Chapter 1

Democracy, Real Work, and Falling in Love With the Net

Eric S. Rabkin
University of Michigan

In my life as an English professor, there are a thousand reasons that computer technology is important now, in 2005. I use computers for word processing, archival research, data collection and analysis, materials preparation, and online communication with my students and colleagues. I teach and develop computer applications, deal with information technology in administrative roles, and write about the impact of computers on education and on the broader society. My longest-running field of scholarly focus is science fiction, the field notes from our technological future. I think these are all satisfying, involving, and self-justifying activities. It would be small wonder if someone chose to work him- or herself into a professional life that allowed him or her to make a living—and a contribution—by pursuing them. But if I squint back into my own past in a certain way—struck light, I see this all beginning not with computers, of course, but with my family, with the life of an immigrant community in the heart of the world, and, as such, it may sound, with a romance with democracy.

I was born in 1946, just after the war, and grew up in New York City. My family lived in Queens until I was nearly seven, then we moved to Brooklyn. My father, may he rest in peace, died in 1990. His parents, who came from Russia, met each other and bore and raised their children in this country. My father is buried near his parents on Long Island. My mother, whose parents also met on these shores, even now lives in that same Brooklyn apartment she shared with my father, my sister, and me. This heritage of migration, adaptation, and commitment to others as individuals and finally in communities has, for me, much to do with the mechanisms of my work today.
Most of us do not define our work by our relationships with people, but rather by instrumentalities or symbols. I am an orthopedic surgeon; or I am a stockbroker; or I am a student, someone may say, indicating instrumentality, the functional material that person performs. "I play trumpet," or "I teach science fiction," another may say, indicating the instrument, the matter held in the hand and mind as the work proceeds. Viewed from a certain angle, this depersonalization of work is sad, and may even be destructive. Saying "I teach science fiction" suggests something quite different from saying "I teach college students." Saying "I write books" is not at all the same as saying "I write to educate people" or "I write to amuse people." Why do we let people fall out of our consciousness? Perhaps because they are objects, like art. Who wants their ghosts, or heroes, "a breather"? For most of us, it usually goes without saying, the world is foremost the habitation we share with the rest of humanity, so that, paradoxically, we can and do take the human world for granted. Instead of focusing on people, we focus on the functions and tools by which we work in that world, the institutions and instruments. These, being more conspicuous to us, become objects of terror (The Breath, anxiety, pollution) or delight.

Everyone, I think, knows what it means to love a tool. A tool is a tool for transporting people and things, as well as a tool for reduction and for learning freedom. "America's love affair with the automobile" becomes no less true for 1970-nation. But the thrill of acquiring that shiny package of potential merely magnifies the late-August gloom we felt as school children acquiring new three-ring binders, a bright plastic pencil sharpener, a perfectly pristine pink eraser. In college I bought books at the beginning of each semester, lined them up on a cleared-out shelf, and stood back, contemplating their colorful spines, smelling their new-bookiness, and anticipating reading that would last hours and hours and hours. Computers are such tools. They evaporate distance, enable romance, and put freedom into the hands of anyone who can reach the public keyboard in a library. They alone our symbols—words and numbers, yes, but also sounds and images—and enable us to create these symbols, and to change them. When we acquire a new computer, we contemplate its thugginess, much its surfaces, and anticipate our immersion into the endless worlds it opens. I do not wonder that so many people have come to computers. I have. But when I first came to computers, they were already things in the service of people. The first time I used computers in teaching, it was to fulfill a request from a student that we extend the boundaries of our lecture course through a voluntary online discussion. That was in 1973, a long time ago. But the mechanism of digital communication captivated me well before I became a professor.

For a long while, starting in the fourth grade and lasting until he went away to college, my best friend was Jerry Ellenberg, a fellow two years ahead of me in school, and equally in love with things. When we were children, Jerry lived in my apartment building. I was in 4E; he was in 4F. That meant that he lived two floors down and one apartment over. Those were the days when every home had a telephone—one heavy, black telephone—and you did not use it casually. So Jerry and I went to the hardware store with our saved-up allowances, and bought ourselves little lights and toggle switches and screws and "broad boards" to attach them to, and batteries and wire, lots of wire, enough wire to run out my bedroom window, down the fire escape past our unsuspecting fifth- and fourth-floor neighbors, and over into Jerry's bedroom window. We didn't know Morse code so we invented our own. We used light flashes to call each other's silent attention, so as not to alert our parents. We checked on each other's presence, on whether we wanted to get together, on where to meet. We didn't know to call this "instant messaging." We did know that it connected us and made our world better. On a sunny day, we could agree to meet in the playground, perhaps to play handball. On a rainy day, we could agree to meet on the leading by the roof exit, perhaps to play chess. On any day, we could agree to visit each other and work on making model cars by cutting cardboard parts with Exacto knives, gluing the parts, painting the result, sharing the experience of construction. Any day or night we could correct that little light could flash at any time. It was very good to know.

We did not build that telegraph because some teacher told us to; we built it because we wanted to. That telegraph was no empty exercise; it functioned in our world. I did not know it then, but the pleasure that telegraph awakened was pleasurable that would become, years later, part of my daily professional life.

In the old model professorate, a literary scholar, alone and armed with but a bright idea and a willingness to explore, strikes into an imposing library, wanders the stacks, roots boodless of sunrises and sunsets in a tiny carrel, and emerges, years later, a few hairs gray. Stalking in the unaccommodating sunshine, to discover the nearest post office, manuscript shorn tightly under an awning, hoping for publication. It was a solitary life, but valuable. It produced great books and sustained—cathedola—worthy lives. But it was essentially pre-television. There is another way. Our telegraph was not created alone, like the manuscript, but as an act of collabora- tion. We created our code not in the hope that it would matter to someone, but in the knowledge that it mattered to both of us, writers and readers. We used that tele- graph not because we had to, but because it was part of our world. We used it when our parents allowed it and when they did not. The lessons here are simple: Collaboration energizes engagement, technology empowers collaboration, horizontal net- works underwrite vertical authority, and real work is better than homework. Computers do all that and more, every day, willy-nilly, regardless of whether we think about them. They enable collaboration that energizes engagement, they empower their users, they make connections and organize communities and labor that no controlling authority may have intended or foreseen, and they allow the performance of real work. Put another way, inexpensive networked computer tech- nology fosters democracy. Given my heritage, of course, I love it.
True, any technology, like the cliché sword, is two-edged. In the hands of the re-
ner, Viet Cong, eyes, a bike became a key logistic weapon of war. But the tendency of the bicycle is to offer healthy exercise, exhilarating trans-
portation, and individual empowerment, all with comparatively little cost to the en-
vironment. The computer can be used for data-mining that allows the invasion of privacy and for data-management that allows central control and command. Yet the computer can only perform those functions if enabled and supported by a social structure. It is to be noted that it can thrive in computer networks only if access to them is artificially limited, the flows of information re-
stricted, and the rights of individuals by set mechanisms that are not intrinsic to the computer. On its own, like the bicycle and our youthful telegraph, the tendency of electronic networking is to stimulate us, carry us, and empower us, all with com-
paratively little cost to the environment. The more ends users and the more open the network, the greater the tendency to flatten the social structure, to share know-
ledge, experience, authority, and work. On their days off, urban people with bicy-
cles can escape the city for the refreshment of the countryside, and rural people with bi-
cycles can escape the city for the sophistication of the city. In any spare moments off, anyone with a computer and a network connection can escape time and place to find the refreshment and sophistication offered virtually anywhere the human mind has roamed.

All of which I came to understand explicitly only years later. But I believe, with our telegraph, I felt the gathering force of that understanding even in the fourth grade.

Jerry and I both went to "science" high schools, special academies maintained by the New York City Public Schools for those who could pass the entrance exams. Jerry went to Brooklyn Tech; I went to Stuyvesant. To me, the idea of traveling to Manhattan every day on the subway was liberating.

The apparently odd fact is not that I, a professor of English, went to a science high school, but that I, who went to a science high school actually took some graduate courses in physics while still an undergraduate, ever became a professor of English. I was much more involved with things than with symbols as a young child, but perhaps that is true of all children. We all play with our toys and bat at our covers before we utter a word. Still, we do call out even in the first moments of our lives, uttering sounds that foretell symbols, cries that foretell communication. I’m not sure what comes first for human beings, things or symbols, but I do know when I began my pursuit of science.

I remember my first "experiment" vividly. I was four. This experiment hap-
pended in the kitchen of my father’s apartment in Brooklyn. I had found an old, ripped-out electrical cord from a clothes iron. Not only can I still picture sit-
ting cross-legged on Grandma’s yellow linoleum floor, cord across my lap, but I can feel the heavy cord in my hands, wrapped in a lanyard pattern of mostly black material with some white threading through it; I hear one thump as the rubbery, black industrial plug hits the floor; I can almost taste the copper at the frayed end of the cord, with its shredded cloth insulation and tangle of protruding wires; the whole grown-up albeit tattered apparatus rests in my hands and across my lap. Some-
one—probably my father—had given me what you might call the hydraulic model of electricity: a current flows out of one of the two data in a wall outlet, down one of the two wires in a cord, runs through some device like a lamp or a radio, makes the device work, and then flows back through the other wire and into the other side. What would happen, I wondered, if there were no device between the arcing and the leaving wires, if there were nothing to retard the flow? My infatible knowledge of physics did not yet comprehend the power unleashed by removing resistance. But I did know that electricity was dangerous. It was as if I held a dormant snake. I de-
cided to find out for myself.

Fortunately, the marginal triumph of self-preservation over reckless curiosity led me to a survivable protocol. Being careful to keep the cord unplugged, I skimmed back the insulation from the torn end of the cord and separated the newly visible wires into the two twinned strands they must have been throughout. I rewound them into two strands and looped them carefully away from each other. I pulled out the ends of the insulation between the strands and tied it. I then twisted the very ends of the strands together. I had a heavy-duty electrical cord with a circle of copper at one end. Still sitting on the floor, I held it out before me with my left hand and leaned over toward the wall, holding the plug in my right. I plugged it in.

The flash of light was instantaneous. All in a second I dropped the cord, hit the floor and vaporized the linoleum, and smoke obscured my vision. I realized that there had been some clap of noise. And then I could see again—and hear my grandmother scream from the next room—although I could not see as well as be-
fore since the kitchen lights were now out. Fortunately, it was afternoon. The scorchred wooden floor showed through a black-edged hole in the linoleum twice as wide as my hand. And I was all right. And I had learned that you need restraint. Power has to do something or it becomes destructive.

Thirtieth thought that was a fact. Later I thought it was a metaphor. Now I know it is both.

Stuyvesant was a vibrant place, drawing students from all over New York City. In those special days, unlike the Bronx High School of Science, Stuyvesant admis-
ted only boys. Although not gender-blind, the process of admission to our special academy was class- and color-blind, so we had fellows of all backgrounds. Many of these bright, eager, often driven boys were the sons and grandsons of immi-
grants who had come from everywhere across the seas and land to try for some-
thing better. In that place, each had his own chance. The romance of that, the friendship of that, the community of that, inspired me then and inspires me still.

Most of the time each way between my apartment and Stuyvesant was spent on the subway, which even then I understood was part of a transportation network that bound together a thriving social organism of 8 million souls, a vibrant, func-
ional community that both allowed and enriched enormous neighborhood, family, and individual diversity. At one point, the trains became elevated for a few stops to go over the Gowanus Canal. On that stretch, one could see the industrial and tenement Brooklyn in all its moody essence. Looking between the tenements, off the way, one could just catch a glimpse of the dome of Liberty. I must admit to sentimental- ity here because to obscure sentiment would obscure the truth. I took the subway twice a day, every school day for the three years I spent at Stuyvesant and not once on any single trip I ever did fail to strain, through the human press of rush hour crowds if need be, to catch that glimpse of the welcoming lady. Not once did that glimpse fail to make me feel gratitude and pride.

When I visit my mother, we still use that train, say to go to a Manhattan mus- eum. I still make sure to see. I still feel gratitude and pride.

It was something in those days, not just for me, but for so many people like me, to think of what New York represented. To hear the different languages. To see people of every description interacting successfully, making the city and all its component activities work. To know that the world had agreed to put its own hope- ful new name, the United Nations, on the shore of our East River.

Now, of course, I can see that the subway system, the school system, the canal system, and even the web of international agreements were all in some sense exam- plars of a general theory of systems, the sort of thing I later learned could be theor- ized by von Neumann and Shannon and others and put into everyone’s hands via their desktop computers. Then I just felt it.

In the 1960s, computers weren’t what they are today. Ordinary citizens could see that big companies had started to automate accounting. We received monthly bills that included the instruction “Do not bend, fold, spindle, or mutilate!” because those bills had to be physically fed into a temperamental card reader. Now those card readers are museum pieces, and the computers they served are as invisible to everyone as they were then to the public. We knew the word “computer,” but we cer- tainly couldn’t touch one. Even if you could see one, it was the size of a special, air conditioned room behind half glass walls.

Doug Wise, a Stuyvesant classmate who became my first-year roommate at Cornell, also decided to become a computer. Outside of school, he got a part-time job with IBM, where he learned Fortran and did some programming. Fortran and pro- gramming were new words to the rest of us. But Doug made good money for a kid, and the concepts he reported were interesting.

In 1965, after my fifth semester, I left Cornell. At that time, I was a physics ma- jor on my way to becoming a physician, but for many reasons, I was intermittently miserable. I decided I needed to rethink why I was in school and where I was go- ing. Wanting a change of weather from an early winter and wanting to go as far as my money would allow in search of someplace new, I took the Greyhound bus to New Orleans. Money-lessons Yankie weren’t welcome. There was no lady in that harbor.

When I finally got a steady, paying job, I worked for Western Geophysical Company, then perhaps the world’s largest independent oil exploration enter- prise. Western Geophysical would send trucks and ships around the world. The trucks would rise up on thick stilts, the way industrial cherry pickers do, and drive a pile repeatedly, regularly down at the ground, hammering away. The ships would sail miles-long cables strung at regular intervals with buoys that exploded in per- fect timing. Both trucks and ships held seismographs that recorded the sound waves that bounced back from under the land and sea. Those seismographs, long rolls of vertically-lined white paper with newly horizontal tracings, were sent back to New Orleans. Someone had to read these seismograms to see the abrupt changes in the tracings that marked a change in the speed of sound, which worked in turn a change in the underlying geology. Someone had to count out the vertical lines between those changes and calculate the distance the sound had traveled. Someone had to turn those distances into understand and undersea three-dimen- sional maps. Someone had to carry those seismographs and maps to the bus station for shipping to Western Geophysical’s oil company clients, where geologists used them to decide where to drill. I was one of the someone, counting, mapping, and carrying.

My job title? “Computer.”

Today, I use computers. Then, I was one.

Overall, I call this progress.

When I returned to college, it was to pursue the humanities. Computing as I had been doing it allowed a youthful spirit to race against himself (how many seismo- graphs can I read in an hour?), but the work was essentially dull and solitary. The real action, from my viewpoint, was the work of those unseen and unmit geolo- gists, but the life of rocks and salt domes did not attract me. To me, it was books that allowed connection. Language was how one connected. I wanted to compute everyone as they were then to the public. We knew the word “computer,” but we cer- tainly couldn’t touch one. Even if you could see one, it was the size of a special, air conditioned room behind half glass walls.

Doug Wise, a Stuyvesant classmate who became my first-year roommate at Cornell, also decided to become a computer. Outside of school, he got a part-time job with IBM, where he learned Fortran and did some programming. Fortran and pro- gramming were new words to the rest of us. But Doug made good money for a kid, and the concepts he reported were interesting.

In 1965, after my fifth semester, I left Cornell. At that time, I was a physics ma- jor on my way to becoming a physician, but for many reasons, I was intermittently miserable. I decided I needed to rethink why I was in school and where I was go- ing. Wanting a change of weather from an early winter and wanting to go as far as my money would allow in search of someplace new, I took the Greyhound bus to New Orleans. Money-lessons Yankie weren’t welcome. There was no lady in that harbor.
CHAPTER I

was photocopied for course-wide distribution. The process was slow, but it worked, with information flowing mostly within sections, but also across sections in an intermittently common space. We didn’t know it then, but “The Freshman English Republic” existed in a Course Wide Web.

Naturally, the course died. The administrative burden of fostering that much interchange and collaboration killed it. I fought it for three years, but no one was willing to pick it up despite the overwhelmingly positive student response.

Now, with the World Wide Web, perhaps I or someone should try it again. Or perhaps it is now unnecessary.

I learned a lot from “The Freshman English Republic.” One of the things I learned came from giving those weekly lectures. I discussed rhetorical sequences, the course readings, the organization of essays, research techniques, and more. Because we were all sharing our work anyway, I decided, whenever appropriate, to photocopy real work by the students and use that, on an overhead projector, to instruct the class. The initial idea was to let 250 students look over my shoulder, just as a student would in a one-on-one office visit, to see how I might edit the work. As I proceeded, people could raise questions from the floor. What did I next want to use the work on? Those clear reactions I received and the comments from the student evaluations confirmed that this concrete, visible, interactive instruction was the most engaging aspect of the lectures by far.

It does not take much to recognize here the potential for self-testing, simulation, and message boards once those tools exist.

Potential, however, is not always realized. In 1975, Mike Brown, an engineering student in my large science fiction class, a lecture course that had no sections in those days, asked whether we could use Confer with the course. “What is Confer?” I asked. It turned out to be a quite flexible, albeit by today’s standards incredibly primitive, computer-networked bulletin board system. The University had it up and running and available to anyone who could get to a terminal. Because terminals gave access to statistics packages and other main-frame tools that students needed, there were terminals in many places on campus, including a few in the building with my office. I said that I wasn’t willing to run the bulletin board or make its use mandatory, but if lots of people wanted the chance to have discussions and if Mike would run it, I would commit myself to going to the terminal five days a week and participating. I did despite the fact that only about fifteen of the 250 students then in the course ever used it more than twice. The experience was like a science experiment with a negative result. Like it on or not, one learns something. From the start, I learned that a good idea may fail without a palpable payoff for its execution. From the student, I learned that informatics had excellent teaching potential.

There is another lesson here, too, one that I may be unqualified to preach, but certainly need to embrace: We need humility. Had I not been willing to let Mike, a student, take the lead, I would not have come to online bulletin boards until, well, who knows? But humility can be a difficult lesson: it runs against our professionalization.

In the 1980s, before the ubiquity of personal, networked computers in American universities, my colleague Macklin Smith and I devised and taught a course called “Practical English.” This was a composition course based on the notion that we could teach students to work with each other, to be good editors, and thus to edit themselves. To elevate this peer editing from homework to real work, we gave the students fee power of the grade. True, we acted as a court of appeal, but appeals quickly became unnecessary. By relying on a class full of editors instead of just one or two, we found that a single instructor could successfully manage a class of 40 students. The student evaluations were high; our faculty colleagues judged the student writing excellent, and again the course died. We couldn’t get any of our graduate students—the most usual instructors for composition courses—to adopt this method. Why not? Because they were, quite rightly, making themselves into humanities professionals.

We discovered that few composition teachers will willingly rely so strongly on the power of the technology of peer editing (whether computer mediated or not) that they will allow peer grading. Yet grading is the true empowerment; it is what makes the homework of editing a classmate’s essay into the real work of consequential judgment. Putting the power of grading into the students’ hands shows the depth of our commitment to that technology or, if one prefers, that technique. Yet most teachers will not do it because, in an institution that protects the sanctity of its credentialing process, the grade makes the final difference and the teacher feels that he or she has a professional obligation to ensure directly that the grade is “right.” Ultimately, the teacher feels that every bit of work that contributes to the student’s grade must be graded by the teacher. But must it? Don’t we have faith in our students’ ability to form reliable judgments? We say we do; indeed, if we did not, we could not promise them that they can learn to judge their own drafts in deciding what to keep revising and hand them in. But to acknowledge that the students’ grades may be as good as ours takes humility. This is no easy stance for a paid professional. Many of us won’t even try it at home.

In adopting computer technology for academic use, faculty often find themselves having to acknowledge the limitations of their technical knowledge, just as in a large, peer-graded composition section we have to acknowledge the limitations of our analytic time. We can’t know everything just as we can’t read everything. But while in a composition course a teacher can assign professional guilt by claiming to read the last and only truly important—because graded—draft in a course that employs technology that some students may know better than the instructor, guilt cannot be assigned. Rather, it has to be released. We have to be willing not only to learn from our students, but to believe truly that learning from them is more, not less, responsible to our roles as teachers. Letting them see us learn, let-
ting them teach us, forms them and us into a more vigorous community. Computer networks empower collaboration.

I have been using information technology in my courses ever since Mike Brown proposed that I do. I am sorry Mike’s hopes for a robust exchange failed. I now know that this result is predictable. Without making participation mandatory, in large enrollment courses, mere that always fails. Self-help trials, however, the kind that prepare one for exams, succeed. "Real work is better than homework." However, I think Mike sincerely. My reliance on Mike to run our bulletin board taught me that I could play with new tools in my professional life without having to master them. So I continue to explore new options because I love the tools—even though I love more the tools the cm do in the world of people—just as much now as I did when I was a child.

Children need a sense of capability (the famous buzz word is empowerment) not only with tasks got u them, but with tasks that have social import. That need does not go away. My current groups of collaborating students who put original sites on the Web want to know that their work, unlike old copies of The Freedom English Gazette, will be available indefinitely and to all comers. They ask me whether I would make sure the work stays up after they graduate. When did an undergraduate ever ask that a teacher keep indefinitely a copy of a course essay? One of the great consequences of networked technology is that it makes possible a shift from home work to real work, and that is good for everyone. This is at the heart of democracy.

There are lessons we learn in life that we acknowledge every day. In this chapter, I have offered some that I continue to value. Of those, the most important are these:

2. Computer technology empowers collaboration.
3. Horizontal networks undercut vertical authority.
4. Inexpensive and networked computer technology fosters democracy
5. We need resistance.
6. We need humility.
7. Real work is better than homework.

Why do these lessons matter so much to me? Please allow me one more reflection.

On a trip back to New York in the 1990s, I visited Ellis Island, the most famous and important Ellis Island gateway for American immigration before the advent of the Internet. I went through the restored site with my mother, reading together about the tremulous refugees who prayed they would present no medical conditions that would lead to immediate deportation, who prayed they would be allowed entry, who prayed for a new life. It was stunning to realize that on this island, with sight of Lower Manhattan and Brooklyn, the desperate hopes of so many people, after hardship, deprivation, and imprisonment, could all be shattered. Knowledge—you bear the signs of sickness—is power, and power is not always kind. But more knowledge—we can cure you—is so often the solution to the violence unleashed by too little. Even then there was a quarantine hospital on the island, and some left for New York. I came to Ellis Island, with my mother, seeking knowledge about myself.

Outside the main building there is a long series of low-standing aluminum panels on which are inscribed the names of literally of thousands of those immigrants. I had been told that the names of my great grandfather, Ephraim Gorelick, the father of my mother’s mother, and his wife, Basia, were engraved there. Though I love more the tools the cm do in the world of people—just as much now as I did when I was a child.

Children need a sense of capability (the famous buzz word is empowerment) not only with tasks got u them, but with tasks that have social import. That need does not go away. My current groups of collaborating students who put original sites on the Web want to know that their work, unlike old copies of The Freedom English Gazette, will be available indefinitely and to all comers. They ask me whether I would make sure the work stays up after they graduate. When did an undergraduate ever ask that a teacher keep indefinitely a copy of a course essay? One of the great consequences of networked technology is that it makes possible a shift from home work to real work, and that is good for everyone. This is at the heart of democracy.

There are lessons we learn in life that we acknowledge every day. In this chapter, I have offered some that I continue to value. Of those, the most important are these:

2. Computer technology empowers collaboration.
3. Horizontal networks undercut vertical authority.
4. Inexpensive and networked computer technology fosters democracy
5. We need resistance.
6. We need humility.
7. Real work is better than homework.

Why do these lessons matter so much to me? Please allow me one more reflection.

On a trip back to New York in the 1990s, I visited Ellis Island, the most famous and important Ellis Island gateway for American immigration before the advent of the Internet. I went through the restored site with my mother, reading together about the tremulous refugees who prayed they would present no medical conditions that would lead to immediate deportation, who prayed they would be allowed entry, who prayed for a new life. It was stunning to realize that on this island, with sight of Lower Manhattan and Brooklyn, the desperate hopes of so many...
Technology and English Studies

Innovative Professional Paths

Edited by

James A. Inman and Beth L. Hewett

LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS
Mahwah, New Jersey London
Contents

Preface ix

Part One: The Past as the Future 3
Chapter 1 Democracy, Real Work, and Falling in Love With the Net Eric S. Rabkin
Chapter 2 Chip off the Old Board Nelson Hilsen
Chapter 3 Circa's Mirror: Professing Liminality Wendy Morgan
Chapter 4 All About...Eclecticism as a Professional Path to English Studies John F. Barber

Part Two: Searching the Academy 47
Chapter 5 The Importance of Belief Joanna Cottrell
Chapter 6 Moving in From the Periphery: Exploring the Disciplinary Labyrinth Douglas Eyman
Chapter 7
From Darkness to Light: Struggling With the Tenure-Track
Keith Norwick

Chapter 8
On Chance and Change and the Paths on Which They Take Us
Denise Grigar

Part Three: Pushing Boundaries

Chapter 9
Taking Risks: How to Keep the Juices Flowing
Pamela B. Childers

Chapter 10
Electronic Theses and Dissertations: Constructing Professional Interest
Over and Against Resistance to Innovation
Jade Edminster

Chapter 11
Becoming an Accessibility Researcher: A Memoir
John M. Slavin

Chapter 12
Networking the Nile: Technology and Professional Development in Egypt
Mark Warschauer

Part Four: Forging Beyond

Chapter 13
A Long Strange Trip: Finding Humanism in the Modern Wired Library
James Elmborg

Chapter 14
My Freelance Life: Curiosity Versus Professionalization
Diane Grecco

Chapter 15
Interdependency: Building Relationships Between the Academy and the Private Sector
Beth L. Hewett

Chapter 16
Answers To Questions I Have Been Asked: A Technomic Journey
Mark Americas

References
Author Index
Subject Index