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Global vs local obstructions

Setting: Object lacking some good property
Question: can we gain this property by a local change of an object?

We can ask this for various structures/objects and various
properties.

Example

Object - Erdös-Rényi random graph G (n, p);
property - connectivity; local change - in o(n) edges
When p ∼ 1

n structure properties change: a giant component
appear:

1. before threshold - lots of connected components

2. after threshold - a giant component + a few other
components
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Global vs local obstructions - Example

p < 1
n p > 1

n

There are O(n) small components,
we cannot connect them all by o(n)
edges – obstructions to connectivity
are ”global”

A giant component and log(n) other
components, we can connect
everything by a short cycle –
obstructions are ”local”

(Pictures are taken from A. Novozhilov’s course in Mathematics of Networks, NDSU)
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Key example - norm regularization problem

Object: n × n random matrix A with i.i.d.
(independent identically distributed) entries
Property: ‖A‖ . C

√
n w/high probability

Local change: in a small εn × εn submatrix
εn

n

Notations:
”With high probability” – for all large matrices (n > N0), property
holds with probability 1 - o(1) (ideally, 1− e−cn)

‖A‖ := sup
‖x‖2=1

‖Ax‖2 – operator (spectral) norm

It is equal to the maximum singular value of A

‖A‖ = s1(A) := max
λ

√
λ(ATA),

where λ(X ) denotes eigenvalue of X .
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How large is ‖A‖?

Example

• If aij ∼ N(0, 1), then ‖A‖ ' 2
√
n

(Wigner semicircular law)

• If aij are subgaussian, then also
‖A‖ ' C

√
n with probability

1− e−cn (Bernstein concentration
inequality)

A random variable ξ is called subgaussian, if for any t > 0

P{|ξ| > t} ≤ C exp(−ct2)

Example

But if just Ea2ij = 1, then there are examples ‖A‖ ∼ O(n2/α) for
any α ≥ 2 with probability at least 1/2 (A.Litvak, S.Spector)
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Norm regularization problem

Question: If ‖A‖ � √n with substantial probability, is it a global
or local obstruction?

Example

If Aij are not mean zero: EAij ∼ 1, then ‖A‖ ≥ O(n), and the
problem is global.

So, we assume EAij = 0. Can we improve the norm of a random
matrix by deletion of its small sub-matrix?

Theorem (L.R-R.Vershynin, informal statement)

A is a random square matrix with i.i.d. centered elements Aij .

• if Aij have finite variance ∴ local obstructions

• if not ∴ global obstructions
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Application to the random graphs

Consider an inhomogeneous Erdös-Rényi random graph G (n, pij)
with expected degrees npij ∼ d

A =
1√
p
· Adjacency matrix

p := max pij
Aij = 1√

pBer(p), hence

EA2
ij = 1 and ‖EA‖ ∼ √pn

Lemma

Dense graphs concentrate around their mean: if d ≥ log n, then

‖A− EA‖ .
√
n,

while ‖EA‖ ≥ √n log n



Norm regularization problem Local obstructions Proof ideas Global obstructions Appendix

Lemma

Sparse graphs do not concentrate: if expected degree d < log n,
especially if d . const, then

‖A− EA‖ �
√
n,

while ‖EA‖ ∼
√
d
√
n.

Why do we care?

Spectral methods for, e.g. community detection problem, are
based on idea:

• eigenstructure(A) ∼ eigenstructure(EA)

• let’s study the structure of EA instead

And it fails without concentration. Idea: preprocess our sparse
graph to make it concentrate.



Norm regularization problem Local obstructions Proof ideas Global obstructions Appendix

Application - random graphs

We want to change the graph, so that for new adjacency matrix

‖A′ − EA‖ .
√
n.

1. When this change can be made on small fraction of vertices
only? (local or global obstructions?)

2. What are the obstructions for such regularization?
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Obstructions for random graphs

1. Is it local or global obstructions?

Obstructions are local (known, Feige-Ofek)

2. What causes the obstructions (in terms of graph)?

Idea: obstructions are in high-degree vertices.
For the regularization it is enough to

• U.Feige-E.Ofek: delete all high-degree vertices (> 10·expected
degree)

• C.Le-R.Vershynin: reweight or delete some of the edges
adjacent to high-degree vertices (to make all the degrees
bounded)

• L.R-R.Vershynin (Bernoulli case corollary): delete a small
εn × εn sub-graph
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Finite 2 + ε moment

Theorem (L.R-R.Vershynin, informal statement)

A is a random square matrix with i.i.d. mean 0 elements Aij .

• if Aij have finite 2nd moment ∴ local obstructions

• if not ∴ global obstructions

Proposition (if we have more than 2nd moment)

Let A as before and EAij = 0 and EA2+ε
ij = 1 for some ε > 0. Then

with probability at least 1− n−c the norm of A can be regularized
to the order O(

√
n) by correcting a few o(n) individual entries.

This can be concluded from Bandeira-van Handel, or Seginer, or
Auffinger results.
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Plan of the proof:

• Let us zero out all the entries from the set

X := {Aij : |Aij | > c

√
n√

log n
}

The cardinality |X | ≤ n1−ε/8 with probability at least

1− e−n
1−ε/8

(Markov + Chernoff’s inequalities).

• With probability at least 1− 1
n Euclidean norms of all the rows

in Ā := A \ X are at most
√

5n (Bernstein’s inequality)

• By Bandeira-van Handel’s result:

P{‖Ā‖ ≥ 3σ + t} ≤ n exp(−t2/Cσ2∗),

where

σ∗ := max |Āij | .
√
n√

log n
; σ := max

i

√∑
j

A2
ij ≤
√

5n.

Take t =
√
n to see that ‖Ā‖ . √n with probability 1− n−c .
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If we have just finite 2nd moment...

...individual entries correction would not work for regularization!

Example

Consider scaled Bernoulli matrix Aij ∼
√
n · Ber( 1n ).

• There will be a row with at least log n/ log log n non-zero
elements. So, the norm is large:

‖A‖ ≥ log n

log log n

√
n >>

√
n

• Entries are 0-1, so looking at them individually, we can only
delete all non-zeros (but there are O(n) non-zero entries)

• Or use some information about their locations with respect to
each other (in given realization), such as heavy rows/columns
etc. And this works!
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Theorem (Local obstructions)

Let A be a random n × n matrix with i.i.d. elements, EAij = 0,
EA2

ij = 1. Then for any ε ∈ (0, 12 ] with probability

1− 11 exp(−εn/6)

there exists an εn × εn sub-matrix A0 ⊂ A, such that

‖A \ A0‖ ≤ Cε
√
n

Here, A \ A0 is a matrix we obtain by zeroing out all elements of
A, that belong to sub-matrix A0:

0 εn

n A \ A0
A0
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Dependence on ε

Optimal dependence would be Cε = O( 1√
ε
).

To see this, consider

• ε . 1
n and ‖A‖ = O(n) = O(

√
n/
√
ε) with probability 1/2, or

• any ε ≤ 1/2 and Bernoulli matrix A with rare
√
n√
ε

spikes

Our argument gives log-optimal dependence Cε = O( ln(ε
−1)√
ε

)

Example (Bernoulli case)

However, in ”good Bernoulli case” dependence is better. Let A be
a square matrix with i.i.d. elements distributed like

Aij =

{
1√
p with probability p

0 otherwise
, p · n = d = O(1) ≥ 4

Then the theorem is hold with Cε = O(ln(ε−1)).
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Observation 0: εn columns cut

It is enough to show that εn -columns cut regularizes the norm:

A A
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Observation 0: εn columns cut

It is enough to show that εn -columns cut regularizes the norm:

0A

‖green‖ ≤ √n ‖brown‖ ≤ √n

A

0
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Observation 0: εn columns cut

It is enough to show that εn -columns cut regularizes the norm:

0

‖green‖ ≤ √n ‖brown‖ ≤ √n
0

0
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Observation 0: εn columns cut

It is enough to show that εn - columns cut regularizes the norm:

0 + =

‖green‖ ≤ √n ‖brown‖ ≤ √n ‖dashed‖ ≤ 2
√
n

0

0

0
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Three norms

Definition

• Operator norm

‖A‖ = ‖A : l2 → l2‖ = sup
‖x‖2=1

‖Ax‖2

• Infinity to 2 (cut norm)

‖A‖∞→2 = ‖A : l∞ → l2‖ = max
x∈{−1,1}n

‖Ax‖2

• 2 to infinity (maximum row norm)

‖A‖2→∞ = ‖A : l2 → l∞‖ = max
i
‖Ai‖2,

where Ai , i = 1, . . . , n denote rows of matrix A.
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Example

For gaussian matrix (i.i.d. N(0,1) entries) we have:

‖A‖2→∞ ∼
√
n, ‖A‖∞→2 ∼ n, ‖A‖ ∼

√
n

”Ideal” norm relation?

‖A‖ . ‖A‖∞→2√
n

. ‖A‖2→∞ .
√
n
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Example

For gaussian matrix (i.i.d. N(0,1) entries) we have:

‖A‖2→∞ ∼
√
n, ‖A‖∞→2 ∼ n, ‖A‖ ∼

√
n

”Ideal” norm relation?

(((((((((((((((((hhhhhhhhhhhhhhhhh
‖A‖ . ‖A‖∞→2√

n
. ‖A‖2→∞ .

√
n

Not true :) Instead,

‖AJc3
‖ .
‖AJc2
‖∞→2√
n

. ‖AJc1
‖2→∞ .

√
n,

where J1, J2, J3 are small subsets of columns that we zero out
(J1 ⊂ J2 ⊂ J3 with cardinalities |Ji | ≤ εn)



Norm regularization problem Local obstructions Proof ideas Global obstructions Appendix

The 2→∞ norm: damping

Lemma

Consider an n × n random matrix A with i.i.d. entries Aij which

have mean zero, unit variance and |Aij | ≤
√
n
2 a.s. Let ε ∈ (0, 1/2].

Then with probability at least 1− e−εn, there exists a subset
J1 ∈ [n] with cardinality |J1| ≤ εn such that

‖AJc1
‖2→∞ ≤ C

√
ln ε−1 ·

√
n.

Warning: we cannot just cut columns with large elements!

∗
∗∗ ∗
∗ ∗

∗ ∗
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Damping: Bernoulli example

Idea: we construct a diagonal matrix of weights that regularizes
each row


0 1 0 0 1
0 0 0 0 0
0 1 1 0 0
1 1 0 0 1
1 0 0 0 0

 ·


0
δ1

0
0

δ1

 =


0 δ1 0 0 δ1
0 0 0 0 0
0 1 1 0 0
1 1 0 0 1
1 0 0 0 0


1-st row: damping with the weight 0 < δ1 < 1
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Damping: Bernoulli example

Idea: we construct a diagonal matrix of weights that regularizes
each row


0 1 0 0 1
0 0 0 0 0
0 1 1 0 0
1 1 0 0 1
1 0 0 0 0

 ·


0
δ1

0
0

δ1

 =


0 δ1 0 0 δ1
0 0 0 0 0
0 1 1 0 0
1 1 0 0 1
1 0 0 0 0


2-nd row: all good
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Damping: Bernoulli example

Idea: we construct a diagonal matrix of weights that regularizes
each row


0 1 0 0 1
0 0 0 0 0
0 1 1 0 0
1 1 0 0 1
1 0 0 0 0

 ·


0
δ21

δ1
0

δ1

 =


0 δ1 0 0 δ1
0 0 0 0 0
0 δ1 δ1 0 0
1 1 0 0 1
1 0 0 0 0


3-rd row: damping with the weight 0 < δ1 < 1
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Damping: Bernoulli example

Idea: we construct a diagonal matrix of weights that regularizes
each row


0 1 0 0 1
0 0 0 0 0
0 1 1 0 0
1 1 0 0 1
1 0 0 0 0



δ2

δ21δ2
δ1

0
δ1δ2

 =


0 δ1 0 0 δ1
0 0 0 0 0
0 δ1 δ1 0 0
δ2 δ2 0 0 δ2
1 0 0 0 0


4-th row: damping with the weight 0 < δ2 < δ1 < 1
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Damping: Bernoulli example

Idea: we construct a diagonal matrix of weights that regularizes
each row


0 1 0 0 1
0 0 0 0 0
0 1 1 0 0
1 1 0 0 1
1 0 0 0 0



δ2

δ21δ2
δ1

0
δ1δ2

 =


0 δ1 0 0 δ1
0 0 0 0 0
0 δ1 δ1 0 0
δ2 δ2 0 0 δ2
1 0 0 0 0


5-th row: all good
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Damping: Bernoulli example

Idea: we construct a diagonal matrix of weights that regularizes
each row


0 1 0 0 1
0 0 0 0 0
0 1 1 0 0
1 1 0 0 1
1 0 0 0 0



δ2

δ21δ2
δ1

0
δ1δ2

 =


0 δ1 0 0 δ1
0 0 0 0 0
0 δ1 δ1 0 0
δ2 δ2 0 0 δ2
1 0 0 0 0


2-nd column has small weight: to be deleted
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Damping: Bernoulli example


0 1 0 0 1
0 0 0 0 0
0 1 1 0 0
1 1 0 0 1
1 0 0 0 0



δ2

δ21δ2
δ1

0
δ1δ2

 =


0 δ1 0 0 δ1
0 0 0 0 0
0 δ1 δ1 0 0
δ2 δ2 0 0 δ2
1 0 0 0 0


Proposition (L.R-K.Tikhomirov)

Let ε ∈ (0, 1] and A is our martix. Then with high probability there
exists a diagonal weight matrixD = (dii )

n
i=1, di ∈ (0, 1), such that

(1) ‖AD‖2→∞ ≤ C
√

ln ε−1
√
n

(2) E(d11 · d22 · . . . · dnn) ≥ exp(−εn)

• Condition (2) implies that there all but εn columns have
weights dii ’s such that: dii > e−2. We can cut the rest!
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Damping for each row

So, enough to show that for every row Ai exists D i = (d i
1, . . . , d

i
n):

• ∑j d
i
jj · A2

ij ≤ Cεn

• E(d i
11 · d i

22 · . . . · d i
nn) ≥ e−ε

For Bernoulli matrix:
d i
jj := 0, if Aij = 0

d i
jj := 1, if ‖A2

i ‖1 ≤ Cn

d i
jj := Cn

‖A2
i ‖1
, otherwise

where A2
i := (A2

i1, . . . ,A
2
in).

For general case:
Naive regularization (d i

jj := expected norm
real norm ) would not work
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Damping: general disctibution case

Main idea: any random variable ξ (for us ξ = A2
ij) can be almost

surely approximated above by the sum of Bernoulli random
variables ξi , such that P(ξi = 1) = 2−i ,

ξ′ :=
∞∑
i=

τiξi ≥ ξ, and Eξ′ ≤ 2Eξ.

ξ

ξ′

τ0 τ1 τ2 τ3 · · · τk

τ1 τ2 τ3 · · · τk

P(ξ ≥ τk) = 2−k

P(ξ0 = 1) = 1

ξ0 ξ1 ξ2 ξk−1
P(ξk−1 = 1) = 2−k+1
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Step 2: ‖.‖∞→2 norm - playing with the signs

Reminder: we are proving

‖AJc3
‖ .
‖AJc2
‖∞→2√
n

. ‖AJc1
‖2→∞.

√
n,

Lemma

Let A be an n × n random matrix whose entries are independent,
symmetric random variables. Then

‖A‖∞→2 ≤ C
√
n‖A‖2→∞

with probability at least 1− e−n.

Rough idea: condition on |Aij |, and consider linear combination of
Rademacher random variables (γ := ±1 with probability 1/2)
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Corollary

If J1 ⊂ [n] be a random subset, which is independent of the signs
of the entries of A, then with the same high probability

‖AJc1
‖∞→2 ≤ C

√
n‖AJc1

‖2→∞

So, J1 = J2, there are no loss on Step 2.

Removing symmetry assumption:

• Note that for Lemma basic anti-symmetrization inequality will
do (norm is a convex function)

Eϕ(‖
∑
i

Xi‖) ≤ Eϕ(2‖
∑
i

γiXi‖) (from Ledoux-Talagrand)

• However, for Corollary (columns deletion makes it
non-convex) more delicate argument is needed.
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Proof sketch

Lemma

Let A be an n × n random matrix whose entries are independent,
symmetric random variables. Then

‖A‖∞→2 ≤ C
√
n‖A‖2→∞

with probability at least 1− e−n.

We want to show:

max
{−1,1}n

‖Ax‖22 ≤ Cnmax
rows
‖Ai‖22 w/high probability

Enough to show: for each x ∈ max{−1,1}n

‖Ax‖22 ≤ Cnmax
rows
‖Ai‖22 + union bound
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‖Ax‖2
2 ≤ Cn max ‖Ai‖2

2 - ?

Left hand side ‖Ax‖22 =
∑
ξ2i , where

ξi = 〈Ai , x〉 =
∑
j

Aijxj =
∑
j

Aijγijxj =
∑
j

Aijγij .

Linear combination of ±1 symmetric random variables γij - they
are subgaussian. Bernstein for subgaussians: ξi is also subgaussian
with ‖ξi‖2ψ2

=
∑

j A
2
ij = ‖Ai‖22.

ξi – subgaussian ∴ ξ2i – subexponential

Concentration for sum of subexponentials:

‖Ax‖22 =
∑

ξ2i ≤ C · n‖ξi‖ψ2 ≤ Cn‖Ai‖22.

Done!
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Step 3: ‖.‖ norm - Grothendieck-Pietsch factorization

Standard estimate: 1√
n
‖B‖∞→2 ≤ ‖B‖ ≤ ‖B‖∞→2

We want: ‖AJc3
‖ . 1√

n
‖AJc2
‖∞→2 with high probability

Theorem (Grothendieck-Pietsch, sub-matrix version)

Let B be a n × n1 real matrix and δ > 0. Then there exists
J ⊂ [n1] with |J| ≥ (1− ε)n1 such that

‖B[n]×J‖ ≤
2‖B‖∞→2√

εn1
.

We use it with n1 = (1− ε)n to find |J| ≥ (1− 2ε)n, such that

‖A[n]×J‖ ≤
2‖A \ A′‖∞→2√

εn
≤ Cεn√

εn
≤ Cε√

ε

√
n.



Norm regularization problem Local obstructions Proof ideas Global obstructions Appendix

Fighting for a good Cε

Solution (for bounded entries): consider only ”small” entries of the
matrix |aij | .

√
n, then on Step 1 ‖A \ A′‖2→∞ ≤ C

√
ln(ε−1)n.

Hence, for a matrix A such that EAij = 0,EAij
2 ≤ 1, |aij | ≤

√
n
2

a.s.:

‖A \ A′‖ ≤ C

√
ln(ε−1)√
ε

√
n.

General case:

A = A · 1{|Aij | .
√
n} + A · 1{√n . |Aij | .

√
n√
ε
} + A · 1{√n√

ε
.|Aij | }

↓
sparsity and size

(most non-zero elements
belong to sparse rows)

↓
very sparse

(εn non-zero
elements)

�



Norm regularization problem Local obstructions Proof ideas Global obstructions Appendix

Theorem (Part 2: global obstructions)

Let A is an n × n matrix with i.i.d. entries, such that

• EA2
ij ≥ M,

• |Aij | ≤
√
n almost surely.

If M = M(C , ε) is a large enough constant, then any εn × εn
sub-matrix A0 has large norm

‖A0‖ ≥ C
√
n,

with probability at least 1− exp(−εn).

So, if we were to cut some part
for regularization, we need to cut
almost everything! No εn × εn
sub-matrix can survive.

εn

n 0
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Proof idea

Frobenius norm ‖A0‖2F :=
n∑

i=1

s2i ≤ n ·max s2i = n · ‖A0‖2

• it’s enough to show that Frobenius norm is large

‖A0‖F ≥ Cn – ?

• split elements onto levels ”by size”:

‖A0‖2F =
∑

Aij∈A0

A2
ij =

∞∑
k=0

∑
Aij∈A0

a2ij1{2k≤a2ij<2k+1}

• argue that the majority of the levels in any εn × εn sub-block
contain many non-zero elements (use Chernoff’s inequality).

Done!
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Theorem (informal statement)

A is a random square matrix with i.i.d. centered elements aij ,

• if EA2
ij bounded ∴ there are local obstructions

• if not, and entries are
√
n-bounded ∴ there are global

obstructions

for the regularization of the operator norm ‖A‖.
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Thanks for your attention! :)
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Appendix

What else can be done with similar techniques...

Theorem (Rudelson, Vershynin)

Let n ≥ n0 and let A = (Aij) be an n × n random matrix with i.i.d
mean zero subgaussian entries. Then for any ε > 0 we have

P{sn(A) ≤ εn−1/2} ≤ Lε+ un,

where L > 0 and u ∈ (0, 1) depend only on the distribution of Aij .

Corollary: i.i.d. matrices with subgaussian entries are
well-invertible, as

‖A−1‖ = smax(A−1) = 1/sn(A) ∼
√
n
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Appendix

What else can be done with similar techniques...

Theorem (R, Tikhomirov)

Let n ≥ n0 and let A = (Aij) be an n × n random matrix with i.i.d
mean zero EA2

ij = 1 entries. Then for any ε > 0 we have

P{sn(A) ≤ εn−1/2} ≤ Lε+ un,

where L > 0 and u ∈ (0, 1) depend only on the distribution of Aij .

Corollary: i.i.d. matrices with heavy-tailed entries are also
well-invertible, as

‖A−1‖ = smax(A−1) = 1/sn(A) ∼
√
n
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Subgaussian case, idea of the proof

sn(A) := smin(A) = min
x∈Sn−1

‖Ax‖

Approximation by the ε−net N ⊂ Sn−1.
For any x ∈ Sn−1 find the closest y ∈ N :

‖Ax‖ ≥ ‖Ay‖−‖A(x−y)‖ ≥ ‖Ay‖−‖A‖‖x−y‖ ≥ inf
y∈N
‖Ay‖−

√
n·ε

Lemma

For A be a n × n random matrix with ii.d. subgaussian entries

P{‖A‖ ≥ t
√
n‖ ≤ exp(−c0t2n) for t ≥ C0.

Challenge: find an ε-net with the sufficiently low cardinality

N ∼
(

c

ε
√
n

)n
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Heavy-tailed case, idea of the proof

sn(A) := smin(A) = min
x∈Sn−1

‖Ax‖

Approximation by the ε−net N ⊂ Sn−1.
For any x ∈ Sn−1 find the closest y ∈ N :

‖Ax‖ ≥ ‖Ay‖ − ‖A(x − y)‖ ≥ ‖Ay‖ − ‖A‖‖x − y‖ ≥ ???

Norm is too large:
‖A‖ ∼ n�

√
n

New challenge: obtain an estimate ‖A(x − y)‖ ≥ √nε, where x , y
are in the same ε-net element.
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So, for any x , y taken from one net element we would like to have

‖A(x − y)‖ ≤
√
nε

New net is random (depends on realization of A):

A

εBn
2

εn

A(εBn
2 )

ε
√
n

And the net should be refined without blowing up cardinality |N |.
It is possible, as A cannot have too many large directions!
Damping, discretization, . . .
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