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Abstract: The paper will show how one may rationalize one-boxing in Newcomb’s
problem and drinking the toxin in the Toxin puzzle within the confines of causal de-
cision theory by ascending to so-called reflexive decision models which reflect how
actions are caused by decision situations (beliefs, desires, and intentions) represented
by ordinary unreflexive decision models.

1. Introduction

Decision theorists have been causal decision theorists (CDTs) all along, I as-
sume, not only since Savage (1954). That there is a position to take has become
clear, though, only when an apparent alternative came up, namely Jeffrey’s (1965)
so called evidential decision theory (EDT), and a problem, namely Newcomb’s
problem (cf. Nozick 1969), separating the alternatives. Thus, the distinction between
CDT and EDT emerged in the late 70’s, most conspicuously with Gibbard and
Harper (1978).

The present state of discussion is a somewhat acquiesced one, I feel. There is no
commonly agreed version of CDT1, presumably because we well enough under-
stand (subjective) probabilities and utilities, but still not well enough causation and
its relation to probabilities. However, the impression that some version of CDT is
the right one is overwhelming, and so is the intuition thereby supported that two-
boxing is the right thing to do in Newcomb’s problem. Some uneasiness remains,
even among CDTs. Still, the uneasiness has never led to a general and generally
                                                
* I dedicate this paper to Karel Lambert, a first version of which I have presented on the conference
on occasion of his 75th birthday at UCI in April 2003. And I am indebted to the thoughtful re-
marks of an anonymous referee.
1 Cf., e.g., the overview in Joyce (1999, ch. 5) or the papers collected in Campbell, Sowden
(1985) and in Sobel (1994).
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acceptable version of decision theory that was able to make one-boxing plausible.2

Hence the acquiescence; the topic seems fought out and further fighting useless.
The uneasiness has a name, the title of Lewis (1981b): if you’re so smart, “why

ain’cha rich?” The basic answer is: what can we do, if irrationality is rewarded?
And CDTs find this answer acceptable in some way or other. Since 1976 when I
developed my own account of CDT and Newcomb’s problem3 I, too, was an ardent
two-boxer and convinced of that answer. Since a few years, though, the answer
sounds self-pitying to me and just wrong; this must be poor rationality that com-
plains about the reward for irrationality.

In this paper I shall explain how we can keep all the insights of CDT and never-
theless rationalize one-boxing. The gist of the paper is presented in section 2; it will
make clear what my almost shamefully simple plot will be. In a way I am finished
then. However, since my account there will be merely graphical, i.e., in terms of
graphs, I have to develop the theory behind those graphs at least as far as required.
This will be less simple and the bulk of the paper in the remaining sections 3-6; the
final crucial step of my argument will be presented in a precise way only at the end
of section 6.

I hope my case regarding Newcomb’s problem (NP) will be convincing. It will
be even more convincing, I believe, regarding the Toxin puzzle (TP); fully under-
standing the latter will open the eyes about the former. For this reason I shall deal
with both cases in parallel.

2. The Central Idea, in Graphical Terms

In Newcomb’s problem (NP) you are standing before two boxes, and you may
take the opaque box containing an unknown amount of money or you may take
both, the opaque and the transparent box that you see to contain thousand dollars.
The unknown amount of money is either nil or a million, depending on an earlier
prediction of some being, the predictor, about what you will do; if the prediction is
that you take only the opaque box, it contains a million dollar, and if the prediction is
that you take both boxes the amount is 0. You know all this, and in particular you

                                                
2 Even Jeffrey changed his mind several times; cf. Jeffrey (1983, 1988, and 1996).
3 Cf. Spohn (1976/78), ch. 3 and sect. 5.1-2. This German account was neglected; it is very close
to Meek and Glymour (1994). For more detailed comparative remarks see Spohn (2001).
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know that the predictor is remarkably successful (say, in predicting your actions in
other situations and other persons in that situation). What will you do?

There is no point in rehearsing all the arguments for one- and for two-boxing.
Standard CDT says you should two-box: your action cannot have any influence on
the prediction; the content of the opaque box is fixed, whatever it is; and by two-
boxing you end up with thousand dollars more in any case; two-boxing strictly
dominates one-boxing. The story is represented by the following decision graph:

(NP1)

Here, time always moves from bottom to top, squares represent action nodes, cir-
cles represent chance nodes or occurrence nodes, as I shall rather say (since they
need not be chancy; unlike the action nodes they are at most under indirect control
of the agent and objects of the beliefs of the agent), and the arrows have a causal
interpretation. Nodes represent variables; here, B is the action variable of one- or
two-boxing, P describes the prediction, and M is the monetary outcome. The stan-
dard interpretation of X → Y is that Y (directly) causally depends on X, but we shall
have to consider this more closely later on. Given this interpretation, (NP1) accu-
rately represents the temporal and causal relations of NP from the point of view of
the agent.

“Decision graph” does not seem to be an established term, although its meaning
springs to one’s eyes. I shall sketch the theory of decision graphs in section 4; they
are precisely what Pearl (2000, p. 23) calls mutilated graphs. Right now, two re-
marks might suffice.

First, decision graphs should not be confused with the familiar decision trees. In
a decision tree the nodes represent events or stats of affairs, and a branch represents
an entire possible course of events. Decision trees are temporarily ordered, but their
edges have no causal meaning. By contrast, a decision graph is causally structured,
and its nodes represent variables. Of course, it is straightforward to construct the
associated tree from the graph.
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Second, decision graphs should not be confused with influence diagrams (cf.
Howard, Matheson 1981). The latter contain also informational arrows that end at an
action node and start from all those variables about which the agent is informed at
that action node. However, this kind of information flow is not to be represented in
decision graphs; it will be taken into account only in what I shall call reflexive deci-
sion graphs later on.

The theory of decision graphs makes the obvious assumption that in the situation
given by (NP1) the causal independence of P from B entails its probabilistic inde-
pendence from B. Thus, the dominant action, two-boxing, is also the one maximizing
(conditional) expected utility, and hence the one recommended by CDT. Note, by
the way, that the temporal relation between B and P is inessential; all we need to con-
clude in two-boxing is the causal independence of P from B. By adding that P real-
izes before B, we only make dramatically clear that B cannot have a causal influence
on P.

What about the remarkable success of the predictor that suggests that given you
one-box it is very likely that she will have predicted that you will one-box, and like-
wise for two-boxing? How do they enter the picture? They don’t. CDTs do not
deny them, but they take great pains to explain that they are not the ones to be used
in practical deliberation calculating expected utilities; and they diverge in how ex-
actly to conceive of the subjective probabilities to be used instead. I shall return to
this issue in a bit more detail at the end of section 4.

Now suppose, just suppose, that the following decision graph would adequately
represent NP:

(NP2)

Then, I take it, it would be beyond dispute that the only reasonable thing to do is
one-boxing. Nobody has ever doubted this, if NP were a case of backwards causa-
tion, as this graph seems to suggest. It is only that we have explicitly excluded
backwards causation in NP!
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Well, I exclude it, too; anything else would be absurd. Still, I shall defend the
claim that (NP2) is an adequate representation of NP. Obviously, this can be so only
if the arrows do not quite mean what they were so far told to mean. We shall see
what their causal significance exactly is. For the moment I am happy with the condi-
tional conclusion: if (NP2) should be adequate, one-boxing would indeed be ra-
tional.

In order to see what I may be up to with (NP2), let us look at the Toxin puzzle
(TP) invented by Kavka (1983); it is more suitable for making my point. The story
is as follows: At this evening you are approached by a weird scientist. She requests
you to form the intention to drink a glass of toxin tomorrow noon. If you drink it,
you will feel awful for a few hours, but then you will recover without any after-
effects. If and only if you have formed the intention by midnight, you will be re-
warded with ten thousand dollars. Whether you have formed the intention can be
verified by a cerebroscope the scientist has developed. The reward only depends on
your intention or rather the verdict of the cerebroscope; what you actually do tomor-
row noon is of no further relevance. Of course, you think that ten thousand dollars
by far outweigh a few hours of sickness. But how do you get them? It is clear in
advance that once you stand before the glass of toxin you have no incentive whatso-
ever to drink it; by then the cerebroscope has made its verdict, whatever it is. Hence,
it seems you cannot honestly form that intention. You may pretend as well as you
can; but this is no way to deceive the cerebroscope.

Let us again represent the situation by a decision graph. Note that a decision
graph only contains action and occurrence nodes, and the only action and occur-
rence variables involved in the toxin story are these:

(TP1)

D is the action variable of drinking the toxin or not, F tells how you feel tomorrow
afternoon, C is the variable for the cerebroscope reading, and R says whether or not
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you get the reward. The causal influences in the story run only in the way indicated
by the arrows.

Given this representation and given again that the causal independence of C from
D implies its probabilistic independence, it is clear that at D only not drinking the
toxin maximizes (conditional) expected utility and hence that it is difficult or impos-
sible to have the contrary intention.

One will object that (TP1) forgets about the most important variable, the intention
to be formed. Yes, certainly. I shall undo this neglect in a moment. The neglect is
due to the fact that a decision graph contains all the action and occurrence nodes to
be considered in the represented situation for making a decision or forming an in-
tention; but it does not contain the intention itself as a separate variable.

However, let me first make the same move as in the case of NP. Suppose, just
suppose, that the decision graph adequately representing TP would be this:

(TP2)

Then, again, drinking the toxin would obviously and uncontestedly be the rational
action maximizing conditional expected utility. The only mystery, again, is the arrow
from D to C, since I have not yet explained how to avoid the absurd and unwanted
interpretation of this arrow as backwards causation.

The mystery dissolves when we undo the neglect already observed and explicitly
introduce the intention as a separate variable. That is, we shall now distinguish a
third kind of node, intentional nodes or rather decision nodes or variables that realize
in entire decision situations, mental complexes of beliefs and desires, focusing or
concluding in a decision or intention to act in a certain way; I shall represent such
decision nodes by triangles. Most of the literature is quite sloppy at this point and
refer to the square action nodes also as choice or decision nodes. Thus the present
distinction, that is crucial for this paper, is blurred right from the beginning and can-
not be reimported into the picture. So, how should we represent the causal situation
of the toxin story with these richer means?
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This is not entirely clear. One idea is that, willy-nilly, you take the final decision
only tomorrow noon when you stand before the glass of toxin. This yields the fol-
lowing causal diagram or reflexive decision graph, as I shall call it for reasons to
become clear soon:

(TP1*)

Here, D* is the decision variable realizing as this or that mental complex deciding
about drinking or not drinking the toxin. Again, as in (TP1), it seems that the only
thing you can rationally decide in D* is not to drink the toxin; the causal picture
shows that you did not manage to be decided before midnight, and the late decision
can only be to choose the dominant act, not drinking, whether or not the cerebro-
scope has read your mind correctly.

However, (TP1*) does not represent what the scientist asked you for. He asked
you for being decided before midnight. Thus, the relevant causal diagram should be
rather this:

(TP2*)

Here, you are decided or resolved in some way or other before midnight. Being de-
cided includes the intention to maintain the decision till the time of acting has come
and to refuse reconsideration, it even forbids the thought that one might perhaps
reconsider the case. (In section 6 I shall say a bit more about this strong, but cer-
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tainly not overly strong reading of being decided.) So, what is now your decision in
D* before midnight? Drinking the toxin, of course, since ten thousand dollars out-
weigh feeling sick for a few hours and since you rely on the cerebroscope. And
what do you do tomorrow noon? You march into the room, take the glass, and empty
it, or at least try to do so as hard as you can (your throat may revolt), without wast-
ing any further thought.

The crucial theoretical point now is this: The starred and the unstarred decision
graphs apparently represent the same decision situation. The unstarred graphs are
the ordinary ones simply reflecting on the relevant action and occurrence nodes. The
starred graphs additionally reflect on the ordinary decision situations deliberating on
and causing the actions; this is why I shall call them reflexive decision graphs. Still,
they are, reflexively and unreflexively, about the same decision. That is, we must
somehow understand the unstarred, unreflexive graphs as reduced versions of the
starred, reflexive ones. Obviously, (TP1) is the reduced version of (TP1*). Simi-
larly, we must understand (TP2) as a reduced version of (TP2*). (TP2*) adequately
represents the causal relations given an early decision; there D* is a common cause
both of C and D. What remains of that causal configuration when D* is reduced
away to yield (T2)? A shadow arrow, as it were, from D to C, which does not stand
for backwards causation, as it first appeared, but is the residue of an implicit com-
mon cause relation. This is the truth about (TP2).

Of course, I am speaking only figuratively so far. I have not explained the theory
behind the starred graphs, and I have not explained the exact relation between the
starred and the unstarred graphs. This is the task of the next sections; in particular,
section 6 will make precise sense of what I just called a “shadow arrow”. Still, my
suggestion should be clear without these explanations. It is that (TP2*) is causally
entirely straight, that (TP2) only mirrors (TP2*), that both rationalize drinking the
glass of toxin, and that this is how you can gain ten thousand dollars.

Let us return to Newcomb’s problem and take the same reflexive move. In fact,
that move is already found in Eells (1982, ch. 6-8). Like everybody else, Eells was
wondering about the strong correlation between the predictor’s prediction and your
or everybody’s behavior. If neither the prediction causes the behavior nor the be-
havior the prediction, as it was constitutive of the story, then the only explanation of
the correlation is a common cause; this is what Reichenbach’s common cause prin-
ciple tells us. It may be unclear what the common cause is, but it must exist. So, let
us call it variable X. How does X causally influence your behavior? Since your in-
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tention, or your entire decision situation or cognitive-motivational complex con-
cluding in your intention, is a complete cause of your action, X’s influence can di-
rectly affect only your decision situation and only indirectly your behavior. Thus,
the causal picture Eells draws is this:

(NP1*)

Here, B* is the variable for the intention to one- or two-box, or rather for the de-
cision situation concluding in such an intention.

What is rational according to (NP1*)? Only two-boxing, as Eells convincingly
argues. He argues that whatever the indirect influence of X on B might be, it is
screened off by your self-awareness of B*. Given you know what decision situation
you are in there is no longer any correlation between B and X and thus none between
B and P, and thus only two-boxing maximizes (conditional) expected utility. In other
words, (NP1*) is just a reflexive version of (NP1); if we reduce (NP1*) by B* (and
X), we return to (NP1).

However, the common cause need not be so obscure. What, if the decision situa-
tion itself is the common cause? This is my shamefully simple suggestion. Then we
get the following reflexive decision graph:

(NP2*)

It is obvious that in the situation thus presented one-boxing is rational. If my deci-
sion determines or strongly influences the prediction, then I rationally decide to one-
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box, and when standing before the boxes I just do this. The situation is not at all
different from the Toxin case. Again, (NP2) is simply the reduced version of
(NP2*), and its arrow from B to P does not express backwards causation, but only
mirrors that B*, which is only implicit (or a latent variable) in (NP2), is a common
cause of both, B and P. This is how you get the million, in full agreement with CDT!

My point may be reinforced with the much simpler smoker’s story. The true
story is, of course, that smoking causes, or raises the risk of lung cancer; this is why
you should not smoke. There is a well-known alternative story. Smoking as such is
harmless. There is, however, a gene, the smoker’s gene, that probabilistically causes
both, lung cancer and the desire to smoke. Should you smoke, then, if you have the
desire? Even though you are likely then to have the gene and to develop lung cancer?
Yes, of course, CDT says; there is no use whatsoever in abstaining from smoking in
that scenario. It corresponds to (NP1*). Now consider a third variant. There, per-
versely, the desire to smoke itself causes lung cancer not via smoking, but via some
other causal route; thus, the desire is a common cause of smoking and cancer. The
scenario corresponds to (NP2*). Knowing these causal relations, should you
smoke? Certainly not. Given these side effects, you should not even have the desire
to smoke and hence not smoke; and if you are rational, this is what you do and what
your desires are, judged again from the stance of CDT.

Let me emphasize why I claim still to move within the confines of CDT. The
borderline between CDT and EDT is not entirely clear; each version of CDT and of
EDT would draw it in a slightly different way. In any case, two-boxing in NP cannot
be a defining characteristic of CDT; otherwise, Eells (1982) could not have been
classified as a version of EDT. Roughly, one might say that EDTs take evidential
relations between actions and other occurrences to be relevant for rational decisions
(where these evidential relations may be or, as many and I think, must be due to
common causes). (NP2) and (TP2) do so, too; there seems no other way to interpret
their strange backward arrows. Hence, when I endorse (NP2) and (TP2), I seem to
adhere to EDT.

Not so! Like CDTs, I deny the general decision relevance of purely evidential
relations; I do not advise the person with the smoker’s gene to abstain from smok-
ing. I grant the relevance of evidential relations only in the very special case of (TP2)
and (NP2), where these relations derive from the intention itself being a common
cause, i.e., are backed by reflexive decision models like (TP2*) and (NP2*). These
reflexive models are in full agreement with CDT; all their arrows are ordinary causal
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arrows. I claimed it to be intuitively clear what the rational action is in the reflexive
models, namely drinking the toxin and one-boxing (but I shall be more precise in
section 6). And I said that the unreflexive (TP2) and (NP2) are not to be taken at
face value, but can only be understood as reductions of the reflexive models (some-
thing to be unfolded in the subsequent sections). This is why I say that even as a
CDT you should one-box.

One may object that there is a relevant difference between NP on the one hand
and TP or the smoker’s case on the other. In TP you were explicitly asked for an
early decision, and then you may perhaps have difficulties with being really decided
so early. By contrast, NP is told in such a way that you are standing before the
boxes, deliberating and deciding only then; there can only be a late decision. So,
(NP2*) cannot be an adequate reflexive representation of the situation.

I believe this is the misleading part of the NP story. Perhaps, you start deliberat-
ing on the matter only when standing before the boxes, because you are informed
about the plot only then. This does not necessarily mean, though, that you are de-
ciding only then. Perhaps – indeed, this is what I am suggesting – you were com-
mitted to one-box all along, and by deliberating you discover to be so committed all
along. In any case, this is the only way how (NP2*) makes sense: You are decided
early enough to one-box, simply by being rational, and this influences the predic-
tor’s prediction, presumably simply by his observation of your consistent and con-
tinuous rationality. (Of course, as in TP, the predictor could distinguish between
your being really or only apparently committed.)

Being committed or decided all along without ever having reflected on the matter?
This sounds strange, and this may be the weak part of my account of NP, but, as I
would insist then, the only weak part; and it is not a weak part of my account of TP.
On the other hand, it is not so strange perhaps. You will grant that you have many
beliefs without ever having reflected on them, for instance, about the absence of ice
bears in Africa. You have never posed the question to yourself; but for a long time
your mind is fixed how to respond. Similarly, I trust, your introspection will reveal
that often your reflection does not issue in a decision, but rather finds that you were
already decided or committed. This is what I plead for in the artificial and concocted
NP case.

In a way, the rest of the paper is an extended appendix; I have to explain how all
these graphs exactly work: causal graphs and Bayesian nets without action nodes (in
section 3), decision graphs with action nodes (in section 4), and reflexive decision
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graphs with decision nodes (in section 6), after motivating the reflexive move (in
section 5). We shall thus move from the familiar to the less familiar. In the end,
though, the relation between reflexive and unreflexive decision models should be
fully clear.

3. Causal Graphs, Bayesian Nets and Their Reduction

Before entering all the decision business, we must briefly look at pure causal
theorizing that has been neatly codified in the theory of so-called causal graphs and
Bayesian nets.4 It deals only with causal dependence and independence between
variables. In order to do so, it must consider specific variables and not generic ones.
Generic variables, say, of a sociological kind, would be annual income or social
status. But it is usually very hard to say anything substantial about causal relations
between generic variables. Specific variables of a sociological kind would be, e.g.,
my income in 2007 or my social status in 2008 (insofar they are understood as
ranges of possible values the variables may take, and not as facts consisting in the
values the variables actually take). Hence, the realization of specific variables is al-
ways located at a specific time and usually also at a specific place or in a specific
object or person. Therefore, there can be causal order among specific variables.

Thus, the basic ingredient is a non-empty set U of variables that we assume to be
finite; U is also called a frame. I shall use A, B, C, etc. for denoting single variables
in U, and V, X, Y, Z, etc. for denoting sets of variables, i.e. subsets of U. We may
represent each variable by the (finite) set of the possible values it may take (this pre-
supposes that the variables are mutually disjoint sets). For V ⊆ U, each member of
the Cartesian product ×V of all the variables or sets in V is a possible course of
events within V, a possible way how all the variables in V may realize.

Due to their specificity, the variables in U have a temporal order <. A < B says
that A precedes B. I assume < to be a linear (not a weak) order, in order to avoid
issues of simultaneous causation. Due to their specificity the variables in U  also
display causal order which is a partial order agreeing with the temporal order. That

                                                
4 This theory has been started in the statistical path analysis literature since Wright (1934). In the
meantime, an impressive theoretical edifice has emerged, best exemplified by Pearl (1988, 2000),
Spirtes et al. (1993), and Shafer (1996). Jensen (2001) is perhaps the best readable introduction
into this theory.
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is, if A ⇒ B expresses that A influences B or B causally depends on A, then ⇒ is a
transitive and asymmetric relation in U, and A ⇒ B entails A < B.5

Since U is finite, we can break up each causal dependence into a finite chain of
direct causal dependencies. This simplifies our description. If A → B expresses that
A directly influences B, or B directly causally depends on A, then →  is an acyclic
relation in U agreeing with the temporal order, and ⇒ is the transitive closure of →.
Of course, directness and indirectness is relative to the frame U; a direct causal de-
pendence in U may well become indirect or, as we shall see, even spurious in re-
finements of U.

Graphs are relations visualized. Thus, we may as well say that 〈U, →〉 is a di-
rected acyclic graph agreeing with the temporal order6 or, as we define it, a causal
graph. If we neglect the various types of nodes or variables, the previous section
provided various examples for causal graphs. Let me introduce some terminology
we shall need:

Pa(A) = the set of parents of A = {B | B → A},
Pr(A) = the set of variables preceding A = {B | B < A} , and
Nd(A) = the set of non-descendants of A = {B | B ≠ A and not B ⇒ A}.

So far, we have just structure. However, the causal structure must somehow relate
to how the variables realize, and since we shall consider only realization probabili-
ties, this means that the causal structure must somehow relate to these probabilities. I
should emphasize that these probabilities may be objective ones (whatever this
means precisely), in which case they relate to the objective causal situation, or they
may be some person’s subjective probabilities, in which case they reflect the causal
beliefs of that person. The latter perspective will be the relevant one for us.

But what exactly is the relation between causation and probability? Spirtes et al.
(1993, sect. 3.4) state two crucial conditions, the causal Markov condition and the

                                                
5 We may be content here with the usual assumption of the transitivity of causal dependence. I
think, though, that the matter is more complicated. In Spohn (forthcoming, sect. 14.11-12) I argue
that causation between facts or events is transitive (this is contested in the literature) and that this
entails that causal dependence between variables is transitive only under special, though widely
applying conditions.
6 The temporal order is often left implicit or neglected, presumably because the statistical literature
is interested in, or feels restricted to, generic variables. However, as long as one is not engaged in
the project of a causal theory of time, one may and must presuppose temporal order when talking
about causation.
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minimality condition. In order to explain them, we need the all-important notion of
conditional independence:

Let p be a probability measure for U, i.e., over the power set of ×U. Then, for
any mutually disjoint sets of variables X, Y, Z ⊆ U, X is said to be conditionally in-
dependent of Y given Z w.r.t. p – in symbols: X ⊥ Y | Z – iff for all x ∈ ×X, y ∈ ×Y
and z ∈ ×Z p(x | y, z) = p(x | z), i.e., if, given any complete information about Z, no
information about Y teaches us anything about X (and vice versa).

Conditional probabilistic dependence is closely tied up with causal dependence
according to a causal graph 〈U, →〉. The causal Markov condition says that, for all
A ∈ U, given the parents of A, A is independent of all other variables preceding it, or
indeed of all other non-descendants – formally: that for all A ∈ U

A ⊥ Pr(A) – Pa(A) | Pa(A) ,

or equivalently (though the proof is not entirely trivial – cf. Verma, Pearl 1990 and
theorem 9 in Pearl 1988, p. 119):

A ⊥ Nd(A) – Pa(A) | Pa(A).

And the minimality condition says that, for all A ∈ U, the set Pa(A) of parents of A
is indeed the smallest set of variables preceding A or of non-descendants of A, re-
spectively, for which these conditional independencies hold w.r.t. p.

We say that p agrees with the causal graph 〈U, →〉 or that 〈U, →, p〉 is a Baye-
sian net iff p satisfies the causal Markov and the minimality condition w.r.t. 〈U, →〉
(cf. Pearl 1988, p. 119). In fact, in such a Bayesian net 〈U, →, p〉 we can infer from
p alone the set of parents of each variable and thus the whole causal graph agreeing
with p. This was indeed my explication of direct causal dependence in probabilistic
terms in Spohn (1976/78, sect. 3.3) and (1980).

The conditional independencies and dependencies characteristic of the causal
Markov and the minimality condition are the basic ones entailed by the causal
structure. There is, however, a very useful and graphic way to discover all condi-
tional dependencies and independencies implied by the basic ones. This is delivered
by the so-called criterion of d-separation (cf. Verma and Pearl 1990, and Pearl 1988,
p. 117). Let a path be any connection between two nodes disregarding the directions
of the arrows, i.e., any sequence 〈A1, ..., An〉 of nodes such that for each i = 1, ..., n –
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1 either Ai → Ai+1 or Ai ← Ai+1. And let us say that a path in the graph 〈U, →〉 is
blocked by a set Z ⊆ U of nodes (or variables) iff

(a) the path contains some chain A → B → C or fork A ← B → C such that the
middle node B is in Z, or

(b) the path contains some collider A → B ← C such that neither B nor any de-
scendant of B is in Z.

Then we define for any mutually disjoint X, Y, Z ⊆ U that Z d-separates X and Y iff
Z blocks every path from a node in X to a node in Y.

The importance of d-separation is revealed by the following theorem: For all X,
Y, Z ⊆ U, if X and Y are d-separated by Z, then X ⊥ Y | Z according to all measures
p agreeing with 〈U, →〉; and conversely, if X and Y are not d-separated by Z, then
not X ⊥ Y | Z according to almost all p agreeing with 〈U, →〉.7 This shows that d-
separation is indeed a reliable guide for discovering conditional independencies en-
tailed by the causal structure, and in fact all of them for almost all measures. We
shall make use of this fact later on.

Spirtes et al. (1993, sect. 3.4.3) define a causal graph 〈U, →〉 and a probability
measure p for U to be faithful to one another iff indeed for all mutually disjoint X, Y,
Z ⊆ U X ⊥ Y | Z w.r.t. p if and only if X and Y are d-separated by Z.8 Thus, the sec-
ond part of the theorem just stated says that almost all p agreeing with 〈U, →〉 are
faithful to 〈U, →〉. But sometimes it is useful to exclude the exceptional cases by
outright assuming faithfulness.

Spirtes et al. (1993) take their conditions connecting causality and probability
only as assumptions that widely apply and then help inferring causal from prob-
abilistic relations. In particular, they are guaranteed to apply to causally sufficient
graphs that are closed under the common cause relation; i.e., if each common cause
of two or more variables in the graph is represented in the graph, too. For a causally
insufficient set of variables there may always be latent variables confounding the
manifest causal picture. One may wonder, then, how one can ever be sure or confi-
dent that a given set is causally sufficient.

                                                
7 Cf. Pearl (2000, p. 18). The proof is involved; see Spirtes et al. (1993, theorems 3.2 and 3.3).
“Almost all” is here understood relative to the uniform distribution over the compact space of all
probability measures for U.
8 This is not quite faithful to Spirtes et al. (1993). Their definition of faithfulness on p.56 is a
different one, and in their theorem 3.3 they prove it to be equivalent with the definition given here.
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By contrast, my idea has been, as mentioned, to define direct causal dependence
via the causal Markov and the minimality condition. I discuss this disagreement in
Spohn (2001 and forthcoming, sect. 14.9); there is no point in going through this
intricate issue here. Let me explain, though, which shape the problem of latent vari-
ables and causal sufficiency takes within my approach.

To begin with, it is clear that when I use Bayesian nets to define causal depend-
ence, I can thereby define only a frame-relative notion of causal dependence. This
relativization can be undone for sure only in the universal frame containing all vari-
ables whatsoever.  However, this universal frame is entirely unmanageable, pre-
sumably even fictitious. So, we should rather study the causal relations relative to
smaller and larger frames. This will reveal the extent to which the causal relations in
the smaller frame are indicative of those in the larger frame (and thus eventually of
those in the universal frame). If we extend a given frame, it is, however, difficult to
say how the smaller Bayesian net develops into the larger one, simply because the
probabilities can be arbitrarily extended to the richer frame. Hence, we should rather
look at the reverse process; we should start with a Bayesian net on a large frame and
reduce it. Then the question about the shape of the reduced Bayesian net must have
a definite answer.9 Here it is:

Let us simplify matters by focusing on minimal reductions by a single variable.
Larger reductions are generated by iterating minimal reductions. So, how does a
causal graph change when a node, C, is deleted from the frame U? The answer is
prepared by the following definition:

The causal graph 〈Ur, →r〉 is the reduction of the causal graph 〈U, →〉 by the
node C iff:

(1) Ur = U – {C},
(2) for all A, B ∈ Ur A →r B iff either A → B, or not A → B and one of the follow-

ing three conditions holds:
(i) A → C → B (call this the IC-case), or
(ii) A < B and A ← C → B (call this the CC-case), or

                                                
9 Richardson, Spirtes (2002, 2003) have studied a similar question and developed an elaborate the-
ory of how directed acyclic graphs with latent variables reduce to so-called maximal ancestral
graphs when the latent variables are eliminated. Their study is much more ambitious and difficult
insofar as they do not presuppose, as I do here, any temporal order for their graphs. Since I take
arrows to express also temporal order, I am able to pursue my question within the simpler frame-
work of directed acyclic graphs.
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(iii) A < B and there is a variable D < B such that A → D ← C → B (call this
the N-case).

Thus, the reduced graph contains all the arrows of the unreduced graph not involv-
ing the deleted variable C. And it contains an arrow A →r B where the unreduced
graph contains none exactly when B is rendered indirectly causally dependent on A
by the deleted C:

(the IC-case),

or when the deleted C is a common cause of A and B:

(the CC-case),

or when A is the neighbor of such a CC-case involving B:

 (the N-case).
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The N-case is always accompanied by a CC-case. Note the importance of the tem-
poral relation D < B. If B < D, we only have a CC-case involving B and D, where

The justification for this definition is provided by the following theorem: Let 〈U,
→, p〉 be a Bayesian net, let 〈Ur, →r〉 be the reduction of 〈U, →〉 by C, and let pr be
the marginalization or restriction of p to Ur = U  – {C}. Then the causal graph
agreeing with pr is a (proper or improper) subgraph of 〈Ur, →r〉, and if p is faithful
to 〈U, →〉, then it is 〈Ur, →r〉 itself which agrees with pr. (For a proof see Spohn
2003, pp. 214f.)

In the case that p is not faithful to 〈U, →〉, the theorem cannot be strengthened,
because in that case there may hold conditional independencies not foreseen by the
criterion of d-separation. Hence, d-separation may tell us A →r B, even though A ⊥
B | Pr(B) – {A, C}, which excludes a direct causal dependence of B on A relative to
the reduced frame and pr. However, if p is faithful to 〈U, →〉, this situation cannot
arise, and we have a complete answer about the behavior of reductions.10

As envisaged above, we should again reverse the perspective and read the theo-
rem not as one about reductions, but as one about extensions. Our picture of the
world is always limited, we always move within a small frame Ur. So, as I said
above, whenever we construct a causal graph 〈Ur, →r〉 agreeing to our probabilities
pr, we should consider this graph as the reduction of a yet unknown, more embracive
graph 〈U, →〉 (and in the final analysis as the reduction of the universal graph). The
theorem then tells us (i) that where there is no direct causal dependence according
to the small graph, there is none in the extended graph, and (ii) that what appears
to be a direct causal dependence in the small graph may be either confirmed as
such in the extended graph, or it unfolds into the IC- or the CC-case; and what
appears to be causal triangle in the small graph, may resolve into the N-case. To
be precise, this is guaranteed only if the extended probabilities p are faithful to the

                                                
10 One should note, though, that even if p is faithful to 〈U, →〉, pr need not be faithful to 〈Ur,
→r〉. Indeed, pr cannot be faithful if the N-case applies, since in that case we have A  ⊥ B, though
A and B are not d-separated by ∅ in 〈Ur, →r〉. This shows that the N-case is a rare one.
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extended graph 〈U, →〉. But since almost all probability measures agreeing with 〈U,
→〉 are faithful to it, we may reasonably hope to end up with such a p.

This observation is already half of the truth about the relation between the un-
starred, unreflexive and the starred, reflexive decision graphs in section 2; for the full
truth we have to dwell on the action and the decision nodes.

4. Decision Graphs and Basic Decision Models

So far, a Bayesian net describes either some small part of the world or some per-
son’s partial view of the world, a view of a detached observer having only beliefs
and no interests whatsoever about that part. However, this is not the agent’s view as
we have to model it now. In order to accommodate it, we have to enrich our picture
by adding two ingredients.

The first ingredient consists in desires or interests that are represented by a utility
function. Each course of events is more or less valued, and the values are repre-
sented by a utility function u from ×U into R.

We might still have a mere observer, though an interested one. However, an agent
wants to take influence, to shape the world according to his interests. Hence, we
must assume that some variables are action variables that are under the agent’s direct
control and take the values set by him. Thus, the second ingredient is a partitioning
of the frame U into a set H of action variables and a set W of occurrence variables,
as I have called them.

This is so far only the formal frame. The next important step is to see that not
any structure 〈U, →, H, p, u〉 (where 〈U, →, p〉 is a Bayesian net and W = U – H)
will do as a decision model; we must impose some restrictions.

A minor point to be observed here is that H does not contain all the variables in
U which represent actions of the agent. Rather, H contains only the action variables
still under consideration from the agent’s point of view. That is, the decision model
is to capture the agent’s decision situation at a given time, and H contains only the
action variables later than this time, whereas the earlier variables representing acts of
the agent are already past, no longer the object of choice, and thus part of W.

Given this understanding of H, the basic restriction is that the decision model
must not impute to the agent any cognitive or doxastic assessment of his own ac-
tions, i.e., of the variables in H, because the agent has no or no decision relevant
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beliefs or probabilities about H and because the model should contain only what is
decision relevant. In the first place, he has an intention about H, formed rationally
according to his beliefs and desires or probabilities and utilities, and then he may as
well have a derivative belief about H, namely, that he will conform to his intention
about H; however, this derivative belief does not play any role in forming the inten-
tion and should hence not be part of the decision model. I have stated this “no
probabilities for acts” principle in Spohn (1977, sect. 2) since it seemed to me to be
more or less explicit in all of the decision theoretic literature (cf., e.g., Fishburn
1964, pp. 36ff.) except Jeffrey’s EDT (1965); Levi (1986) prominently supports
this principle under the slogan “deliberation crowds out prediction”. The argu-
ments in its favor were critically examined by Rabinowicz (2002) in a most careful
way. My present attitude toward the principle is a bit more sophisticated and will
become clear in section 6.

It finds preliminary support, though, in the fact that it entails another widely ob-
served principle, namely, that the action variables in H are exogenous in the graph
〈U, →〉, i.e., uncaused or parentless. Why does this “acts are exogenous” principle,
as I call it, follow? If the decision model is denied to contain probabilities for ac-
tions, it must not assume a probability measure p for the whole of U. Only prob-
abilities for the occurrence variables in W can be retained, but they may, and should,
be conditional on the various possible courses of action h ∈ ×H; the actions will
usually matter to at least part of what occurs in W. Hence, we must replace the
measure p for U by a family (ph)h∈×H of probability measures for W . Relative to
such a family, Bayesian net theory still makes perfect sense; such a family may also
satisfy the causal Markov and the minimality condition and may agree with, and be
faithful to, a given causal graph.11 However, it can do so only when action variables
are parentless. For a variable to have parents in agreement with the probabilities,
conditional probabilities for it must be explained, but this is just what the above
family of measures must not do concerning action variables. Therefore, these vari-
ables cannot have parents.

Pearl (2000, ch. 3) thinks along very similar lines when he describes what he
calls the truncation of a Bayesian net: He starts from a Bayesian net 〈U, →, p〉. U
contains a subset H of action variables. p is a measure for the whole of U and thus

                                                
11 My definitions and theorems concerning conditional independence in Spohn (1976/78, sect. 3.2)
dealt with the general case relating to such a family of probability measures. The graph theoretic
material may be supplemented in a straightforward way.
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represents rather an external observer’s point of view. Therefore, the action variables
in H so far have no special role and may have any place in the causal graph 〈U, →〉.
Now, Pearl imagines that the observer turns into an agent by becoming empowered
to set the values of the variables in H according to his will so that the variables in H
do not evolve naturally, as it were, but are determined through the intervention of the
agent. Then Pearl asks which probabilities should guide this intervention. Not the
whole of p. Rather, the intervening agent cuts off all the causal dependencies the
variables in H have according to 〈U, →〉 and puts himself into place. Hence, the
agent should rather consider the truncated causal graph 〈U, →t〉 which is defined by
deleting all arrows leading to action variables, i.e., A →t B iff A →  B and B ∉  H.
Thereby the action variables turn exogenous, in accordance with our principle above.

The next task is to find the probabilities that agree with the truncated graph. We
must not simply put ph(w) = p(w | h) (h ∈ ×H, w ∈ ×W); this would reestablish
the deleted dependencies. Rather, we have first to look at the factorization of the
whole of p provided by the causal graph 〈U, →〉:

If v ∈ ×U is a course of events in U and if for each A ∈  U  a is the
value A takes according to v and pa(a) the values the variables in Pa(A)
take according to v, then p(v) =  p(a | pa(a))

A∈U
∏ .

What we have to use then in deciding about a course of action in ×H is the trun-
cated factorization (cf. Pearl 2000, p. 72) that deletes all factors concerning the vari-
ables in H from the full factorization:

If h ∈ ×H and w ∈ ×W and if for each A ∈ W a is the value A takes
according to w and pa(a) the values the variables in Pa(A) take accord-
ing to h and w, then ph (w) =  p(a | pa(a))

A∈W
∏ .

For the family (ph) thus defined, we say that 〈U, →t, (ph)〉 is the truncation of 〈U, →,
p〉 with respect to H, and we can easily prove that (ph) agrees with 〈U, →t〉 if p
agrees with 〈U, →〉; this is built in into the truncated factorization. Thus, as Pearl
and I agree, it is this family (ph) that yields the probabilities to be used by the agent.
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Hence, Pearl also subscribes to the two principles above.12 The notion of truncation
will be the other ingredient in understanding the relation between the starred and the
unstarred decision graphs of section 2.

Let us resume our discussion so far. We may define a decision graph 〈U, →, H〉
to be a causal graph 〈U, →〉 together with a set H of exogenous nodes of U. And we
may define a basic decision model to be a structure 〈U, →, H, (ph), u〉, where 〈U, →,
H〉 is a decision graph, (ph) is a family of probability measures for W  = U  – H
agreeing with 〈U, →〉, and u is a utility function from ×U into R.

What is the associated decision rule? Maximize conditional expected utility, i.e.,

choose a course of action h ∈  ×H  for which u(h,w) ⋅ ph
w∈×W
∑ (w)  is maximal!

However, this decision rule is naive insofar as it neglects the fact that the agent need
not decide for a whole course of action; rather, he needs to choose only from the
(temporarily) first action variable and may wait to decide about the later ones. In
other words, the naive decision rule has not taken into account strategic thinking.
We shall have several reasons for undoing this neglect in section 5.

An important consequence is that in a basic decision model all non-descendants
of an action variable are probabilistically independent of it. This is entailed by the
exogeneity of action variables, as is easily verified with the help of d-separation. In
other words: what is causally independent from actions is also probabilistically in-
dependent from them. This is a tenet characteristic of CDT. Thus, if we are to ac-
count for NP within CDT, we have to represent it, it seems, by the decision graph
(NP1) and the accompanying basic decision model.13

I have not really argued for the two principles and thus for defining basic deci-
sion models in the above way. I have implied, though, that it is more or less what we
find in most of the decision theoretic literature, and this observation may perhaps
suffice. Indeed, I take the two principles as one way of saying what is constitutive of
CDT. Or to put the point more cautiously:

The common aim of CDTs is to find a representation in which states or variables
causally independent from the actions are also probabilistically independent and
which use such probabilities for calculating the agent’s expected utilities. If there are
                                                
12 In this paragraph I have slightly assimilated Pearl’s conception to mine, though in a responsible
way, I believe. In principle, the truncation procedure is already described in Spohn (1978, pp.
187ff.), though without graph-theoretic means. The notion of intervention is crucial also for
Spirtes et al. (1993, pp. 75ff.); they model it through their transition from unmanipulated to ma-
nipulated graphs, as they call it. Their procedure closely corresponds to Pearl’s truncation.
13 Meek and Glymour (1994) have further elaborated on this consequence.
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probabilities correlating a causally independent variable with the actions, as there
plausibly are in NP, basing expected utilities on them yields bad advice. However,
CDTs then disagree about the precise form for suitably representing the agent’s
probabilities. Gibbard and Harper (1978) think that probabilities about conditionals
(that express causal relations) are to be used instead of conditional probabilities;
Lewis (1981a) endorses this idea, too. Skyrms (1984, ch. 4) sticks to ordinary con-
ditional probabilities, but enriches the conditions by causal hypotheses. And so
forth. I am not starting to argue about these ideas. Let me only say that I always had
a strong preference for solutions that get along with ordinary probabilities about
ordinary propositions (i.e., not containing modalities), as do Kyburg (1980), Meek
and Glymour (1994), Pearl (2000), and all those working in this tradition. What I
think, then, is that the two principles are constitutive for versions of CDT sharing
this preference. In any case, they lead to the account of NP just sketched and to the
idea that the truncated factorization instead of the full probability measure has to be
used for calculating expected utilities.

However, somehow I want to stick to these principles and still to reverse the con-
clusions. I have intimated in section 2 that this is the consequence of ascending to
the reflexive perspective. Let us see how this works in detail.

5. Strategies and Reflexion

The best way of motivating and introducing the reflexive perspective is by pon-
dering whether the two principles characteristic of the preferred versions of CDT,
the “no probabilities for acts” and the “acts are exogenous” principle, are really
true. I see essentially two ways of doubting them. On the one hand, the agent him-
self may make his actions dependent on the behavior of other variables and thus turn
the action variables into endogenous ones; this is what is called strategic behavior.
By deciding for a certain strategy the agent obviously accepts certain probabilities
for the actions covered by the strategy, in contradiction to the two principles. On the
other hand, it is hard to see why the agent should not be able to reflect on the causes
of his own actions, just as he does concerning the actions of others. This reflection
should clearly enable him to have (probabilistic) predictions about his future actions,
again in contradiction to the two principles. We shall see that both approaches come
to the same thing; but let us dwell upon them separately and a bit more carefully.
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Let us take up strategies first. Concerning basic decision models, I have already
mentioned that it would be a naive decision rule simply to choose a course of action
with maximal expected utility. Usually it is better to wait and see what happens and
to act accordingly. How can this be accounted for in our graph theoretic framework?

The most general way is this: According to a given basic decision model 〈U, →,
H, (ph), u〉 all action variables in H are exogenous. What the agent does in thinking
about strategies is to enrich the causal graph 〈U, →〉 by some edges each of which
ends at some action variable and starts at some preceding occurrence variable; this
means to reverse the truncation described in the previous section. Of course, the
agent does not only create such dependencies, he considers to create them in a spe-
cific way expressed by specific probabilities. This is captured in the following defi-
nition: A dependency scheme q for a given basic decision model is a function which
specifies for each action variable A ∈ H a probability distribution for A conditional
on each realization of Pr(A), i.e., of all the variables preceding A.

On the basis of the probability family (ph) each dependency scheme q determines

a probability measure pq for the whole of U defined as follows: for w ∈ ×W and h

∈ ×H pq(h,w) = ph(w) ⋅ q(h | w) – where q(h | w) denotes the probability that the
action sequence h realizes according to q given w. That is: if, for A ∈ H, a denotes
the value A takes according to h and pr(a) the values the variables in Pr(A) take ac-
cording to h and w, then q(h | w) =   q(a |  pr(a))

A∈H
∏ . These are just the factors we

need in order to fill up a truncated factorization to yield a complete one.
Thereby we are able to define the expected utility of each dependency scheme q:

Eu(q) =  u(h,w) ⋅ pq
w∈×W
∑

h∈×H
∑ (h,w) . This suggests a more general and reasonable

decision rule: When your situation is represented by the given model, choose a de-
pendency scheme with maximal expected utility! Is this rule a good one?

Again no! The problem is that not every dependency scheme represents a strat-
egy that is feasible to the agent. I have lost my glasses, for instance. What to do?
Clearly, the optimal dependency scheme would be to search in my office if I have
forgotten them in my office, to look into the fridge if I have put them into the fridge,
etc. This would obviously be the fastest way to find my glasses. But it is not feasible
to me; my problem is just that I do not know where I have put them. Hence, depend-
ency schemes maximizing expected utility tell only how the agent and his actions
would be optimally embedded into the causal graph according to his subjective view.
Whether he is able to embed himself in such a way is another question.
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This raises the following question: Which of the dependency schemes are feasi-
ble strategies that the agent is able to realize by himself? Generally, one can only say
that the latter form a convex subset of the former. It is convex because any mixture
of feasible strategies is feasible in turn. The reason why we cannot say more lies in
the frame-relativity of dependency schemes. Prima facie one may think that all de-
terministic dependency schemes are feasible and that the probabilistic strategies
simply result from mixing the deterministic ones (and then one should indeed think
that there always are deterministic strategies among the optimal ones so that it would
suffice to consider only deterministic strategies). However, there is no guarantee that
the frame contains the variables that the agent is able to connect up with in a deter-
ministic way. Perhaps the agent at best receives incomplete information about the
variables included in the frame. In this case only a probabilistic dependency is
within his power. Hence, as long as we do not make special assumptions about
which variables are in the frame U, no more can be generally said about the feasibil-
ity of dependency schemes.

So, we should perhaps include in the frame those variables to which the agent can
establish a deterministic dependence. Which are they? The answer seems clear. The
agent can intentionally make his action depend only on those variables whose state
he learns and thus knows with certainty before the time of action. However, no gen-
eral statement seems available concerning the kind of variables the agent learns
about. They must be observable, for sure; but the decline of empiricism has shown
that this characterization is vague and loose. Still, there is a general statement: What-
ever the external events are the agent does, or does not, notice, he knows his own
state before the time of action, he knows the decision situation he is in (i.e., his sub-
jective view of it), which is generated, among other things, by the external events he
has noticed. This is as Eells (1982, ch. 6) has conceived it.

This observation provides us with a general procedure for discovering the feasi-
ble strategies among the dependency schemes, namely by extending the causal
graph of the given basic decision model by decision nodes as already introduced in
section 2, such that each action node is preceded by a decision node, and then to
define a feasible strategy as a dependency scheme which makes each action node
depend only on its associated decision node. Obviously a decision node causally
depends, in turn, on many other variables; thereby, the action node’s direct inten-
tional dependence on the decision node ramifies into various indirect dependencies
(where “direct” and “indirect” is relative to the extended causal graph). Moreover,
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it is obvious which deterministic shape the action node’s intentional dependence on
the decision node should take: the relevant decision rule, say, maximizing condi-
tional expected utility, states which action to perform in which decision situation.

It should be clear that we have to elaborate the content of the previous paragraphs
in more detail. This is what we shall do in the next section. But one point should be
stated right away. What I have explained so far entails that as soon as the agent has
decided for a certain strategy or dependency scheme, he can, on the basis of this
decision, predict for each action supported by his strategy with which probability he
will have the opportunity to perform it. This is the first way for apparently rebutting
the “no probabilities for acts” principle.

I have announced a second way at which we should look next before further de-
veloping the above ideas. This way is even more straightforward: Why should the
agent be unable to take doxastic attitudes like predicting, explaining, etc. toward his
own actions, if he can very well do so toward the actions of others? One should in-
deed think that he is particularly well endowed in his own case because he has so
much more data about himself than about anybody else.

Hence, the question is rather: How should the agent predict his own future be-
havior? There seem countless ways. The agent knows his habits (“sure, I’ll brush
my teeth this evening when I go to bed; that’s what I always do!”) or the conven-
tions (“of course, I’ll drive on the right tomorrow; everybody does!”), he knows
his anxieties and the resulting behavior (“I definitely won’t hike through Devil’s
gorge!”), and so on. These pieces of behavior may or may not be under the rational
control of the agent. If they are, as is likely in the case of habits and conventions (at
least in the examples given), the prediction is incomplete unless it mentions that the
particular instantiation of a habit or convention is confirmed by rational control. This
means, in turn, that the prediction of a piece of behavior is really based on the pre-
diction of the (tacit or explicit) rational deliberation leading to it. If a piece of beha-
vior is not under rational control, as it may be in the case of anxieties, then, it seems
to me, it cannot be the object of a practical deliberation and does not deserve the
status of an action node in a decision model; from the point of view of a practical
deliberation, it is just an occurrence to reckon with, not an action to be intentionally
chosen. (Psychology and self-observation teaches that this distinction is not so
clear-cut. However, for the sake of theorizing we sometimes have to paint black and
white.)
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To conclude, the agent should predict and explain his actions at future action
nodes as intentional and rational actions with the help of decision theory, just as he
explains and predicts the actions of others. Hence, if we want to make explicit these
means for predicting and explaining actions within the decision model, we should
extend it by decision nodes, as already envisaged. The agent has (probabilistic) pre-
dictions about the decision situations he will face, and accordingly he has (probabil-
istic) predictions about the future actions, again just as in the case of strategies.

It may seem surprising how the active mode of considering which feasible strat-
egy to choose and the passive mode of predicting future actions can come to the
same thing. But it is not so surprising, after all; the two modes melt into each other
in this special case. If I predict my likely future actions from my likely future deci-
sion situations, this is like forming a conditional intention. And conversely, if I
choose among feasible strategies that make future actions dependent on future deci-
sion situations, the chosen dependence is not really subject to my present evaluation
and intention. Rather, all the parameters on which the evaluation and intention is
based, i.e., the relevant subjective probabilities and utilities, are already specified in
the future decision situation on which the action depends; the decision is deferred to
that situation. One description is as good as the other; and so the active mode of
decision and the passive mode of prediction merge.

Thus, it seems that we have a convincing double safe argument against our prin-
ciples. Did we succeed to refute them? And thus to refute CDT as based on them? It
would be premature to jump to conclusions. We should rather scrutinize how re-
flexive decision graphs and models that include decision nodes really look like.

6. Reflexive Decision Graphs and Models and their Truncated Reductions

Our discussion so far has provided all the ingredients for coping with our final
task. We only have to put them together. First, the causal relations should obviously
be summarized thus: 〈U, →, H, D〉 is a reflexive decision graph iff (i) H, the set of
action variables, and D, the set of decision variables, are disjoint subsets of U, (ii),
as before, W = U – (H ∪ D) is the set of occurrence variables, and (iii) 〈U, →〉 is a
causal graph such that (iv) each action node has exactly one decision node as the
only parent, i.e., for each A ∈ H there is a Δ ∈ D with Pa(A) = {Δ}, and (v) each
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decision node has at least one action node as a child, i.e., for each Δ ∈ D there is an
A ∈ H with Δ ∈ Pa(A).

This was the upshot of our discussion in section 5. For each action node it is just
the parental decision node that provides the intentional or explanatory or predictive
determinants of the action performed at that node. It is thus obvious that only deci-
sion nodes can be parents of action nodes, and indeed that each action node can have
only one parental decision node.

The latter condition may seem too strong. Is it not possible that one decides
twice, and in different ways, about one and the same decision node? The fiancée has
firmly promised and honestly intends to marry the fiancé, but after a fortnight she
equally firmly does no longer want to marry that man, and we may grant her some
good reasons. Should we deny her honesty and say that at least on one occasion she
had no real intention? I do not think so. We may well admit that in actual fact an
agent may be decided twice about one and the same decision node. However, re-
flexive decision graphs do not represent the perspective of the external observer;
they capture the agent’s subjective perspective. And in that perspective one cannot
envisage to decide twice; if one envisages a second decision for the same action
node, one thereby grants that the first decision is none. This minimal condition is
part of our explication.

The question is rather whether the explication should be strengthened. Three
further conditions suggest themselves; but it is crucial to reject all of them.

First, one might require that no two action nodes have the same parental decision
node. However, this would exclude that one decides about a whole course of actions
at once, and there is no need of doing so. It may be wise to fix only the first action
and then to see how the situation develops; but sometimes it may be wise to fix a
whole course of actions at once. Anyway, doing so should not be conceptually ex-
cluded.

Second, one might require that each action node be immediately preceded in time
by its parental decision node. However, our discussion of the Toxin puzzle in sec-
tion 2 clearly shows the inadequacy of this condition. Of course, I can be decided
early, and in TP I get the reward only by being decided early. This is also what our
everyday experience tells us. Often I go to bed with a plan in mind that I simply
execute the next morning. And where to make the next vacation is something to be
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decided many months before. Ever so often we must, can, and do fix our plans far in
advance, and thereby we take real decisions.14

Third, our explication allows a decision node to have other children than action
nodes, but one might wonder how this is possible. Well, in TP it was explicitly as-
sumed to be possible via the cerebroscope. This also corresponds to our everyday
experience. We do not infer the attitudes of our fellows, their beliefs, desires, and
intentions, merely from their actions; they are closely connected to their emotions
and are thus revealed also by their mimics, gestures, and other emotional re-
sponses.15 This is crucial for human intercourse; extremely controlled persons who
allow a glimpse into their inner life only through their actions are somehow eerie.
Thus, we should reckon with side effects of decision nodes. It is clear from section
2 that my entire argument stands and falls with this possibility.

In order to extend reflexive decision graphs to decision models, we only have, it
seems, to add probabilities and utilities: δ̂  = 〈U, →, H, D, p, u〉 is a reflexive deci-
sion model iff 〈U, →, H, D〉 is a reflexive decision graph, p is a probability measure
for U, i.e., over the algebra of all subsets of ×U agreeing with 〈U, →〉, and u is a
utility function from ×U into R.

The fact that p unrestrictedly distributes over the whole of U, in contrast to the
probabilities in basic decision models, reflects the point that in the reflexive perspec-
tive there is no such restriction; the agent now has beliefs about his own actions and
even about his own decision situations. However, the utility function u might be
restricted to map only ×(U – D) into R. Arguably, decision nodes should be ex-
cluded from the utility function; being in, or getting into, this or that decision situa-
tion does not meaningfully hold any utility in itself. Let us ignore the point, though;
it will not play any role here.

Still, our characterization of reflexive decision models is incomplete. We have to
impose four further conditions. Only the first two are relevant for fully understand-
ing what was going on in section 2; therefore I shall carefully discuss them. The
other two will be only mentioned at the end; we shall see why it is not important in
the present context, and indeed too difficult, to fully state them.

The first of these additional conditions concerns the self-localization of the agent
in the reflexive decision model δ̂ . A basic decision model does not contain the agent

                                                
14 The temporal decoupling of decision and action is also an essential ingredient of Bratman’s ac-
count of intention, planning, and agency; see Bratman (1999, chs. 1 - 4).
15 Frank (1988) profoundly elaborates on this aspect of rational action.
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himself; it only represents his field of deliberation. This is different with the reflex-
ive model δ̂ . It also contains the agent’s possible or actual decision situations, and
hence the question is: at which decision node is he presently situated? The answer is
obvious: the agent is to decide about the first of his action nodes (and possibly later
ones as well) and thus finds himself, as it were, in the first decision node. That is, the
time at which the reflexive model characterizes the agent is the time of its first deci-
sion node.

At that very time the agent knows in which decision situation he presently finds
himself. He may not have foreseen it, and he may have forgotten it later on; but at
the time of decision he knows his subjective view of his situation; and the model
represents only this view. This self-knowledge is captured in the first condition sup-
plementing the above definition of reflexive models:

(SK) If Δ0 ∈ D is the temporally first decision node, there is a particular δ0 ∈  Δ0

such that p(δ0) = 1.

This condition of consciousness or self-knowledge has first been stated and ac-
cepted by Eells (1982, p. 176).

This raises a problem. δ0 is obviously to represent the present decision situation
of the agent of which he is aware; on the other hand, the reflexive model δ̂ , which
we are about to characterize, does so as well. But δ0 is only a part and not the whole
of δ̂ . How can this be? Now we have finally returned to the crucial issue of section
2, the relation between the unstarred and the starred graphs, the unreflexive basic and
the reflexive models.

The first response is that two different decision models, in the present case δ0

and δ̂ , may well represent the same situation; the representation relation is rarely
one-one in model construction. Indeed, if one decision model is a reduction of an-
other, they may be said to represent the same situation.16 The second response is
that it is indeed a general difficulty that we face here. Whenever one models states of

                                                
16 I have not explicitly defined the reduction of basic decision models; but our definition of the re-
duction of Bayesian nets is easily extended. Such reductions are at the heart of the theory of small
worlds of Savage (1954, sect. 5.5). In Spohn (1976/78, sects. 2.3 and 3.6) I have elaborated on
their theoretical importance.
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reduces to: gets truncated to:

reflexion, the object of reflexion cannot be understood as the whole reflexive state
itself.17 Thus, the problem is a common one.

Here is an account of what δ0 is, if it cannot be the whole of δ̂ . δ0 is not the ba-
sic submodel resulting from the full reflexive model by eliminating all decision
nodes; it is only the first decision node Δ0 itself that needs to be eliminated. Elimi-
nating it from the reflexive graph means reducing the graph by it. However, this
reduction need not produce a decision graph; we have to additionally truncate the
reduction result with respect to the action nodes decided in δ0. Thus, the elimination
of Δ0 results in what we might call the truncated reduction of δ̂  by Δ0. It is fully
described as follows:

For any decision node Δ ∈ D, let Ac(Δ) denote the set of action children of Δ
(that must not be empty according to our definition of reflexive decision graphs) and
Oc(Δ) the set of other (occurrence or decision) children of Δ (that may, but need not
be empty). Then, the truncated reduction of δ̂  by Δ0 is obtained by first reducing δ̂
by Δ0 not precisely in the way described in section 3, but in a slightly modified way
I am about to explain and then truncating this reduction with respect to Ac(Δ0) as
described in section 4. The slightly modified way is this:

Arrows in which Δ0 is not involved are simply maintained in the reduction as de-
fined in section 3. Next, the reduction contains arrows from all parents of Δ0 to all
children of Δ0; this is the IC-case. The arrows arriving at occurrence or other chil-
dren will be preserved after truncation, whereas the arrows arriving at action children
will fall victim to truncation:

(the IC-case)

                                                
17 This is so at least if we stick to standard ways and not resort to the model theoretic means de-
vised by Barwise (1990) who attempts to accommodate such circular phenomena within set theory
without the foundation axiom.



32

reduces to: gets trun-
cated to:

reduces
to:

gets trun-
cated to:

The slight modification occurs in the CC-case. Here, we have to stipulate, for rea-
sons to be immediately explained, that all arrows between Ac(Δ0) and Oc(Δ0) cre-
ated by the reduction run from Ac(Δ0) to Oc(Δ0) irrespective of the temporal order,
i.e., even in the case where the arrows are thereby forced to run backwards in time.

(two CC-cases; the fat arrows show the modification)

This modification entails that the N-case cannot obtain. The modification of the
CC-case treats all occurrence children of Δ0 as if they were later than the action chil-
dren of Δ0, and thus the “N” can take only the form of a simple CC-case:

(no genuine N-case)

Hence, I propose as a second additional condition on reflexive decision models:

(TR) The basic decision model δ0 = 〈U – {Δ0}, →rt, H, D  – {Δ0}, (pg), u〉 is the
truncated reduction of δ̂  by Δ 0 in the sense just defined (where g runs
through ×Ac(Δ0)).

To repeat, this amounts to the following: The causal graph 〈U – {Δ0}, →rt〉 of δ0

is obtained from 〈U, →〉 by deleting, together with Δ0, all arrows ending or starting
at Δ0 and, provided Oc(Δ0) is not empty, by adding arrows from all A ∈ Ac(Δ0) and
all B ∈ Pa(Δ0) to all C ∈ Oc(Δ0). The action nodes in Ac(Δ0) are thereby turned into
exogenous variables, and the other children of Δ0, if any, become directly causally
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dependent (in the frame-relative sense) on all the parents and all the action children
of Δ0.

This may not appear intelligible because the modification of the CC-case may
generate arrows running backwards from Ac(Δ0) to earlier members of Oc(Δ0). We
certainly do not want to allow for backward causation. However, the modification
does not do so. Recall our observation in section 3 that in a reduced causal graph,
relative to a restricted frame, an arrow A →r B generally signifies only that B directly
causally depends on A or that the IC-, the CC- or the N-case applies to A and B.
Here, the only case that can apply to the arrows between Ac(Δ0) and Oc(Δ0) is the
CC-case. It is important to see that we had no choice here but to assume the
anomalous backward arrows. If we had added only forward arrows in the reduction,
i.e., arrows from the earlier members of Oc(Δ0) to Ac(Δ0) and from Ac(Δ0) to the
later members of Oc(Δ0), then only the latter, but not the former, would have sur-
vived the truncation. But there is no reason whatsoever to treat the former and the
latter arrows in the truncation in a different way; the temporal location of the mem-
bers of Oc(Δ0) is irrelevant to the causal structure of the situation and should not
make any difference. Hence, the only way to uniformly and adequately retain the
information about the common cause of Ac(Δ0) and Oc(Δ0) in the truncated graph is
by adding in the reduction only arrows starting from, and not leading to, Ac(Δ0), as it
is shown in the above diagram of the CC-case. This point is the final crucial step in
my explanation how CDT can and should represent NP and TP first by the reflexive
decision graphs (NP2*) and (TP2*) and thus as well by the unreflexive decision
graphs (NP2) and (TP2) that are the formers’ truncated reductions.

 (TR) does not yet fully specify the basic decision model δ0 to which δ̂  reduces;
it does not yet fix the probabilities and utilities of δ0. It is clear, though, that δ0

should contain the same utility function as δ̂ , at least if we follow my above sug-
gestion and assume that decision nodes do not carry utilities by themselves. And the
probability family (pg) of δ0 is derived from the measure p of δ̂  by eliminating the
reflexive probability of condition (SK) and all probabilities entailed by it, in particu-
lar the probabilities for the actions in Ac(Δ0). The procedures described in sections 3
and 4 then guarantee that the remaining family (pg) agrees with the reduced and
truncated graph.

The upshot of all this is that δ0 contains the same decision relevant items as the
reflexive model δ̂  and indeed all of them; the surplus of the reflexive model is only
the agent’s firm belief that he is in δ0 and what follows from this belief. In this way,
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the circularity problem that plagued our modeling of reflexive states is finally solved,
too.

However, I should emphasize that thereby the “no probabilities for acts” princi-
ple has reentered the picture, if only in relation to the variables in Ac(Δ0); the other
action variables are taken care of by the later decision nodes. The reason is that δ0,
which observes this principle, contains precisely what is needed for determining or
causing the optimal action. The surplus of the reflexive model has no effect in this
respect.18 In other words, the reflexive model allows for completely defined beliefs
or probabilities and does therefore justice to the intuitions of those not accepting
restrictions in the domain of probabilities. At the same time, it keeps the essence of
the “no probabilities for acts” and the derived “acts are exogenous” principle
through its reducibility to the associated basic decision model. This is how I still
maintain the principles and thereby the core of CDT. Nevertheless, the conclusions
as to what is rational in NP and TP have reverted in the reflexive model as well as in
its truncated reduction. This finishes my main argument.

Still, I should at least indicate how my definition of reflexive decision models
may and should be completed. I had announced that besides the conditions (SK)
and (TR) two further conditions would be needed to completely characterize reflex-
ive decision models. Let me sketch what is missing.

For one thing, we require a condition concerning the shape of all the decision
situations δ in all the decision nodes Δ ∈  D. This condition would not differ so
much from our detailed condition (TR) on δ0. The most important difference will be
that the agent may envisage arbitrary changes of probabilities and utilities in all the
possible decision situations, whereas the probabilities and utilities of δ0 had, of
course, to agree with those of δ̂ . To be sure, theoretical work only becomes sub-
stantial by considering various specific forms of change. For example, a case that is
treated extensively in decision theory is the one where the agent deliberates whether
first to collect (possibly costly) evidence and then to decide on the basis of prob-
abilities changed accordingly. But many different kinds of change may be con-
ceived, forgetting, for instance, or what economists call endogenous preference
change, and conceptually one should allow for all types of change.

A final condition is missing, indeed the most difficult and important one: the de-
cision rule that specifies for each possible decision situation which action(s) should

                                                
18 This has been one of my two arguments for this principle in Spohn (1977, sect. 2), the one
which Rabinowicz (2002) considers to be the stronger one.
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be rationally or optimally performed in it. In the reflexive context, this also deter-
mines the agent’s beliefs about the relation between decision and action nodes, since
he believes to be and to stay rational (otherwise, it would be wrong from the outset
to consider later action nodes really as actions nodes governed by decision nodes).
Hence, the final condition is:

For any decision node Δ and any situation δ ∈ Δ, if g ∈ ×Ac(Δ) is irra-
tional in δ according to the relevant decision rule, then p(g | δ) = 0.

This condition is stated only negatively. In case there are several optimal actions in δ
the general model should not ordain specific probabilities for those actions.

But what is the relevant decision rule? I don’t know, and I think nobody knows.
It is obvious that it will be a recursive one. Each situation δ in the last decision node
Δn is free of further decision nodes; the strategic horizon does not extend further.
Hence, each such δ is a basic decision model, and the rule of maximizing conditional
expected utility as envisaged in section 4 is good enough for it. Having determined
optimal choices for all situations in the decision nodes Δk+1, …, Δn, we may then
continue considering all the feasible strategies for the situations in Δk and maximize
expected utility as envisaged in section 5, and so on until we reach Δ0. This proce-
dure may be strictly defined. It is indeed familiar from what is called sophisticated
choice. In fact, though, it is more general insofar as it allows deciding about shorter
or longer courses of actions at once and thus contains elements of so-called resolute
choice. Hence, this procedure seems to offer a combination of these two choice
rules.19

However, we obviously enter here a very different and very difficult topic that is
beyond the issues of CDT. Let me only point out that the problems concerning an
adequate general decision rule have no impact on my treatment of NP and TP, be-
cause the reflexive models representing them contain only one decision and one
action node. Then the truncated reduction generates a basic decision model with just
one action node as defined in section 4, and for this model the standard rule of
maximizing conditional expected utility is adequate – and indeed recommends
drinking the toxin and one-boxing according (TP2) and (NP2).
                                                
19 Sophisticated choice was first developed by Strotz (1955/56) and further elaborated and discussed,
among others, by Yaari (1977), and Hammond (1976, 1988). See also the thorough discussions in
McClennen (1990) who champions resolute choice besides sophisticated choice. In Spohn (2009) I
argue that the issue of an adequate general decision rule is still more complicated.
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