◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Global vs local obstructions for the regularization of the norm of random matrices

Liza Rebrova

joint with Roman Vershynin

University of Michigan

CMS Sectional meeting, Edmonton, June 25-27, 2016

Global vs local obstructions

Setting: Object lacking some good property Question: can we gain this property by a local change of an object?

We can ask this for various structures/objects and various properties.

Example

Object - Erdös-Rényi random graph G(n, p); property - connectivity; local change - in o(n) edges When $p \sim \frac{1}{n}$ structure properties change: a giant component appear:

- 1. before threshold lots of connected components
- 2. after threshold a giant component + a few other components

Global vs local obstructions - Example

$$p < \frac{1}{n}$$

 $p > \frac{1}{2}$

There are O(n) small components, we cannot connect them all by o(n)edges – obstructions to connectivity are "global" A giant component and log(n) other components, we can connect everything by a short cycle – obstructions are "local"

(Pictures are taken from A. Novozhilov's course in Mathematics of Networks, NDSU)

Another example - norm regularization problem

Object - $n \times n$ random matrix A with i.i.d. entries a_{ij} Property - $||A|| \leq C\sqrt{n}$ with high probability Local change - in a small $\varepsilon n \times \varepsilon n$ submatrix $A_0 \subset A$

Example

- If $a_{ij} \sim N(0,1)$, then $\|A\| \simeq 2\sqrt{n}$.
- If a_{ij} are subgaussian, then also $||A|| \simeq O(\sqrt{n})$

But: if just $\mathbb{E}a_{ij}^2 = 1$, then there are examples $||A|| \sim O(n^{2/\alpha})$ for any $\alpha \ge 2$ with probability at least 1/2 (A.Litvak, S.Spector) Question: If $||A|| \gg \sqrt{n}$ w.h.p, is it a global or local obstruction?

Norm regularization problem

Example

If a_{ij} are not mean zero: $\mathbb{E}a_{ij} \sim 1$, then $\|A\| \ge n$, and the problem is global.

So, we assume $\mathbb{E}a_{ij} = 0$. Can we improve the norm of a rand

Can we improve the norm of a random matrix by deletion of its small sub-matrix?

Theorem (L.R-R.Vershynin, informal statement)

A is a random square matrix with i.i.d. centered elements a_{ij}.

- if a_{ij} have finite variance ∴ local obstructions
- if not ∴ global obstructions

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー の々ぐ

Theorem (Part 1: local obstructions)

Let A be a random $n \times n$ matrix with i.i.d. elements, $\mathbb{E}a_{ij} = 0$, $\mathbb{E}a_{ij}^2 = 1$. Then for any $\varepsilon \in (0, \frac{1}{2}]$ with probability

 $1-11\exp(-\varepsilon n/6)$

there exists an $\varepsilon n \times \varepsilon n$ sub-matrix $A_0 \subset A$, such that

$$\|A \setminus A_0\| \leq C_{\varepsilon}\sqrt{n} = O(rac{\ln(\varepsilon^{-1})}{\sqrt{\varepsilon}})\sqrt{n}$$

We need to delete just a small sub-matrix

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Application to the random graphs

Let G(n, p) – Erdös-Rényi random graph. What do we know about the norm of its (scaled) adjacency matrix $A = \frac{1}{\sqrt{p}}$. Adjacency ?

- If $p \ge \frac{\log n}{n}$, then $||A \mathbb{E}A|| \le \sqrt{n}$. This is good! ($\mathbb{E}A \sim n$, i.e. we have concentration)
- If $p < \frac{\log n}{n}$, especially if $p \lesssim \frac{1}{n}$, then $||A \mathbb{E}A|| \gg \sqrt{n}$ (sparse graphs do not concentrate)

We want to regularize the graph, such that new adjacency matrix satisfies

$$\|A'-\mathbb{E}A\|\lesssim\sqrt{n}.$$

What are the obstructions for the regularization?

Application - random graphs

What are the obstructions for the regularization?

1. Local/global - ?

Obstructions are local (known, Feige-Ofek)

2. What causes the obstructions (in terms of graph)?

Idea: obstructions are in high-degree vertices. For the regularization it is enough to

- U.Feige-E.Ofek: delete all high-degree vertices (> 10·expected degree)
- C.Le-R.Vershynin: reweight or delete some of the edges adjacent to high-degree vertices (to make all the degrees bounded)
- L.R-R.Vershynin (Bernoulli case corollary): delete a small εn × εn sub-graph

Dependence on ε

Optimal dependence would be $C_{\varepsilon} = O(\frac{1}{\sqrt{\varepsilon}})$. To see this, consider

• $arepsilon \lesssim rac{1}{n}$ and $\|A\| = O(n) = O(\sqrt{n}/\sqrt{arepsilon})$ with probability 1/2, or

• any $\varepsilon \leq 1/2$ and Bernoulli matrix A with rare $\frac{\sqrt{n}}{\sqrt{\varepsilon}}$ spikes

So, our argument gives log-optimal dependence $C_{\varepsilon} = O(rac{\ln(\varepsilon^{-1})}{\sqrt{\varepsilon}})$

Example (Bernoulli case)

However, in "good Bernoulli case" dependence is better. Let A be a square matrix with i.i.d. elements distributed like

Then the theorem is hold with $C_{\varepsilon} = O(\ln(\varepsilon^{-1}))$.

Proof ideas

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Observation 0: εn columns cut

It is enough to show that εn -columns cut regularizes the norm:

Shaded sub-matrices are deleted, white sub-blocks have good norm

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Step 1: Regularization of $\|.\|_{\infty \to 2}$ norm

Proposition (L.R-K.Tikhomirov)

Let $\varepsilon \in (0,1]$ and A be a matrix as above. Then with high probability there exists a diagonal matrix $D = (d_{ij})_{i,j=1}^{n}$, such that (1) $||AD||_{\infty \to 2} \leq \frac{c}{\sqrt{\varepsilon}}n$ (2) $d_{ii} \in (0,1)$ and $\prod_{i=1}^{n} d_{ii} \geq \exp(-\varepsilon n)$.

Idea: (1) d_{ii} is a weight we put on *i*-th column of the matrix and (2) there are few small d_{ii} : all but εn columns have weights larger than a small constant β .

We delete these εn columns to get:

$$\|A \setminus (\varepsilon n \text{ "bad" columns})\|_{\infty \to 2} \leq \frac{1}{\beta} \cdot \frac{C}{\sqrt{\varepsilon}} n.$$

Step 2: Grothendieck-Pietsch factorization

Improving the standard $\frac{1}{\sqrt{n}} \|B\|_{\infty \to 2} \le \|B\| \le \|B\|_{\infty \to 2}$, we use

Theorem (Grothendieck-Pietsch, sub-matrix version)

Let B be a $n \times n_1$ real matrix and $\delta > 0$. Then there exists $J \subset [n_1]$ with $|J| \ge (1 - \varepsilon)n_1$ such that

$$\|B_{[n]\times J}\| \leq \frac{2\|B\|_{\infty\to 2}}{\sqrt{\varepsilon n_1}}.$$

We use it with $n_1 = (1 - \varepsilon)n$ to find $|J| \ge (1 - 2\varepsilon)n$, such that

$$\|A_{[n]\times J}\| \leq \frac{2\|A \setminus A'\|_{\infty \to 2}}{\sqrt{\varepsilon n}} \leq \frac{C'n/\sqrt{\varepsilon}}{\sqrt{\varepsilon n}} \leq C_{\varepsilon}\sqrt{n}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

Step 2: Grothendieck-Pietsch factorization

Improving the standard $\frac{1}{\sqrt{n}} \|B\|_{\infty \to 2} \le \|B\| \le \|B\|_{\infty \to 2}$, we use

Theorem (Grothendieck-Pietsch, sub-matrix version)

Let B be a $n \times n_1$ real matrix and $\delta > 0$. Then there exists $J \subset [n_1]$ with $|J| \ge (1 - \varepsilon)n_1$ such that

$$\|B_{[n]\times J}\| \leq \frac{2\|B\|_{\infty\to 2}}{\sqrt{\varepsilon n_1}}.$$

We use it with $n_1 = (1 - \varepsilon)n$ to find $|J| \ge (1 - 2\varepsilon)n$, such that

$$\|A_{[n]\times J}\| \leq \frac{2\|A\setminus A'\|_{\infty\to 2}}{\sqrt{\varepsilon n}} \leq \frac{C'n/\sqrt{\varepsilon}}{\sqrt{\varepsilon n}} \leq C_{\varepsilon}\sqrt{n}.$$

Problem! We got $C_{\varepsilon} \sim \frac{1}{\sqrt{\varepsilon}} \frac{1}{\sqrt{\varepsilon}} = \frac{1}{\varepsilon} \gg \frac{1}{\sqrt{\varepsilon}}$ - optimal constant

Step 3: fighting for a good C_{ε}

Solution (for bounded entries): consider only "small" entries of the matrix $|a_{ij}| \lesssim \sqrt{n}$, then on Step 1 $||A \setminus A'||_{\infty \to 2} \leq C \sqrt{\ln(\varepsilon^{-1})}n$.

Hence, for a matrix A such that $\mathbb{E}a_{ij}=0, \mathbb{E}a_{ij}^2\leq 1, \ |a_{ij}|\leq rac{\sqrt{n}}{2}$ a.s.:

$$\|A \setminus A'\| \leq C \frac{\sqrt{\ln(\varepsilon^{-1})}}{\sqrt{\varepsilon}} \sqrt{n}$$

General case:

$$\begin{split} A &= A \cdot \mathbb{1}_{\{|a_{ij}| \lesssim \sqrt{n}\}} + A \cdot \mathbb{1}_{\{\sqrt{n} \lesssim |a_{ij}| \lesssim \frac{\sqrt{n}}{\sqrt{\varepsilon}}\}} + A \cdot \mathbb{1}_{\{\frac{\sqrt{n}}{\sqrt{\varepsilon}} \lesssim |a_{ij}|\}} \\ & \downarrow & \downarrow \\ \text{sparsity and size} & \text{very sparse} \\ (\text{most non-zero elements} & (\varepsilon n \text{ non-zero} \\ \text{belong to sparse rows}) & \text{elements} \\ \end{split}$$

Theorem (Part 2: global obstructions)

Let A is an $n \times n$ matrix with i.i.d. entries, such that

- $\mathbb{E}a_{ij}^2 \geq M$,
- $|a_{ij}| \leq \sqrt{n}$ almost surely.

If $M = M(C, \varepsilon)$ is a large enough constant, then any $\varepsilon n \times \varepsilon n$ sub-matrix A_0 has large Frobenius (and, hence, operator) norm

 $\sqrt{n}\|A_0\|\geq \|A_0\|_F\geq Cn,$

with probability at least $1 - \exp(-\varepsilon n)$.

Any $\varepsilon n \times \varepsilon n$ sub-matrix blows up the norm

Proof idea:

• split elements onto levels "by size":

$$\|A_0\|_F^2 = \sum_{a_{ij} \in A_0} a_{ij}^2 = \sum_{k=0}^{\infty} \sum_{a_{ij} \in A_0} a_{ij}^2 \mathbb{1}_{\{2^k \le a_{ij}^2 < 2^{k+1}\}}$$

 argue that the majority of the levels in any εn × εn sub-block contain many non-zero elements (use Chernoff's inequality).

Conclusion:

Theorem (informal statement)

A is a random square matrix with i.i.d. centered elements aij,

- if Ea²_{ii} < M ∴ there are local obstructions
- if not, and entries are √n-bounded ∴ there are global obstructions

for the regularization of the operator norm ||A||.

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへで

Thanks for your attention! :)