
for all 0 ≤ k ≤ τj with high probability. However, the standard Chernoff bound and union bound
are not enough, so we use a more advanced tail bound for the maximum deviation. For the noise
part, conditioned on ‖X(k)‖2 being small, we can show the Doob martingale Yk = E[X(τj) |
X(0), . . . ,X(k)] is concentrated around Y0 = E[X(τj)].

Note that in contrast to Lemmas 4.4 and 4.5 which show upper bounds for stopping times, this
lemma characterizes the behavior of X at time τj .

4.3 Approaching attracting fixed points

Proposition 4.7. Let 0 be an attracting fixed point of f . If f ∈ C1 is smooth in X , there exists
rreg, b > 0 and τa = O(n log n), such that

Pr

[
Th

(
B

(
0,
b

n

))
≤ τa |X(0) ∈ B(0, rreg)

]
≥ 1− o(1/n).

The proof is based on standard arguments in convex optimization [43] and is similar to the
proof of Lemma 4.4. The values rreg and b only depend on the function f and the parameters of
the 1/n-step D-bounded stochastic process.

Furthermore, after the process reaches B
(
0, bn

)
, the process will stay close to the fixed point

exponentially long.

Proposition 4.8. Given f and b > 0 defined in Proposition 4.7, for all T and constant rout > 0,

Pr

[
Te (B (0, rout)) > T |X(0) ∈ B

(
0,
b

n

)]
≥ 1− T exp (−Ω(n)) .

We include the proofs of above propositions in appendix for completeness.
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5 Convergence of 1/n-step D-bounded stochastic process with a
gradient-like function

In this section, we show how to use above local characterization to show the long-term behavior of
(2) with a gradient-like function. At a high level, this theorem shows the process will be Θ(1/n)-
close to an attracting fixed point in O(n log n) time with high probability.

Theorem 5.1. Given constants m ∈ N, α, a bounded compact set E, and f ∈ C1(Rd,Rd), suppose

1. f is smooth, gradient-like, and has a constant number of fixed points Fixf = {β1, . . . ,βm}
which are hyperbolic,

2. E is positive invariant under the flow with f and the stochastic process, Pr[∀k ∈ N,X(k) ∈
E |X(0) ∈ E] = 1.

3. The noise in the 1/n-step D-bounded stochastic process with f in (2) is well-behaved. For all
k ∈ N, β ∈ Repelf ∪Saddlef , and x ∈ B(β, rreg),

α

d
Id ≺ Cov[U(k + 1) |X(k) = x].

There exists τ = O(n log n) and a constant b > 0 such that the hitting time to a neighborhood of
one of the attracting fixed points Γ = ∪β∈AttractfB

(
β, bn

)
is smaller than τ :

Pr [Th (Γ) ≤ τ |X(0) ∈ E] = 1− o(1).

To show the process reaches a neighborhood of an attracting fixed point fast, we need to show
two parts: locally, the process does not become stuck in any small neighborhood; globally, the
process progresses without making entering cycles or having complicated recurrent behavior.

Because the flow is gradient-like, there exists a smooth complete Lyapunov function V for the
flow. With this real-value function V , we can control the behavior of the reinforced random walk
X. Locally, for each fixed point βi ∈ Fix(f), we define a small neighborhood Ni = B(βi, ri) around
it containing no additional fixed points. There are two cases: either x ∈ E \ (∪iNi), and we say
x is a regular point. In this case the complete Lyapunov function V has large (linear) decrements.
Otherwise, x ∈ Ni for some i, we say that x is a neighborhood point and V decrements increasingly
slowly as it approaches the fixed point βi.

The first lemma deals with the regular points, and shows that from them the trajectory will
quickly reach a non-regular point. The proof is in appendix.

Lemma 5.2 (regular points). Given Ni, if X(0) 6∈ ∪Ni, there exists βi and T = O(n) such that
XT ∈ Ni and V (βi) < V (X(0)) with probability 1− o(1).

The next lemma says that as long as βi is not an attracting fixed point, then from any point in
its neighborhood, the process will quickly leave the neighborhood in a manner that decreases the
potential function.

Lemma 5.3 (non attracting fixed points). If βi is not an attracting point, there exist τi =
O(n log n), constants ri > 0 and δ > 0, such that for all x ∈ Ni = B(βi, ri) there is T ≤ τi,
such that XT 6∈ Ni, and V (βi) > δ + V (X(T )) with high probability.

This is proved in the appendix. The proof is a similar to that of Theorem 4.3 but additionally
argues that the process leaves the neighbors of saddle points in a way that decreases the potential
function.
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Proof of Theorem 5.1. Combining the above two characterizations, we can study the process in two
alternating stages.

1. Given an initial condition X(0) ∈ E where E is compact and positive invariant, if X(0) 6∈
∪iNi, it converges to some Ni in O(n) with high probability by Lemma 5.2.

2. If βi is not an attracting point by Lemma 5.3, the process leaves the region Ni and V (x) <
V (βi)− δ in O(n log n) time with high probability.

3. After leaving Ni, by Lemma 5.2, the process converges to Nj a neighborhood of another fixed
point βj where V (βj) < V (βi) in O(n) steps with high probability.

4. We can repeat these arguments until the process reaches some attracting point. The processes
can never return to the neighborhood of the same fixed point twice because V (β(i)) is always
decreasing. Moreover since the number fixed points are constant (and independent to the
step size), the alternation between the above stages stops in constant rounds.

5. By Proposition 4.7, after the process hits a neighborhood of some attracting point, it will be
O(1/n)-far from such point in time O(n log n) with high probability.

6 Warm-up Application: Escaping evolutionary unstable equilib-
rium

Pointed out by [33, 54], one major weakness of the Nash equilibrium is the equilibrium selection
problem. For example, in a symmetric 2× 2 coordination games with the following payoff matrix

A =

[
1 0
0 1

]
. (10)

There are three Nash equilibria, (0, 0), (1, 1) and a mixed equilibrium (1/2, 1/2). However, the
mixed strategy is not robust: if one player plays the strategy 1 with probability slightly greater
than 1/2, the other player will switch to strategy 1 completely. To overcome this weakness, they
proposed several new solution concepts. One refinement of Nash equilibrium is evolutionarily stable
state(ESS) which uses dynamics to study the stability of an equilibrium. We will first define our
dynamics, and our result.

6.1 Models: Evolutionary Game Theory

Most of the notions are from Sandholm [60]. We consider games played by a homogeneous popula-
tion with size n. Each agent chooses a pure strategy from a finite set S = {1, . . . , d}. The empirical
distribution of their strategy is call a population state x ∈ ∆(S) = {x ∈ R≥0

d : ‖x‖1 = 1} with
xj representing the proportion of agents choosing pure strategy j. A (single-) population game
has a payoff function F : ∆(S) → Rd where Fj(x) represents the payoff to strategy j when the
population state is x. For example in the symmetric coordination game (10), F (x) = Ax.

Population state x∗ is a Nash equilibrium of F if no agent can increase his payoff by unilaterally
changing its strategy. Formally,

x∗i > 0⇒ Fi(x) ≥ Fj(x) for all j ∈ S.

12



Intuitively, x∗ is an evolutionarily stable state (ESS) if the strategies employed in x∗ remain
best responses even after a small perturbation of x∗. Formally, x∗ is an evolutionarily stable state
(ESS) of F if there is an εe > 0 such that for all x 6= x∗ and 0 < ε < εe

(x− x∗)>F (εx+ (1− ε)x∗) < 0.

Note that the mixed strategy for the symmetric coordination game is a Nash equilibrium but not
a evolutionarily stable state.

A revision protocol is a map ρ : Rd × ∆(S) → R≥0
d×d which maps a payoff vector π = F (x)

and a population state x to a non-negative matrix where ρij(π,x) is the conditional switch rate
from strategy i to strategy j. At each round, one agent, chosen uniformly at random, receives a
revision opportunity. If the agent is playing strategy i ∈ S, it switches to strategy j 6= i with
probability ρij(π,x) (we will omit the input for simplicity). Therefore, a population game F on
n agents with a revision protocol ρ is a Markov process on the state space ∆(S) ∩ 1

nZ
d and the

transition probability is

P (x,x+ z) =

{
xiρij if z = 1

n(ej − ei), i, j ∈ S, i 6= j,

1−
∑

i∈S
∑

j 6=i xiρij if z = 0.

In this paper, we only consider the logit choice rule

ρij(π,x) =
exp

(
1
ηπj

)
∑

k∈S exp
(

1
ηπk

) . (11)

The parameter η > 0 is called the noise level : if η is large, the choice probabilities are close to
uniform, but if η is near zero, choices are best-response with probability close to one. This dynamics
is also call the smooth best response dynamics [7].

6.2 Main result: Evolutionary Game Theory

In game theory, a solution concept is a formal rule for predicting how a game will be played.
The typical concept, the Nash equilibrium, predicts that the outcome of a game is any point
from which no player wants to deviate. However, let us go back to the mixed equilibrium in the
coordination game. Shown in Figure 2, the mixed equilibrium is unstable in the smooth best
response dynamics. One may doubt if the mixed Nash equilibrium of the coordination game is
“an outcome of this game.” The population state always escapes the mixed equilibrium when the
process starts not exactly at it. Here we show something stronger: even the process start at the
mixed Nash equilibrium, it will escape it in a short time.

Several results show that ESS are locally stable under many evolutionary dynamics [60]. Our
Theorem 6.1 shows the other direction: the mixed equilibria which is not an ESS is also not
(stochastically) stable under the Logit dynamics.

Theorem 6.1 (Escaping unstable Nash equilibrium). Given the symmetric coordination game with
payoff matrix A in (10) over n agents on the revision protocol with logit choice rule (11) with noise
level η > 0, we have a Markov chain X(n,η)(k) on the space [0, 1] which encodes the fraction of
population playing strategy 1. Given 0 < η0 < 1/2, there exists r > 0 and τ = O(n log n) such that
for all 0 < η ≤ η0

Pr[∃T ≤ τ,X(n,η)(T ) /∈ B(1/2, r) |X(n,η)(0) = 1/2] = 1− o(1).

13



Figure 2: Here we plot f (η)(x) in (12) under different η ≤ 0.5. Note that 0.5 is a repelling fixed
point for f (η) as long as the noise level is smaller than 0.5.

Proof sketch. This is just a corollary of Theorem 4.3. The Markov chain X(n,η) is a 1/n-step
1-bounded stochastic process on E = [0, 1] with

f (η)(x) =
exp

(
1
ηx
)

exp
(

1
ηx
)

+ exp
(

1
η (1− x)

) − x. (12)

The mixed equilibrium x = 1/2 is a repelling fixed point when (f (η))′(1/2) = 1/(2η) − 1 >
0. Therefore Theorem 6.1 follows the observation that the noise level is large enough to apply
Theorem 4.3. We can use a coupling argument to handle the case where η < η0.

7 (Dis)agreement in Planted Community Networks

Opinion dynamics on networks study how a set of opinions evolve over a network. In this case, we
study how two mutually exclusive competing opinions evolve in graphs with community structure:
the maximum expected consensus time on a broad set of stochastic opinion formation dynamics on
binary opinions called Node dynamics [61, 62] in the planted community model. Node dynamics
are parameterized by an update function f : [0, 1] → [0, 1]. In the beginning, each agent holds
a binary “opinion”, either red or blue. Then, in each round, an agent is uniformly chosen and
updates its opinion to red with probability f(r) and blue with probability 1− f(r) where r is the
fraction of its neighbors with the red opinion.

By changing f , one can capture many previously studied dynamics, including:

Voter Model: Update a node’s opinion to that of a randomly chosen neighbor.

Iterative majority: Update a node’s opinion to the majority opinion its neighbors.

Iterative k-majority: Update a node’s opinion to the majority opinion of k randomly chosen
(with replacement) neighbors.

ρ-noisy majority model: [25, 32] Update a node’s opinion to majority opinion its neighbors
with probability 1− ρ and uniformly at random with probability ρ.

We model this with a planted community model where n nodes on a complete weighted graph
are divided into two equal sets which we call communities. Edges within each community have
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weight p while edges spanning both communities have weight q. This can also be thought of a
block-model which has a long history in the sociology literature [63].

Note that in the voter model with q > 0, the graph is not two isolated graphs and the dynamic
reaches consensus in Θ(n2) time by standard analysis. On the other hand, in the iterative majority
with p > q, if all nodes in one community have blue opinion and the other has red opinion, the
process can never reach a consensus.

7.1 Model: graph with community structure and node dynamics

In this work, we consider Node dynamics [61] on block models with two equal size communities:

Definition 7.1 (bi-block model [21, 69]). Given p and q where 1/2 ≤ p ≤ 1 and q = 1 − p, and
the set of n vertices V which can be decomposed into two equal size communities V1 and V2, we
define a bi-block model K(n, p, q) = (V,w) which is a weighted complete graph where

w(u, v) =

{
p if u, v are in the same community;

q o.w.
(13)

We consider two opinions, red and blue. In each round, each agent has opinion either red or blue.
A configuration XND ∈ [0, 1]2 denotes the fraction of nodes having opinion red in each community:
XND

1 (and XND
2 ) encodes the fraction of node having opinion red in the community V1 (and V2).

We call XND = (0, 0), where everyone has the blue opinion, a blue consensus; and (1, 1) a red
consensus. Given a configuration XND and K(n, p, q), the (weighted) fractions of neighbors with
red opinion in community 1 and 2 are respectively

pXND
1 + q XND

2 and q XND
1 + pXND

2 .

Definition 7.2. An majority-like update function is a function fND : [0, 1] → [0, 1] with the
following properties:

Monotone ∀x, y ∈ [0, 1], if x < y, then fND(x) ≤ fND(y).

Symmetric ∀t ∈ [0, 1], fND(1/2 + t) = 1− fND(1/2− t).

Absorption fND(0) = 0 and fND(1) = 1.

Rich-get-richer for all 1/2 < x < 1, x < fND(x).

In this work, we further require the update function to have an “S” shape— fND ∈ C2 which is
strictly convex in [0, 0.5], and strictly concave in [0.5, 1], and call such function a smooth majority-
like update function

We define node dynamics on bi-block models as follows:

Definition 7.3. Given a K(n, p, q), an update function fND, and an initial configuration XND(0),
a node dynamic ND(K(n, p, q), fND,X

ND(0)) is a stochastic process over configurations, XND.
The dynamics proceeds in rounds. At round k + 1 ≥ 1, a node v is picked uniformly at random.
If v ∈ V1, it updates its opinion to red with probability fND(pXND

1 + q XND
2 ), and blue otherwise.

The case of v ∈ V2 is defined similarly. Equivalently, at round k + 1

n

2

(
XND(k + 1)−XND(k)

)
=



(1, 0) w.p.12(1−XND
1 (k))fND(pXND

1 + q XND
2 )

(−1, 0) w.p.12X
ND
2 (k)(1− fND(pXND

1 + q XND
2 )

(0, 1) w.p.12(1−XND
2 (k))fND(q XND

1 + pXND
2 )

(0,−1) w.p.12X
ND
2 (k)(1− fND(q XND

1 + pXND
2 )

0 o.w.

(14)
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In this paper, we will use consensus time to study the interaction between the update function
fND and the network parametersK(n, p, q). The consensus time of a node dynamic, ND(K(n, p, q), fND,X

ND(0)),
is a stopping time when XND is either red or blue consensus. The maximum consensus time
ME(K(n, p, q), fND) is the maximum expected consensus time over any initial configuration.

7.2 Questions and Results

First we note that the process XND is a 1/n-step 2-bounded stochastic process with a function
FND : [0, 1]2 → [0, 1]2

FND(x1, x2) , (fND (p x1 + q x2)− x1, fND (p x2 + q x1)− x2) , (15)

and its mean-field approximation ϕND is

d

dt
ϕND(x, t) = FND (ϕND(x, t)) . (16)

Furthermore, the consensus states (0, 0) and (1, 1) are fixed points of FND when fND is majority-
like.

As a warm-up, we consider the iterative majority dynamics, and the voter model.
For iterative majority, the update function is

fmajority(x) =


1 if x > 1/2;

1/2 if x = 1/2;
0 if x < 1/2.

Thus in addition to the consensus states, (1, 0) and (0, 1) are attracting fixed points of Fmajority.6

Therefore, it is not hard to see the maximum consensus time of iterative majority dynamics is very
large.

Proposition 7.4 (Iterative maority). For all p > 1/2 and n ≥ 2

ME(K(n, p, q), fmajority) =∞.

To show this, suppose the node dynamic starts at (1, 0), XND(0) = (1, 0). By Definition 7.3,
every node never changes its opinion.

On the other hand, for voter model, the update function is

fvoter(x) = x,

and Fvoter(x1, x2) = (q (x2 − x1), q (x1 − x2)) , which suggests the process will converges to the line
x1 = x2. Moreover, by previous results on the voter model, we know the process reaches consensus
in Θ(n2) time. Formally,

Proposition 7.5 (Voter model). For all p < 1, and large enough n,

ME(K(n, p, q), fvoter) = Θ(n2).

Now we consider smooth majority-like function which is in between voter model or iterative
majority. We will use our results in Section 5 to analyze the consensus time of XND in (14).

6Because for all 1− 1/(2p) < x1 ≤ 1 and 0 ≤ x2 < 1/(2p), Fmajority(x1, x2) = (1− x1, −x2), the drift in the first
coordinate is positive and negative in the second coordinate when (x1, x2) is around (1, 0).
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Theorem 7.6 (Smooth majority-like function). Given 1/2 < p < 1 and a smooth majority-like
function fND in Definition 7.2, there are three (or two) constants δ′, δ∗ and δ′′ such that 0 < δ′ <
δ∗ ≤ δ′′ < 1

1. If p− q ∈ (0, δ∗) \ {δ′}, ME(K(n, p, q), fND) = O(n log n).

2. If p− q ∈ (δ∗, 1) \ {δ′′}, ME(K(n, p, q), fND) = exp (Ω(n)) .

The above theorem gives an almost comprehensive characterization of smooth majority-like
dynamics on graphs with different community structure: When the community structure is weak
(p is close to 1/2) the node dynamics reach consensus fast. In contrast, when the community
structure is strong (p is close to 1), there are bad initial configuration such that the node dynamics
cannot reach consensus fast. We exclude these three (or two) points δ′, δ∗ and δ′′ due to technical
reasons. Specifically, if p − q is in those values, some fixed points of FND may not be hyperbolic,
and our analysis in Sections 4 and 5 does not apply.

7.3 Proof outline for Theorem 7.6

To show the consensus time is slow, we only need to find a bad initial configuration such that the
dynamic takes a long time to escape a neighborhood of it. With Propositions 4.7 and 4.8, it is
sufficient to show there is an attracting fixed point other than consensus states (0, 0) and (1, 1).

However, it is much harder to prove the node dynamics can reach consensus fast from all
initial states. Notice that besides the consensus states, there are possibly many fixed points of
FND. For example suppose the process starts at (0.5, 0.5) which is a non-attracting fixed point,
by Theorem 4.3, we may show the node dynamic can escape it in O(n log n). However, what will
happen next? Will it return to (0.5, 0.5) after escaping it? Can it traveling between different
fixed points and never reach the consensus states? To handle these issue, we need to have some
global characterization of the dynamics. A common approach is finding a potential function which
decreases strictly along the trajectory of ϕ. However, it is not easy to find such potential function
for our process, because we do not have an analytic representation of FND. We use an indirect
method to show the existence of a potential function for our process. Specifically, in Theorem 7.7
we first carefully analyze the relationship between fixed points in (1), and using this show the flow
with FND is gradient-like and therefore has a potential function (or a strict complete Lyapunov
function).

Theorem 7.7 (Phase portrait). Given fND and p, q in the Node Dynamics defined in Theorem 7.6,
there exist three constants 0 < δ′ < δ∗ ≤ δ′′ < 1 such that the flow with F̄ND defined in (15) has
three cases:

1. When p − q ∈ (0, δ∗) \ {δ′}, the flow is a gradient-like system, and the consensus states
(0, 0), (1, 1) are the only attracting fixed point.

2. When p− q ∈ (δ∗, 1) \ {δ′′}, FND has an attracting fixed point βa 6= (0, 0), (1, 1).

A more detailed characterization of δ′, δ∗ and δ′′ is in appendix.

In summary, we prove the fast convergence result of the Theorem 7.6 in three parts:

1. We show the flow (16) is a gradient-like system and only the consensus states are attracting
fixed points (Theorem 7.7).

2. We apply Theorem 5.1 to show the process (14) converges to an arbitrary neighborhood of
consensus states in O(n log n) time with high probability.
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3. Finally, after the process (14) reach a small enough neighborhood of consensus states, we
couple the process with birth-and-death process can show the process (14) reach a consensus
state in O(n log n) time with high probability.

We defer the proof to the appendix.

8 Provable and Practical Framework for Non-Convex Problems—
Bounded Stochastic Gradient Descents

Several machine learning and signal processing applications induce optimization problems with
non-convex objective functions. The global optimization of a non-convex objective is an NP-hard
problem in general. As a result, a much sought-after goal in applications with non-convex objectives
is to find a local minimum of the objective function. One main hurdle in achieving local optimality
is the presence of saddle points which can mislead local search methods by stalling their process.

Our analysis in Section 5 can be applied to these problems. Formally, given an objective function
F : Rd → R, a popular heuristic to minimize F is by stochastic gradient descent(s):

x(t+ 1) = x(t)− η∇F (x(t)) +U(t+ 1), (SGD)

which can be seen as an η-step stochastic process with ∇F . (We want to emphasize there are
multiple variants (SGD) with different noise term U .) Stochastic gradient descent is well-studied
when the objective function is convex. In this section, however, we want to study the convergence
property when F is non-convex. In particular, we are interested in the time complexity for step
size η.

Several works design particular stochastic gradient descents (SGD) by adding specific noise U(t)
on the exact gradient at each step and then show they (SGD) escape saddle points and converge
to a local minimal in polynomial time. [31, 39] However, this direction is not practical. In the
typical usage of (SGD), the noise U(t) is not necessary solely from the design of the algorithm
and their analyses do not apply to these (SGD). One prominent example is from the mini-batch
algorithm where the gradient is estimated from batches of training examples (called a ”mini-batch”)
at each step. Here the noise is induced from the partition of the mini-batches. 2) Even if algorithm
designers have the choice to design such (SGD), provable guarantees for escaping saddle points
may not be the most critical aspects of the algorithm design. Therefore, rather than offering a
particular (SGD) with provable guarantees, we provide a framework to design or verify an (SGD)
can escape saddle points and converge to a local minima.

8.1 Bounded stochastic gradient descent algorithm

We now state a general stochastic gradient descent with bounded martingale difference perturba-
tion, and show such processes converge to a local minimal.
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Algorithm 1: Bounded Stochastic Gradient descent Algorithm

Result: Finding a local minimal value
Input : An objective function F : Rd → R, the step length η, the running time T , and the

initial point XSGD(0)
Output: A point x ∈ Rd

1 for t = 0,1,. . . , T do
2 Sample a perturbation U(t+ 1) with properties defined in Theorem 8.1
3 XSGD(t+ 1) = XSGD(t)− η

(
∇F (XSGD(t)) +U(t+ 1)

)
4 end

Using the same argument for Theorem 5.1, we have:

Theorem 8.1 (Bounded Stochastic Gradient Descents). Given a constant d, an objective function
F ∈ C2(Rd,Rd) and ∇2F is Lipschitz, a compact set E ⊂ Rd, and constants D,α > 0, such that

1. F has a constant number of critical points in E, {β ∈ E : ∇F (β) = 0} which are non-
degenerate: ∇2F (β) is invertible.

2. E is positive invariant under the flow with ∇F and the process in Algorithm 1,Pr[∀k ∈
N,XSGD(k) ∈ E |XSGD(0) ∈ E]

3. The perturbation of the process in Algorithm 1 is well-behaved

(a) For all x ∈ E and t, E[U(t+ 1) |XSGD(t) = x] = 0

(b) For all t, ‖U(t+ 1)‖ ≤ D,

(c) For all t, β with ∇F (β) = 0, and x ∈ B(β, ε), α
d Id ≺ Cov[U(t+ 1) |X(t) = x].

There exist T = O
(

log 1/η
η

)
and a constant b > 0 such that for all initial points XSGD(0) ∈ E

‖xT − x∗‖ ≤ bη for some local minimal x∗ with high probability.

8.2 Discussion and Related work

For the time complexity with respect to the step size η, this framework contains several previous
results as special cases, and provides a tighter convergence time upper bound. For example, Ge
et al. [31] propose the following algorithm:

Algorithm 2: Noisy Gradient Descent [31]

Result: Finding a local minimal value
Input : An objective function F : Rd → R, the step length η, the running time T , and the

initial point x1

Output: A point x ∈ Rd

1 for t = 1,2. . . , T do
2 Sample a perturbation U(t+ 1) ∼ Sd−1(a random point on unit sphere)
3 xt+1 = xt − η (∇F (xt) +U(t+ 1))

4 end

They show the convergent time to constant neighborhood of some local minima is O(1/η2)
which is weaker than Theorem 8.1 when the objective function satisfies our condition.

Similarly, Jin et al. [39] proposes a perturbed gradient descent algorithm:
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Algorithm 3: Perturbed Gradient Descent [39]

Result: Finding a local minimal value
Input : An objective function F : Rd → R, the step length η, the running time T , and the

initial point x1

Output: A point x ∈ Rd

1 for t = 1,2. . . do
2 if ‖∇F (xt)‖ is “small” then
3 U(t+ 1) ∼ Sd−1

4 else
5 U(t+ 1) = 0
6 end
7 xt+1 = xt − η (∇F (xt) +U(t+ 1))

8 end

They show the convergent time to a constant neighborhood of some local minimal isO((log 1/η)4/η)
which is weaker than Theorem 8.1 when the objective function satisfies our condition.

Remark 8.2. Here we put some comparison between Theorem 8.1 and previous work.

1. The running time is optimal with respect to step size 1/n, O(n log n).

2. This result applies to a larger family of stochastic gradient descent. Instead of requiring the
perturbation to be independent uniform points in the unit sphere, our result only requires the
noises are bounded martingale and the covariance matrix is positive definite (Theorem 8.1).

3. In gradient flow, the stable and unstable subspace are orthogonal at the saddle point (the
Hessian of the function is symmetric), but it is not true for hyperbolic saddle points of
non-gradient flow. Our result in Theorem 5.1 extends to reinforced random walks with non-
gradient flows.

On the other hand, our result doesn’t handle some aspects in Ge et al. [31], Jin et al. [39]:

1. We consider the step size η is small enough, but do not provide a closed-form upper bound.

2. We hope that our analysis can be extended to the dimension free case, but at the moment it
requires constant fixed dimension.
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Symbols

B Ball in Rd centered at 0. 5, 7, 8, 9, 10, 11, 13, 19, 31, 33, 34, 36, 37, 38, 45, 47

Te the first exit time. 6, 7, 8, 10, 33

Th the hitting time. 6, 10, 11, 36, 45

V A complete Lyapunov function. 5, 11, 37, 38

XND
1 The fraction of red opinions in community 1. 15

XND
2 The fraction of red opinions in community 2. 15

< Real part of a complex number. 4, 5, 6

U noise. 1, 4, 6, 8, 10, 11, 18, 19, 29, 31, 33, 34, 36, 45, 46

X(n,η) Population state of smooth best response dynamics with noise level η. 13

XND The fraction of red opinions in each communities. 15, 16, 45, 46, 47, 48, 49

X 1/n-step stochastic process with f . 1, 4, 6, 7, 8, 9, 10, 11, 19, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 45

β a fixed point. 5, 11, 12, 17, 19, 37, 38, 45

e The standard basis. 13

x a point in X . 1, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 16, 18, 19, 26, 27, 30, 31, 33, 35, 36, 37, 38, 45,
46, 47, 48

N The set of natural numbers, 0, 1, 2, . . .. 4, 6, 8, 11, 19, 29, 30, 47

R>0 The set of positive real numbers. 4, 5, 6, 7, 8, 29, 30

R≥0 The set of nonnegative real numbers. 12, 13

X phase space which is Rd. 3, 4, 5, 6, 7, 10, 26, 27

µs stable. 6, 31, 32, 35, 36

µu unstable. 6, 8, 32, 35, 36

µmax maximum real part. 6, 34, 35

ρ Revision protocol. 13

ϕND the induced flow. 16, 39

ϕ the flow with f . 4, 5, 6, 7, 17, 26, 30, 31, 37

d Dimension of space which is constant. 3, 5, 6, 7, 8, 11, 18, 19, 28, 29, 30, 33, 35

rreg nice radius. 5, 8, 9, 10, 11, 31, 32, 33, 34, 35, 36, 37, 45

θus The principal angle between Eu and Es. 8, 9, 10, 31, 32, 35
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A Primer of dynamical system

In this section, we want to introduce more notions for Proposition A.2 and Corollary A.4 which
provide an indirect method of showing a flow (1) is gradient-like.

A.1 Fundamental theorem of dynamical system

An opposite concept to “recurrence” is transit. How we show all the non recurrent points are
transit? An ideal method is to find a “potential function”, Ψ : X → R of the system such that
Ψ decrease along the trajectory of the system. To state it formally, we need to consider a more
general notion of recurrence than fixed points:

Fixed point A point x ∈ X is a fixed point if Ox = {x} that is f(x) = 0, and we use Fixf to
denote the set of fixed points.

Periodic point A point x ∈ X is a periodic point of the flow induced by f if ∃T ≥ 0 such that
ϕ(x, T ) = x, and we use Perf to denote the set of periodic points.

ω-recurrent For other non-periodic points x ∈, the long term behavior can be characterized as ω-
limit set of x: ω(x) = {y : ∃tl → +∞, liml→∞ ‖ϕ(x, tl)− y‖ = 0}, and we call x ω-recurrent
if x ∈ ω(x) If we change +∞ to −∞ in above definition, it called α-limit set α(x) of x. We
call Lf , ∪x∈Xω(x) ∪ ∪x∈Xα(x) the limit set of f .

Chain recurrent An ε-chain of length T from a point x to y is a sequence of points (x`)0≤`≤n
and a sequence of time (t`)1≤`≤n such that x0 = x, xn = y, and ‖ϕ(xi−1, ti) − xi‖ < ε for
1 ≤ ` ≤ n with t` ≥ 1 and

∑
` t` = T . We define a relation ∼CR on CRf . Similar to ω-limit

we define Ω+(x) = ∩ε>0,T>0{y : ∃an ε, T chain from x to y}, and a point x is said to be
chain recurrent for the flow f if x ∈ Ω+(x). The set of chain recurrent points of f is called
the chain recurrent set of f denoted as CRf . We say x ∼CR y if and only if x ∈ Ω+(y) and
y ∈ Ω+(x).

It is not hard to show
Fixf ⊆ Perf ⊆ Lf ⊆ CRf ⊆ X

.

A.2 Morse-Smale and gradient-like dynamics

Before introducing Morse-Smale, we first define several notions.
Given a hyperbolic fixed point x for a Cr function f , and a neighborhood U of x, the local

stable set/manifold for x in the neighbor U is defined as:

W s
loc(x, U, f) , {y ∈ U : ϕ(y, t) ∈ U,∀t > 0 and d(ϕ(y, t),x)→ 0 as t→∞}

W u
loc(x, U, f) , {y ∈ U : ϕ(y, t) ∈ U,∀t < 0 and d(ϕ(y, t),x)→ 0 as t→ −∞}

Opposite to the notion of tangency, transversality is a geometric notion of the intersection of
manifolds. Let x ∈ X M and N are Cr manifolds in X . M,N are said to be transversal at x if
x 6∈M ∩N ; or if x ∈M ∩N , TxM + TxN = Rd where TxM and TxN denote the tangent space of
M and N respectively at point x. M and N are said to be transversal if they are transversal at
every point x ∈ X .

Definition A.1 (Morse-Smale flow). Let ϕ(·, ·) be a flow on X = Rd. ϕ is called Morse-Smale
flow if there are a constant collection of periodic orbits P1, . . . , Pl such that
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1. Pi is hyperbolic i = 1, . . . , l

2. CRf = Perf

3. WU (Pi) and WS(Pj) are transversal for all 1 ≤ i, j ≤ l.

Furthermore, if the Morse-Smale system does not have cycle, it is further called gradient-like.

Here we give a sufficient condition for gradient-like flow on two dimensional manifolds.

Proposition A.2. Let X = R2 . A vector field with f ∈ C1(R2,R2) is a gradient-like flow if:

1. f has a finite number of fixed points which are all hyperbolic;

2. there are no saddle-connections that is an orbit whose α- and ω -limits are saddle points; and

3. each orbit has a unique fixed point as its α-limit and has a unique fixed point as its ω-limit.

We further call the function f gradient-like.

Let {β1, . . . , βm} = Fixf be the set of fixed point of f , and W s
i and W u

i be the stable and
unstable manifold associated to βi. The Morse-Smale system has the following property.

Lemma A.3. Let f be a Morse-Smale system on X . Let βi � βj mean there is a trajectory not
equal to βi or βj whose α-limit set is βi and whose ω-limit set is βj. Then � satisfies:

anti-reflexive It is never true that βi � βi

partial order if βi � βj and βj � βk then βi � βk

transversal If βi � βj then dimW u
i ≥W u

j

Morse-Smale systems share several properties with gradient fields: no complicated recurrent mo-
tion and existence of “potential function”— Morse function— that is decreasing along trajectories.

Corollary A.4 (Theorem 12 in Akin [2]). If f ∈ C2 is a Morse-Smale system then there exists a
complete Lyapunov function V : X → R such that

1. V ∈ C2 is smooth.

2. LfV (x) < 0 for all non fixed points of f .

B Basic Math

B.1 Markov chain

Let M = (Xt, P ) be a discrete time-homogeneous Markov chain with a finite state space Ω and
transition kernel P . For x, a ∈ Ω, we define T (a;x) to be the hitting time for a with initial state x:

T (a;x) , min{t ≥ 0 : Xt = a,X0 = x},

and T (Q;x) to be the hitting time to a set of state Q ⊆ Ω—T (Q;x) , min{t ≥ 0 : Xt ∈ Q,X0 = x}.
We further use τ(a;x) or τ(Q;x) to denote the expected hitting time for a or Q from x.
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Due to the memoryless property of Markov chains, sometimes it is useful to analyze its first
step. Let’s consider a general measurable function w : Ω→ R. If the Markov chain starts at state
X = x, the next state is the random variable X ′, then the average change of w(X ′) in one transition
step is given by

(Lw)(x) , EM[w(X ′)− w(X)|X = x] =
∑
y∈Ω

Px,yw(y)− w(x)

To reduce notation we will use EM[w(X ′)|X] to denote the expectation of the measurable function
w(X ′) given the previous state at X.

By the Markov property, the expected hitting time τ(Q;x) = EM[T (Q;x)] can be written as
linear equations.

Lτ(Q;x) = −1 where x 6∈ Q
τ(Q;x) = 0 where x ∈ Q

Corollary B.1 (Maximum principle [24]). Given a Markov chain M with state space Ω and a set
of states Q ( Ω, suppose sQ : Ω→ R is a non-negative function satisfying

Ls(Q;x) ≤ −1 where x 6∈ Q,
s(Q;x) ≥ 0 where x ∈ Q.

(17)

Then s(Q;x) ≥ τ(Q;x) for all x 6∈ Q.

B.2 Linear algebra

Corollary B.2 (Theorem 4.3.50 in Horn et al. [38].). Let A ∈ Rd×d with eigenvalues eig(A) =
{λ1, λ2, . . . , λd} with µmin , min<(λi) and µmax , max<(λi). For all v ∈ Rd,

µmin‖v‖2 ≤ v>Av ≤ µmax‖v‖2.

The following lemma is useful to show these two sequences are close to each other.

Lemma B.3 (Discrete Gronwall lemma). Let ak+1 ≤ (1 + 1
nL)ak + b with n > 0, L > 0, b > 0 and

a0 = 0. Then

ak ≤
nb

L

(
exp

(
k

n

)
− 1

)
.

B.3 Martingale and concentration

In this section we will define martingales and some of its properties. Let F = (F(k))k be a
filtration, that is an increasing sequence of σ-field. A sequence Xk is said to be adapted to F(k)
if Xk ∈ F(k) for all k. If Xk is sequence with 1) E|Xk| < ∞, 2) Xk is adapted to F(k), and 3)
E[Xk+1 | F(k)] = Xk for all k, X is saied to be a martingale with respect to F(k).

We call a sequence of events {En}n∈N happens with high probability if Pr[En] = 1 − o(1) as n
increases.

Theorem B.4 (Azuma Inequality). Let (Wk)0≤k≤n be a martingale with ck such that |Wk+1−Wk| ≤
ck. Then,

Pr[Wn ≥W0 + t] ≤ exp

(
− t2

2
∑
c2
k

)
.
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To handle rare bad event, the following theorem is quite useful, and can be proved by using
union bound.

Theorem B.5 (Handling bad events). Let (Wk)0≤k≤n be a martingale which is bounded, m ≤Wn ≤
M . Let B be a (bad) event such that there is a sequence ck such that |E[WT | Fk−1,Wk,¬B]−E[WT |
Fk−1,W

′
k,¬B]| ≤ ck. Then,

Pr[Wn ≥W0 + t+ (M −m) Pr[B]] ≤ exp

(
− 2t2∑

c2
k

)
+ Pr[B].

The following theorem shows this concentration property is dimension free.

Theorem B.6 (Vector-valued martingale [40, 34]). Let (Wk) for k = 1, . . . , n be a vector-valued
martingale with filtration Fk such that E[Wk+1 | Fk] = Wk for all k ≤ n. If sup ‖Wi+1−Wi‖ ≤ ci
for all i. Then,

P [‖Wn − E[Wn]‖ ≥ t] ≤ 20 exp

(
− t2

2
∑

i c
2
i

)
.

The following exponential inequality for maximum of martingales can save an extra union
bound.

Theorem B.7 (Maximum tail [28, 26]). Let W0,W1, . . . be a martingale with ck and D such that
|Wk+1 −Wk| ≤ ck and supk |Wk+1 −Wk| ≤ D. Then, for any t ≥ 0

Pr

[
max
k≤n

Wk ≥W0 + t

]
≤ exp

(
− t2

2
∑
c2
k +Dt

)
.

T is called a stopping time for F if and only if {T = k} ∈ Fk,∀k. Intuitively, this condition
means that the ”decision” of whether to stop at time k must be based only on the information
present at time k, not on any future information.

Theorem B.8 (Optional Stopping theorem). If (Wk) is a martingale with respect to (F(k)) and if T
is a stopping time for (F(k)) such that Wk is bounded, T is bounded, E[T ] <∞, and E[|Wk+1−Wk| |
F(k)] is uniformly bounded, then

E[WT ] = E[W0].

C Proof for Theorem 4.1

Note that this proof is mostly identical to the one in Benäım and Weibull [7].

Proof. Let e(k), for k ∈ N, be the local error of X at time k:

e(k + 1) , n [X(k + 1)−X(k)]− f(X(k)) (18)

Note that

‖e(k + 1)‖ ≤ 1

n
(Bf + ‖U(k + 1)‖) ≤ 1

n
(Bf +D),

so for all θ ∈ Rd, by Cauchy inequality we have

E[exp(〈θ, e(k + 1)〉)]) | F(k)] ≤ exp

(
1

n
‖θ‖ · (Bf +D)

)
. (19)
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Now we extend the domain of e and X to R>0 and define ē : R>0 → Rd and X̄ : R>0 → Rd such
that for κ ∈ R>0 ē(κ) = e(bκc) which is a right-continuous step function and define X̄ likewise.
By (2) and (18), we have for all k ∈ N

X(k)−X(0) =

k−1∑
l=0

(X(l + 1)−X(l)) =
1

n

k−1∑
l=0

(f(X(l)) + e(l)) =
1

n

∫ k

0

(
f(X̄(`)) + e(`)

)
d`,

and κ ∈ R>0

X̄(κ)− X̄(0) =
1

n

∫ κ

0
(f(X(`)) + e(`)) d`,

On the other hand, by the Equation (1)

ϕ(x, κ/n)− ϕ(x, 0) =

∫ κ/n

0
f(ϕ(x, `)) d` =

1

n

∫ κ

0
f (ϕ(x, `/n)) d`.

Taking the difference between above equations, we have

‖ϕ(x, κ/n)−X(κ)‖∞ =
1

n

∥∥∥∥∫ κ

0
f(ϕ(x, `/n))− f(X(`))− e(`) d`

∥∥∥∥
∞

Let Ψ(C) , 1
n maxk≤Cn

∥∥∑
i<k e(i)

∥∥
∞. Hence

‖ϕ(x, κ/n)−X(κ)‖∞ ≤
1

n

∥∥∥∥∫ κ

0
f(ϕ(x, `/n))− f(X(`)) d`

∥∥∥∥
∞

+ Ψ(C)

≤
Lf
n

∫ κ

0
‖ϕ(x, `/n)−X(`)‖∞ d`+ Ψ(C) (Lf -Lipschitz)

≤Ψ(C) exp

(
Lfκ

n

)
. (by Gronwall’s inequality)

Therefore

Pr

[
max
k≤Cn

‖X(k)− ϕ(x, k/n)‖∞ > ε |X(0) = x

]
≤ Pr [Ψ(C) > ε exp (−LfC)] , (20)

and it suffices to upper bound the probability on the right-hand side. Let

Zθ(0) = 1, and Zθ(k) , exp

(
1

n

k−1∑
l=0

〈θ, e(l)〉 − 1

n2
k‖θ‖2(Bf +D)

)
when k ≥ 1

By Equation (19), (Zθ(k))k∈N is a non-negative supermartingale. Thus, for all ε > 0 and θ ∈ Rd

Pr

[
1

n
max
k≤nC

〈
θ,

k−1∑
l=0

e(l)

〉
≥ ε

]

≤Pr

[
max
k≤nC

Zθ(k) ≥ exp

(
ε− 1

n2
nC‖θ‖2(Bf +D)

)]
≤ E [Zθ(0)]

exp
(
ε− 1

nC‖θ‖2(Bf +D)
) (Doob’s supermartingale inequality)

= exp

(
1

n
C‖θ‖2(Bf +D)− ε

)
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Now we are ready to bound Ψ(C). Let e1, . . . , em be the canonical basis of Rd. Because given a
vector v ∈ Rd, its infinity norm is ‖v‖∞ = |maxi≤m vi‖ = maxi {〈ei,v〉,−〈ei,v〉}. Hence, we can

take ε = 2ε2n
Bf+D , and set θ be 2εn

Bf+Dei for some i. Then

Pr

[
1

n
max
k≤nC

〈
ei,

k−1∑
l=0

e(l)

〉
≥ ε

]
= Pr

[
1

n
max
k≤nC

〈
θ,

k−1∑
l=0

e(l)

〉
≥ ε

]
≤ exp

(
−2ε2n

C(Bf +D)

)
,

Therefore taking union bound on all θ = 2εn
Bf+Dei and −2εn

Bf+Dei for all i, and we have

Pr [Ψ(C) ≥ ε] ≤ 2d exp

(
−2ε2n

C(Bf +D)

)
.

By by inequality (20), we have

Pr

[
max
k≤Cn

‖X(k)− ϕ(x, k/n)‖∞ > ε |X(0) = x

]
≤ 2d exp

(
−

2 exp (−2LfC)

C(Bf +D)
· ε2n

)
which completes the proof.

D Proofs for Sect. 4.2

Proof of Lemma 4.4. This is proved by using the optional stopping time theorem. Given X(0) ∈
B(0, rreg), let T0 be the stopping time such that ‖Xu(T0)‖ ≥ 8‖Xs(T0)‖ or ‖X(T0)‖ ≤ l1 sin θus.

We consider the following random variables W s(k) ,
(
1− µs

2n

)−k ‖Xs(k)‖2. Suppose W s(k) is a
super martingale and rreg < sin θus, and by optional stopping time theorem B.8 and (5),

E[W s(T0)] ≤W s(0) = ‖Xs(0)‖2 ≤
(

rreg

sin θus

)2

≤ 1. (21)

Let τ0 = (2n log n)/µs Therefore we can upper bound Pr[T0 > τ0] as follows:

E[W s(T0)] =E
[(

1− µs
2n

)−T0
‖Xs(T0)‖2

]
≥
(

1− µs
2n

)−τ0
E[‖Xs(T0)‖ | T0 > τ0] Pr[T0 > τ0]

≥nl21 Pr[T0 > τ0] ( ‖X(T0)‖ ≥ l1 sin θus)

≥(log n)2/3

4
Pr[T0 > τ0]

Therefore combining the equation (21) and the above, we have

Pr[T0 ≤ (2n log n)/µs] = o(1).

Now, let’s use induction to show W s(k) is a supermartingale before the stopping time T0. Let
Ds(k) , n (Xs(k + 1)−Xs(k)), and

(
1− µs

2n

)k+1
E[W s(k + 1) | F(k)] = E

[∥∥∥∥Xs(k) +
1

n
(Ds(k))

∥∥∥∥2

| F(k)

]
.
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Let L(r) = maxx∈B(0,r) ‖Ax‖+ maxx∈B(0,r) ‖R(x)‖+ max ‖U‖ which is a constant depends on r.
We can translate the 2 norm into inner product, and have(

1− µs
2n

)k+1
E[W s(k + 1) | F(k)]

≤‖Xs(k)‖2 +
1

n
E [〈Xs(k),Ds(k)〉 | F(k)] +

L(rreg)

n2
(by (7))

≤‖Xs(k)‖2 +
1

n

(
Xs(k)>AXs(k) +

H

sin θus
‖X(k)‖3

)
+
L(rreg)

n2
(by (6) and (5))

≤
(

1− µs
n

)
‖Xs(k)‖2 +

H

n sin θus
‖X(k)‖3 +

L(rreg)

n2
(by Corollary B.2)

Because X(k)‖ ≥ l1 sin θus/2 = ω(1/
√
n), if rreg is small enough and n large enough, we have

H‖X(k)‖3/ sin θus + L(rreg)/n ≤ µs‖Xs(k)‖2/2, and(
1− µs

2n

)k+1
E[W s(k + 1) | F(k)] ≤

(
1− µs

2n

)
‖Xs(k)‖2 =

(
1− µs

2n

)k+1
W s(k).

This completes the proof.

Proof of Lemma 4.5. Note that if the process is in the phase 1 then ‖X(0)‖ ≤ l1/ sin θus.
Set τ1 = n log n). Let T1 be the stopping time that ‖X(T1)‖ ≥ 4l2/ sin θus. We first show

the expectation of T1 is much smaller than τ1. Then we show the stable component ‖Xs(k)‖ is
smaller than l2 for all k ≤ τ1. By union bound on these two event, we show with high probability
there exists T1 ≤ τ1 such that ‖Xu(T1)‖ is larger than 3l2 and ‖Xs(T1)‖ is smaller than l2. This
completes the proof.

By (5), to lower bound ‖X‖ it is sufficient to lower bound the magnitude of unstable component,
‖Xu‖. Let aunoise , α

2d Tr((P u)>P u) > 0 and W u(k) , ‖Xu(k)‖2 − aunoisek/n
2. If W u(k) is a

submartingale, by optional stopping theorem (Theorem B.8) E[W u(T1) | F(0)] ≥ E[W u(0)] ≥ 0
and

E[‖Xu(T1)‖2] ≥ aunoise

E[T1]

n2
. (22)

Therefore by (5) and (22),

E[T1] ≤ n2

aunoise

E[‖Xu(T1)‖2] ≤ (n sin θus)
2

aunoise

E[‖X(T1)‖2] ≤ (4nl2)2

aunoise

= O(n log2/3 n).

By Markov inequality Pr[T1 ≤ τ1] = 1− 1/(log n)1/3 = 1− o(1).
Now, let’s show W u(k) is a submartingale with respect to F(k) before stopping time T1. Let

Du(k) ,Xu(k + 1)−Xu(k).

E[W u(k + 1) | F(k)] =E
[
‖Xu(k + 1)‖2 − aunoise

n2
(k + 1) | F(k)

]
=E [〈Xu(k) +Du(k),Xu(k) +Du(k)〉 | F(k)]− aunoise

n2
(k + 1)

=W u(k) + 2E [〈Xu(k),Du(k)〉 | F(k)] + E [〈Du(k),Du(k)〉 | F(k)]− aunoise

n2
.

Thus, it is sufficient to show the following two claims:

2E [〈Xu(k),Du(k)〉|F(k)] +
aunoise

n2
≥ 0 (23)

E [〈Du(k),Du(k)〉|F(k)]− 2aunoise

n2
≥ 0 (24)
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For (23), we need to use the fact that A is expanding is subspace of Eu before stopping time,

2E [〈Xu(k),Du(k)〉|F(k)] +
aunoise

n2

=
2

n
〈Xu(k), AXu(k) +Ru(X(k))〉+

aunoise

n2

≥ 2

n

(
µu‖Xu(k)‖2 − ‖X(k)‖3/ sin θus

)
+
aunoise

n2
(by Corollary B.2)

>
1

n
O(‖X(k)‖3) +

aunoise

n2
≥ 0. ( ‖X(k)‖ = O(l1) and n large enough)

For (23), we use the variance of U is bounded below by some constant

E [〈Du(k),Du(k)〉|F(k)]

=
1

n2
‖AXu(k) +Ru(X(k))‖2 +

1

n2
E
[
‖Uu(k)‖2

]
≥ 1

n2
E
[
‖Uu(k)‖2

]
≥ 1

n2

α

d
Tr((P u)>P u) =

2

n2
aunoise (by Lemma D.1 and definition of aunoise)

For the second part, we can use similar argument in Lemma 4.4 and union bound to show it’s true
with high probability.

Lemma D.1 (projected noise). Given matrices P, S ∈ Rd×d, constants 0 < α, and a d-dimensional
random vector X ∈ Rd, if P is not the zero matrix, S is positive definite matrix with α

d Id ≺ S, and
E[X] = 0, Cov[X] = S,

0 <
α

d
Tr(P>P ) < E

[
‖PX‖2

]
.

Proof. First we observe that

E
[
‖PX‖2

]
=E

[
Tr
(
X>P>PX

)]
=E

[
Tr
(
P>PXX>

)]
= Tr

(
P>PE

[
XX>

])
(linearity of trace)

= Tr
(
P>PS

)
> 0

The last ineqality holds because S is positive definite and P>P is positive semi-definite and not
the zero matrix. With this inequality we have

E
[
‖PX‖2

]
− α

d
Tr(P>P ) = Tr

(
P>PS

)
− α

d
Tr(P>P ) = Tr

(
P>P

(
S − α

d
Id
))

> 0.

The last one is true, since S − α
d Id is positive definite.

Proof of Lemma 4.6. Let τj = Cjn for some Cj and rreg small enough such that B(0,
√
rreg) ∈ E.

Let Tj be the exit time, Tj = Te
(
B(0,

√
rreg)

)
given X(0) = x in the phase j defined in the

statement. Here we abuse the notation and define X(k) as a new process by Equation (7) and
couple it with the original process until Tj . Therefore, the lemma can be proved with the following
are three equations:
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1. With very high probability the stopping time Tj is greater than τj ,

Pr[Tj > τj ] = 1− o(1/ log n); (25)

2. The expectation at time τj , E[X(τj)], is nice,

‖E[Xs(τj)]‖ ≤ lj/16 and 4lj ≤ ‖E[Xu(τj)]‖; and (26)

3. X(τj) is concentrated

Pr [lj+1 ≥ 8‖Xs(τj)‖ and ‖Xu(τj)‖ > lj+1] = 1− o(1/ log n). (27)

Before proving these, let’s do some computation to gain some intuition. To compute the E[X(τj)]
suppose Tj > τj we can use the linear function AX(k) to approximate f(X(k)) for all k ≤ τj and
tower property of expectation:

E[X(k + 1)] =E[E[X(k + 1) | F(k)]]

=E
[
E
[
X(k) +

1

n
(AX(k) +R(X(k)) +U(k)) | F(k)

]]
(by Equation (7))

=

(
1 +

1

n
A

)
E [X(k)] +

1

n
[R(X(k))] .

For each k, let

e(k) ,

∥∥∥∥∥E[X(k)]−
(

1 +
1

n
A

)k
X(0)

∥∥∥∥∥
which is the 2-norm error between E[X(k)] and

(
1 + 1

nA
)k
X(0) By triangle inequality, e(k+ 1) ≤(

1 + σmax(A)
n

)
e(k)+ 1

n‖E[R(X(k))]‖ where σmax(A) is the induced norm of A. Additionally by (6),

‖E[R(X(k))]‖ ≤ E[‖R(X(k))‖] ≤ H · ‖X(k)‖2 for all X(k) ∈ B(0,
√
rreg) ⊆ E.

Therefore with Gronwall theorem, we can bound e(k) as

e(τj) ≤ σmax(A)−1H ·max
k
‖X(k)‖2 exp (τj/n)− 1 ≤ σmax(A)−1HeCj ·max

k
‖X(k)‖2 (28)

Therefore, suppose the norm ‖X(k)‖2 are small for all 0 ≤ k < τj , the value E[X(τj)] can be
approximated by the linear term,

(
1 + 1

nA
)τj X(0). Specifically, we want to show for all constant

ε > 0,
max

0≤k<τj
‖X(k)‖2 ≤ ε‖X(0)‖ (29)

which implies ∥∥∥∥∥E[X(k)]−
(

1 +
1

n
A

)k
X(0)

∥∥∥∥∥ ≤ σmax(A)−1HeCj ε. (30)

Equation (25): We define Wk ,
(

1 + 2µmax

n

)−k
‖X(k)‖2 where µmax is the maximum real part of

eigenvalues of A. By Corollary B.2 and similar argument in Lemma 4.4, Wk is a supermartingale
such that E[Wk+1 | F(k)] ≤Wk.
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Let’s apply Theorem B.7 on (Wk). Because for all k ≤ Cjn |‖X(k + 1)‖2 − ‖X(k)‖2| = O
(

1
n

)
uniformly. By Theorem B.7, we let D = O(1/n), ck = |Wk+1 −Wk| = O

((
1 + 2µmax

n

)−k
1
n

)
,∑

c2
i = O

(
1
n

)
, and δ = (logn)1/4√

n
, so we have

Pr

[
max
k≤τj

Wk ≥W0 + δ

]
≤ exp

(
− δ2

2
∑

k≤τj c
2
k +Dδ

)
= exp

(
−Ω

(√
log n

))
.

Let E be the good event that maxk≤τj Wk < W0 + δ. Note that condition on E , with probability
Pr[E ] = 1− exp

(
−Ω

(√
log n

))
we have Equation (29) for all 0 ≤ k ≤ τj

‖X(k)‖2 ≤
(

1 +
2µmax(A)

n

)k (
‖X(0)‖2 + δ

)
≤ 2‖X(0)‖ exp (2σmax(A)Cj) · ‖X(0)‖. (31)

Given ε, Cj , µmax(A) > 0, we can take rreg small enough such that ‖X(0)‖ ≤ rreg/ sin θus is small
and proves Equation (25).

Equation (26) and (30): Now we are ready to prove the first part. By Equation (28) and
(31), let E be the event defined in (29) we have for arbitrary small ε > 0 as n large enough and ε
small enough ∥∥∥∥E[X(τj)]−

(
1 +

1

n
A

)τj
X(0)

∥∥∥∥
≤ HeCj

σmax(A)
max ‖X(k)‖ (by (28))

≤ HεeCj

σmax(A)
‖X(0)‖Pr[E ] +O(Pr[¬E ]) (X(τj) ∈ E which is bounded)

≤εlj . (by (29))

This proves inequality (30). As a result, for the unstable component and stable component we have

‖E[Xu(τj)]‖ ≥
(

1 +
µu
n

)τj
‖Xu(0)‖ − ε

sin θus
lj ≥

(
eµuCj +

ε

sin θus

)
lj

‖E[Xs(τj)]‖ ≤
(

1− µs
n

)τj
‖Xs(0)‖+

ε

sin θus
lj ≤

(
e−µsCj

8
+

ε

sin θus

)
lj .

This proves Equation (26) by taking Cj large enough and ε small enough.
Equation (27): We define a vector-valued Doob martingale,

Yk = Yk(X(0), . . . ,X(k)) = E[X(τj)|X(0), . . . ,X(k)] ∈ Rd. (32)

and prove Equation (27) by using concentration property of vector-valued martingale Yk (Theo-
rem B.6 and B.5). With good event E , we want to bound {ck}0≤k≤τj the “variability” of each
variable X(0), . . . ,X(τj) on the martingale Yk condition on this good event defined in (32),

ck = sup
{∥∥E[X(τj)|F(k − 1),X(k) = x, E ]− E[X(τj)|F(k − 1),X(k) = x′, E ]

∥∥} .
Equivalently, ck is the 2-norm error with initial difference at step k be ‖x−x′‖ = O(1/n). Formally
by (26) and E , we have ck = O(1/n) for all k ≤ τj and

∑τj
k=0 c

2
k = O(1/n). By concentration

property of vector-valued martingale Yk (Theorem B.6), for any constant D′ > 0

Pr

[
‖X(τj)− E[X(τj)]‖ ≥

lj
16D′

]
≤ O

(
exp

(
−Ω(nl2j )

))
+ Pr[¬E ] = exp

(
−Ω

(√
log n

))
(33)
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Therefore, by Equations (26), and (33), with probability 1 − exp
(
−Ω

(√
log n

))
= 1 − o(1/ log n)

we have,

‖Xu(τj)‖ ≥‖E[Xu(τj)]‖ −
lj

16D′
≥
(

4− 1

16D′

)
lj ≥ 2lj = lj+1.

This the last inequality can be true by first take D′ large, C large. The stable component can be
upper bounded as follows

‖Xs(τj)‖ ≤‖E[Xs(τj)]‖+
lj

16D′
≤
(

1

2
+

1

2D′

)
lj
8
≤ 1

8
lj ≤

1

8
lj+1.

which proves Equation (27).

E Proofs in Section 4.3

Proof for Proposition 4.7. The proof is basically identical to Lemma 4.4. This is proved by using
optional stopping time theorem. Given X(0) ∈ B(0, bnrreg), let Ta , Th

(
B
(
0, bn

))
be the hitting

time to the set B
(
0, bn

)
. Since 0 is an attracting fixed point, there is µu > 0. We consider the

following random variables W (k) ,
(
1− µs

2n

)−k ‖X(k)‖2. Suppose W (k) is a super martingale and
rreg < 1. By optional stopping time theorem B.8, E[W (Ta)] ≤W (0) ≤ 1.

Let τa = (6n log n)/µs Therefore we can upper bound Pr[Ta > τa] as follows:

E[W (Ta)] =E
[(

1− µs
2n

)−Ta
‖X(Ta)‖2

]
≥
(

1− µs
2n

)−τ0
E[‖Xs(T0)‖ | T0 > τ0] Pr[T0 > τ0]

≥n3

(
b

n

)2

Pr[Ta > τa]

Therefore combining these two inequalities, we have

Pr[T0 ≤ (6n log n)/µs] = o(1/n).

Now, let’s use induction to show W (k) is a supermartingale before the stopping time Ta:(
1− µs

2n

)k+1
E[W (k + 1) | F(k)] = E

[∥∥∥∥X(k) +
1

n
(AX(k) +R(X(k)) +U(k + 1))

∥∥∥∥2

| F(k)

]
.

Let L(r) = maxx∈B(0,r) ‖Ax‖+ maxx∈B(0,r) ‖R(x)‖+ max ‖U‖ which is a constant depends on r.
We can translate the 2 norm into inner product, and have(

1− µs
2n

)k+1
E[W (k + 1) | F(k)]

≤‖X(k)‖2 +
1

n
E [〈X(k), AX(k) +R(X(k)) +U(k + 1)〉 | F(k)] +

L(rreg)

n2
(by (7))

≤
(

1− µs
n

)
‖X(k)‖2 +H‖X(k)‖3 +

L(rreg)

n2

Because for all k < Ta, X(k)‖ ≥ b/n, if rreg is small enough, b is large enough, and n large enough,
we have H‖X(k)‖3 + L(rreg)/n ≤ µs‖X(k)‖2/2, and(

1− µs
2n

)k+1
E[W (k + 1) | F(k)] ≤

(
1− µs

2n

)
‖X(k)‖2 =

(
1− µs

2n

)k+1
W (k).

This completes the proof.
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Proof of Proposition 4.8. The proof is quite straightforward. To the end, we want to show there
exists a constant rreg > 0 such that it is very hard to escape Qo , B(0, 2rreg) from Qi , B(0, rreg).
The proof follows with the following three observations: 1) Because the step size is bounded by
O(1/n) it takes at least cn for some constant c to escape. 2) There is a (local) potential function
that decreases by Θ(1/n) in each step in Qo \Qi. 3) Combining the above two, to escape Qo there
is a time interval with length at least cn such that the deviation from expectation is Ω(1) which
finishes the proof by Azuma’s inequality.

The first part is trivial because f ∈ C1 and Qo is bounded.
For the second part, because 0 is an attracting fixed point, all the eigenvalues of A , ∇f(0)

have negative real part, and it is called a stable matrix (or sometimes Hurwitz matrix), and by
Lyapunov theorem there exists a positive definite matrix P such that PA+A>P = −Id. We define
V (x) , x>Px. Let L(r) = σmax(A)(H + maxx∈B(0,r) ‖Ax‖+ maxx∈B(0,r) ‖R(x)‖+D) which is a
constant depending r.

Let rreg be a positive constant which will be specified later. For all X(k) ∈ Qo we have

E[V (X(k + 1)) | F(k)] = ≤ V (X(k)) +
1

n
X(k)>(PA+A>P )X(k) +

L(4rreg)

n
‖X(k)‖3

≤V (X(k))− 1

n
‖X(k)‖2 +

L(4rreg)

n
‖X(k)‖3 (PA+A>P = −Id)

Therefore the value V (Xk) is a super martingale and there exists rreg > 0 such that

E[V (X(k + 1)) | F(k)]− V (X(k)) ≤ −rreg/(2n)

for all X(k) ∈ Qo \Qi. Furthermore, because P is positive definite the potential value has constant
separation: there exists a constant h > 0 such that

h < min{V (x) : x /∈ Qo} −max{V (x) : x ∈ Qi}.

Finally, suppose there exists 0 ≤ l ≤ T is the exit time such thatX(l) /∈ Qo. BecauseX(0) ∈ Qi,
there exists an interval of time from k to l such that X(k) ∈ Qi, Xl /∈ Qo and X` ∈ Qo \Qi for all
k < ` < l, we define this event as El which happens with probability

Pr[X(l) /∈ Qo |X(0) ∈ Qi] ≤ Pr[El] ≤ exp(−Ω(n))

by Azuma’s inequality. The proof is finished by taking union bound on l ≤ T .

F Proofs for Section 5

Proof of Lemma 5.2. Since (1) is a gradient-like system and V is a complete Lyapunov function,
for all x we know there exists a fixed point βi ∈ Fixf such that lim inft→∞ ‖ϕ(x, t)− βi‖ = 0 and
V (βi) ≤ V (x). Therefore, given ri > 0 a neighborhood of βi, B(βi, ri), there is a constant t such
that ϕ(x, t) ∈ B(βi, ri).

Moreover by Theorem 4.1, X converges to B(βi, 2ri) in O(n) steps with high probability, and
we finish the proof.

The proof of Lemma 5.3 has two parts: we first show the process is constant away from the
fixed point βi within time T1 = O(n log n) with high probability in Theorem 4.3, and we use the
property of complete Lyapunov function, and show the value of V (XT1) is not much bigger than
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V (βi). In the second part, we run the process for extra T2 = O(n) steps. Because the process is far
from fixed point, the decrease rate of V is large and V (XT1+T2) is constantly smaller than V (βi).

To define this two parts formally, We first define several neighborhoods of βi: Ni ⊂ B(βi, r/2) ⊂
B(βi, 3r/4) ⊂ B(βi, r) where B(βi, r) is the open ball with radius βi and centered at βi.

Lemma 5.3 keeps track of the process when it enter the region Ni and stop after leaving B(βi, r).
Taking r small enough such that B̄(βi, r) only has a single fixed point βi. Because the complete
Lyapunov function V ∈ C1 and LfV (x) < 0 for all x ∈ B̄(βi, r) \ B(βi, r/2) which is a compact
set, there exists κ > 0 such that

∀x ∈ B̄(βi, r) \B(βi, r/2), LfV (x) < −κ. (34)

Fixing r with κ, because f is smooth, there exists D′ such that D′ = max ‖f(x)‖ + D for all
x ∈ B̄(βi, r) which is an upper bound for the movement of the process in B̄(βi, r). Finally we can
take Ni small enough such that

∀x ∈ Ni, ‖V (x)− V (βi)‖ ≤
κr

32D′
. (35)

Proof of Lemma 5.3. Suppose the process starting in ∈ Ni. Let V (k) , V (X(k)), by Equa-
tion (35),

V (0) ≤ V (βi) +
κr

32D′

By Theorem 4.3, we know there exists some r such that in T1 = O(n log n) steps the process starting
at Ni leaves βi: XT1 ∈ B(βi, 3r/4) \B(βi, r/2) with high probability .

Because by direct computation the value of complete Lyapunov function V is a almost a su-
permartingale , E[V (Xk+1)] ≤ V (X(k)) +O

(
1
n2

)
, by Azuma’s inequality(Theorem B.4), with high

probability,

V (T1) ≤ V (0) +
κr

32D′
≤ V (βi) +

κr

16D′
.

By Equation (34), LfV (x) ≤ −κ for all x ∈ B̄(βi, r) \B(βi, r/2), we run the process for additional
T2 = rn

4D′ steps then

V (T1 + T2) =V (T1) +

T1+T2∑
k=T1

V (k + 1)− V (k)

=V (T1) +

T1+T2∑
k=T1

(
d

dt
V (X(k)) +O(

1

n2
)

)
1

n

≤V (T1) +

T1+T2∑
k=T1

(
−κ+O(

1

n2
)

)
1

n

≤V (T1)− κr

4D′
+O

(
1

n2

)
≤V (βi)−

κr

8D′

which shows the process leaves the neighborhood Ni in O(n log n/ρ) time with high probability.
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G Phase portrait: Theorem 7.7

In this section, we prove Theorem 7.7 (which will follow immediately from Theorem G.1), by
analyzing the fixed points of the function FND defined in (15) and apply Proposition A.2 and
Corollary A.4. We can classify the fixed points into three types: symmetric, anti-symmetric and
eccentric. Lemma G.2 characterizes the property of symmetric fixed points; Lemma G.3, anti-
symmetric fixed points; and Lemma G.4, eccentric fixed points. The following section introduces
the symmetry property of the flow on FND and Theorem G.1 is proved in the next one.

G.1 Setup and examples

The fixed points of the system xND are the zeroes of FND which can be parameterized by δ , p− q:

0 = fND (p x1 + q x2)− x1,

0 = fND (p x2 + q x1)− x2.
(36)

Denote the solutions of equation (36) as

γ1 =
{

(x
(1)
1 , x

(1)
2 ) ∈ [0, 1]2 : x

(1)
1 = fND

(
p x

(1)
1 + q x

(1)
2

)}
γ2 =

{
(x

(2)
1 , x

(2)
2 ) ∈ [0, 1]2 : x

(2)
2 = fND

(
p x

(2)
2 + q x

(2)
1

)}. (37)

Note that the system of Equation 36 is symmetric with respect to two axes x1 = x2 and
x1 + x2 = 1, so we define four disjoint regions of [0, 1]2 :

R1 ={(x1, x2) ∈ [0, 1]2 : x1 < x2 and x1 + x2 < 1},
R2 ={(x1, x2) ∈ [0, 1]2 : x1 < x2 and x1 + x2 > 1},
R3 ={(x1, x2) ∈ [0, 1]2 : x1 > x2 and x1 + x2 < 1}, and

R4 ={(x1, x2) ∈ [0, 1]2 : x1 > x2 and x1 + x2 < 1}.

With this symmetric property, we classify the fixed points of (36) into three types:

• symmetric fixed points: (x
(s)
1 , x

(s)
2 ) such x

(s)
1 = x

(s)
2 ,

• anti-symmetric fixed points:(x
(a)
1 , x

(a)
2 ) such x

(a)
1 + x

(a)
2 = 1,

• eccentric fixed points:(x
(e)
1 , x

(e)
2 ) such x

(e)
1 + x

(e)
2 > 1 and x

(e)
1 < x

(e)
2 .

Figure 3 shows some examples of a dynamic with different p, q.
To consider the dynamic ϕND as a flow, there is a caveat: the function FND only has domain

in [0, 1]2 instead of R2, and the set [0, 1]2 is not invariant since the xND(t) leaves [0, 1] if we reverse
the time t. Fortunately, it’s not hard to extend the domain of FND without changing the structure:
let m1 = limx→1− f

′
ND(x) and m0 = limx→0+ f

′
ND(x)

f̄ND(x) =


m1x if x < 0

fND(x) if x ∈ [0, 1]

m1(x− 1) + 1 if x > 1

.

We can have F̄ND by using f̄ND in (15) instead of fND.7

7To make f̄ND ∈ C2(R,R), we can consider ε > 0 and set f ′′(x) = 0 if x < −ε and set the intermediate value in
[−ε, 0] smoothly. Then we have an C2 function moreover it can be arbitrary close to the above definition if we take ε
small enough.
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(a) p− q < δsymm (b) δsymm < p− q < δecce (c) δecce < p− q < δanti (d) δanti < p− q

Figure 3: In Theorem G.1 there are three critical values δsymm, δecce and δanti. In the case (a), the
difference p− q is smaller than δsymm = 1/f ′ND(1/2), and there are only three fixed points
characterized in Lemma G.3. In case (b), the p− q is bigger such that there are two extra saddle
anti-symmetric fixed points. For some specific update function fND there is case (c) such that
there are two extra eccentric fixed points but the antisymmetric fixed points are saddle which is
discussed in Lemma G.4. Finally in case (d), the p− q is big enough such that the antisymmetric
fixed points become attracting which is characterized in Lemma G.3.

G.2 Proof of Theorem 7.7

The following theorem is a detailed characterization of the flow xND with FND, and Theorem 7.7 is
an corollary of it. In the first case, we take (δ′, δ∗, δ′′) = (δsymm, δecce, δanti) and (δsymm, δanti, δanti)
in the second case.

Theorem G.1 (Phase portrait). Fix the flow xND with p, q and F̄ND defined in (15), depending
on the property of fND there are two situations

1. If there exists δe such that equation (36) with pe = (1 + δe)/2 has an eccentric fixed point

(x
(e)
1 , x

(e)
2 ) where x

(e)
1 +x

(e)
2 > 1 and x

(e)
1 < x

(e)
2 there are three constants δsymm < δecce < δanti

where δanti = 1/f ′ND(1/2) is defined in Lemma G.2 and δanti is defined in Lemma G.3 and
δecce defined in Lemma G.4 such that there are three cases:

(a) When p− q < δsymm, there are only three fixed points (0, 0), (0.5, 0.5), (1, 1). The system
is a gradient-like system, and the consensus states (0, 0), (1, 1) are the only attracting
fixed point.

(b) When δanti < p − q < δecce, there are five fixed points, (0, 0), (0.5, 0.5), (1, 1) and two
anti-symmetric saddle points. The system is a gradient-like system and the consensus
states (0, 0), (1, 1) are the only attracting fixed point.

(c) When δecce < p − q < δanti or δanti < p − q, there exists an attracting fixed point
β 6= (0, 0), (1, 1).

2. Otherwise, there are two constants δsymm < δanti where δsymm = 1/f ′ND(1/2) is defined in
Lemma G.2 and δanti is defined in Lemma G.3 such that the following three cases:

(a) When p− q < δsymm, there are only three fixed points (0, 0), (0.5, 0.5), (1, 1). The system
is a gradient-like system, and the consensus states (0, 0), (1, 1) are the only attracting
fixed point.

(b) When δsymm < p − q < δanti, there are five fixed points, (0, 0), (0.5, 0.5), (1, 1) and two
anti-symmetric saddle points. The system is a gradient-like system and the consensus
states (0, 0), (1, 1) are the only attracting fixed point.
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(c) When δanti < p− q, there exists an attracting fixed point β 6= (0, 0), (1, 1).

We will use two lemmas to proof Theorem G.1.

Lemma G.2 (symmetric fixed points). Given FND with p, q and fND, let 0 < δsymm , 1/f ′ND(1/2).
There are three symmetric fixed points: (0, 0), (1, 1) are attracting points, and (0.5, 0.5) which is
a saddle point if (p − q) < δsymm and a repelling point when (p − q) > δsymm. Moreover, when
(p− q) < δsymm, the system in (36) only has the above three fixed points.

Lemma G.3 (anti-symmetric fixed points). Given FND with p, q and fND and δsymm in Lemma G.2,
there exists δanti > δsymm such that there are two cases for the anti-symmetric fixed points in
Equation (36) depending on the value of p− q:

saddle If δsymm < p− q < δanti, there are anti-symmetric fixed points which are saddle.

attracting If δanti < p− q, there are anti-symmetric fixed points which are stable.

With Lemma G.3, one might guess the systems only have consensus as stable fixed points when
p− q < δanti, and have two extra stable fixed points when p− q > δanti. However, as p− q increases
there is some fND such that the system has extra stable eccentric fixed points before the anti-
symmetric fixed points become stable, e.g. Figure 3. Though we can use simulation to estimate
the phase space, the following lemma shows: Given fND suppose there exists δe < δanti such that
the system with δe = pe − qe in Equation (36) has an eccentric fixed point. Then there exists
δecce < δanti such that for all p′e such that δecce < p′e − q′e < δanti the system (36) has attracting
eccentric stable fixed points fixed points. By symmetry, we only state the result in R2.

Lemma G.4 (eccentric fixed points). Given FND with p, q, fND, δsymm and δanti in Lemma G.2,
G.3, if there exists δe < δanti such that equation (36) with pe = (1 + δe)/2 has an eccentric fixed

point (x
(e)
1 , x

(e)
2 ) ∈ R2, then for all δe < δ′e < δanti the system in (36) with p′e has an eccentric fixed

point (x
(e)′

1 , x
(e)′

2 ) ∈ R2 which is a stable fixed point.
We call δecce = min{δe} which is the smallest δe such that the there exists a eccentric fixed point

and anti-symmetric saddle points.

Now we are ready to prove Theorem G.1.

Proof of Theorem G.1. The main statement of theorem is proved by Lemma G.3 and G.4. Now
we prove the case 1 and 2 are indeed gradient-like. Because it’s only a two dimensional system, by
Proposition A.2, we only need to show 1) the system only have constant hyperbolic fixed points,
2) there is no saddle connections 3) there is no cycle.

For the first case, by Lemma G.3, the system have constant hyperbolic fixed points and no saddle
connections. By symmetric and positive invariant property of [0, 1]2, suppose there is cycle in the
system, it should contained in one of the triangles, R1, R2, R3 or R4. However, it is impossible,
since there is no fixed point within those four region.

For the second case, by Lemma G.3 and G.4, the system only have 5 fixed points. Secondly,
the saddle point have stable subspace in {(x1, x2) : x1 + x2 = 1}, so there is no saddle connection.
No limit cycle argument is similar to the first case.

G.3 Proofs for Lemmas for Phase Portrait

Proof of Lemma G.2. We first show there is no fixed point outside [0, 1]2, that is the curve γ1 and
γ2 do not have intersection outside.
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Let (x1, x2) ∈ γ1 ∩ γ2. When m0 = f ′ND(0) = 0, if p x1 + q x2 ≤ 0 or p x2 + q x1 ≤ by the
definition of f̄ND and γ1, (x1, x2) = (0, 0). On the other hand, when m0 = f ′ND(0) > 0, f̄ND is
monotone, the above solution curve can be rewritten with respect to

g(z) ,
1

q

(
f−1

ND(z)− pz
)

(38)

γ1 =
{

(x1, x2) ∈ [0, 1]2 : x2 = g(x1)
}

γ2 =
{

(x1, x2) ∈ [0, 1]2 : x1 = g(x2)
} (39)

For x1 < 0, because (x1, x2) ∈ γ1, x2 < x1, and because (x1, x2) ∈ γ2, x2 > x1. Therefore there is
no fixed point out side [0, 1]2.

If δsymm = 1/f ′ND(1/2), we want to show (0, 0), (1, 1) and (0.5, 0.5) are the only intersections
between γ1 and γ2 in [0, 1]2 which by symmetry is enough to show the curve γ1 is in R1 ∪ R3 ∪
{(0, 0), (1, 1), (0.5, 0.5)}. By Definition 7.2, fND(0) = 0, fND(1/2) = 1/2, and fND is strictly convex
in [0.0.5], g(0) = 0, g(0.5) = 0.5, and g is strictly concave in [0, 0.5], so for all x1 ∈ (0, 0.5),

g(x1) = g

(
(1− 2x1) · 0 + 2x1 ·

1

2

)
>

(
(1− 2x1) · g(0) + 2x1 · g

(
1

2

))
= x1, (40)

and we show γ1 is above x1 = x2.
On the other hand, since g is strictly concave and C2 in [0, 0.5], g′(x1) > g′(0.5), and g′(0.5) =

1
q

(
1

f ′(0.5) − p
)
> −1, since p− q < δsymm = 1/f ′ND(0.5). Thus we have

g(x1) = g(0.5) +

∫ x1

0.5
g′(s) ds = 0.5−

∫ 0.5

x1

g′(s) ds < 0.5 + (0.5− x1),

and show
g(x1) + x1 < 1. (41)

Combining equations (40) and (41) we prove the number of fixed points is exactly 3.
For the property of these three fixed points for all p and q. By Definition 3.2 it is sufficient to

study the linear approximation of the dynamics at these points:

∇F̄ND|(x1,x2)=

[
−1 + pf̄ ′ND (p x1 + q x2) qf̄ ′ND (p x1 + q x2)
qf̄ ′ND (q x1 + p x2) −1 + pf̄ ′ND (q x1 + p x2)

]
(42)

When (x1, x2) = (0, 0), ∇F̄ND|(0,0)=

[
−1 + pf̄ ′ND(0) qf̄ ′ND(0)
qf̄ ′ND(0) −1 + pf̄ ′ND(0)

]
has trace 2(pf̄ ′ND(0)− 1) and

determinant ((p − q)f̄ ′ND(0) − 1)(f̄ ′ND(0) − 1). Thus ∇F̄ND|(0,0) has two negative real eigenvalues
since f ′ND(0) < 1.

Similarly there are two cases for the fixed point (0.5, 0.5): if 1 < f ′ND(0.5) < 1/(p − q), the
determinant is negative ((p− q)f̄ ′ND(0)− 1)(f̄ ′ND(0)− 1) < 0, so (0.5, 0.5) is a saddle point. On the
other hand if f ′ND(0.5) > 1/(p− q), (0.5, 0.5) is a repelling point.

Proof of Lemma G.3. We first show the number of anti-symmetric fixed points is two, than analyze
the property of those fixed points.

Because p − q > δsymm, we have g′(0.5) = 1
q

(
1

f ′(0.5) − p
)
< −1, so the curve γ1 overlaps with

R2. Therefore there exists a non-symmetric intersection between γ1 and the line x1 + x2 = 1,
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(x
(a)
1 , x

(a)
2 ) with x

(a)
1 6= x

(a)
2 which is also in the intersection of γ1 and γ2 due to the symmetry.

x
(a)
1 = f̄ND

(
p x

(a)
1 + q x

(a)
2

)
x

(a)
2 = f̄ND

(
p x

(a)
2 + q x

(a)
1

)
1 = x

(a)
1 + x

(a)
2 and x

(a)
1 < x

(a)
2

(43)

Because f is convex in [0, 0.5], the system only has two anti-symmetric fixed points (x
(a)
1 , x

(a)
2 ) and

(1− x(a)
1 , 1− x(a)

2 ).

Now we want to show the property of these fixed points. Let δ = p− q and s(a) = p x
(a)
1 + q x

(a)
2

and t(a) = p x
(a)
2 + q x

(a)
1 . Rearrange the above equations we have,

1 =fND(s(a)) + fND(t(a)) (44)

p+ q

p− q
=
fND(s(a))− fND(t(a))

s(a) − t(a)
(45)

1 =s(a) + t(a) and s(a) > t(a) (46)

Because 1 = x
(a)
1 + x

(a)
2 and the symmetry of fND, we have f̄ ′ND

(
s(a)
)

= f̄ ′ND

(
t(a)
)

and call it

m(a)(δ). By Equation (45) and the convexity of fND, as δ increases, the derivative at s(a), m(a)(δ),
decreases. By the monotone property, there exists δanti > δsymm such that m(a)(δ) < 1 for all
δ = p− q < δanti, and m(a)(δ) > 1 for all δ < δanti.

Using Equation (42) the matrix ∇F̄ND|(x(a)1 ,x
(a)
2 )

has the trace 2(pm(a)(δ)− 1) and the determi-

nant ((p− q)m(a)(δ)− 1)(m(a)(δ)− 1), so

attracting Both eigenvalues are negative, when m(a)(δ) < 1.

saddle One positive and negative eigenvalues, when 1
p−q < m(a)(δ) < 1.

Note it is impossible that 1
p−q > m(a)(δ); otherwise, g′(x

(a)
1 ) < −1 and implies there are more than

two anti-symmetric fixed points contradicting the property of fND.

Proof of Lemma G.4. Let (x
(a)
1 , x

(a)
2 ) be the anti-symmetric fixed point defined in (43). Given pe, qe

and δe < δanti, let (x
(e)
1 , x

(e)
2 ) ∈ R2 be the eccentric fixed point such that x

(e)
1 is the smallest value

that greater than x
(a)
1 .

We first characterize the local behavior of (x
(e)
1 , x

(e)
2 ). Because fND is a C2 function by im-

plicit function theorem, we can parametrize curves (37) as (x
(1)
1 , x

(1)
2 ) and (x

(2)
1 , x

(2)
2 ) of γ1, and γ2

respectively. Given δe < δanti, by Lemma G.3 (x
(a)
1 , x

(a)
2 ) is a saddle point,

m(a)(δe) =
dx

(1)
2

dx
(1)
1

∣∣∣∣
(x

(a)
1 ,x

(a)
2 )

< 1 <
dx

(2)
2

dx
(2)
1

∣∣∣∣
(x

(a)
1 ,x

(a)
2 )

=
1

m(a)(δe)
.

By convexity of fND and definition of (x
(e)
1 , x

(e)
2 ) we have

dx
(2)
2

dx
(2)
1

∣∣∣∣
(x

(e)
1 ,x

(e)
2 )

≤ dx
(1)
2

dx
(1)
1

∣∣∣∣
(x

(e)
1 ,x

(e)
2 )

< m(a)(δe) < 1 (47)
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Let I ⊆ (δe, δanti) be the set of δ such that the system (39) has eccentric fixed points. We want
to show the system has an eccentric fixed point when δ is between δe and δanti— I = (δe, δanti).
Since (δe, δanti) is connected, it is sufficient to show the set I is relative open and closed. By the
continuity of system (39), we know the set I is closed. To show I is open, without loss of generality,

we show there is a neighborhood of δe contained in I. Given (x
(e)
1 , x

(e)
2 ) with δe, fixing x1 = x

(e)
1 ,

let’s consider and the movement of x
(1)
2 (δ) and x

(2)
2 (δ) as δ changes around δe where x

(1)
2 (δ) (and

x
(2)
2 (δ)) is the highest intersection between x1 = x

(e)
1 and γ1 (γ2 respectively).

d

dδ

(
x

(1)
2 − x

(2)
2

)
> 0. (48)

Informally, by Equation (39), as δ changes, the curve γ1 is stretched vertically (x2 direction) and the
movement is proportional to the change rate of δ. On the other hand, γ2 is stretched horizontally
(x1 direction), and by Equation (47) the slope is smaller than 1, so the vertically increment rate is

smaller than the rate of δ. Therefore the x
(1)
2 (δ) should increase faster than x

(2)
2 (δ) in x2. Now let

give a formal argument. Through direct computation on Equation (39),

dx
(1)
2

dδ
=

1

2(1− δ)
(x

(1)
2 − x

(1)
1 ) =

1

2(1− δ)
(x

(e)
2 − x

(e)
1 ).

Similarly, (
1 +

1

1− δ

(
1

f ′ND(f−1
ND(x

(e)
2 ))

− 1

))
dx

(2)
2

dδ
=

1

2(1− δ)
(x

(e)
2 − x

(e)
1 )

Therefore, to prove Equation (48), it is sufficient to show(
1 +

1

1− δ

(
1

f ′ND(f−1
ND(x

(e)
2 ))

− 1

))
> 1. (49)

This can be proved by taking derivative at Equation (39) with respect to x
(2)
1 and applying Equa-

tion (47),

1 =

(
1 +

1

1− δ

(
1

f ′ND(f−1
ND(x

(e)
2 ))

− 1

))
dx

(2)
2

dx
(2)
1

<

(
1 +

1

1− δ

(
1

f ′ND(f−1
ND(x

(e)
2 ))

− 1

))
.

Now, let’s prove the eccentric fixed point is stable. Note that by (47) and (48), for all δ > δe,

0 <
dx

(2)
2

dx
(2)
1

∣∣∣∣
(x

(e)
1 ,x

(e)
2 )

<
dx

(1)
2

dx
(1)
1

∣∣∣∣
(x

(e)
1 ,x

(e)
2 )

< 1. (50)

Rewrite the above inequality in terms of fND we have,

1 >
1

1− δ

(
1

f ′ND(f−1
ND(x

(e)
1 ))

− δ

)
>

[
1

1− δ

(
1

f ′ND(f−1
ND(x

(e)
2 ))

− δ

)]−1

> 0.

By Equation (42), the matrix ∇F̄ND|(x(e)1 ,x
(e)
2 )

is[
−1 + pf̄ ′ND(f−1

ND(x
(e)
1 )) qf̄ ′ND(f−1

ND(x
(e)
1 ))

qf̄ ′ND(f−1
ND(x

(e)
2 )) −1 + pf̄ ′ND(f−1

ND(x
(e)
2 ))

]
.

44



The trace is negative, because f ′ND(f−1
ND(x

(e)
1 )) < 1 and f ′ND(f−1

ND(x
(e)
2 )) < 1/δ. The determinant is

positive, because

(
1

f ′ND(f−1
ND(x

(e)
1 ))
− δ
)
·
(

1

f ′ND(f−1
ND(x

(e)
2 ))
− δ
)
> (1− δ)2. Therefore, the (x

(e)
1 , x

(e)
2 ) is

a stable fixed point.

H Proof for Theorem 7.6

To prove the first part, our proof has two steps: Let E = [0, 1]2 given r > 0 a neighborhood of
consensus states Q(r) = (B(0, r)∪B(1, r))∩E, the Markov chain XND reaches Q(r) in O(n log n)
with high probability, and it hits the consensus states in O(n log n) with constant probability
when Q(r) small enough. The first one is proved in Lemma H.1 and the second part is proved in
Lemma H.3.

Lemma H.1 (Reaching neighborhood Q). In case 1 of Theorem 7.6, given any r > 0 and Q(r) =
(B(0, r)∪B(1, r))∩E (we omit r later), there is τQ = O(n log n) such that the hitting time of XND

to set Q(r) from any initial states is smaller than τQ with high probability

Pr[Th(Q(r)) ≤ τQ |X(0) ∈ E] = 1− o(1).

Proof of Lemma H.1. With Theorem 7.7, and 5.1, XND reaches a fixed neighborhood of consensus
states (0, 0), (1, 1), Q in O(n log n) with high probability if the noise is well-behaved:

∃α > 0,∀x ∈ E \Q(r), αId ≺ Cov[U(k + 1) |XND(k) = x]. (51)

which is proved in Lemma H.2.

Lemma H.2 (Well-behaved noise). Given XND defined in (2), there exist α, for all x ∈ E \Q(r),
and k

αId ≺ Cov[U(k + 1) |XND(k) = x].

Lemma H.3 (Reaching consensus). In the first case of Theorem 7.6, let C = {(0, 0), (1, 1)} be the
set of consensus states. There exist τC = O(n log n), and rreg > 0, such that for all x ∈ Q(rreg)

Pr[Th(C) ≤ τC ] ≥ 1/6.

With above lemmas, we are ready to prove the Theorem 7.6

Proof of Theorem 7.6. For the first part, let rreg > 0 be defined in Lemma H.3, by Lemma H.1
XND reaches, Q(rreg) in τQ = O(n log n) with high probability. By Lemma H.3, the process further
hits consensus states C in τC = O(n log n) with probability at least 1/7. Therefore

Pr[Th(C) ≤ τC + τQ |XND(0) ∈ E] ≥ 1/7. (52)

Because the XND is a Markov chain bounds are independent of different time intervals with
length τC + τQ, so ME(K(n, p, q), fND) = O(n log n).

For the second part, by Theorem 7.7 there is an extra attracting fixed point βa of F̄ND. By
Proposition 4.8, there exists neighborhoods of βa, rin and rout such that for any σ0 with XND(0) ∈
B(βa, rin) and T ≥ 1, we have Pr[XT ∈ B(βa, rout)] ≥ 1 − T exp(−Ω(n)). Therefore, with initial

state XND(0) = βa

Pr[Th(C) ≥ k |XND(0) = βa] ≥ Pr[XND(k) ∈ B(βa, rout) |XND(0) = βa] ≥ 1− k exp(−Ω(n))
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Because the hitting time is a non-negative random variable

E[Th(C) |XND(0) = βa] =
∑
k

Pr[Th(C) ≥ k] ≥
∑
k

1− k exp(−Ω(n)) = exp(Ω(n)).

Proof of Lemma H.2. Since XND is a Markov chain, given XND(k) = x = (x1, x2) ∈ ΩX \ Q,
the difference to be Y , n(XND(k + 1) − XND(k)) which is independent to the index k, and
Y = (Y1, Y2) ∈ {(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)} only have these five possible outcomes, and we
can compute these directly:

p+
1 (x) ,Pr[Y = (1, 0) |X = x] =

1− x1

2
fND(px1 + qx2),

p−1 (x) ,Pr[Y = (−1, 0) |X = x] =
x1

2
(1− fND(px1 + qx2)) ,

p+
2 (x) ,Pr[Y = (0, 1) |X = x] =

1− x2

2
(fND(qx1 + px2)) ,

p−2 (x) ,Pr[Y = (0,−1) |X = x] =
x1

2
(1− fND(qx1 + px2)) .

We omit x when it is clear. We define U(x) be the noise U(1) condition on XND(0) = x which is
well-define because XND is a Markov chain. By the definition of U(x) and Y ,

Cov[U(x)] = Cov[Y |X = x] =

[
p+

1 + p−1 − (p+
1 − p

−
1 )2 −(p+

1 − p
−
1 )(p+

2 − p
−
2 )

−(p+
1 − p

−
1 )(p+

2 − p
−
2 ) p+

2 + p−2 − (p+
2 − p

−
2 )2

]
.

Let S1 = p+
1 +p−1 , S2 = p+

2 +p−2 , D1 = p+
1 −p

−
1 , and D2 = p+

2 −p
−
2 , and Cov[U(x)] can be simplified

as,

Cov[U(x)] =

[
S1 −D2

1 −D1D2

−D1D2 S2 −D2
2

]
. (53)

Because Cov[U(x)] is symmetric, the eigenvalues are real. By Gershgorin circle theorem and (53),
the eigenvalues are upper bounded by

max
{
S1 −D2

1 + |D1D2|, S2 −D2
2 + |D1D2|

}
≤ 1,

and lower bounded by

min
{
S1 −D2

1 − |D1D2|, S2 −D2
2 − |D1D2|

}
, (54)

so to find d1 it is sufficient to lower bound Equation (54).
By the definition of Q(r), there exists constant r > 0 such that 1-norm balls {U(x) ∈ E :

‖x‖1 ≤ r} and {U(x) ∈ E : ‖x − (1, 1)‖1 ≤ r} are insides Q(r). Thus, if (x1, x2) ∈ E \ Q(r),
px1 + qx2, qx1 + b̄x2 are in [qr, p(1− r)], so

0 < fND(qr) ≤ fND(px1 + qx2) and fND(qx1 + px2) ≤ fND(p(1− r)) < 1 (55)

As a result, p+
1 , p

−
1 , p

+
2 and p−2 are smaller or equal to 1

2fND(p(1−r)), and |D1|, |D2| ≤ 1
2fND(p(1−r)).

Moreover,

(53) ≥min {S1 − fND(p(1− r))|D1|, S2 − fND(p(1− r))|D2|}
≥(1− fND(p(1− r))) min {S1, S2} .
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Because S1 = p+
1 + p−1 is a convex combination of fND(px1 + qx2)/2 and (1 − fND(px1 + qx2))/2,

and S2 = p+
2 + p−2 is a convex combination of fND(qx1 + px2)/2 and (1 − fND(qx1 + px2))/2, by

(55), min{S1, S2} ≥ 1
2 min{fND(qr), 1− fND(p(1− r))},

(53) ≥ (1− fND(p(1− r))) · 1

2
min{fND(qr), 1− fND(p(1− r))} > 0

Therefore, we can take 0 < α < 1
2(1 − fND(p(1 − r))) · min{fND(qr), 1 − fND(p(1 − r))} which

completes the proof.

Proof of Lemma H.4. Let ψ(k) =
∑

1≤`≤k d` and ψ(0) = 0. By direct computation, for all 0 < k <
m

Lψ(k) =p+(k) (ψ(k + 1)− ψ(k))− p−(k) (ψ(k)− ψ(k − 1))

=p+(k)dk+1 − p−(k)dk (definition of ψ)

≤− 1 (definition of dk)

Finally, Lψ(m) = −p−(k) (ψ(k)− ψ(k − 1))−p−(k)dk ≤ −1. Therefore ψ(m) is a upper bound for
the maximum expected hitting time by Corollary B.1.

H.1 From neighborhood of attracting fixed points to fixed points

In this section, we want to prove Lemma H.3: once the process XND hits the set Q defined in
Lemma H.1 process reaches consensus states with constant probability within O(n log n) time. We
achieve this by coupling the process with a birth-and-death chain. In Lemma H.4, we give a simple
upper bound for hitting time of birth-and-death chain. In Lemma H.5, a uniform bound for (56)
is given for our process.

Lemma H.4 (Hitting time of birth-and-death chains). Let discrete time Markov chain Wk be a
birth-and-death chain on space Ω = {0, 1, . . . ,m} such that in each transition the state can increase
or decrease by at most 1 where

Pr[W ′ = W + 1 |W = `] = p+(`)
Pr[W ′ = W |W = `] = 1− p+(`)− p−(`)
Pr[W ′ = W − 1 |W = `] = p−(`)

Let d1, . . . , dm be a positive sequence such that

dm ≥
1

p−(m)
and dl−1 ≥

1

p−(`− 1)
+

(
p+(`+ 1)

p−(`− 1)

)
dl (56)

Then the maximum expected hitting time from state ` to 0 can be bounded as follows:

max
`∈Ω

E[T0(x)] ≤
∑

0<`≤m
d`

where T0(x) denotes the hitting time from state x to state 0.

To simplify the notions we use X to represent XND(k) and X ′ = XND(k+ 1) where the index
does not mater because it is a Markov chain. We also apply this notion to other Markov chains.
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Lemma H.5. Let h(x) , n(x1 + x2)/2. There exist positive constants α, γ and ε, such that for
all x with h(x) ≤ εn,

Pr
[
h(X ′) = h(X)− 1 |X = x

]
≥ γh(x)/n, (57)

and
Pr [h(X ′) = h(X) + 1]

Pr [h(X ′) = h(X)− 1]
≤ 1− α. (58)

Proof of Lemma H.3. Without loss of generality, we consider x ∈ B(0, ε). Let V (k) = h(XND(k))
is a stochastic process on N and the process XND reaches (0, 0) if and only h(XND) = 0. We define
m0(ε) = max{h(x) : x ∈ B(0, ε)} = Θ(n).

To show the process hits (0, 0) in O(n log n) with probability 1/6, the proof has two steps: we
first upper bound the expected optional stopping time, T = min{k : V (k) = 0 ∨ V (k) ≥ 2m0},

E[T ] = τ ′ = O(n log n) (59)

Then show
Pr[V (T ) = 0] ≥ Pr[V (T ) ≥ 2m0(ε)] (60)

With the above two equations, we have

Pr[T ≤ 3τ ′] ≥Pr[T ≤ 3τ ′ ∧ V (T ) = 0]

≥1− Pr[V (T ) 6= 0]− Pr[T ≥ 3τ ′] (union bound)

≥1/2− 1/3 = 1/6 (by Markov inequality and (60))

Now let’s prove the Equation (59) and (60). For Equation (59) we couple the process V (k) with
a birth-and-death chain W (k) as follows: W (k) is a Markov chain on space {0, 1, . . . , 2m0}, one
step the state can increase or decrease by at most 1 such that for all 0 < ` < 2m0

Pr[W ′ = W + 1 |W = `] = maxx:h(x)=` Pr[V ′ = V + 1 | V = h(x)]

Pr[W ′ = W − 1 |W = `] = minx:h(x)=` Pr[V ′ = V − 1 | V = h(x)]
(61)

recalled that we use W ′ to denote state of single transition of a discrete time Markov chain starting
at W . For the boundary states 0 and 2m0, we set Pr[W ′ = W + 1 | W = 2m0] = 0 and
Pr[W ′ = W − 1 |W = 0] = 0.

By Lemma H.5 and H.4, the expected hitting time of W to state 0 is upper bounded by∑
`≤2m0

d` where d` is defined in Lemma H.4. By Lemma H.5, we can set d2m0 = n
γ2m0

= O(1),

for all 1 ≤ ` < 2m0, d` = 1
γ` + (1− α)d`+1. By induction there exists C such that d` ≤ Cn

` for all
1 ≤ ` ≤ 2m0. Therefore

E[min{k : W (k) = 0}] ≤
∑

d` = O(n log n).

By the definition of W (k), we can couple these two process V (k) and W (k) before the process
hits the boundary such that W (k) ≥ V (k) for all k ≤ τ . Therefore, we can upper bound E[τ ] ≤
E[min{k : W (k) = 0}] = O(n log n).

Finally Equation (60) is true, because V (k) is a supermartingale, E[V (k+ 1) |XND(k)] ≤ V (k)
by Lemma H.5.

Proof of Lemma H.5. This Lemma shows if the fraction of opinion 1 in V1 and V2 is smaller than
α, the number of 1 opinion decrease fast. Given configuration XND(k), let ak, bk be the number
of 1 opinion in V1, V2 at time k. Note that the update function fND is smooth and strictly concave
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in [0.5, 1] and fND(1) = 1, fND(0.5) = 0.5, there exists m1 such that f ′ND(1) < m1 < 1 and for all
0 < 1− x < ε

fND(x) ≤ 1 +m1(x− 1). (62)

Similarly there exists m0 such that f ′ND(0) < m0 < 1 and for all 0 < x < ε

fND(x) ≥ m0x. (63)

Let V (k) = h(XND(k)). We first prove (57). The event that V (k + 1) = V (k) − 1 is equal at
time k + 1 a node with opinion 1 is chosen and updates its opinion to 0,

Pr[V (k + 1) = V (k)− 1 |XND(k)]

=
ak
n

Pr[v1 ∈ V1 updates to 0] +
bk
n

Pr[v2 ∈ V2 updates to 0]

=
ak
n

(
1− fND

(
p

2ak
n

+ q
2bk
n

))
+
bk
n

(
1− fND

(
q

2ak
n

+ p
2bk
n

))
≥ak
n
m1

(
1− p2ak

n
− q2bk

n

)
+
bk
n
m1

(
1− q2ak

n
− p2bk

n

)
(by (62))

≥ak + bk
n

m0 (1− 2ε)

≥m1

2n
(ak + bk) =

m1

2
V (k)/n (if ε smaller than 1/4)

Therefore this proves (57) by taking 0 < γ < m1
2

For the (58), with (57), it is sufficient to show there exists δ such that Pr [V (k + 1) = V (k)− 1]
minus Pr [V (k + 1) = V (k) + 1] is greater than δV (k)/n. This can be done by computation

Pr [V (k + 1) = V (k)− 1]− Pr [V (k + 1) = V (k) + 1]

=E[V (k + 1)]− V (k)

=E[ak+1 + bk+1]− ak − bk
=fND(pak/n+ qbk/n) + fND(qak/n+ pbk/n)

≥m0(pak/n+ qbk/n) +m0(qak/n+ pbk/n) (by (63))

≥m0(ak/n+ bk/n) = m0V (k)/n

, and these complete the proof for (58).
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