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Global vs local obstructions

Setting: Object lacking some good property
Question: can we gain this property by a local change of an object?

We can ask this for various structures/objects and various
properties.

Example

Object - Erdös-Rényi random graph G (n, p);
property - connectivity; local change - in o(n) edges
When p ∼ 1

n structure properties change: a giant component
appear:

1. before threshold - lots of connected components

2. after threshold - a giant component + a few other
components
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Global vs local obstructions - Example

p < 1
n p > 1

n

There are O(n) small components,
we cannot connect them all by o(n)
edges – obstructions to connectivity
are ”global”

A giant component and log(n) other
components, we can connect
everything by a short cycle –
obstructions are ”local”

(Pictures are taken from A. Novozhilov’s course in Mathematics of Networks, NDSU)
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Another example - norm regularization problem

Object - n × n random matrix A with i.i.d. entries aij
Property - ‖A‖ . C

√
n with high probability

Local change - in a small εn × εn submatrix A0 ⊂ A

Example

• If aij ∼ N(0, 1), then ‖A‖ ' 2
√
n.

• If aij are subgaussian, then also
‖A‖ ' O(

√
n)

But: if just Ea2ij = 1, then there are examples ‖A‖ ∼ O(n2/α) for
any α ≥ 2 with probability at least 1/2 (A.Litvak, S.Spector)

Question: If ‖A‖ �
√
n w.h.p, is it a global or local obstruction?
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Norm regularization problem

Example

If aij are not mean zero: Eaij ∼ 1, then ‖A‖ ≥ n, and the problem
is global.

So, we assume Eaij = 0.
Can we improve the norm of a random matrix by deletion of its
small sub-matrix?

Theorem (L.R-R.Vershynin, informal statement)

A is a random square matrix with i.i.d. centered elements aij .

• if aij have finite variance ∴ local obstructions

• if not ∴ global obstructions
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Theorem (Part 1: local obstructions)

Let A be a random n × n matrix with i.i.d. elements, Eaij = 0,
Ea2ij = 1. Then for any ε ∈ (0, 12 ] with probability

1− 11 exp(−εn/6)

there exists an εn × εn sub-matrix A0 ⊂ A, such that

‖A \ A0‖ ≤ Cε
√
n = O(

ln(ε−1)√
ε

)
√
n.

εn

n

We need to delete just a small sub-matrix
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Application to the random graphs

Let G (n, p) – Erdös-Rényi random graph. What do we know about
the norm of its (scaled) adjacency matrix A = 1√

p ·Adjacency ?

• If p ≥ log n
n , then ‖A− EA‖ .

√
n. This is good!

(EA ∼ n, i.e. we have concentration)

• If p < log n
n , especially if p . 1

n , then ‖A− EA‖ �
√
n

(sparse graphs do not concentrate)

We want to regularize the graph, such that new adjacency matrix
satisfies

‖A′ − EA‖ .
√
n.

What are the obstructions for the regularization?
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Application - random graphs

What are the obstructions for the regularization?

1. Local/global - ?

Obstructions are local (known, Feige-Ofek)

2. What causes the obstructions (in terms of graph)?

Idea: obstructions are in high-degree vertices.
For the regularization it is enough to

• U.Feige-E.Ofek: delete all high-degree vertices (> 10·expected
degree)

• C.Le-R.Vershynin: reweight or delete some of the edges
adjacent to high-degree vertices (to make all the degrees
bounded)

• L.R-R.Vershynin (Bernoulli case corollary): delete a small
εn × εn sub-graph
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Dependence on ε

Optimal dependence would be Cε = O( 1√
ε
).

To see this, consider

• ε . 1
n and ‖A‖ = O(n) = O(

√
n/
√
ε) with probability 1/2, or

• any ε ≤ 1/2 and Bernoulli matrix A with rare
√
n√
ε

spikes

So, our argument gives log-optimal dependence Cε = O( ln(ε
−1)√
ε

)

Example (Bernoulli case)

However, in ”good Bernoulli case” dependence is better. Let A be
a square matrix with i.i.d. elements distributed like

aij =

{
1√
p with probability p

0 otherwise
, p · n = d = O(1) ≥ 4

Then the theorem is hold with Cε = O(ln(ε−1)).
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Observation 0: εn columns cut

It is enough to show that εn -columns cut regularizes the norm:

+ =

≤
√
n ≤

√
n ≤ 2

√
n

Shaded sub-matrices are deleted, white sub-blocks have good norm
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Step 1: Regularization of ‖.‖∞→2 norm

Proposition (L.R-K.Tikhomirov)

Let ε ∈ (0, 1] and A be a matrix as above. Then with high
probability there exists a diagonal matrix D = (dij)

n
i ,j=1, such that

(1) ‖AD‖∞→2 ≤ C√
ε
n

(2) dii ∈ (0, 1) and
n∏

i=1
dii ≥ exp(−εn).

Idea: (1) dii is a weight we put on i-th column of the matrix and
(2) there are few small dii : all but εn columns have weights larger
than a small constant β.
We delete these εn columns to get:

‖A \ (εn ”bad” columns) ‖∞→2 ≤
1

β
· C√

ε
n.
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Step 2: Grothendieck-Pietsch factorization

Improving the standard 1√
n
‖B‖∞→2 ≤ ‖B‖ ≤ ‖B‖∞→2, we use

Theorem (Grothendieck-Pietsch, sub-matrix version)

Let B be a n × n1 real matrix and δ > 0. Then there exists
J ⊂ [n1] with |J| ≥ (1− ε)n1 such that

‖B[n]×J‖ ≤
2‖B‖∞→2√

εn1
.

We use it with n1 = (1− ε)n to find |J| ≥ (1− 2ε)n, such that

‖A[n]×J‖ ≤
2‖A \ A′‖∞→2√

εn
≤ C ′n/

√
ε√

εn
≤ Cε

√
n.
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Step 2: Grothendieck-Pietsch factorization

Improving the standard 1√
n
‖B‖∞→2 ≤ ‖B‖ ≤ ‖B‖∞→2, we use

Theorem (Grothendieck-Pietsch, sub-matrix version)

Let B be a n × n1 real matrix and δ > 0. Then there exists
J ⊂ [n1] with |J| ≥ (1− ε)n1 such that

‖B[n]×J‖ ≤
2‖B‖∞→2√

εn1
.

We use it with n1 = (1− ε)n to find |J| ≥ (1− 2ε)n, such that

‖A[n]×J‖ ≤
2‖A \ A′‖∞→2√

εn
≤ C ′n/

√
ε√

εn
≤ Cε

√
n.

Problem! We got Cε ∼ 1√
ε

1√
ε

= 1
ε �

1√
ε

- optimal constant
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Step 3: fighting for a good Cε

Solution (for bounded entries): consider only ”small” entries of the
matrix |aij | .

√
n, then on Step 1 ‖A \ A′‖∞→2 ≤ C

√
ln(ε−1)n.

Hence, for a matrix A such that Eaij = 0,Eaij2 ≤ 1, |aij | ≤
√
n
2 a.s.:

‖A \ A′‖ ≤ C

√
ln(ε−1)√
ε

√
n.

General case:

A = A · 1{|aij | . √n} + A · 1{√n . |aij | .
√
n√
ε
} + A · 1{

√
n√
ε
.|aij | }

↓
sparsity and size

(most non-zero elements
belong to sparse rows)

↓
very sparse

(εn non-zero
elements)

�
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Theorem (Part 2: global obstructions)

Let A is an n × n matrix with i.i.d. entries, such that

• Ea2ij ≥ M,

• |aij | ≤
√
n almost surely.

If M = M(C , ε) is a large enough constant, then any εn × εn
sub-matrix A0 has large Frobenius (and, hence, operator) norm

√
n‖A0‖ ≥ ‖A0‖F ≥ Cn,

with probability at least 1− exp(−εn).

εn

n

Any εn × εn sub-matrix blows up the norm
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Proof idea:

• split elements onto levels ”by size”:

‖A0‖2F =
∑
aij∈A0

a2ij =
∞∑
k=0

∑
aij∈A0

a2ij1{2k≤a2ij<2k+1}

• argue that the majority of the levels in any εn × εn sub-block
contain many non-zero elements (use Chernoff’s inequality).

�
Conclusion:

Theorem (informal statement)

A is a random square matrix with i.i.d. centered elements aij ,

• if Ea2ij < M ∴ there are local obstructions

• if not, and entries are
√
n-bounded ∴ there are global

obstructions

for the regularization of the operator norm ‖A‖.
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Thanks for your attention! :)
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